xref: /freebsd/contrib/llvm-project/llvm/lib/Support/OptimizedStructLayout.cpp (revision 315ee00fa9616b0a192b6834911f98bcf5316a6b)
1  //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the performOptimizedStructLayout interface.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/Support/OptimizedStructLayout.h"
14  #include <optional>
15  
16  using namespace llvm;
17  
18  using Field = OptimizedStructLayoutField;
19  
20  #ifndef NDEBUG
21  static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size,
22                               Align MaxAlign) {
23    uint64_t LastEnd = 0;
24    Align ComputedMaxAlign;
25    for (auto &Field : Fields) {
26      assert(Field.hasFixedOffset() &&
27             "didn't assign a fixed offset to field");
28      assert(isAligned(Field.Alignment, Field.Offset) &&
29             "didn't assign a correctly-aligned offset to field");
30      assert(Field.Offset >= LastEnd &&
31             "didn't assign offsets in ascending order");
32      LastEnd = Field.getEndOffset();
33      assert(Field.Alignment <= MaxAlign &&
34             "didn't compute MaxAlign correctly");
35      ComputedMaxAlign = std::max(Field.Alignment, MaxAlign);
36    }
37    assert(LastEnd == Size && "didn't compute LastEnd correctly");
38    assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly");
39  }
40  #endif
41  
42  std::pair<uint64_t, Align>
43  llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) {
44  #ifndef NDEBUG
45    // Do some simple precondition checks.
46    {
47      bool InFixedPrefix = true;
48      size_t LastEnd = 0;
49      for (auto &Field : Fields) {
50        assert(Field.Size > 0 && "field of zero size");
51        if (Field.hasFixedOffset()) {
52          assert(InFixedPrefix &&
53                 "fixed-offset fields are not a strict prefix of array");
54          assert(LastEnd <= Field.Offset &&
55                 "fixed-offset fields overlap or are not in order");
56          LastEnd = Field.getEndOffset();
57          assert(LastEnd > Field.Offset &&
58                 "overflow in fixed-offset end offset");
59        } else {
60          InFixedPrefix = false;
61        }
62      }
63    }
64  #endif
65  
66    // Do an initial pass over the fields.
67    Align MaxAlign;
68  
69    // Find the first flexible-offset field, tracking MaxAlign.
70    auto FirstFlexible = Fields.begin(), E = Fields.end();
71    while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) {
72      MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment);
73      ++FirstFlexible;
74    }
75  
76    // If there are no flexible fields, we're done.
77    if (FirstFlexible == E) {
78      uint64_t Size = 0;
79      if (!Fields.empty())
80        Size = Fields.back().getEndOffset();
81  
82  #ifndef NDEBUG
83      checkValidLayout(Fields, Size, MaxAlign);
84  #endif
85      return std::make_pair(Size, MaxAlign);
86    }
87  
88    // Walk over the flexible-offset fields, tracking MaxAlign and
89    // assigning them a unique number in order of their appearance.
90    // We'll use this unique number in the comparison below so that
91    // we can use array_pod_sort, which isn't stable.  We won't use it
92    // past that point.
93    {
94      uintptr_t UniqueNumber = 0;
95      for (auto I = FirstFlexible; I != E; ++I) {
96        I->Scratch = reinterpret_cast<void*>(UniqueNumber++);
97        MaxAlign = std::max(MaxAlign, I->Alignment);
98      }
99    }
100  
101    // Sort the flexible elements in order of decreasing alignment,
102    // then decreasing size, and then the original order as recorded
103    // in Scratch.  The decreasing-size aspect of this is only really
104    // important if we get into the gap-filling stage below, but it
105    // doesn't hurt here.
106    array_pod_sort(FirstFlexible, E,
107                   [](const Field *lhs, const Field *rhs) -> int {
108      // Decreasing alignment.
109      if (lhs->Alignment != rhs->Alignment)
110        return (lhs->Alignment < rhs->Alignment ? 1 : -1);
111  
112      // Decreasing size.
113      if (lhs->Size != rhs->Size)
114        return (lhs->Size < rhs->Size ? 1 : -1);
115  
116      // Original order.
117      auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch);
118      auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch);
119      if (lhsNumber != rhsNumber)
120        return (lhsNumber < rhsNumber ? -1 : 1);
121  
122      return 0;
123    });
124  
125    // Do a quick check for whether that sort alone has given us a perfect
126    // layout with no interior padding.  This is very common: if the
127    // fixed-layout fields have no interior padding, and they end at a
128    // sufficiently-aligned offset for all the flexible-layout fields,
129    // and the flexible-layout fields all have sizes that are multiples
130    // of their alignment, then this will reliably trigger.
131    {
132      bool HasPadding = false;
133      uint64_t LastEnd = 0;
134  
135      // Walk the fixed-offset fields.
136      for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
137        assert(I->hasFixedOffset());
138        if (LastEnd != I->Offset) {
139          HasPadding = true;
140          break;
141        }
142        LastEnd = I->getEndOffset();
143      }
144  
145      // Walk the flexible-offset fields, optimistically assigning fixed
146      // offsets.  Note that we maintain a strict division between the
147      // fixed-offset and flexible-offset fields, so if we end up
148      // discovering padding later in this loop, we can just abandon this
149      // work and we'll ignore the offsets we already assigned.
150      if (!HasPadding) {
151        for (auto I = FirstFlexible; I != E; ++I) {
152          auto Offset = alignTo(LastEnd, I->Alignment);
153          if (LastEnd != Offset) {
154            HasPadding = true;
155            break;
156          }
157          I->Offset = Offset;
158          LastEnd = I->getEndOffset();
159        }
160      }
161  
162      // If we already have a perfect layout, we're done.
163      if (!HasPadding) {
164  #ifndef NDEBUG
165        checkValidLayout(Fields, LastEnd, MaxAlign);
166  #endif
167        return std::make_pair(LastEnd, MaxAlign);
168      }
169    }
170  
171    // The algorithm sketch at this point is as follows.
172    //
173    // Consider the padding gaps between fixed-offset fields in ascending
174    // order.  Let LastEnd be the offset of the first byte following the
175    // field before the gap, or 0 if the gap is at the beginning of the
176    // structure.  Find the "best" flexible-offset field according to the
177    // criteria below.  If no such field exists, proceed to the next gap.
178    // Otherwise, add the field at the first properly-aligned offset for
179    // that field that is >= LastEnd, then update LastEnd and repeat in
180    // order to fill any remaining gap following that field.
181    //
182    // Next, let LastEnd to be the offset of the first byte following the
183    // last fixed-offset field, or 0 if there are no fixed-offset fields.
184    // While there are flexible-offset fields remaining, find the "best"
185    // flexible-offset field according to the criteria below, add it at
186    // the first properly-aligned offset for that field that is >= LastEnd,
187    // and update LastEnd to the first byte following the field.
188    //
189    // The "best" field is chosen by the following criteria, considered
190    // strictly in order:
191    //
192    // - When filling a gap betweeen fields, the field must fit.
193    // - A field is preferred if it requires less padding following LastEnd.
194    // - A field is preferred if it is more aligned.
195    // - A field is preferred if it is larger.
196    // - A field is preferred if it appeared earlier in the initial order.
197    //
198    // Minimizing leading padding is a greedy attempt to avoid padding
199    // entirely.  Preferring more-aligned fields is an attempt to eliminate
200    // stricter constraints earlier, with the idea that weaker alignment
201    // constraints may be resolvable with less padding elsewhere.  These
202    // These two rules are sufficient to ensure that we get the optimal
203    // layout in the "C-style" case.  Preferring larger fields tends to take
204    // better advantage of large gaps and may be more likely to have a size
205    // that's a multiple of a useful alignment.  Preferring the initial
206    // order may help somewhat with locality but is mostly just a way of
207    // ensuring deterministic output.
208    //
209    // Note that this algorithm does not guarantee a minimal layout.  Picking
210    // a larger object greedily may leave a gap that cannot be filled as
211    // efficiently.  Unfortunately, solving this perfectly is an NP-complete
212    // problem (by reduction from bin-packing: let B_i be the bin sizes and
213    // O_j be the object sizes; add fixed-offset fields such that the gaps
214    // between them have size B_i, and add flexible-offset fields with
215    // alignment 1 and size O_j; if the layout size is equal to the end of
216    // the last fixed-layout field, the objects fit in the bins; note that
217    // this doesn't even require the complexity of alignment).
218  
219    // The implementation below is essentially just an optimized version of
220    // scanning the list of remaining fields looking for the best, which
221    // would be O(n^2).  In the worst case, it doesn't improve on that.
222    // However, in practice it'll just scan the array of alignment bins
223    // and consider the first few elements from one or two bins.  The
224    // number of bins is bounded by a small constant: alignments are powers
225    // of two that are vanishingly unlikely to be over 64 and fairly unlikely
226    // to be over 8.  And multiple elements only need to be considered when
227    // filling a gap between fixed-offset fields, which doesn't happen very
228    // often.  We could use a data structure within bins that optimizes for
229    // finding the best-sized match, but it would require allocating memory
230    // and copying data, so it's unlikely to be worthwhile.
231  
232  
233    // Start by organizing the flexible-offset fields into bins according to
234    // their alignment.  We expect a small enough number of bins that we
235    // don't care about the asymptotic costs of walking this.
236    struct AlignmentQueue {
237      /// The minimum size of anything currently in this queue.
238      uint64_t MinSize;
239  
240      /// The head of the queue.  A singly-linked list.  The order here should
241      /// be consistent with the earlier sort, i.e. the elements should be
242      /// monotonically descending in size and otherwise in the original order.
243      ///
244      /// We remove the queue from the array as soon as this is empty.
245      OptimizedStructLayoutField *Head;
246  
247      /// The alignment requirement of the queue.
248      Align Alignment;
249  
250      static Field *getNext(Field *Cur) {
251        return static_cast<Field *>(Cur->Scratch);
252      }
253    };
254    SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment;
255    for (auto I = FirstFlexible; I != E; ) {
256      auto Head = I;
257      auto Alignment = I->Alignment;
258  
259      uint64_t MinSize = I->Size;
260      auto LastInQueue = I;
261      for (++I; I != E && I->Alignment == Alignment; ++I) {
262        LastInQueue->Scratch = I;
263        LastInQueue = I;
264        MinSize = std::min(MinSize, I->Size);
265      }
266      LastInQueue->Scratch = nullptr;
267  
268      FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment});
269    }
270  
271  #ifndef NDEBUG
272    // Verify that we set the queues up correctly.
273    auto checkQueues = [&]{
274      bool FirstQueue = true;
275      Align LastQueueAlignment;
276      for (auto &Queue : FlexibleFieldsByAlignment) {
277        assert((FirstQueue || Queue.Alignment < LastQueueAlignment) &&
278               "bins not in order of descending alignment");
279        LastQueueAlignment = Queue.Alignment;
280        FirstQueue = false;
281  
282        assert(Queue.Head && "queue was empty");
283        uint64_t LastSize = ~(uint64_t)0;
284        for (auto I = Queue.Head; I; I = Queue.getNext(I)) {
285          assert(I->Alignment == Queue.Alignment && "bad field in queue");
286          assert(I->Size <= LastSize && "queue not in descending size order");
287          LastSize = I->Size;
288        }
289      }
290    };
291    checkQueues();
292  #endif
293  
294    /// Helper function to remove a field from a queue.
295    auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) {
296      assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur);
297  
298      // If we're removing Cur from a non-initial position, splice it out
299      // of the linked list.
300      if (Last) {
301        Last->Scratch = Cur->Scratch;
302  
303        // If Cur was the last field in the list, we need to update MinSize.
304        // We can just use the last field's size because the list is in
305        // descending order of size.
306        if (!Cur->Scratch)
307          Queue->MinSize = Last->Size;
308  
309      // Otherwise, replace the head.
310      } else {
311        if (auto NewHead = Queue->getNext(Cur))
312          Queue->Head = NewHead;
313  
314        // If we just emptied the queue, destroy its bin.
315        else
316          FlexibleFieldsByAlignment.erase(Queue);
317      }
318    };
319  
320    // Do layout into a local array.  Doing this in-place on Fields is
321    // not really feasible.
322    SmallVector<Field, 16> Layout;
323    Layout.reserve(Fields.size());
324  
325    // The offset that we're currently looking to insert at (or after).
326    uint64_t LastEnd = 0;
327  
328    // Helper function to splice Cur out of the given queue and add it
329    // to the layout at the given offset.
330    auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur,
331                           uint64_t Offset) -> bool {
332      assert(Offset == alignTo(LastEnd, Cur->Alignment));
333  
334      // Splice out.  This potentially invalidates Queue.
335      spliceFromQueue(Queue, Last, Cur);
336  
337      // Add Cur to the layout.
338      Layout.push_back(*Cur);
339      Layout.back().Offset = Offset;
340      LastEnd = Layout.back().getEndOffset();
341  
342      // Always return true so that we can be tail-called.
343      return true;
344    };
345  
346    // Helper function to try to find a field in the given queue that'll
347    // fit starting at StartOffset but before EndOffset (if present).
348    // Note that this never fails if EndOffset is not provided.
349    auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue, uint64_t StartOffset,
350                                     std::optional<uint64_t> EndOffset) -> bool {
351      assert(Queue->Head);
352      assert(StartOffset == alignTo(LastEnd, Queue->Alignment));
353      assert(!EndOffset || StartOffset < *EndOffset);
354  
355      // Figure out the maximum size that a field can be, and ignore this
356      // queue if there's nothing in it that small.
357      auto MaxViableSize =
358        (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0);
359      if (Queue->MinSize > MaxViableSize)
360        return false;
361  
362      // Find the matching field.  Note that this should always find
363      // something because of the MinSize check above.
364      for (Field *Cur = Queue->Head, *Last = nullptr; true;
365             Last = Cur, Cur = Queue->getNext(Cur)) {
366        assert(Cur && "didn't find a match in queue despite its MinSize");
367        if (Cur->Size <= MaxViableSize)
368          return addToLayout(Queue, Last, Cur, StartOffset);
369      }
370  
371      llvm_unreachable("didn't find a match in queue despite its MinSize");
372    };
373  
374    // Helper function to find the "best" flexible-offset field according
375    // to the criteria described above.
376    auto tryAddBestField = [&](std::optional<uint64_t> BeforeOffset) -> bool {
377      assert(!BeforeOffset || LastEnd < *BeforeOffset);
378      auto QueueB = FlexibleFieldsByAlignment.begin();
379      auto QueueE = FlexibleFieldsByAlignment.end();
380  
381      // Start by looking for the most-aligned queue that doesn't need any
382      // leading padding after LastEnd.
383      auto FirstQueueToSearch = QueueB;
384      for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) {
385        if (isAligned(FirstQueueToSearch->Alignment, LastEnd))
386          break;
387      }
388  
389      uint64_t Offset = LastEnd;
390      while (true) {
391        // Invariant: all of the queues in [FirstQueueToSearch, QueueE)
392        // require the same initial padding offset.
393  
394        // Search those queues in descending order of alignment for a
395        // satisfactory field.
396        for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) {
397          if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset))
398            return true;
399        }
400  
401        // Okay, we don't need to scan those again.
402        QueueE = FirstQueueToSearch;
403  
404        // If we started from the first queue, we're done.
405        if (FirstQueueToSearch == QueueB)
406          return false;
407  
408        // Otherwise, scan backwards to find the most-aligned queue that
409        // still has minimal leading padding after LastEnd.  If that
410        // minimal padding is already at or past the end point, we're done.
411        --FirstQueueToSearch;
412        Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment);
413        if (BeforeOffset && Offset >= *BeforeOffset)
414          return false;
415        while (FirstQueueToSearch != QueueB &&
416               Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment))
417          --FirstQueueToSearch;
418      }
419    };
420  
421    // Phase 1: fill the gaps between fixed-offset fields with the best
422    // flexible-offset field that fits.
423    for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
424      assert(LastEnd <= I->Offset);
425      while (LastEnd != I->Offset) {
426        if (!tryAddBestField(I->Offset))
427          break;
428      }
429      Layout.push_back(*I);
430      LastEnd = I->getEndOffset();
431    }
432  
433  #ifndef NDEBUG
434    checkQueues();
435  #endif
436  
437    // Phase 2: repeatedly add the best flexible-offset field until
438    // they're all gone.
439    while (!FlexibleFieldsByAlignment.empty()) {
440      bool Success = tryAddBestField(std::nullopt);
441      assert(Success && "didn't find a field with no fixed limit?");
442      (void) Success;
443    }
444  
445    // Copy the layout back into place.
446    assert(Layout.size() == Fields.size());
447    memcpy(Fields.data(), Layout.data(),
448           Fields.size() * sizeof(OptimizedStructLayoutField));
449  
450  #ifndef NDEBUG
451    // Make a final check that the layout is valid.
452    checkValidLayout(Fields, LastEnd, MaxAlign);
453  #endif
454  
455    return std::make_pair(LastEnd, MaxAlign);
456  }
457