1 //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a class for representing known zeros and ones used by 10 // computeKnownBits. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/KnownBits.h" 15 #include <cassert> 16 17 using namespace llvm; 18 19 static KnownBits computeForAddCarry( 20 const KnownBits &LHS, const KnownBits &RHS, 21 bool CarryZero, bool CarryOne) { 22 assert(!(CarryZero && CarryOne) && 23 "Carry can't be zero and one at the same time"); 24 25 APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; 26 APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; 27 28 // Compute known bits of the carry. 29 APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); 30 APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; 31 32 // Compute set of known bits (where all three relevant bits are known). 33 APInt LHSKnownUnion = LHS.Zero | LHS.One; 34 APInt RHSKnownUnion = RHS.Zero | RHS.One; 35 APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; 36 APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; 37 38 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 39 "known bits of sum differ"); 40 41 // Compute known bits of the result. 42 KnownBits KnownOut; 43 KnownOut.Zero = ~std::move(PossibleSumZero) & Known; 44 KnownOut.One = std::move(PossibleSumOne) & Known; 45 return KnownOut; 46 } 47 48 KnownBits KnownBits::computeForAddCarry( 49 const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { 50 assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); 51 return ::computeForAddCarry( 52 LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); 53 } 54 55 KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, 56 const KnownBits &LHS, KnownBits RHS) { 57 KnownBits KnownOut; 58 if (Add) { 59 // Sum = LHS + RHS + 0 60 KnownOut = ::computeForAddCarry( 61 LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); 62 } else { 63 // Sum = LHS + ~RHS + 1 64 std::swap(RHS.Zero, RHS.One); 65 KnownOut = ::computeForAddCarry( 66 LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); 67 } 68 69 // Are we still trying to solve for the sign bit? 70 if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { 71 if (NSW) { 72 // Adding two non-negative numbers, or subtracting a negative number from 73 // a non-negative one, can't wrap into negative. 74 if (LHS.isNonNegative() && RHS.isNonNegative()) 75 KnownOut.makeNonNegative(); 76 // Adding two negative numbers, or subtracting a non-negative number from 77 // a negative one, can't wrap into non-negative. 78 else if (LHS.isNegative() && RHS.isNegative()) 79 KnownOut.makeNegative(); 80 } 81 } 82 83 return KnownOut; 84 } 85 86 KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const { 87 unsigned BitWidth = getBitWidth(); 88 assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth && 89 "Illegal sext-in-register"); 90 91 if (SrcBitWidth == BitWidth) 92 return *this; 93 94 unsigned ExtBits = BitWidth - SrcBitWidth; 95 KnownBits Result; 96 Result.One = One << ExtBits; 97 Result.Zero = Zero << ExtBits; 98 Result.One.ashrInPlace(ExtBits); 99 Result.Zero.ashrInPlace(ExtBits); 100 return Result; 101 } 102 103 KnownBits KnownBits::makeGE(const APInt &Val) const { 104 // Count the number of leading bit positions where our underlying value is 105 // known to be less than or equal to Val. 106 unsigned N = (Zero | Val).countLeadingOnes(); 107 108 // For each of those bit positions, if Val has a 1 in that bit then our 109 // underlying value must also have a 1. 110 APInt MaskedVal(Val); 111 MaskedVal.clearLowBits(getBitWidth() - N); 112 return KnownBits(Zero, One | MaskedVal); 113 } 114 115 KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { 116 // If we can prove that LHS >= RHS then use LHS as the result. Likewise for 117 // RHS. Ideally our caller would already have spotted these cases and 118 // optimized away the umax operation, but we handle them here for 119 // completeness. 120 if (LHS.getMinValue().uge(RHS.getMaxValue())) 121 return LHS; 122 if (RHS.getMinValue().uge(LHS.getMaxValue())) 123 return RHS; 124 125 // If the result of the umax is LHS then it must be greater than or equal to 126 // the minimum possible value of RHS. Likewise for RHS. Any known bits that 127 // are common to these two values are also known in the result. 128 KnownBits L = LHS.makeGE(RHS.getMinValue()); 129 KnownBits R = RHS.makeGE(LHS.getMinValue()); 130 return KnownBits::commonBits(L, R); 131 } 132 133 KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { 134 // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] 135 auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; 136 return Flip(umax(Flip(LHS), Flip(RHS))); 137 } 138 139 KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { 140 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] 141 auto Flip = [](const KnownBits &Val) { 142 unsigned SignBitPosition = Val.getBitWidth() - 1; 143 APInt Zero = Val.Zero; 144 APInt One = Val.One; 145 Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 146 One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 147 return KnownBits(Zero, One); 148 }; 149 return Flip(umax(Flip(LHS), Flip(RHS))); 150 } 151 152 KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { 153 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] 154 auto Flip = [](const KnownBits &Val) { 155 unsigned SignBitPosition = Val.getBitWidth() - 1; 156 APInt Zero = Val.One; 157 APInt One = Val.Zero; 158 Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 159 One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 160 return KnownBits(Zero, One); 161 }; 162 return Flip(umax(Flip(LHS), Flip(RHS))); 163 } 164 165 KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS) { 166 unsigned BitWidth = LHS.getBitWidth(); 167 KnownBits Known(BitWidth); 168 169 // If the shift amount is a valid constant then transform LHS directly. 170 if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { 171 unsigned Shift = RHS.getConstant().getZExtValue(); 172 Known = LHS; 173 Known.Zero <<= Shift; 174 Known.One <<= Shift; 175 // Low bits are known zero. 176 Known.Zero.setLowBits(Shift); 177 return Known; 178 } 179 180 // No matter the shift amount, the trailing zeros will stay zero. 181 unsigned MinTrailingZeros = LHS.countMinTrailingZeros(); 182 183 // Minimum shift amount low bits are known zero. 184 if (RHS.getMinValue().ult(BitWidth)) { 185 MinTrailingZeros += RHS.getMinValue().getZExtValue(); 186 MinTrailingZeros = std::min(MinTrailingZeros, BitWidth); 187 } 188 189 Known.Zero.setLowBits(MinTrailingZeros); 190 return Known; 191 } 192 193 KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS) { 194 unsigned BitWidth = LHS.getBitWidth(); 195 KnownBits Known(BitWidth); 196 197 if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { 198 unsigned Shift = RHS.getConstant().getZExtValue(); 199 Known = LHS; 200 Known.Zero.lshrInPlace(Shift); 201 Known.One.lshrInPlace(Shift); 202 // High bits are known zero. 203 Known.Zero.setHighBits(Shift); 204 return Known; 205 } 206 207 // No matter the shift amount, the leading zeros will stay zero. 208 unsigned MinLeadingZeros = LHS.countMinLeadingZeros(); 209 210 // Minimum shift amount high bits are known zero. 211 if (RHS.getMinValue().ult(BitWidth)) { 212 MinLeadingZeros += RHS.getMinValue().getZExtValue(); 213 MinLeadingZeros = std::min(MinLeadingZeros, BitWidth); 214 } 215 216 Known.Zero.setHighBits(MinLeadingZeros); 217 return Known; 218 } 219 220 KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS) { 221 unsigned BitWidth = LHS.getBitWidth(); 222 KnownBits Known(BitWidth); 223 224 if (RHS.isConstant() && RHS.getConstant().ult(BitWidth)) { 225 unsigned Shift = RHS.getConstant().getZExtValue(); 226 Known = LHS; 227 Known.Zero.ashrInPlace(Shift); 228 Known.One.ashrInPlace(Shift); 229 return Known; 230 } 231 232 // No matter the shift amount, the leading sign bits will stay. 233 unsigned MinLeadingZeros = LHS.countMinLeadingZeros(); 234 unsigned MinLeadingOnes = LHS.countMinLeadingOnes(); 235 236 // Minimum shift amount high bits are known sign bits. 237 if (RHS.getMinValue().ult(BitWidth)) { 238 if (MinLeadingZeros) { 239 MinLeadingZeros += RHS.getMinValue().getZExtValue(); 240 MinLeadingZeros = std::min(MinLeadingZeros, BitWidth); 241 } 242 if (MinLeadingOnes) { 243 MinLeadingOnes += RHS.getMinValue().getZExtValue(); 244 MinLeadingOnes = std::min(MinLeadingOnes, BitWidth); 245 } 246 } 247 248 Known.Zero.setHighBits(MinLeadingZeros); 249 Known.One.setHighBits(MinLeadingOnes); 250 return Known; 251 } 252 253 Optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) { 254 if (LHS.isConstant() && RHS.isConstant()) 255 return Optional<bool>(LHS.getConstant() == RHS.getConstant()); 256 if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero)) 257 return Optional<bool>(false); 258 return None; 259 } 260 261 Optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) { 262 if (Optional<bool> KnownEQ = eq(LHS, RHS)) 263 return Optional<bool>(!KnownEQ.getValue()); 264 return None; 265 } 266 267 Optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) { 268 // LHS >u RHS -> false if umax(LHS) <= umax(RHS) 269 if (LHS.getMaxValue().ule(RHS.getMinValue())) 270 return Optional<bool>(false); 271 // LHS >u RHS -> true if umin(LHS) > umax(RHS) 272 if (LHS.getMinValue().ugt(RHS.getMaxValue())) 273 return Optional<bool>(true); 274 return None; 275 } 276 277 Optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) { 278 if (Optional<bool> IsUGT = ugt(RHS, LHS)) 279 return Optional<bool>(!IsUGT.getValue()); 280 return None; 281 } 282 283 Optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) { 284 return ugt(RHS, LHS); 285 } 286 287 Optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) { 288 return uge(RHS, LHS); 289 } 290 291 Optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) { 292 // LHS >s RHS -> false if smax(LHS) <= smax(RHS) 293 if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue())) 294 return Optional<bool>(false); 295 // LHS >s RHS -> true if smin(LHS) > smax(RHS) 296 if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue())) 297 return Optional<bool>(true); 298 return None; 299 } 300 301 Optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) { 302 if (Optional<bool> KnownSGT = sgt(RHS, LHS)) 303 return Optional<bool>(!KnownSGT.getValue()); 304 return None; 305 } 306 307 Optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) { 308 return sgt(RHS, LHS); 309 } 310 311 Optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) { 312 return sge(RHS, LHS); 313 } 314 315 KnownBits KnownBits::abs(bool IntMinIsPoison) const { 316 // If the source's MSB is zero then we know the rest of the bits already. 317 if (isNonNegative()) 318 return *this; 319 320 // Absolute value preserves trailing zero count. 321 KnownBits KnownAbs(getBitWidth()); 322 KnownAbs.Zero.setLowBits(countMinTrailingZeros()); 323 324 // We only know that the absolute values's MSB will be zero if INT_MIN is 325 // poison, or there is a set bit that isn't the sign bit (otherwise it could 326 // be INT_MIN). 327 if (IntMinIsPoison || (!One.isNullValue() && !One.isMinSignedValue())) 328 KnownAbs.Zero.setSignBit(); 329 330 // FIXME: Handle known negative input? 331 // FIXME: Calculate the negated Known bits and combine them? 332 return KnownAbs; 333 } 334 335 KnownBits KnownBits::computeForMul(const KnownBits &LHS, const KnownBits &RHS) { 336 unsigned BitWidth = LHS.getBitWidth(); 337 338 assert(!LHS.hasConflict() && !RHS.hasConflict()); 339 // Compute a conservative estimate for high known-0 bits. 340 unsigned LeadZ = 341 std::max(LHS.countMinLeadingZeros() + RHS.countMinLeadingZeros(), 342 BitWidth) - 343 BitWidth; 344 LeadZ = std::min(LeadZ, BitWidth); 345 346 // The result of the bottom bits of an integer multiply can be 347 // inferred by looking at the bottom bits of both operands and 348 // multiplying them together. 349 // We can infer at least the minimum number of known trailing bits 350 // of both operands. Depending on number of trailing zeros, we can 351 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 352 // a and b are divisible by m and n respectively. 353 // We then calculate how many of those bits are inferrable and set 354 // the output. For example, the i8 mul: 355 // a = XXXX1100 (12) 356 // b = XXXX1110 (14) 357 // We know the bottom 3 bits are zero since the first can be divided by 358 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 359 // Applying the multiplication to the trimmed arguments gets: 360 // XX11 (3) 361 // X111 (7) 362 // ------- 363 // XX11 364 // XX11 365 // XX11 366 // XX11 367 // ------- 368 // XXXXX01 369 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 370 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 371 // The proof for this can be described as: 372 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 373 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 374 // umin(countTrailingZeros(C2), C6) + 375 // umin(C5 - umin(countTrailingZeros(C1), C5), 376 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 377 // %aa = shl i8 %a, C5 378 // %bb = shl i8 %b, C6 379 // %aaa = or i8 %aa, C1 380 // %bbb = or i8 %bb, C2 381 // %mul = mul i8 %aaa, %bbb 382 // %mask = and i8 %mul, C7 383 // => 384 // %mask = i8 ((C1*C2)&C7) 385 // Where C5, C6 describe the known bits of %a, %b 386 // C1, C2 describe the known bottom bits of %a, %b. 387 // C7 describes the mask of the known bits of the result. 388 const APInt &Bottom0 = LHS.One; 389 const APInt &Bottom1 = RHS.One; 390 391 // How many times we'd be able to divide each argument by 2 (shr by 1). 392 // This gives us the number of trailing zeros on the multiplication result. 393 unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes(); 394 unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes(); 395 unsigned TrailZero0 = LHS.countMinTrailingZeros(); 396 unsigned TrailZero1 = RHS.countMinTrailingZeros(); 397 unsigned TrailZ = TrailZero0 + TrailZero1; 398 399 // Figure out the fewest known-bits operand. 400 unsigned SmallestOperand = 401 std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1); 402 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 403 404 APInt BottomKnown = 405 Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1); 406 407 KnownBits Res(BitWidth); 408 Res.Zero.setHighBits(LeadZ); 409 Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 410 Res.One = BottomKnown.getLoBits(ResultBitsKnown); 411 return Res; 412 } 413 414 KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS) { 415 unsigned BitWidth = LHS.getBitWidth(); 416 assert(!LHS.hasConflict() && !RHS.hasConflict()); 417 KnownBits Known(BitWidth); 418 419 // For the purposes of computing leading zeros we can conservatively 420 // treat a udiv as a logical right shift by the power of 2 known to 421 // be less than the denominator. 422 unsigned LeadZ = LHS.countMinLeadingZeros(); 423 unsigned RHSMaxLeadingZeros = RHS.countMaxLeadingZeros(); 424 425 if (RHSMaxLeadingZeros != BitWidth) 426 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 427 428 Known.Zero.setHighBits(LeadZ); 429 return Known; 430 } 431 432 KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) { 433 unsigned BitWidth = LHS.getBitWidth(); 434 assert(!LHS.hasConflict() && !RHS.hasConflict()); 435 KnownBits Known(BitWidth); 436 437 if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { 438 // The upper bits are all zero, the lower ones are unchanged. 439 APInt LowBits = RHS.getConstant() - 1; 440 Known.Zero = LHS.Zero | ~LowBits; 441 Known.One = LHS.One & LowBits; 442 return Known; 443 } 444 445 // Since the result is less than or equal to either operand, any leading 446 // zero bits in either operand must also exist in the result. 447 uint32_t Leaders = 448 std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros()); 449 Known.Zero.setHighBits(Leaders); 450 return Known; 451 } 452 453 KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) { 454 unsigned BitWidth = LHS.getBitWidth(); 455 assert(!LHS.hasConflict() && !RHS.hasConflict()); 456 KnownBits Known(BitWidth); 457 458 if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { 459 // The low bits of the first operand are unchanged by the srem. 460 APInt LowBits = RHS.getConstant() - 1; 461 Known.Zero = LHS.Zero & LowBits; 462 Known.One = LHS.One & LowBits; 463 464 // If the first operand is non-negative or has all low bits zero, then 465 // the upper bits are all zero. 466 if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero)) 467 Known.Zero |= ~LowBits; 468 469 // If the first operand is negative and not all low bits are zero, then 470 // the upper bits are all one. 471 if (LHS.isNegative() && LowBits.intersects(LHS.One)) 472 Known.One |= ~LowBits; 473 return Known; 474 } 475 476 // The sign bit is the LHS's sign bit, except when the result of the 477 // remainder is zero. If it's known zero, our sign bit is also zero. 478 if (LHS.isNonNegative()) 479 Known.makeNonNegative(); 480 return Known; 481 } 482 483 KnownBits &KnownBits::operator&=(const KnownBits &RHS) { 484 // Result bit is 0 if either operand bit is 0. 485 Zero |= RHS.Zero; 486 // Result bit is 1 if both operand bits are 1. 487 One &= RHS.One; 488 return *this; 489 } 490 491 KnownBits &KnownBits::operator|=(const KnownBits &RHS) { 492 // Result bit is 0 if both operand bits are 0. 493 Zero &= RHS.Zero; 494 // Result bit is 1 if either operand bit is 1. 495 One |= RHS.One; 496 return *this; 497 } 498 499 KnownBits &KnownBits::operator^=(const KnownBits &RHS) { 500 // Result bit is 0 if both operand bits are 0 or both are 1. 501 APInt Z = (Zero & RHS.Zero) | (One & RHS.One); 502 // Result bit is 1 if one operand bit is 0 and the other is 1. 503 One = (Zero & RHS.One) | (One & RHS.Zero); 504 Zero = std::move(Z); 505 return *this; 506 } 507