1 //=== JSON.cpp - JSON value, parsing and serialization - C++ -----------*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===---------------------------------------------------------------------===// 8 9 #include "llvm/Support/JSON.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/Support/ConvertUTF.h" 12 #include "llvm/Support/Error.h" 13 #include "llvm/Support/Format.h" 14 #include "llvm/Support/raw_ostream.h" 15 #include <cctype> 16 17 namespace llvm { 18 namespace json { 19 20 Value &Object::operator[](const ObjectKey &K) { 21 return try_emplace(K, nullptr).first->getSecond(); 22 } 23 Value &Object::operator[](ObjectKey &&K) { 24 return try_emplace(std::move(K), nullptr).first->getSecond(); 25 } 26 Value *Object::get(StringRef K) { 27 auto I = find(K); 28 if (I == end()) 29 return nullptr; 30 return &I->second; 31 } 32 const Value *Object::get(StringRef K) const { 33 auto I = find(K); 34 if (I == end()) 35 return nullptr; 36 return &I->second; 37 } 38 llvm::Optional<std::nullptr_t> Object::getNull(StringRef K) const { 39 if (auto *V = get(K)) 40 return V->getAsNull(); 41 return llvm::None; 42 } 43 llvm::Optional<bool> Object::getBoolean(StringRef K) const { 44 if (auto *V = get(K)) 45 return V->getAsBoolean(); 46 return llvm::None; 47 } 48 llvm::Optional<double> Object::getNumber(StringRef K) const { 49 if (auto *V = get(K)) 50 return V->getAsNumber(); 51 return llvm::None; 52 } 53 llvm::Optional<int64_t> Object::getInteger(StringRef K) const { 54 if (auto *V = get(K)) 55 return V->getAsInteger(); 56 return llvm::None; 57 } 58 llvm::Optional<llvm::StringRef> Object::getString(StringRef K) const { 59 if (auto *V = get(K)) 60 return V->getAsString(); 61 return llvm::None; 62 } 63 const json::Object *Object::getObject(StringRef K) const { 64 if (auto *V = get(K)) 65 return V->getAsObject(); 66 return nullptr; 67 } 68 json::Object *Object::getObject(StringRef K) { 69 if (auto *V = get(K)) 70 return V->getAsObject(); 71 return nullptr; 72 } 73 const json::Array *Object::getArray(StringRef K) const { 74 if (auto *V = get(K)) 75 return V->getAsArray(); 76 return nullptr; 77 } 78 json::Array *Object::getArray(StringRef K) { 79 if (auto *V = get(K)) 80 return V->getAsArray(); 81 return nullptr; 82 } 83 bool operator==(const Object &LHS, const Object &RHS) { 84 if (LHS.size() != RHS.size()) 85 return false; 86 for (const auto &L : LHS) { 87 auto R = RHS.find(L.first); 88 if (R == RHS.end() || L.second != R->second) 89 return false; 90 } 91 return true; 92 } 93 94 Array::Array(std::initializer_list<Value> Elements) { 95 V.reserve(Elements.size()); 96 for (const Value &V : Elements) { 97 emplace_back(nullptr); 98 back().moveFrom(std::move(V)); 99 } 100 } 101 102 Value::Value(std::initializer_list<Value> Elements) 103 : Value(json::Array(Elements)) {} 104 105 void Value::copyFrom(const Value &M) { 106 Type = M.Type; 107 switch (Type) { 108 case T_Null: 109 case T_Boolean: 110 case T_Double: 111 case T_Integer: 112 case T_UINT64: 113 memcpy(&Union, &M.Union, sizeof(Union)); 114 break; 115 case T_StringRef: 116 create<StringRef>(M.as<StringRef>()); 117 break; 118 case T_String: 119 create<std::string>(M.as<std::string>()); 120 break; 121 case T_Object: 122 create<json::Object>(M.as<json::Object>()); 123 break; 124 case T_Array: 125 create<json::Array>(M.as<json::Array>()); 126 break; 127 } 128 } 129 130 void Value::moveFrom(const Value &&M) { 131 Type = M.Type; 132 switch (Type) { 133 case T_Null: 134 case T_Boolean: 135 case T_Double: 136 case T_Integer: 137 case T_UINT64: 138 memcpy(&Union, &M.Union, sizeof(Union)); 139 break; 140 case T_StringRef: 141 create<StringRef>(M.as<StringRef>()); 142 break; 143 case T_String: 144 create<std::string>(std::move(M.as<std::string>())); 145 M.Type = T_Null; 146 break; 147 case T_Object: 148 create<json::Object>(std::move(M.as<json::Object>())); 149 M.Type = T_Null; 150 break; 151 case T_Array: 152 create<json::Array>(std::move(M.as<json::Array>())); 153 M.Type = T_Null; 154 break; 155 } 156 } 157 158 void Value::destroy() { 159 switch (Type) { 160 case T_Null: 161 case T_Boolean: 162 case T_Double: 163 case T_Integer: 164 case T_UINT64: 165 break; 166 case T_StringRef: 167 as<StringRef>().~StringRef(); 168 break; 169 case T_String: 170 as<std::string>().~basic_string(); 171 break; 172 case T_Object: 173 as<json::Object>().~Object(); 174 break; 175 case T_Array: 176 as<json::Array>().~Array(); 177 break; 178 } 179 } 180 181 bool operator==(const Value &L, const Value &R) { 182 if (L.kind() != R.kind()) 183 return false; 184 switch (L.kind()) { 185 case Value::Null: 186 return *L.getAsNull() == *R.getAsNull(); 187 case Value::Boolean: 188 return *L.getAsBoolean() == *R.getAsBoolean(); 189 case Value::Number: 190 // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323 191 // The same integer must convert to the same double, per the standard. 192 // However we see 64-vs-80-bit precision comparisons with gcc-7 -O3 -m32. 193 // So we avoid floating point promotion for exact comparisons. 194 if (L.Type == Value::T_Integer || R.Type == Value::T_Integer) 195 return L.getAsInteger() == R.getAsInteger(); 196 return *L.getAsNumber() == *R.getAsNumber(); 197 case Value::String: 198 return *L.getAsString() == *R.getAsString(); 199 case Value::Array: 200 return *L.getAsArray() == *R.getAsArray(); 201 case Value::Object: 202 return *L.getAsObject() == *R.getAsObject(); 203 } 204 llvm_unreachable("Unknown value kind"); 205 } 206 207 void Path::report(llvm::StringLiteral Msg) { 208 // Walk up to the root context, and count the number of segments. 209 unsigned Count = 0; 210 const Path *P; 211 for (P = this; P->Parent != nullptr; P = P->Parent) 212 ++Count; 213 Path::Root *R = P->Seg.root(); 214 // Fill in the error message and copy the path (in reverse order). 215 R->ErrorMessage = Msg; 216 R->ErrorPath.resize(Count); 217 auto It = R->ErrorPath.begin(); 218 for (P = this; P->Parent != nullptr; P = P->Parent) 219 *It++ = P->Seg; 220 } 221 222 Error Path::Root::getError() const { 223 std::string S; 224 raw_string_ostream OS(S); 225 OS << (ErrorMessage.empty() ? "invalid JSON contents" : ErrorMessage); 226 if (ErrorPath.empty()) { 227 if (!Name.empty()) 228 OS << " when parsing " << Name; 229 } else { 230 OS << " at " << (Name.empty() ? "(root)" : Name); 231 for (const Path::Segment &S : llvm::reverse(ErrorPath)) { 232 if (S.isField()) 233 OS << '.' << S.field(); 234 else 235 OS << '[' << S.index() << ']'; 236 } 237 } 238 return createStringError(llvm::inconvertibleErrorCode(), OS.str()); 239 } 240 241 namespace { 242 243 std::vector<const Object::value_type *> sortedElements(const Object &O) { 244 std::vector<const Object::value_type *> Elements; 245 for (const auto &E : O) 246 Elements.push_back(&E); 247 llvm::sort(Elements, 248 [](const Object::value_type *L, const Object::value_type *R) { 249 return L->first < R->first; 250 }); 251 return Elements; 252 } 253 254 // Prints a one-line version of a value that isn't our main focus. 255 // We interleave writes to OS and JOS, exploiting the lack of extra buffering. 256 // This is OK as we own the implementation. 257 void abbreviate(const Value &V, OStream &JOS) { 258 switch (V.kind()) { 259 case Value::Array: 260 JOS.rawValue(V.getAsArray()->empty() ? "[]" : "[ ... ]"); 261 break; 262 case Value::Object: 263 JOS.rawValue(V.getAsObject()->empty() ? "{}" : "{ ... }"); 264 break; 265 case Value::String: { 266 llvm::StringRef S = *V.getAsString(); 267 if (S.size() < 40) { 268 JOS.value(V); 269 } else { 270 std::string Truncated = fixUTF8(S.take_front(37)); 271 Truncated.append("..."); 272 JOS.value(Truncated); 273 } 274 break; 275 } 276 default: 277 JOS.value(V); 278 } 279 } 280 281 // Prints a semi-expanded version of a value that is our main focus. 282 // Array/Object entries are printed, but not recursively as they may be huge. 283 void abbreviateChildren(const Value &V, OStream &JOS) { 284 switch (V.kind()) { 285 case Value::Array: 286 JOS.array([&] { 287 for (const auto &I : *V.getAsArray()) 288 abbreviate(I, JOS); 289 }); 290 break; 291 case Value::Object: 292 JOS.object([&] { 293 for (const auto *KV : sortedElements(*V.getAsObject())) { 294 JOS.attributeBegin(KV->first); 295 abbreviate(KV->second, JOS); 296 JOS.attributeEnd(); 297 } 298 }); 299 break; 300 default: 301 JOS.value(V); 302 } 303 } 304 305 } // namespace 306 307 void Path::Root::printErrorContext(const Value &R, raw_ostream &OS) const { 308 OStream JOS(OS, /*IndentSize=*/2); 309 // PrintValue recurses down the path, printing the ancestors of our target. 310 // Siblings of nodes along the path are printed with abbreviate(), and the 311 // target itself is printed with the somewhat richer abbreviateChildren(). 312 // 'Recurse' is the lambda itself, to allow recursive calls. 313 auto PrintValue = [&](const Value &V, ArrayRef<Segment> Path, auto &Recurse) { 314 // Print the target node itself, with the error as a comment. 315 // Also used if we can't follow our path, e.g. it names a field that 316 // *should* exist but doesn't. 317 auto HighlightCurrent = [&] { 318 std::string Comment = "error: "; 319 Comment.append(ErrorMessage.data(), ErrorMessage.size()); 320 JOS.comment(Comment); 321 abbreviateChildren(V, JOS); 322 }; 323 if (Path.empty()) // We reached our target. 324 return HighlightCurrent(); 325 const Segment &S = Path.back(); // Path is in reverse order. 326 if (S.isField()) { 327 // Current node is an object, path names a field. 328 llvm::StringRef FieldName = S.field(); 329 const Object *O = V.getAsObject(); 330 if (!O || !O->get(FieldName)) 331 return HighlightCurrent(); 332 JOS.object([&] { 333 for (const auto *KV : sortedElements(*O)) { 334 JOS.attributeBegin(KV->first); 335 if (FieldName.equals(KV->first)) 336 Recurse(KV->second, Path.drop_back(), Recurse); 337 else 338 abbreviate(KV->second, JOS); 339 JOS.attributeEnd(); 340 } 341 }); 342 } else { 343 // Current node is an array, path names an element. 344 const Array *A = V.getAsArray(); 345 if (!A || S.index() >= A->size()) 346 return HighlightCurrent(); 347 JOS.array([&] { 348 unsigned Current = 0; 349 for (const auto &V : *A) { 350 if (Current++ == S.index()) 351 Recurse(V, Path.drop_back(), Recurse); 352 else 353 abbreviate(V, JOS); 354 } 355 }); 356 } 357 }; 358 PrintValue(R, ErrorPath, PrintValue); 359 } 360 361 namespace { 362 // Simple recursive-descent JSON parser. 363 class Parser { 364 public: 365 Parser(StringRef JSON) 366 : Start(JSON.begin()), P(JSON.begin()), End(JSON.end()) {} 367 368 bool checkUTF8() { 369 size_t ErrOffset; 370 if (isUTF8(StringRef(Start, End - Start), &ErrOffset)) 371 return true; 372 P = Start + ErrOffset; // For line/column calculation. 373 return parseError("Invalid UTF-8 sequence"); 374 } 375 376 bool parseValue(Value &Out); 377 378 bool assertEnd() { 379 eatWhitespace(); 380 if (P == End) 381 return true; 382 return parseError("Text after end of document"); 383 } 384 385 Error takeError() { 386 assert(Err); 387 return std::move(*Err); 388 } 389 390 private: 391 void eatWhitespace() { 392 while (P != End && (*P == ' ' || *P == '\r' || *P == '\n' || *P == '\t')) 393 ++P; 394 } 395 396 // On invalid syntax, parseX() functions return false and set Err. 397 bool parseNumber(char First, Value &Out); 398 bool parseString(std::string &Out); 399 bool parseUnicode(std::string &Out); 400 bool parseError(const char *Msg); // always returns false 401 402 char next() { return P == End ? 0 : *P++; } 403 char peek() { return P == End ? 0 : *P; } 404 static bool isNumber(char C) { 405 return C == '0' || C == '1' || C == '2' || C == '3' || C == '4' || 406 C == '5' || C == '6' || C == '7' || C == '8' || C == '9' || 407 C == 'e' || C == 'E' || C == '+' || C == '-' || C == '.'; 408 } 409 410 Optional<Error> Err; 411 const char *Start, *P, *End; 412 }; 413 414 bool Parser::parseValue(Value &Out) { 415 eatWhitespace(); 416 if (P == End) 417 return parseError("Unexpected EOF"); 418 switch (char C = next()) { 419 // Bare null/true/false are easy - first char identifies them. 420 case 'n': 421 Out = nullptr; 422 return (next() == 'u' && next() == 'l' && next() == 'l') || 423 parseError("Invalid JSON value (null?)"); 424 case 't': 425 Out = true; 426 return (next() == 'r' && next() == 'u' && next() == 'e') || 427 parseError("Invalid JSON value (true?)"); 428 case 'f': 429 Out = false; 430 return (next() == 'a' && next() == 'l' && next() == 's' && next() == 'e') || 431 parseError("Invalid JSON value (false?)"); 432 case '"': { 433 std::string S; 434 if (parseString(S)) { 435 Out = std::move(S); 436 return true; 437 } 438 return false; 439 } 440 case '[': { 441 Out = Array{}; 442 Array &A = *Out.getAsArray(); 443 eatWhitespace(); 444 if (peek() == ']') { 445 ++P; 446 return true; 447 } 448 for (;;) { 449 A.emplace_back(nullptr); 450 if (!parseValue(A.back())) 451 return false; 452 eatWhitespace(); 453 switch (next()) { 454 case ',': 455 eatWhitespace(); 456 continue; 457 case ']': 458 return true; 459 default: 460 return parseError("Expected , or ] after array element"); 461 } 462 } 463 } 464 case '{': { 465 Out = Object{}; 466 Object &O = *Out.getAsObject(); 467 eatWhitespace(); 468 if (peek() == '}') { 469 ++P; 470 return true; 471 } 472 for (;;) { 473 if (next() != '"') 474 return parseError("Expected object key"); 475 std::string K; 476 if (!parseString(K)) 477 return false; 478 eatWhitespace(); 479 if (next() != ':') 480 return parseError("Expected : after object key"); 481 eatWhitespace(); 482 if (!parseValue(O[std::move(K)])) 483 return false; 484 eatWhitespace(); 485 switch (next()) { 486 case ',': 487 eatWhitespace(); 488 continue; 489 case '}': 490 return true; 491 default: 492 return parseError("Expected , or } after object property"); 493 } 494 } 495 } 496 default: 497 if (isNumber(C)) 498 return parseNumber(C, Out); 499 return parseError("Invalid JSON value"); 500 } 501 } 502 503 bool Parser::parseNumber(char First, Value &Out) { 504 // Read the number into a string. (Must be null-terminated for strto*). 505 SmallString<24> S; 506 S.push_back(First); 507 while (isNumber(peek())) 508 S.push_back(next()); 509 char *End; 510 // Try first to parse as integer, and if so preserve full 64 bits. 511 // strtoll returns long long >= 64 bits, so check it's in range too. 512 auto I = std::strtoll(S.c_str(), &End, 10); 513 if (End == S.end() && I >= std::numeric_limits<int64_t>::min() && 514 I <= std::numeric_limits<int64_t>::max()) { 515 Out = int64_t(I); 516 return true; 517 } 518 // If it's not an integer 519 Out = std::strtod(S.c_str(), &End); 520 return End == S.end() || parseError("Invalid JSON value (number?)"); 521 } 522 523 bool Parser::parseString(std::string &Out) { 524 // leading quote was already consumed. 525 for (char C = next(); C != '"'; C = next()) { 526 if (LLVM_UNLIKELY(P == End)) 527 return parseError("Unterminated string"); 528 if (LLVM_UNLIKELY((C & 0x1f) == C)) 529 return parseError("Control character in string"); 530 if (LLVM_LIKELY(C != '\\')) { 531 Out.push_back(C); 532 continue; 533 } 534 // Handle escape sequence. 535 switch (C = next()) { 536 case '"': 537 case '\\': 538 case '/': 539 Out.push_back(C); 540 break; 541 case 'b': 542 Out.push_back('\b'); 543 break; 544 case 'f': 545 Out.push_back('\f'); 546 break; 547 case 'n': 548 Out.push_back('\n'); 549 break; 550 case 'r': 551 Out.push_back('\r'); 552 break; 553 case 't': 554 Out.push_back('\t'); 555 break; 556 case 'u': 557 if (!parseUnicode(Out)) 558 return false; 559 break; 560 default: 561 return parseError("Invalid escape sequence"); 562 } 563 } 564 return true; 565 } 566 567 static void encodeUtf8(uint32_t Rune, std::string &Out) { 568 if (Rune < 0x80) { 569 Out.push_back(Rune & 0x7F); 570 } else if (Rune < 0x800) { 571 uint8_t FirstByte = 0xC0 | ((Rune & 0x7C0) >> 6); 572 uint8_t SecondByte = 0x80 | (Rune & 0x3F); 573 Out.push_back(FirstByte); 574 Out.push_back(SecondByte); 575 } else if (Rune < 0x10000) { 576 uint8_t FirstByte = 0xE0 | ((Rune & 0xF000) >> 12); 577 uint8_t SecondByte = 0x80 | ((Rune & 0xFC0) >> 6); 578 uint8_t ThirdByte = 0x80 | (Rune & 0x3F); 579 Out.push_back(FirstByte); 580 Out.push_back(SecondByte); 581 Out.push_back(ThirdByte); 582 } else if (Rune < 0x110000) { 583 uint8_t FirstByte = 0xF0 | ((Rune & 0x1F0000) >> 18); 584 uint8_t SecondByte = 0x80 | ((Rune & 0x3F000) >> 12); 585 uint8_t ThirdByte = 0x80 | ((Rune & 0xFC0) >> 6); 586 uint8_t FourthByte = 0x80 | (Rune & 0x3F); 587 Out.push_back(FirstByte); 588 Out.push_back(SecondByte); 589 Out.push_back(ThirdByte); 590 Out.push_back(FourthByte); 591 } else { 592 llvm_unreachable("Invalid codepoint"); 593 } 594 } 595 596 // Parse a UTF-16 \uNNNN escape sequence. "\u" has already been consumed. 597 // May parse several sequential escapes to ensure proper surrogate handling. 598 // We do not use ConvertUTF.h, it can't accept and replace unpaired surrogates. 599 // These are invalid Unicode but valid JSON (RFC 8259, section 8.2). 600 bool Parser::parseUnicode(std::string &Out) { 601 // Invalid UTF is not a JSON error (RFC 8529§8.2). It gets replaced by U+FFFD. 602 auto Invalid = [&] { Out.append(/* UTF-8 */ {'\xef', '\xbf', '\xbd'}); }; 603 // Decodes 4 hex digits from the stream into Out, returns false on error. 604 auto Parse4Hex = [this](uint16_t &Out) -> bool { 605 Out = 0; 606 char Bytes[] = {next(), next(), next(), next()}; 607 for (unsigned char C : Bytes) { 608 if (!std::isxdigit(C)) 609 return parseError("Invalid \\u escape sequence"); 610 Out <<= 4; 611 Out |= (C > '9') ? (C & ~0x20) - 'A' + 10 : (C - '0'); 612 } 613 return true; 614 }; 615 uint16_t First; // UTF-16 code unit from the first \u escape. 616 if (!Parse4Hex(First)) 617 return false; 618 619 // We loop to allow proper surrogate-pair error handling. 620 while (true) { 621 // Case 1: the UTF-16 code unit is already a codepoint in the BMP. 622 if (LLVM_LIKELY(First < 0xD800 || First >= 0xE000)) { 623 encodeUtf8(First, Out); 624 return true; 625 } 626 627 // Case 2: it's an (unpaired) trailing surrogate. 628 if (LLVM_UNLIKELY(First >= 0xDC00)) { 629 Invalid(); 630 return true; 631 } 632 633 // Case 3: it's a leading surrogate. We expect a trailing one next. 634 // Case 3a: there's no trailing \u escape. Don't advance in the stream. 635 if (LLVM_UNLIKELY(P + 2 > End || *P != '\\' || *(P + 1) != 'u')) { 636 Invalid(); // Leading surrogate was unpaired. 637 return true; 638 } 639 P += 2; 640 uint16_t Second; 641 if (!Parse4Hex(Second)) 642 return false; 643 // Case 3b: there was another \u escape, but it wasn't a trailing surrogate. 644 if (LLVM_UNLIKELY(Second < 0xDC00 || Second >= 0xE000)) { 645 Invalid(); // Leading surrogate was unpaired. 646 First = Second; // Second escape still needs to be processed. 647 continue; 648 } 649 // Case 3c: a valid surrogate pair encoding an astral codepoint. 650 encodeUtf8(0x10000 | ((First - 0xD800) << 10) | (Second - 0xDC00), Out); 651 return true; 652 } 653 } 654 655 bool Parser::parseError(const char *Msg) { 656 int Line = 1; 657 const char *StartOfLine = Start; 658 for (const char *X = Start; X < P; ++X) { 659 if (*X == 0x0A) { 660 ++Line; 661 StartOfLine = X + 1; 662 } 663 } 664 Err.emplace( 665 std::make_unique<ParseError>(Msg, Line, P - StartOfLine, P - Start)); 666 return false; 667 } 668 } // namespace 669 670 Expected<Value> parse(StringRef JSON) { 671 Parser P(JSON); 672 Value E = nullptr; 673 if (P.checkUTF8()) 674 if (P.parseValue(E)) 675 if (P.assertEnd()) 676 return std::move(E); 677 return P.takeError(); 678 } 679 char ParseError::ID = 0; 680 681 bool isUTF8(llvm::StringRef S, size_t *ErrOffset) { 682 // Fast-path for ASCII, which is valid UTF-8. 683 if (LLVM_LIKELY(isASCII(S))) 684 return true; 685 686 const UTF8 *Data = reinterpret_cast<const UTF8 *>(S.data()), *Rest = Data; 687 if (LLVM_LIKELY(isLegalUTF8String(&Rest, Data + S.size()))) 688 return true; 689 690 if (ErrOffset) 691 *ErrOffset = Rest - Data; 692 return false; 693 } 694 695 std::string fixUTF8(llvm::StringRef S) { 696 // This isn't particularly efficient, but is only for error-recovery. 697 std::vector<UTF32> Codepoints(S.size()); // 1 codepoint per byte suffices. 698 const UTF8 *In8 = reinterpret_cast<const UTF8 *>(S.data()); 699 UTF32 *Out32 = Codepoints.data(); 700 ConvertUTF8toUTF32(&In8, In8 + S.size(), &Out32, Out32 + Codepoints.size(), 701 lenientConversion); 702 Codepoints.resize(Out32 - Codepoints.data()); 703 std::string Res(4 * Codepoints.size(), 0); // 4 bytes per codepoint suffice 704 const UTF32 *In32 = Codepoints.data(); 705 UTF8 *Out8 = reinterpret_cast<UTF8 *>(&Res[0]); 706 ConvertUTF32toUTF8(&In32, In32 + Codepoints.size(), &Out8, Out8 + Res.size(), 707 strictConversion); 708 Res.resize(reinterpret_cast<char *>(Out8) - Res.data()); 709 return Res; 710 } 711 712 static void quote(llvm::raw_ostream &OS, llvm::StringRef S) { 713 OS << '\"'; 714 for (unsigned char C : S) { 715 if (C == 0x22 || C == 0x5C) 716 OS << '\\'; 717 if (C >= 0x20) { 718 OS << C; 719 continue; 720 } 721 OS << '\\'; 722 switch (C) { 723 // A few characters are common enough to make short escapes worthwhile. 724 case '\t': 725 OS << 't'; 726 break; 727 case '\n': 728 OS << 'n'; 729 break; 730 case '\r': 731 OS << 'r'; 732 break; 733 default: 734 OS << 'u'; 735 llvm::write_hex(OS, C, llvm::HexPrintStyle::Lower, 4); 736 break; 737 } 738 } 739 OS << '\"'; 740 } 741 742 void llvm::json::OStream::value(const Value &V) { 743 switch (V.kind()) { 744 case Value::Null: 745 valueBegin(); 746 OS << "null"; 747 return; 748 case Value::Boolean: 749 valueBegin(); 750 OS << (*V.getAsBoolean() ? "true" : "false"); 751 return; 752 case Value::Number: 753 valueBegin(); 754 if (V.Type == Value::T_Integer) 755 OS << *V.getAsInteger(); 756 else if (V.Type == Value::T_UINT64) 757 OS << *V.getAsUINT64(); 758 else 759 OS << format("%.*g", std::numeric_limits<double>::max_digits10, 760 *V.getAsNumber()); 761 return; 762 case Value::String: 763 valueBegin(); 764 quote(OS, *V.getAsString()); 765 return; 766 case Value::Array: 767 return array([&] { 768 for (const Value &E : *V.getAsArray()) 769 value(E); 770 }); 771 case Value::Object: 772 return object([&] { 773 for (const Object::value_type *E : sortedElements(*V.getAsObject())) 774 attribute(E->first, E->second); 775 }); 776 } 777 } 778 779 void llvm::json::OStream::valueBegin() { 780 assert(Stack.back().Ctx != Object && "Only attributes allowed here"); 781 if (Stack.back().HasValue) { 782 assert(Stack.back().Ctx != Singleton && "Only one value allowed here"); 783 OS << ','; 784 } 785 if (Stack.back().Ctx == Array) 786 newline(); 787 flushComment(); 788 Stack.back().HasValue = true; 789 } 790 791 void OStream::comment(llvm::StringRef Comment) { 792 assert(PendingComment.empty() && "Only one comment per value!"); 793 PendingComment = Comment; 794 } 795 796 void OStream::flushComment() { 797 if (PendingComment.empty()) 798 return; 799 OS << (IndentSize ? "/* " : "/*"); 800 // Be sure not to accidentally emit "*/". Transform to "* /". 801 while (!PendingComment.empty()) { 802 auto Pos = PendingComment.find("*/"); 803 if (Pos == StringRef::npos) { 804 OS << PendingComment; 805 PendingComment = ""; 806 } else { 807 OS << PendingComment.take_front(Pos) << "* /"; 808 PendingComment = PendingComment.drop_front(Pos + 2); 809 } 810 } 811 OS << (IndentSize ? " */" : "*/"); 812 // Comments are on their own line unless attached to an attribute value. 813 if (Stack.size() > 1 && Stack.back().Ctx == Singleton) { 814 if (IndentSize) 815 OS << ' '; 816 } else { 817 newline(); 818 } 819 } 820 821 void llvm::json::OStream::newline() { 822 if (IndentSize) { 823 OS.write('\n'); 824 OS.indent(Indent); 825 } 826 } 827 828 void llvm::json::OStream::arrayBegin() { 829 valueBegin(); 830 Stack.emplace_back(); 831 Stack.back().Ctx = Array; 832 Indent += IndentSize; 833 OS << '['; 834 } 835 836 void llvm::json::OStream::arrayEnd() { 837 assert(Stack.back().Ctx == Array); 838 Indent -= IndentSize; 839 if (Stack.back().HasValue) 840 newline(); 841 OS << ']'; 842 assert(PendingComment.empty()); 843 Stack.pop_back(); 844 assert(!Stack.empty()); 845 } 846 847 void llvm::json::OStream::objectBegin() { 848 valueBegin(); 849 Stack.emplace_back(); 850 Stack.back().Ctx = Object; 851 Indent += IndentSize; 852 OS << '{'; 853 } 854 855 void llvm::json::OStream::objectEnd() { 856 assert(Stack.back().Ctx == Object); 857 Indent -= IndentSize; 858 if (Stack.back().HasValue) 859 newline(); 860 OS << '}'; 861 assert(PendingComment.empty()); 862 Stack.pop_back(); 863 assert(!Stack.empty()); 864 } 865 866 void llvm::json::OStream::attributeBegin(llvm::StringRef Key) { 867 assert(Stack.back().Ctx == Object); 868 if (Stack.back().HasValue) 869 OS << ','; 870 newline(); 871 flushComment(); 872 Stack.back().HasValue = true; 873 Stack.emplace_back(); 874 Stack.back().Ctx = Singleton; 875 if (LLVM_LIKELY(isUTF8(Key))) { 876 quote(OS, Key); 877 } else { 878 assert(false && "Invalid UTF-8 in attribute key"); 879 quote(OS, fixUTF8(Key)); 880 } 881 OS.write(':'); 882 if (IndentSize) 883 OS.write(' '); 884 } 885 886 void llvm::json::OStream::attributeEnd() { 887 assert(Stack.back().Ctx == Singleton); 888 assert(Stack.back().HasValue && "Attribute must have a value"); 889 assert(PendingComment.empty()); 890 Stack.pop_back(); 891 assert(Stack.back().Ctx == Object); 892 } 893 894 raw_ostream &llvm::json::OStream::rawValueBegin() { 895 valueBegin(); 896 Stack.emplace_back(); 897 Stack.back().Ctx = RawValue; 898 return OS; 899 } 900 901 void llvm::json::OStream::rawValueEnd() { 902 assert(Stack.back().Ctx == RawValue); 903 Stack.pop_back(); 904 } 905 906 } // namespace json 907 } // namespace llvm 908 909 void llvm::format_provider<llvm::json::Value>::format( 910 const llvm::json::Value &E, raw_ostream &OS, StringRef Options) { 911 unsigned IndentAmount = 0; 912 if (!Options.empty() && Options.getAsInteger(/*Radix=*/10, IndentAmount)) 913 llvm_unreachable("json::Value format options should be an integer"); 914 json::OStream(OS, IndentAmount).value(E); 915 } 916 917