xref: /freebsd/contrib/llvm-project/llvm/lib/Support/FoldingSet.cpp (revision a3c35da61bb201168575f1d18f4ca3e96937d35c)
1  //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements a hash set that can be used to remove duplication of
10  // nodes in a graph.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/ADT/FoldingSet.h"
15  #include "llvm/ADT/Hashing.h"
16  #include "llvm/Support/Allocator.h"
17  #include "llvm/Support/ErrorHandling.h"
18  #include "llvm/Support/Host.h"
19  #include "llvm/Support/MathExtras.h"
20  #include <cassert>
21  #include <cstring>
22  using namespace llvm;
23  
24  //===----------------------------------------------------------------------===//
25  // FoldingSetNodeIDRef Implementation
26  
27  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
28  /// used to lookup the node in the FoldingSetBase.
29  unsigned FoldingSetNodeIDRef::ComputeHash() const {
30    return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
31  }
32  
33  bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
34    if (Size != RHS.Size) return false;
35    return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
36  }
37  
38  /// Used to compare the "ordering" of two nodes as defined by the
39  /// profiled bits and their ordering defined by memcmp().
40  bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
41    if (Size != RHS.Size)
42      return Size < RHS.Size;
43    return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
44  }
45  
46  //===----------------------------------------------------------------------===//
47  // FoldingSetNodeID Implementation
48  
49  /// Add* - Add various data types to Bit data.
50  ///
51  void FoldingSetNodeID::AddPointer(const void *Ptr) {
52    // Note: this adds pointers to the hash using sizes and endianness that
53    // depend on the host. It doesn't matter, however, because hashing on
54    // pointer values is inherently unstable. Nothing should depend on the
55    // ordering of nodes in the folding set.
56    static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
57                  "unexpected pointer size");
58    AddInteger(reinterpret_cast<uintptr_t>(Ptr));
59  }
60  void FoldingSetNodeID::AddInteger(signed I) {
61    Bits.push_back(I);
62  }
63  void FoldingSetNodeID::AddInteger(unsigned I) {
64    Bits.push_back(I);
65  }
66  void FoldingSetNodeID::AddInteger(long I) {
67    AddInteger((unsigned long)I);
68  }
69  void FoldingSetNodeID::AddInteger(unsigned long I) {
70    if (sizeof(long) == sizeof(int))
71      AddInteger(unsigned(I));
72    else if (sizeof(long) == sizeof(long long)) {
73      AddInteger((unsigned long long)I);
74    } else {
75      llvm_unreachable("unexpected sizeof(long)");
76    }
77  }
78  void FoldingSetNodeID::AddInteger(long long I) {
79    AddInteger((unsigned long long)I);
80  }
81  void FoldingSetNodeID::AddInteger(unsigned long long I) {
82    AddInteger(unsigned(I));
83    AddInteger(unsigned(I >> 32));
84  }
85  
86  void FoldingSetNodeID::AddString(StringRef String) {
87    unsigned Size =  String.size();
88    Bits.push_back(Size);
89    if (!Size) return;
90  
91    unsigned Units = Size / 4;
92    unsigned Pos = 0;
93    const unsigned *Base = (const unsigned*) String.data();
94  
95    // If the string is aligned do a bulk transfer.
96    if (!((intptr_t)Base & 3)) {
97      Bits.append(Base, Base + Units);
98      Pos = (Units + 1) * 4;
99    } else {
100      // Otherwise do it the hard way.
101      // To be compatible with above bulk transfer, we need to take endianness
102      // into account.
103      static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
104                    "Unexpected host endianness");
105      if (sys::IsBigEndianHost) {
106        for (Pos += 4; Pos <= Size; Pos += 4) {
107          unsigned V = ((unsigned char)String[Pos - 4] << 24) |
108                       ((unsigned char)String[Pos - 3] << 16) |
109                       ((unsigned char)String[Pos - 2] << 8) |
110                        (unsigned char)String[Pos - 1];
111          Bits.push_back(V);
112        }
113      } else {  // Little-endian host
114        for (Pos += 4; Pos <= Size; Pos += 4) {
115          unsigned V = ((unsigned char)String[Pos - 1] << 24) |
116                       ((unsigned char)String[Pos - 2] << 16) |
117                       ((unsigned char)String[Pos - 3] << 8) |
118                        (unsigned char)String[Pos - 4];
119          Bits.push_back(V);
120        }
121      }
122    }
123  
124    // With the leftover bits.
125    unsigned V = 0;
126    // Pos will have overshot size by 4 - #bytes left over.
127    // No need to take endianness into account here - this is always executed.
128    switch (Pos - Size) {
129    case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH;
130    case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH;
131    case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
132    default: return; // Nothing left.
133    }
134  
135    Bits.push_back(V);
136  }
137  
138  // AddNodeID - Adds the Bit data of another ID to *this.
139  void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
140    Bits.append(ID.Bits.begin(), ID.Bits.end());
141  }
142  
143  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
144  /// lookup the node in the FoldingSetBase.
145  unsigned FoldingSetNodeID::ComputeHash() const {
146    return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
147  }
148  
149  /// operator== - Used to compare two nodes to each other.
150  ///
151  bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
152    return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
153  }
154  
155  /// operator== - Used to compare two nodes to each other.
156  ///
157  bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
158    return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
159  }
160  
161  /// Used to compare the "ordering" of two nodes as defined by the
162  /// profiled bits and their ordering defined by memcmp().
163  bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
164    return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
165  }
166  
167  bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
168    return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
169  }
170  
171  /// Intern - Copy this node's data to a memory region allocated from the
172  /// given allocator and return a FoldingSetNodeIDRef describing the
173  /// interned data.
174  FoldingSetNodeIDRef
175  FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
176    unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
177    std::uninitialized_copy(Bits.begin(), Bits.end(), New);
178    return FoldingSetNodeIDRef(New, Bits.size());
179  }
180  
181  //===----------------------------------------------------------------------===//
182  /// Helper functions for FoldingSetBase.
183  
184  /// GetNextPtr - In order to save space, each bucket is a
185  /// singly-linked-list. In order to make deletion more efficient, we make
186  /// the list circular, so we can delete a node without computing its hash.
187  /// The problem with this is that the start of the hash buckets are not
188  /// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
189  /// use GetBucketPtr when this happens.
190  static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
191    // The low bit is set if this is the pointer back to the bucket.
192    if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
193      return nullptr;
194  
195    return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
196  }
197  
198  
199  /// testing.
200  static void **GetBucketPtr(void *NextInBucketPtr) {
201    intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
202    assert((Ptr & 1) && "Not a bucket pointer");
203    return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
204  }
205  
206  /// GetBucketFor - Hash the specified node ID and return the hash bucket for
207  /// the specified ID.
208  static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
209    // NumBuckets is always a power of 2.
210    unsigned BucketNum = Hash & (NumBuckets-1);
211    return Buckets + BucketNum;
212  }
213  
214  /// AllocateBuckets - Allocated initialized bucket memory.
215  static void **AllocateBuckets(unsigned NumBuckets) {
216    void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1,
217                                                     sizeof(void*)));
218    // Set the very last bucket to be a non-null "pointer".
219    Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
220    return Buckets;
221  }
222  
223  //===----------------------------------------------------------------------===//
224  // FoldingSetBase Implementation
225  
226  void FoldingSetBase::anchor() {}
227  
228  FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
229    assert(5 < Log2InitSize && Log2InitSize < 32 &&
230           "Initial hash table size out of range");
231    NumBuckets = 1 << Log2InitSize;
232    Buckets = AllocateBuckets(NumBuckets);
233    NumNodes = 0;
234  }
235  
236  FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
237      : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
238    Arg.Buckets = nullptr;
239    Arg.NumBuckets = 0;
240    Arg.NumNodes = 0;
241  }
242  
243  FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
244    free(Buckets); // This may be null if the set is in a moved-from state.
245    Buckets = RHS.Buckets;
246    NumBuckets = RHS.NumBuckets;
247    NumNodes = RHS.NumNodes;
248    RHS.Buckets = nullptr;
249    RHS.NumBuckets = 0;
250    RHS.NumNodes = 0;
251    return *this;
252  }
253  
254  FoldingSetBase::~FoldingSetBase() {
255    free(Buckets);
256  }
257  
258  void FoldingSetBase::clear() {
259    // Set all but the last bucket to null pointers.
260    memset(Buckets, 0, NumBuckets*sizeof(void*));
261  
262    // Set the very last bucket to be a non-null "pointer".
263    Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
264  
265    // Reset the node count to zero.
266    NumNodes = 0;
267  }
268  
269  void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount) {
270    assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount");
271    assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
272    void **OldBuckets = Buckets;
273    unsigned OldNumBuckets = NumBuckets;
274  
275    // Clear out new buckets.
276    Buckets = AllocateBuckets(NewBucketCount);
277    // Set NumBuckets only if allocation of new buckets was successful.
278    NumBuckets = NewBucketCount;
279    NumNodes = 0;
280  
281    // Walk the old buckets, rehashing nodes into their new place.
282    FoldingSetNodeID TempID;
283    for (unsigned i = 0; i != OldNumBuckets; ++i) {
284      void *Probe = OldBuckets[i];
285      if (!Probe) continue;
286      while (Node *NodeInBucket = GetNextPtr(Probe)) {
287        // Figure out the next link, remove NodeInBucket from the old link.
288        Probe = NodeInBucket->getNextInBucket();
289        NodeInBucket->SetNextInBucket(nullptr);
290  
291        // Insert the node into the new bucket, after recomputing the hash.
292        InsertNode(NodeInBucket,
293                   GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
294                                Buckets, NumBuckets));
295        TempID.clear();
296      }
297    }
298  
299    free(OldBuckets);
300  }
301  
302  /// GrowHashTable - Double the size of the hash table and rehash everything.
303  ///
304  void FoldingSetBase::GrowHashTable() {
305    GrowBucketCount(NumBuckets * 2);
306  }
307  
308  void FoldingSetBase::reserve(unsigned EltCount) {
309    // This will give us somewhere between EltCount / 2 and
310    // EltCount buckets.  This puts us in the load factor
311    // range of 1.0 - 2.0.
312    if(EltCount < capacity())
313      return;
314    GrowBucketCount(PowerOf2Floor(EltCount));
315  }
316  
317  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
318  /// return it.  If not, return the insertion token that will make insertion
319  /// faster.
320  FoldingSetBase::Node *
321  FoldingSetBase::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
322                                      void *&InsertPos) {
323    unsigned IDHash = ID.ComputeHash();
324    void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
325    void *Probe = *Bucket;
326  
327    InsertPos = nullptr;
328  
329    FoldingSetNodeID TempID;
330    while (Node *NodeInBucket = GetNextPtr(Probe)) {
331      if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
332        return NodeInBucket;
333      TempID.clear();
334  
335      Probe = NodeInBucket->getNextInBucket();
336    }
337  
338    // Didn't find the node, return null with the bucket as the InsertPos.
339    InsertPos = Bucket;
340    return nullptr;
341  }
342  
343  /// InsertNode - Insert the specified node into the folding set, knowing that it
344  /// is not already in the map.  InsertPos must be obtained from
345  /// FindNodeOrInsertPos.
346  void FoldingSetBase::InsertNode(Node *N, void *InsertPos) {
347    assert(!N->getNextInBucket());
348    // Do we need to grow the hashtable?
349    if (NumNodes+1 > capacity()) {
350      GrowHashTable();
351      FoldingSetNodeID TempID;
352      InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
353    }
354  
355    ++NumNodes;
356  
357    /// The insert position is actually a bucket pointer.
358    void **Bucket = static_cast<void**>(InsertPos);
359  
360    void *Next = *Bucket;
361  
362    // If this is the first insertion into this bucket, its next pointer will be
363    // null.  Pretend as if it pointed to itself, setting the low bit to indicate
364    // that it is a pointer to the bucket.
365    if (!Next)
366      Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
367  
368    // Set the node's next pointer, and make the bucket point to the node.
369    N->SetNextInBucket(Next);
370    *Bucket = N;
371  }
372  
373  /// RemoveNode - Remove a node from the folding set, returning true if one was
374  /// removed or false if the node was not in the folding set.
375  bool FoldingSetBase::RemoveNode(Node *N) {
376    // Because each bucket is a circular list, we don't need to compute N's hash
377    // to remove it.
378    void *Ptr = N->getNextInBucket();
379    if (!Ptr) return false;  // Not in folding set.
380  
381    --NumNodes;
382    N->SetNextInBucket(nullptr);
383  
384    // Remember what N originally pointed to, either a bucket or another node.
385    void *NodeNextPtr = Ptr;
386  
387    // Chase around the list until we find the node (or bucket) which points to N.
388    while (true) {
389      if (Node *NodeInBucket = GetNextPtr(Ptr)) {
390        // Advance pointer.
391        Ptr = NodeInBucket->getNextInBucket();
392  
393        // We found a node that points to N, change it to point to N's next node,
394        // removing N from the list.
395        if (Ptr == N) {
396          NodeInBucket->SetNextInBucket(NodeNextPtr);
397          return true;
398        }
399      } else {
400        void **Bucket = GetBucketPtr(Ptr);
401        Ptr = *Bucket;
402  
403        // If we found that the bucket points to N, update the bucket to point to
404        // whatever is next.
405        if (Ptr == N) {
406          *Bucket = NodeNextPtr;
407          return true;
408        }
409      }
410    }
411  }
412  
413  /// GetOrInsertNode - If there is an existing simple Node exactly
414  /// equal to the specified node, return it.  Otherwise, insert 'N' and it
415  /// instead.
416  FoldingSetBase::Node *FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N) {
417    FoldingSetNodeID ID;
418    GetNodeProfile(N, ID);
419    void *IP;
420    if (Node *E = FindNodeOrInsertPos(ID, IP))
421      return E;
422    InsertNode(N, IP);
423    return N;
424  }
425  
426  //===----------------------------------------------------------------------===//
427  // FoldingSetIteratorImpl Implementation
428  
429  FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
430    // Skip to the first non-null non-self-cycle bucket.
431    while (*Bucket != reinterpret_cast<void*>(-1) &&
432           (!*Bucket || !GetNextPtr(*Bucket)))
433      ++Bucket;
434  
435    NodePtr = static_cast<FoldingSetNode*>(*Bucket);
436  }
437  
438  void FoldingSetIteratorImpl::advance() {
439    // If there is another link within this bucket, go to it.
440    void *Probe = NodePtr->getNextInBucket();
441  
442    if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
443      NodePtr = NextNodeInBucket;
444    else {
445      // Otherwise, this is the last link in this bucket.
446      void **Bucket = GetBucketPtr(Probe);
447  
448      // Skip to the next non-null non-self-cycle bucket.
449      do {
450        ++Bucket;
451      } while (*Bucket != reinterpret_cast<void*>(-1) &&
452               (!*Bucket || !GetNextPtr(*Bucket)));
453  
454      NodePtr = static_cast<FoldingSetNode*>(*Bucket);
455    }
456  }
457  
458  //===----------------------------------------------------------------------===//
459  // FoldingSetBucketIteratorImpl Implementation
460  
461  FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
462    Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
463  }
464