xref: /freebsd/contrib/llvm-project/llvm/lib/Support/DivisionByConstantInfo.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements support for optimizing divisions by a constant
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/DivisionByConstantInfo.h"
14 
15 using namespace llvm;
16 
17 /// Calculate the magic numbers required to implement a signed integer division
18 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
19 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
20 /// Warren, Jr., Chapter 10.
21 SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
22   unsigned P;
23   APInt AD, ANC, Delta, Q1, R1, Q2, R2, T;
24   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
25   struct SignedDivisionByConstantInfo Retval;
26 
27   AD = D.abs();
28   T = SignedMin + (D.lshr(D.getBitWidth() - 1));
29   ANC = T - 1 - T.urem(AD);  // absolute value of NC
30   P = D.getBitWidth() - 1;   // initialize P
31   Q1 = SignedMin.udiv(ANC);  // initialize Q1 = 2P/abs(NC)
32   R1 = SignedMin - Q1 * ANC; // initialize R1 = rem(2P,abs(NC))
33   Q2 = SignedMin.udiv(AD);   // initialize Q2 = 2P/abs(D)
34   R2 = SignedMin - Q2 * AD;  // initialize R2 = rem(2P,abs(D))
35   do {
36     P = P + 1;
37     Q1 = Q1 << 1;      // update Q1 = 2P/abs(NC)
38     R1 = R1 << 1;      // update R1 = rem(2P/abs(NC))
39     if (R1.uge(ANC)) { // must be unsigned comparison
40       Q1 = Q1 + 1;
41       R1 = R1 - ANC;
42     }
43     Q2 = Q2 << 1;     // update Q2 = 2P/abs(D)
44     R2 = R2 << 1;     // update R2 = rem(2P/abs(D))
45     if (R2.uge(AD)) { // must be unsigned comparison
46       Q2 = Q2 + 1;
47       R2 = R2 - AD;
48     }
49     Delta = AD - R2;
50   } while (Q1.ult(Delta) || (Q1 == Delta && R1 == 0));
51 
52   Retval.Magic = Q2 + 1;
53   if (D.isNegative())
54     Retval.Magic = -Retval.Magic;           // resulting magic number
55   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
56   return Retval;
57 }
58 
59 /// Calculate the magic numbers required to implement an unsigned integer
60 /// division by a constant as a sequence of multiplies, adds and shifts.
61 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
62 /// S. Warren, Jr., chapter 10.
63 /// LeadingZeros can be used to simplify the calculation if the upper bits
64 /// of the divided value are known zero.
65 UnsignedDivisionByConstantInfo
66 UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros) {
67   unsigned P;
68   APInt NC, Delta, Q1, R1, Q2, R2;
69   struct UnsignedDivisionByConstantInfo Retval;
70   Retval.IsAdd = false; // initialize "add" indicator
71   APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
72   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
73   APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
74 
75   NC = AllOnes - (AllOnes - D).urem(D);
76   P = D.getBitWidth() - 1;  // initialize P
77   Q1 = SignedMin.udiv(NC);  // initialize Q1 = 2P/NC
78   R1 = SignedMin - Q1 * NC; // initialize R1 = rem(2P,NC)
79   Q2 = SignedMax.udiv(D);   // initialize Q2 = (2P-1)/D
80   R2 = SignedMax - Q2 * D;  // initialize R2 = rem((2P-1),D)
81   do {
82     P = P + 1;
83     if (R1.uge(NC - R1)) {
84       Q1 = Q1 + Q1 + 1;  // update Q1
85       R1 = R1 + R1 - NC; // update R1
86     } else {
87       Q1 = Q1 + Q1; // update Q1
88       R1 = R1 + R1; // update R1
89     }
90     if ((R2 + 1).uge(D - R2)) {
91       if (Q2.uge(SignedMax))
92         Retval.IsAdd = true;
93       Q2 = Q2 + Q2 + 1;     // update Q2
94       R2 = R2 + R2 + 1 - D; // update R2
95     } else {
96       if (Q2.uge(SignedMin))
97         Retval.IsAdd = true;
98       Q2 = Q2 + Q2;     // update Q2
99       R2 = R2 + R2 + 1; // update R2
100     }
101     Delta = D - 1 - R2;
102   } while (P < D.getBitWidth() * 2 &&
103            (Q1.ult(Delta) || (Q1 == Delta && R1 == 0)));
104   Retval.Magic = Q2 + 1;                    // resulting magic number
105   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
106   return Retval;
107 }
108