xref: /freebsd/contrib/llvm-project/llvm/lib/Support/DivisionByConstantInfo.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements support for optimizing divisions by a constant
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/DivisionByConstantInfo.h"
14 
15 using namespace llvm;
16 
17 /// Calculate the magic numbers required to implement a signed integer division
18 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
19 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
20 /// Warren, Jr., Chapter 10.
21 SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
22   assert(!D.isZero() && "Precondition violation.");
23 
24   // We'd be endlessly stuck in the loop.
25   assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths.");
26 
27   APInt Delta;
28   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
29   struct SignedDivisionByConstantInfo Retval;
30 
31   APInt AD = D.abs();
32   APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
33   APInt ANC = T - 1 - T.urem(AD);   // absolute value of NC
34   unsigned P = D.getBitWidth() - 1; // initialize P
35   APInt Q1, R1, Q2, R2;
36   // initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC))
37   APInt::udivrem(SignedMin, ANC, Q1, R1);
38   // initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D))
39   APInt::udivrem(SignedMin, AD, Q2, R2);
40   do {
41     P = P + 1;
42     Q1 <<= 1;      // update Q1 = 2P/abs(NC)
43     R1 <<= 1;      // update R1 = rem(2P/abs(NC))
44     if (R1.uge(ANC)) { // must be unsigned comparison
45       ++Q1;
46       R1 -= ANC;
47     }
48     Q2 <<= 1;     // update Q2 = 2P/abs(D)
49     R2 <<= 1;     // update R2 = rem(2P/abs(D))
50     if (R2.uge(AD)) { // must be unsigned comparison
51       ++Q2;
52       R2 -= AD;
53     }
54     // Delta = AD - R2
55     Delta = AD;
56     Delta -= R2;
57   } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
58 
59   Retval.Magic = std::move(Q2);
60   ++Retval.Magic;
61   if (D.isNegative())
62     Retval.Magic.negate();                  // resulting magic number
63   Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
64   return Retval;
65 }
66 
67 /// Calculate the magic numbers required to implement an unsigned integer
68 /// division by a constant as a sequence of multiplies, adds and shifts.
69 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
70 /// S. Warren, Jr., chapter 10.
71 /// LeadingZeros can be used to simplify the calculation if the upper bits
72 /// of the divided value are known zero.
73 UnsignedDivisionByConstantInfo
74 UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros,
75                                     bool AllowEvenDivisorOptimization) {
76   assert(!D.isZero() && !D.isOne() && "Precondition violation.");
77   assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths.");
78 
79   APInt Delta;
80   struct UnsignedDivisionByConstantInfo Retval;
81   Retval.IsAdd = false; // initialize "add" indicator
82   APInt AllOnes =
83       APInt::getLowBitsSet(D.getBitWidth(), D.getBitWidth() - LeadingZeros);
84   APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
85   APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
86 
87   // Calculate NC, the largest dividend such that NC.urem(D) == D-1.
88   APInt NC = AllOnes - (AllOnes + 1 - D).urem(D);
89   assert(NC.urem(D) == D - 1 && "Unexpected NC value");
90   unsigned P = D.getBitWidth() - 1; // initialize P
91   APInt Q1, R1, Q2, R2;
92   // initialize Q1 = 2P/NC; R1 = rem(2P,NC)
93   APInt::udivrem(SignedMin, NC, Q1, R1);
94   // initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D)
95   APInt::udivrem(SignedMax, D, Q2, R2);
96   do {
97     P = P + 1;
98     if (R1.uge(NC - R1)) {
99       // update Q1
100       Q1 <<= 1;
101       ++Q1;
102       // update R1
103       R1 <<= 1;
104       R1 -= NC;
105     } else {
106       Q1 <<= 1; // update Q1
107       R1 <<= 1; // update R1
108     }
109     if ((R2 + 1).uge(D - R2)) {
110       if (Q2.uge(SignedMax))
111         Retval.IsAdd = true;
112       // update Q2
113       Q2 <<= 1;
114       ++Q2;
115       // update R2
116       R2 <<= 1;
117       ++R2;
118       R2 -= D;
119     } else {
120       if (Q2.uge(SignedMin))
121         Retval.IsAdd = true;
122       // update Q2
123       Q2 <<= 1;
124       // update R2
125       R2 <<= 1;
126       ++R2;
127     }
128     // Delta = D - 1 - R2
129     Delta = D;
130     --Delta;
131     Delta -= R2;
132   } while (P < D.getBitWidth() * 2 &&
133            (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
134 
135   if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) {
136     unsigned PreShift = D.countr_zero();
137     APInt ShiftedD = D.lshr(PreShift);
138     Retval =
139         UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift);
140     assert(Retval.IsAdd == 0 && Retval.PreShift == 0);
141     Retval.PreShift = PreShift;
142     return Retval;
143   }
144 
145   Retval.Magic = std::move(Q2);             // resulting magic number
146   ++Retval.Magic;
147   Retval.PostShift = P - D.getBitWidth(); // resulting shift
148   // Reduce shift amount for IsAdd.
149   if (Retval.IsAdd) {
150     assert(Retval.PostShift > 0 && "Unexpected shift");
151     Retval.PostShift -= 1;
152   }
153   Retval.PreShift = 0;
154   return Retval;
155 }
156