1 #include "blake3_impl.h" 2 3 #include <immintrin.h> 4 5 #define DEGREE 4 6 7 #define _mm_shuffle_ps2(a, b, c) \ 8 (_mm_castps_si128( \ 9 _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) 10 11 INLINE __m128i loadu(const uint8_t src[16]) { 12 return _mm_loadu_si128((const __m128i *)src); 13 } 14 15 INLINE void storeu(__m128i src, uint8_t dest[16]) { 16 _mm_storeu_si128((__m128i *)dest, src); 17 } 18 19 INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } 20 21 // Note that clang-format doesn't like the name "xor" for some reason. 22 INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } 23 24 INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); } 25 26 INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { 27 return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); 28 } 29 30 INLINE __m128i rot16(__m128i x) { 31 return _mm_shuffle_epi8( 32 x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)); 33 } 34 35 INLINE __m128i rot12(__m128i x) { 36 return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12)); 37 } 38 39 INLINE __m128i rot8(__m128i x) { 40 return _mm_shuffle_epi8( 41 x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)); 42 } 43 44 INLINE __m128i rot7(__m128i x) { 45 return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7)); 46 } 47 48 INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, 49 __m128i m) { 50 *row0 = addv(addv(*row0, m), *row1); 51 *row3 = xorv(*row3, *row0); 52 *row3 = rot16(*row3); 53 *row2 = addv(*row2, *row3); 54 *row1 = xorv(*row1, *row2); 55 *row1 = rot12(*row1); 56 } 57 58 INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, 59 __m128i m) { 60 *row0 = addv(addv(*row0, m), *row1); 61 *row3 = xorv(*row3, *row0); 62 *row3 = rot8(*row3); 63 *row2 = addv(*row2, *row3); 64 *row1 = xorv(*row1, *row2); 65 *row1 = rot7(*row1); 66 } 67 68 // Note the optimization here of leaving row1 as the unrotated row, rather than 69 // row0. All the message loads below are adjusted to compensate for this. See 70 // discussion at https://github.com/sneves/blake2-avx2/pull/4 71 INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { 72 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); 73 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); 74 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); 75 } 76 77 INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { 78 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); 79 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); 80 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); 81 } 82 83 INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], 84 const uint8_t block[BLAKE3_BLOCK_LEN], 85 uint8_t block_len, uint64_t counter, uint8_t flags) { 86 rows[0] = loadu((uint8_t *)&cv[0]); 87 rows[1] = loadu((uint8_t *)&cv[4]); 88 rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); 89 rows[3] = set4(counter_low(counter), counter_high(counter), 90 (uint32_t)block_len, (uint32_t)flags); 91 92 __m128i m0 = loadu(&block[sizeof(__m128i) * 0]); 93 __m128i m1 = loadu(&block[sizeof(__m128i) * 1]); 94 __m128i m2 = loadu(&block[sizeof(__m128i) * 2]); 95 __m128i m3 = loadu(&block[sizeof(__m128i) * 3]); 96 97 __m128i t0, t1, t2, t3, tt; 98 99 // Round 1. The first round permutes the message words from the original 100 // input order, into the groups that get mixed in parallel. 101 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 102 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 103 t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 104 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 105 diagonalize(&rows[0], &rows[2], &rows[3]); 106 t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 107 t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 108 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 109 t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 110 t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 111 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 112 undiagonalize(&rows[0], &rows[2], &rows[3]); 113 m0 = t0; 114 m1 = t1; 115 m2 = t2; 116 m3 = t3; 117 118 // Round 2. This round and all following rounds apply a fixed permutation 119 // to the message words from the round before. 120 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 121 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 122 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 123 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 124 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 125 t1 = _mm_blend_epi16(tt, t1, 0xCC); 126 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 127 diagonalize(&rows[0], &rows[2], &rows[3]); 128 t2 = _mm_unpacklo_epi64(m3, m1); 129 tt = _mm_blend_epi16(t2, m2, 0xC0); 130 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 131 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 132 t3 = _mm_unpackhi_epi32(m1, m3); 133 tt = _mm_unpacklo_epi32(m2, t3); 134 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 135 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 136 undiagonalize(&rows[0], &rows[2], &rows[3]); 137 m0 = t0; 138 m1 = t1; 139 m2 = t2; 140 m3 = t3; 141 142 // Round 3 143 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 144 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 145 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 146 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 147 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 148 t1 = _mm_blend_epi16(tt, t1, 0xCC); 149 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 150 diagonalize(&rows[0], &rows[2], &rows[3]); 151 t2 = _mm_unpacklo_epi64(m3, m1); 152 tt = _mm_blend_epi16(t2, m2, 0xC0); 153 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 154 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 155 t3 = _mm_unpackhi_epi32(m1, m3); 156 tt = _mm_unpacklo_epi32(m2, t3); 157 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 158 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 159 undiagonalize(&rows[0], &rows[2], &rows[3]); 160 m0 = t0; 161 m1 = t1; 162 m2 = t2; 163 m3 = t3; 164 165 // Round 4 166 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 167 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 168 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 169 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 170 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 171 t1 = _mm_blend_epi16(tt, t1, 0xCC); 172 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 173 diagonalize(&rows[0], &rows[2], &rows[3]); 174 t2 = _mm_unpacklo_epi64(m3, m1); 175 tt = _mm_blend_epi16(t2, m2, 0xC0); 176 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 177 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 178 t3 = _mm_unpackhi_epi32(m1, m3); 179 tt = _mm_unpacklo_epi32(m2, t3); 180 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 181 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 182 undiagonalize(&rows[0], &rows[2], &rows[3]); 183 m0 = t0; 184 m1 = t1; 185 m2 = t2; 186 m3 = t3; 187 188 // Round 5 189 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 190 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 191 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 192 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 193 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 194 t1 = _mm_blend_epi16(tt, t1, 0xCC); 195 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 196 diagonalize(&rows[0], &rows[2], &rows[3]); 197 t2 = _mm_unpacklo_epi64(m3, m1); 198 tt = _mm_blend_epi16(t2, m2, 0xC0); 199 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 200 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 201 t3 = _mm_unpackhi_epi32(m1, m3); 202 tt = _mm_unpacklo_epi32(m2, t3); 203 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 204 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 205 undiagonalize(&rows[0], &rows[2], &rows[3]); 206 m0 = t0; 207 m1 = t1; 208 m2 = t2; 209 m3 = t3; 210 211 // Round 6 212 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 213 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 214 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 215 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 216 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 217 t1 = _mm_blend_epi16(tt, t1, 0xCC); 218 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 219 diagonalize(&rows[0], &rows[2], &rows[3]); 220 t2 = _mm_unpacklo_epi64(m3, m1); 221 tt = _mm_blend_epi16(t2, m2, 0xC0); 222 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 223 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 224 t3 = _mm_unpackhi_epi32(m1, m3); 225 tt = _mm_unpacklo_epi32(m2, t3); 226 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 227 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 228 undiagonalize(&rows[0], &rows[2], &rows[3]); 229 m0 = t0; 230 m1 = t1; 231 m2 = t2; 232 m3 = t3; 233 234 // Round 7 235 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 236 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 237 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 238 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 239 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 240 t1 = _mm_blend_epi16(tt, t1, 0xCC); 241 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 242 diagonalize(&rows[0], &rows[2], &rows[3]); 243 t2 = _mm_unpacklo_epi64(m3, m1); 244 tt = _mm_blend_epi16(t2, m2, 0xC0); 245 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 246 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 247 t3 = _mm_unpackhi_epi32(m1, m3); 248 tt = _mm_unpacklo_epi32(m2, t3); 249 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 250 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 251 undiagonalize(&rows[0], &rows[2], &rows[3]); 252 } 253 254 void blake3_compress_in_place_sse41(uint32_t cv[8], 255 const uint8_t block[BLAKE3_BLOCK_LEN], 256 uint8_t block_len, uint64_t counter, 257 uint8_t flags) { 258 __m128i rows[4]; 259 compress_pre(rows, cv, block, block_len, counter, flags); 260 storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]); 261 storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]); 262 } 263 264 void blake3_compress_xof_sse41(const uint32_t cv[8], 265 const uint8_t block[BLAKE3_BLOCK_LEN], 266 uint8_t block_len, uint64_t counter, 267 uint8_t flags, uint8_t out[64]) { 268 __m128i rows[4]; 269 compress_pre(rows, cv, block, block_len, counter, flags); 270 storeu(xorv(rows[0], rows[2]), &out[0]); 271 storeu(xorv(rows[1], rows[3]), &out[16]); 272 storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]); 273 storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]); 274 } 275 276 INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) { 277 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); 278 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); 279 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); 280 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); 281 v[0] = addv(v[0], v[4]); 282 v[1] = addv(v[1], v[5]); 283 v[2] = addv(v[2], v[6]); 284 v[3] = addv(v[3], v[7]); 285 v[12] = xorv(v[12], v[0]); 286 v[13] = xorv(v[13], v[1]); 287 v[14] = xorv(v[14], v[2]); 288 v[15] = xorv(v[15], v[3]); 289 v[12] = rot16(v[12]); 290 v[13] = rot16(v[13]); 291 v[14] = rot16(v[14]); 292 v[15] = rot16(v[15]); 293 v[8] = addv(v[8], v[12]); 294 v[9] = addv(v[9], v[13]); 295 v[10] = addv(v[10], v[14]); 296 v[11] = addv(v[11], v[15]); 297 v[4] = xorv(v[4], v[8]); 298 v[5] = xorv(v[5], v[9]); 299 v[6] = xorv(v[6], v[10]); 300 v[7] = xorv(v[7], v[11]); 301 v[4] = rot12(v[4]); 302 v[5] = rot12(v[5]); 303 v[6] = rot12(v[6]); 304 v[7] = rot12(v[7]); 305 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); 306 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); 307 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); 308 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); 309 v[0] = addv(v[0], v[4]); 310 v[1] = addv(v[1], v[5]); 311 v[2] = addv(v[2], v[6]); 312 v[3] = addv(v[3], v[7]); 313 v[12] = xorv(v[12], v[0]); 314 v[13] = xorv(v[13], v[1]); 315 v[14] = xorv(v[14], v[2]); 316 v[15] = xorv(v[15], v[3]); 317 v[12] = rot8(v[12]); 318 v[13] = rot8(v[13]); 319 v[14] = rot8(v[14]); 320 v[15] = rot8(v[15]); 321 v[8] = addv(v[8], v[12]); 322 v[9] = addv(v[9], v[13]); 323 v[10] = addv(v[10], v[14]); 324 v[11] = addv(v[11], v[15]); 325 v[4] = xorv(v[4], v[8]); 326 v[5] = xorv(v[5], v[9]); 327 v[6] = xorv(v[6], v[10]); 328 v[7] = xorv(v[7], v[11]); 329 v[4] = rot7(v[4]); 330 v[5] = rot7(v[5]); 331 v[6] = rot7(v[6]); 332 v[7] = rot7(v[7]); 333 334 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); 335 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); 336 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); 337 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); 338 v[0] = addv(v[0], v[5]); 339 v[1] = addv(v[1], v[6]); 340 v[2] = addv(v[2], v[7]); 341 v[3] = addv(v[3], v[4]); 342 v[15] = xorv(v[15], v[0]); 343 v[12] = xorv(v[12], v[1]); 344 v[13] = xorv(v[13], v[2]); 345 v[14] = xorv(v[14], v[3]); 346 v[15] = rot16(v[15]); 347 v[12] = rot16(v[12]); 348 v[13] = rot16(v[13]); 349 v[14] = rot16(v[14]); 350 v[10] = addv(v[10], v[15]); 351 v[11] = addv(v[11], v[12]); 352 v[8] = addv(v[8], v[13]); 353 v[9] = addv(v[9], v[14]); 354 v[5] = xorv(v[5], v[10]); 355 v[6] = xorv(v[6], v[11]); 356 v[7] = xorv(v[7], v[8]); 357 v[4] = xorv(v[4], v[9]); 358 v[5] = rot12(v[5]); 359 v[6] = rot12(v[6]); 360 v[7] = rot12(v[7]); 361 v[4] = rot12(v[4]); 362 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); 363 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); 364 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); 365 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); 366 v[0] = addv(v[0], v[5]); 367 v[1] = addv(v[1], v[6]); 368 v[2] = addv(v[2], v[7]); 369 v[3] = addv(v[3], v[4]); 370 v[15] = xorv(v[15], v[0]); 371 v[12] = xorv(v[12], v[1]); 372 v[13] = xorv(v[13], v[2]); 373 v[14] = xorv(v[14], v[3]); 374 v[15] = rot8(v[15]); 375 v[12] = rot8(v[12]); 376 v[13] = rot8(v[13]); 377 v[14] = rot8(v[14]); 378 v[10] = addv(v[10], v[15]); 379 v[11] = addv(v[11], v[12]); 380 v[8] = addv(v[8], v[13]); 381 v[9] = addv(v[9], v[14]); 382 v[5] = xorv(v[5], v[10]); 383 v[6] = xorv(v[6], v[11]); 384 v[7] = xorv(v[7], v[8]); 385 v[4] = xorv(v[4], v[9]); 386 v[5] = rot7(v[5]); 387 v[6] = rot7(v[6]); 388 v[7] = rot7(v[7]); 389 v[4] = rot7(v[4]); 390 } 391 392 INLINE void transpose_vecs(__m128i vecs[DEGREE]) { 393 // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is 394 // 22/33. Note that this doesn't split the vector into two lanes, as the 395 // AVX2 counterparts do. 396 __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); 397 __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); 398 __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); 399 __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); 400 401 // Interleave 64-bit lanes. 402 __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); 403 __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); 404 __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); 405 __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); 406 407 vecs[0] = abcd_0; 408 vecs[1] = abcd_1; 409 vecs[2] = abcd_2; 410 vecs[3] = abcd_3; 411 } 412 413 INLINE void transpose_msg_vecs(const uint8_t *const *inputs, 414 size_t block_offset, __m128i out[16]) { 415 out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]); 416 out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]); 417 out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]); 418 out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]); 419 out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]); 420 out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]); 421 out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]); 422 out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]); 423 out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]); 424 out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]); 425 out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]); 426 out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]); 427 out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]); 428 out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]); 429 out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]); 430 out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]); 431 for (size_t i = 0; i < 4; ++i) { 432 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); 433 } 434 transpose_vecs(&out[0]); 435 transpose_vecs(&out[4]); 436 transpose_vecs(&out[8]); 437 transpose_vecs(&out[12]); 438 } 439 440 INLINE void load_counters(uint64_t counter, bool increment_counter, 441 __m128i *out_lo, __m128i *out_hi) { 442 const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter); 443 const __m128i add0 = _mm_set_epi32(3, 2, 1, 0); 444 const __m128i add1 = _mm_and_si128(mask, add0); 445 __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1); 446 __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)), 447 _mm_xor_si128( l, _mm_set1_epi32(0x80000000))); 448 __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry); 449 *out_lo = l; 450 *out_hi = h; 451 } 452 453 static 454 void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks, 455 const uint32_t key[8], uint64_t counter, 456 bool increment_counter, uint8_t flags, 457 uint8_t flags_start, uint8_t flags_end, uint8_t *out) { 458 __m128i h_vecs[8] = { 459 set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), 460 set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), 461 }; 462 __m128i counter_low_vec, counter_high_vec; 463 load_counters(counter, increment_counter, &counter_low_vec, 464 &counter_high_vec); 465 uint8_t block_flags = flags | flags_start; 466 467 for (size_t block = 0; block < blocks; block++) { 468 if (block + 1 == blocks) { 469 block_flags |= flags_end; 470 } 471 __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN); 472 __m128i block_flags_vec = set1(block_flags); 473 __m128i msg_vecs[16]; 474 transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); 475 476 __m128i v[16] = { 477 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], 478 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], 479 set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), 480 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, 481 }; 482 round_fn(v, msg_vecs, 0); 483 round_fn(v, msg_vecs, 1); 484 round_fn(v, msg_vecs, 2); 485 round_fn(v, msg_vecs, 3); 486 round_fn(v, msg_vecs, 4); 487 round_fn(v, msg_vecs, 5); 488 round_fn(v, msg_vecs, 6); 489 h_vecs[0] = xorv(v[0], v[8]); 490 h_vecs[1] = xorv(v[1], v[9]); 491 h_vecs[2] = xorv(v[2], v[10]); 492 h_vecs[3] = xorv(v[3], v[11]); 493 h_vecs[4] = xorv(v[4], v[12]); 494 h_vecs[5] = xorv(v[5], v[13]); 495 h_vecs[6] = xorv(v[6], v[14]); 496 h_vecs[7] = xorv(v[7], v[15]); 497 498 block_flags = flags; 499 } 500 501 transpose_vecs(&h_vecs[0]); 502 transpose_vecs(&h_vecs[4]); 503 // The first four vecs now contain the first half of each output, and the 504 // second four vecs contain the second half of each output. 505 storeu(h_vecs[0], &out[0 * sizeof(__m128i)]); 506 storeu(h_vecs[4], &out[1 * sizeof(__m128i)]); 507 storeu(h_vecs[1], &out[2 * sizeof(__m128i)]); 508 storeu(h_vecs[5], &out[3 * sizeof(__m128i)]); 509 storeu(h_vecs[2], &out[4 * sizeof(__m128i)]); 510 storeu(h_vecs[6], &out[5 * sizeof(__m128i)]); 511 storeu(h_vecs[3], &out[6 * sizeof(__m128i)]); 512 storeu(h_vecs[7], &out[7 * sizeof(__m128i)]); 513 } 514 515 INLINE void hash_one_sse41(const uint8_t *input, size_t blocks, 516 const uint32_t key[8], uint64_t counter, 517 uint8_t flags, uint8_t flags_start, 518 uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { 519 uint32_t cv[8]; 520 memcpy(cv, key, BLAKE3_KEY_LEN); 521 uint8_t block_flags = flags | flags_start; 522 while (blocks > 0) { 523 if (blocks == 1) { 524 block_flags |= flags_end; 525 } 526 blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter, 527 block_flags); 528 input = &input[BLAKE3_BLOCK_LEN]; 529 blocks -= 1; 530 block_flags = flags; 531 } 532 memcpy(out, cv, BLAKE3_OUT_LEN); 533 } 534 535 void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs, 536 size_t blocks, const uint32_t key[8], 537 uint64_t counter, bool increment_counter, 538 uint8_t flags, uint8_t flags_start, 539 uint8_t flags_end, uint8_t *out) { 540 while (num_inputs >= DEGREE) { 541 blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags, 542 flags_start, flags_end, out); 543 if (increment_counter) { 544 counter += DEGREE; 545 } 546 inputs += DEGREE; 547 num_inputs -= DEGREE; 548 out = &out[DEGREE * BLAKE3_OUT_LEN]; 549 } 550 while (num_inputs > 0) { 551 hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start, 552 flags_end, out); 553 if (increment_counter) { 554 counter += 1; 555 } 556 inputs += 1; 557 num_inputs -= 1; 558 out = &out[BLAKE3_OUT_LEN]; 559 } 560 } 561