1 #include "blake3_impl.h" 2 3 #include <immintrin.h> 4 5 #define DEGREE 4 6 7 #define _mm_shuffle_ps2(a, b, c) \ 8 (_mm_castps_si128( \ 9 _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) 10 11 INLINE __m128i loadu(const uint8_t src[16]) { 12 return _mm_loadu_si128((const __m128i *)src); 13 } 14 15 INLINE void storeu(__m128i src, uint8_t dest[16]) { 16 _mm_storeu_si128((__m128i *)dest, src); 17 } 18 19 INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } 20 21 // Note that clang-format doesn't like the name "xor" for some reason. 22 INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } 23 24 INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); } 25 26 INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { 27 return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); 28 } 29 30 INLINE __m128i rot16(__m128i x) { 31 return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1); 32 } 33 34 INLINE __m128i rot12(__m128i x) { 35 return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12)); 36 } 37 38 INLINE __m128i rot8(__m128i x) { 39 return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8)); 40 } 41 42 INLINE __m128i rot7(__m128i x) { 43 return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7)); 44 } 45 46 INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, 47 __m128i m) { 48 *row0 = addv(addv(*row0, m), *row1); 49 *row3 = xorv(*row3, *row0); 50 *row3 = rot16(*row3); 51 *row2 = addv(*row2, *row3); 52 *row1 = xorv(*row1, *row2); 53 *row1 = rot12(*row1); 54 } 55 56 INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, 57 __m128i m) { 58 *row0 = addv(addv(*row0, m), *row1); 59 *row3 = xorv(*row3, *row0); 60 *row3 = rot8(*row3); 61 *row2 = addv(*row2, *row3); 62 *row1 = xorv(*row1, *row2); 63 *row1 = rot7(*row1); 64 } 65 66 // Note the optimization here of leaving row1 as the unrotated row, rather than 67 // row0. All the message loads below are adjusted to compensate for this. See 68 // discussion at https://github.com/sneves/blake2-avx2/pull/4 69 INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { 70 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); 71 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); 72 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); 73 } 74 75 INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { 76 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); 77 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); 78 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); 79 } 80 81 INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8) { 82 const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01); 83 __m128i mask = _mm_set1_epi16(imm8); 84 mask = _mm_and_si128(mask, bits); 85 mask = _mm_cmpeq_epi16(mask, bits); 86 return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a)); 87 } 88 89 INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], 90 const uint8_t block[BLAKE3_BLOCK_LEN], 91 uint8_t block_len, uint64_t counter, uint8_t flags) { 92 rows[0] = loadu((uint8_t *)&cv[0]); 93 rows[1] = loadu((uint8_t *)&cv[4]); 94 rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); 95 rows[3] = set4(counter_low(counter), counter_high(counter), 96 (uint32_t)block_len, (uint32_t)flags); 97 98 __m128i m0 = loadu(&block[sizeof(__m128i) * 0]); 99 __m128i m1 = loadu(&block[sizeof(__m128i) * 1]); 100 __m128i m2 = loadu(&block[sizeof(__m128i) * 2]); 101 __m128i m3 = loadu(&block[sizeof(__m128i) * 3]); 102 103 __m128i t0, t1, t2, t3, tt; 104 105 // Round 1. The first round permutes the message words from the original 106 // input order, into the groups that get mixed in parallel. 107 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 108 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 109 t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 110 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 111 diagonalize(&rows[0], &rows[2], &rows[3]); 112 t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 113 t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 114 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 115 t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 116 t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 117 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 118 undiagonalize(&rows[0], &rows[2], &rows[3]); 119 m0 = t0; 120 m1 = t1; 121 m2 = t2; 122 m3 = t3; 123 124 // Round 2. This round and all following rounds apply a fixed permutation 125 // to the message words from the round before. 126 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 127 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 128 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 129 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 130 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 131 t1 = blend_epi16(tt, t1, 0xCC); 132 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 133 diagonalize(&rows[0], &rows[2], &rows[3]); 134 t2 = _mm_unpacklo_epi64(m3, m1); 135 tt = blend_epi16(t2, m2, 0xC0); 136 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 137 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 138 t3 = _mm_unpackhi_epi32(m1, m3); 139 tt = _mm_unpacklo_epi32(m2, t3); 140 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 141 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 142 undiagonalize(&rows[0], &rows[2], &rows[3]); 143 m0 = t0; 144 m1 = t1; 145 m2 = t2; 146 m3 = t3; 147 148 // Round 3 149 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 150 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 151 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 152 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 153 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 154 t1 = blend_epi16(tt, t1, 0xCC); 155 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 156 diagonalize(&rows[0], &rows[2], &rows[3]); 157 t2 = _mm_unpacklo_epi64(m3, m1); 158 tt = blend_epi16(t2, m2, 0xC0); 159 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 160 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 161 t3 = _mm_unpackhi_epi32(m1, m3); 162 tt = _mm_unpacklo_epi32(m2, t3); 163 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 164 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 165 undiagonalize(&rows[0], &rows[2], &rows[3]); 166 m0 = t0; 167 m1 = t1; 168 m2 = t2; 169 m3 = t3; 170 171 // Round 4 172 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 173 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 174 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 175 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 176 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 177 t1 = blend_epi16(tt, t1, 0xCC); 178 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 179 diagonalize(&rows[0], &rows[2], &rows[3]); 180 t2 = _mm_unpacklo_epi64(m3, m1); 181 tt = blend_epi16(t2, m2, 0xC0); 182 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 183 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 184 t3 = _mm_unpackhi_epi32(m1, m3); 185 tt = _mm_unpacklo_epi32(m2, t3); 186 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 187 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 188 undiagonalize(&rows[0], &rows[2], &rows[3]); 189 m0 = t0; 190 m1 = t1; 191 m2 = t2; 192 m3 = t3; 193 194 // Round 5 195 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 196 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 197 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 198 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 199 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 200 t1 = blend_epi16(tt, t1, 0xCC); 201 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 202 diagonalize(&rows[0], &rows[2], &rows[3]); 203 t2 = _mm_unpacklo_epi64(m3, m1); 204 tt = blend_epi16(t2, m2, 0xC0); 205 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 206 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 207 t3 = _mm_unpackhi_epi32(m1, m3); 208 tt = _mm_unpacklo_epi32(m2, t3); 209 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 210 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 211 undiagonalize(&rows[0], &rows[2], &rows[3]); 212 m0 = t0; 213 m1 = t1; 214 m2 = t2; 215 m3 = t3; 216 217 // Round 6 218 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 219 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 220 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 221 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 222 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 223 t1 = blend_epi16(tt, t1, 0xCC); 224 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 225 diagonalize(&rows[0], &rows[2], &rows[3]); 226 t2 = _mm_unpacklo_epi64(m3, m1); 227 tt = blend_epi16(t2, m2, 0xC0); 228 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 229 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 230 t3 = _mm_unpackhi_epi32(m1, m3); 231 tt = _mm_unpacklo_epi32(m2, t3); 232 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 233 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 234 undiagonalize(&rows[0], &rows[2], &rows[3]); 235 m0 = t0; 236 m1 = t1; 237 m2 = t2; 238 m3 = t3; 239 240 // Round 7 241 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); 242 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); 243 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); 244 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); 245 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); 246 t1 = blend_epi16(tt, t1, 0xCC); 247 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); 248 diagonalize(&rows[0], &rows[2], &rows[3]); 249 t2 = _mm_unpacklo_epi64(m3, m1); 250 tt = blend_epi16(t2, m2, 0xC0); 251 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); 252 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); 253 t3 = _mm_unpackhi_epi32(m1, m3); 254 tt = _mm_unpacklo_epi32(m2, t3); 255 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); 256 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); 257 undiagonalize(&rows[0], &rows[2], &rows[3]); 258 } 259 260 void blake3_compress_in_place_sse2(uint32_t cv[8], 261 const uint8_t block[BLAKE3_BLOCK_LEN], 262 uint8_t block_len, uint64_t counter, 263 uint8_t flags) { 264 __m128i rows[4]; 265 compress_pre(rows, cv, block, block_len, counter, flags); 266 storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]); 267 storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]); 268 } 269 270 void blake3_compress_xof_sse2(const uint32_t cv[8], 271 const uint8_t block[BLAKE3_BLOCK_LEN], 272 uint8_t block_len, uint64_t counter, 273 uint8_t flags, uint8_t out[64]) { 274 __m128i rows[4]; 275 compress_pre(rows, cv, block, block_len, counter, flags); 276 storeu(xorv(rows[0], rows[2]), &out[0]); 277 storeu(xorv(rows[1], rows[3]), &out[16]); 278 storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]); 279 storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]); 280 } 281 282 INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) { 283 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); 284 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); 285 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); 286 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); 287 v[0] = addv(v[0], v[4]); 288 v[1] = addv(v[1], v[5]); 289 v[2] = addv(v[2], v[6]); 290 v[3] = addv(v[3], v[7]); 291 v[12] = xorv(v[12], v[0]); 292 v[13] = xorv(v[13], v[1]); 293 v[14] = xorv(v[14], v[2]); 294 v[15] = xorv(v[15], v[3]); 295 v[12] = rot16(v[12]); 296 v[13] = rot16(v[13]); 297 v[14] = rot16(v[14]); 298 v[15] = rot16(v[15]); 299 v[8] = addv(v[8], v[12]); 300 v[9] = addv(v[9], v[13]); 301 v[10] = addv(v[10], v[14]); 302 v[11] = addv(v[11], v[15]); 303 v[4] = xorv(v[4], v[8]); 304 v[5] = xorv(v[5], v[9]); 305 v[6] = xorv(v[6], v[10]); 306 v[7] = xorv(v[7], v[11]); 307 v[4] = rot12(v[4]); 308 v[5] = rot12(v[5]); 309 v[6] = rot12(v[6]); 310 v[7] = rot12(v[7]); 311 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); 312 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); 313 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); 314 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); 315 v[0] = addv(v[0], v[4]); 316 v[1] = addv(v[1], v[5]); 317 v[2] = addv(v[2], v[6]); 318 v[3] = addv(v[3], v[7]); 319 v[12] = xorv(v[12], v[0]); 320 v[13] = xorv(v[13], v[1]); 321 v[14] = xorv(v[14], v[2]); 322 v[15] = xorv(v[15], v[3]); 323 v[12] = rot8(v[12]); 324 v[13] = rot8(v[13]); 325 v[14] = rot8(v[14]); 326 v[15] = rot8(v[15]); 327 v[8] = addv(v[8], v[12]); 328 v[9] = addv(v[9], v[13]); 329 v[10] = addv(v[10], v[14]); 330 v[11] = addv(v[11], v[15]); 331 v[4] = xorv(v[4], v[8]); 332 v[5] = xorv(v[5], v[9]); 333 v[6] = xorv(v[6], v[10]); 334 v[7] = xorv(v[7], v[11]); 335 v[4] = rot7(v[4]); 336 v[5] = rot7(v[5]); 337 v[6] = rot7(v[6]); 338 v[7] = rot7(v[7]); 339 340 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); 341 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); 342 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); 343 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); 344 v[0] = addv(v[0], v[5]); 345 v[1] = addv(v[1], v[6]); 346 v[2] = addv(v[2], v[7]); 347 v[3] = addv(v[3], v[4]); 348 v[15] = xorv(v[15], v[0]); 349 v[12] = xorv(v[12], v[1]); 350 v[13] = xorv(v[13], v[2]); 351 v[14] = xorv(v[14], v[3]); 352 v[15] = rot16(v[15]); 353 v[12] = rot16(v[12]); 354 v[13] = rot16(v[13]); 355 v[14] = rot16(v[14]); 356 v[10] = addv(v[10], v[15]); 357 v[11] = addv(v[11], v[12]); 358 v[8] = addv(v[8], v[13]); 359 v[9] = addv(v[9], v[14]); 360 v[5] = xorv(v[5], v[10]); 361 v[6] = xorv(v[6], v[11]); 362 v[7] = xorv(v[7], v[8]); 363 v[4] = xorv(v[4], v[9]); 364 v[5] = rot12(v[5]); 365 v[6] = rot12(v[6]); 366 v[7] = rot12(v[7]); 367 v[4] = rot12(v[4]); 368 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); 369 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); 370 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); 371 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); 372 v[0] = addv(v[0], v[5]); 373 v[1] = addv(v[1], v[6]); 374 v[2] = addv(v[2], v[7]); 375 v[3] = addv(v[3], v[4]); 376 v[15] = xorv(v[15], v[0]); 377 v[12] = xorv(v[12], v[1]); 378 v[13] = xorv(v[13], v[2]); 379 v[14] = xorv(v[14], v[3]); 380 v[15] = rot8(v[15]); 381 v[12] = rot8(v[12]); 382 v[13] = rot8(v[13]); 383 v[14] = rot8(v[14]); 384 v[10] = addv(v[10], v[15]); 385 v[11] = addv(v[11], v[12]); 386 v[8] = addv(v[8], v[13]); 387 v[9] = addv(v[9], v[14]); 388 v[5] = xorv(v[5], v[10]); 389 v[6] = xorv(v[6], v[11]); 390 v[7] = xorv(v[7], v[8]); 391 v[4] = xorv(v[4], v[9]); 392 v[5] = rot7(v[5]); 393 v[6] = rot7(v[6]); 394 v[7] = rot7(v[7]); 395 v[4] = rot7(v[4]); 396 } 397 398 INLINE void transpose_vecs(__m128i vecs[DEGREE]) { 399 // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is 400 // 22/33. Note that this doesn't split the vector into two lanes, as the 401 // AVX2 counterparts do. 402 __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); 403 __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); 404 __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); 405 __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); 406 407 // Interleave 64-bit lanes. 408 __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); 409 __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); 410 __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); 411 __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); 412 413 vecs[0] = abcd_0; 414 vecs[1] = abcd_1; 415 vecs[2] = abcd_2; 416 vecs[3] = abcd_3; 417 } 418 419 INLINE void transpose_msg_vecs(const uint8_t *const *inputs, 420 size_t block_offset, __m128i out[16]) { 421 out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]); 422 out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]); 423 out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]); 424 out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]); 425 out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]); 426 out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]); 427 out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]); 428 out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]); 429 out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]); 430 out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]); 431 out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]); 432 out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]); 433 out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]); 434 out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]); 435 out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]); 436 out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]); 437 for (size_t i = 0; i < 4; ++i) { 438 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); 439 } 440 transpose_vecs(&out[0]); 441 transpose_vecs(&out[4]); 442 transpose_vecs(&out[8]); 443 transpose_vecs(&out[12]); 444 } 445 446 INLINE void load_counters(uint64_t counter, bool increment_counter, 447 __m128i *out_lo, __m128i *out_hi) { 448 const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter); 449 const __m128i add0 = _mm_set_epi32(3, 2, 1, 0); 450 const __m128i add1 = _mm_and_si128(mask, add0); 451 __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1); 452 __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)), 453 _mm_xor_si128( l, _mm_set1_epi32(0x80000000))); 454 __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry); 455 *out_lo = l; 456 *out_hi = h; 457 } 458 459 static 460 void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks, 461 const uint32_t key[8], uint64_t counter, 462 bool increment_counter, uint8_t flags, 463 uint8_t flags_start, uint8_t flags_end, uint8_t *out) { 464 __m128i h_vecs[8] = { 465 set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), 466 set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), 467 }; 468 __m128i counter_low_vec, counter_high_vec; 469 load_counters(counter, increment_counter, &counter_low_vec, 470 &counter_high_vec); 471 uint8_t block_flags = flags | flags_start; 472 473 for (size_t block = 0; block < blocks; block++) { 474 if (block + 1 == blocks) { 475 block_flags |= flags_end; 476 } 477 __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN); 478 __m128i block_flags_vec = set1(block_flags); 479 __m128i msg_vecs[16]; 480 transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); 481 482 __m128i v[16] = { 483 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], 484 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], 485 set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), 486 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, 487 }; 488 round_fn(v, msg_vecs, 0); 489 round_fn(v, msg_vecs, 1); 490 round_fn(v, msg_vecs, 2); 491 round_fn(v, msg_vecs, 3); 492 round_fn(v, msg_vecs, 4); 493 round_fn(v, msg_vecs, 5); 494 round_fn(v, msg_vecs, 6); 495 h_vecs[0] = xorv(v[0], v[8]); 496 h_vecs[1] = xorv(v[1], v[9]); 497 h_vecs[2] = xorv(v[2], v[10]); 498 h_vecs[3] = xorv(v[3], v[11]); 499 h_vecs[4] = xorv(v[4], v[12]); 500 h_vecs[5] = xorv(v[5], v[13]); 501 h_vecs[6] = xorv(v[6], v[14]); 502 h_vecs[7] = xorv(v[7], v[15]); 503 504 block_flags = flags; 505 } 506 507 transpose_vecs(&h_vecs[0]); 508 transpose_vecs(&h_vecs[4]); 509 // The first four vecs now contain the first half of each output, and the 510 // second four vecs contain the second half of each output. 511 storeu(h_vecs[0], &out[0 * sizeof(__m128i)]); 512 storeu(h_vecs[4], &out[1 * sizeof(__m128i)]); 513 storeu(h_vecs[1], &out[2 * sizeof(__m128i)]); 514 storeu(h_vecs[5], &out[3 * sizeof(__m128i)]); 515 storeu(h_vecs[2], &out[4 * sizeof(__m128i)]); 516 storeu(h_vecs[6], &out[5 * sizeof(__m128i)]); 517 storeu(h_vecs[3], &out[6 * sizeof(__m128i)]); 518 storeu(h_vecs[7], &out[7 * sizeof(__m128i)]); 519 } 520 521 INLINE void hash_one_sse2(const uint8_t *input, size_t blocks, 522 const uint32_t key[8], uint64_t counter, 523 uint8_t flags, uint8_t flags_start, 524 uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { 525 uint32_t cv[8]; 526 memcpy(cv, key, BLAKE3_KEY_LEN); 527 uint8_t block_flags = flags | flags_start; 528 while (blocks > 0) { 529 if (blocks == 1) { 530 block_flags |= flags_end; 531 } 532 blake3_compress_in_place_sse2(cv, input, BLAKE3_BLOCK_LEN, counter, 533 block_flags); 534 input = &input[BLAKE3_BLOCK_LEN]; 535 blocks -= 1; 536 block_flags = flags; 537 } 538 memcpy(out, cv, BLAKE3_OUT_LEN); 539 } 540 541 void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs, 542 size_t blocks, const uint32_t key[8], 543 uint64_t counter, bool increment_counter, 544 uint8_t flags, uint8_t flags_start, 545 uint8_t flags_end, uint8_t *out) { 546 while (num_inputs >= DEGREE) { 547 blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags, 548 flags_start, flags_end, out); 549 if (increment_counter) { 550 counter += DEGREE; 551 } 552 inputs += DEGREE; 553 num_inputs -= DEGREE; 554 out = &out[DEGREE * BLAKE3_OUT_LEN]; 555 } 556 while (num_inputs > 0) { 557 hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start, 558 flags_end, out); 559 if (increment_counter) { 560 counter += 1; 561 } 562 inputs += 1; 563 num_inputs -= 1; 564 out = &out[BLAKE3_OUT_LEN]; 565 } 566 } 567