xref: /freebsd/contrib/llvm-project/llvm/lib/Support/BLAKE3/blake3_sse2.c (revision a64729f5077d77e13b9497cb33ecb3c82e606ee8)
1 #include "blake3_impl.h"
2 
3 #include <immintrin.h>
4 
5 #define DEGREE 4
6 
7 #define _mm_shuffle_ps2(a, b, c)                                               \
8   (_mm_castps_si128(                                                           \
9       _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10 
11 INLINE __m128i loadu(const uint8_t src[16]) {
12   return _mm_loadu_si128((const __m128i *)src);
13 }
14 
15 INLINE void storeu(__m128i src, uint8_t dest[16]) {
16   _mm_storeu_si128((__m128i *)dest, src);
17 }
18 
19 INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20 
21 // Note that clang-format doesn't like the name "xor" for some reason.
22 INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23 
24 INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25 
26 INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
27   return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28 }
29 
30 INLINE __m128i rot16(__m128i x) {
31   return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1);
32 }
33 
34 INLINE __m128i rot12(__m128i x) {
35   return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
36 }
37 
38 INLINE __m128i rot8(__m128i x) {
39   return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8));
40 }
41 
42 INLINE __m128i rot7(__m128i x) {
43   return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
44 }
45 
46 INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
47                __m128i m) {
48   *row0 = addv(addv(*row0, m), *row1);
49   *row3 = xorv(*row3, *row0);
50   *row3 = rot16(*row3);
51   *row2 = addv(*row2, *row3);
52   *row1 = xorv(*row1, *row2);
53   *row1 = rot12(*row1);
54 }
55 
56 INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
57                __m128i m) {
58   *row0 = addv(addv(*row0, m), *row1);
59   *row3 = xorv(*row3, *row0);
60   *row3 = rot8(*row3);
61   *row2 = addv(*row2, *row3);
62   *row1 = xorv(*row1, *row2);
63   *row1 = rot7(*row1);
64 }
65 
66 // Note the optimization here of leaving row1 as the unrotated row, rather than
67 // row0. All the message loads below are adjusted to compensate for this. See
68 // discussion at https://github.com/sneves/blake2-avx2/pull/4
69 INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
70   *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
71   *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
72   *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
73 }
74 
75 INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
76   *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
77   *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
78   *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
79 }
80 
81 INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8) {
82   const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
83   __m128i mask = _mm_set1_epi16(imm8);
84   mask = _mm_and_si128(mask, bits);
85   mask = _mm_cmpeq_epi16(mask, bits);
86   return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a));
87 }
88 
89 INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
90                          const uint8_t block[BLAKE3_BLOCK_LEN],
91                          uint8_t block_len, uint64_t counter, uint8_t flags) {
92   rows[0] = loadu((uint8_t *)&cv[0]);
93   rows[1] = loadu((uint8_t *)&cv[4]);
94   rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
95   rows[3] = set4(counter_low(counter), counter_high(counter),
96                  (uint32_t)block_len, (uint32_t)flags);
97 
98   __m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
99   __m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
100   __m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
101   __m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
102 
103   __m128i t0, t1, t2, t3, tt;
104 
105   // Round 1. The first round permutes the message words from the original
106   // input order, into the groups that get mixed in parallel.
107   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); //  6  4  2  0
108   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
109   t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); //  7  5  3  1
110   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
111   diagonalize(&rows[0], &rows[2], &rows[3]);
112   t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10  8
113   t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3));   // 12 10  8 14
114   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
115   t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11  9
116   t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3));   // 13 11  9 15
117   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
118   undiagonalize(&rows[0], &rows[2], &rows[3]);
119   m0 = t0;
120   m1 = t1;
121   m2 = t2;
122   m3 = t3;
123 
124   // Round 2. This round and all following rounds apply a fixed permutation
125   // to the message words from the round before.
126   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
127   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
128   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
129   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
130   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
131   t1 = blend_epi16(tt, t1, 0xCC);
132   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
133   diagonalize(&rows[0], &rows[2], &rows[3]);
134   t2 = _mm_unpacklo_epi64(m3, m1);
135   tt = blend_epi16(t2, m2, 0xC0);
136   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
137   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
138   t3 = _mm_unpackhi_epi32(m1, m3);
139   tt = _mm_unpacklo_epi32(m2, t3);
140   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
141   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
142   undiagonalize(&rows[0], &rows[2], &rows[3]);
143   m0 = t0;
144   m1 = t1;
145   m2 = t2;
146   m3 = t3;
147 
148   // Round 3
149   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
150   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
151   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
152   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
153   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
154   t1 = blend_epi16(tt, t1, 0xCC);
155   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
156   diagonalize(&rows[0], &rows[2], &rows[3]);
157   t2 = _mm_unpacklo_epi64(m3, m1);
158   tt = blend_epi16(t2, m2, 0xC0);
159   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
160   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
161   t3 = _mm_unpackhi_epi32(m1, m3);
162   tt = _mm_unpacklo_epi32(m2, t3);
163   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
164   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
165   undiagonalize(&rows[0], &rows[2], &rows[3]);
166   m0 = t0;
167   m1 = t1;
168   m2 = t2;
169   m3 = t3;
170 
171   // Round 4
172   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
173   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
174   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
175   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
176   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
177   t1 = blend_epi16(tt, t1, 0xCC);
178   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
179   diagonalize(&rows[0], &rows[2], &rows[3]);
180   t2 = _mm_unpacklo_epi64(m3, m1);
181   tt = blend_epi16(t2, m2, 0xC0);
182   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
183   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
184   t3 = _mm_unpackhi_epi32(m1, m3);
185   tt = _mm_unpacklo_epi32(m2, t3);
186   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
187   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
188   undiagonalize(&rows[0], &rows[2], &rows[3]);
189   m0 = t0;
190   m1 = t1;
191   m2 = t2;
192   m3 = t3;
193 
194   // Round 5
195   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
196   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
197   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
198   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
199   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
200   t1 = blend_epi16(tt, t1, 0xCC);
201   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
202   diagonalize(&rows[0], &rows[2], &rows[3]);
203   t2 = _mm_unpacklo_epi64(m3, m1);
204   tt = blend_epi16(t2, m2, 0xC0);
205   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
206   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
207   t3 = _mm_unpackhi_epi32(m1, m3);
208   tt = _mm_unpacklo_epi32(m2, t3);
209   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
210   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
211   undiagonalize(&rows[0], &rows[2], &rows[3]);
212   m0 = t0;
213   m1 = t1;
214   m2 = t2;
215   m3 = t3;
216 
217   // Round 6
218   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
219   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
220   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
221   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
222   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
223   t1 = blend_epi16(tt, t1, 0xCC);
224   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
225   diagonalize(&rows[0], &rows[2], &rows[3]);
226   t2 = _mm_unpacklo_epi64(m3, m1);
227   tt = blend_epi16(t2, m2, 0xC0);
228   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
229   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
230   t3 = _mm_unpackhi_epi32(m1, m3);
231   tt = _mm_unpacklo_epi32(m2, t3);
232   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
233   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
234   undiagonalize(&rows[0], &rows[2], &rows[3]);
235   m0 = t0;
236   m1 = t1;
237   m2 = t2;
238   m3 = t3;
239 
240   // Round 7
241   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
242   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
243   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
244   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
245   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
246   t1 = blend_epi16(tt, t1, 0xCC);
247   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
248   diagonalize(&rows[0], &rows[2], &rows[3]);
249   t2 = _mm_unpacklo_epi64(m3, m1);
250   tt = blend_epi16(t2, m2, 0xC0);
251   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
252   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
253   t3 = _mm_unpackhi_epi32(m1, m3);
254   tt = _mm_unpacklo_epi32(m2, t3);
255   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
256   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
257   undiagonalize(&rows[0], &rows[2], &rows[3]);
258 }
259 
260 void blake3_compress_in_place_sse2(uint32_t cv[8],
261                                    const uint8_t block[BLAKE3_BLOCK_LEN],
262                                    uint8_t block_len, uint64_t counter,
263                                    uint8_t flags) {
264   __m128i rows[4];
265   compress_pre(rows, cv, block, block_len, counter, flags);
266   storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
267   storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
268 }
269 
270 void blake3_compress_xof_sse2(const uint32_t cv[8],
271                               const uint8_t block[BLAKE3_BLOCK_LEN],
272                               uint8_t block_len, uint64_t counter,
273                               uint8_t flags, uint8_t out[64]) {
274   __m128i rows[4];
275   compress_pre(rows, cv, block, block_len, counter, flags);
276   storeu(xorv(rows[0], rows[2]), &out[0]);
277   storeu(xorv(rows[1], rows[3]), &out[16]);
278   storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
279   storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
280 }
281 
282 INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
283   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
284   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
285   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
286   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
287   v[0] = addv(v[0], v[4]);
288   v[1] = addv(v[1], v[5]);
289   v[2] = addv(v[2], v[6]);
290   v[3] = addv(v[3], v[7]);
291   v[12] = xorv(v[12], v[0]);
292   v[13] = xorv(v[13], v[1]);
293   v[14] = xorv(v[14], v[2]);
294   v[15] = xorv(v[15], v[3]);
295   v[12] = rot16(v[12]);
296   v[13] = rot16(v[13]);
297   v[14] = rot16(v[14]);
298   v[15] = rot16(v[15]);
299   v[8] = addv(v[8], v[12]);
300   v[9] = addv(v[9], v[13]);
301   v[10] = addv(v[10], v[14]);
302   v[11] = addv(v[11], v[15]);
303   v[4] = xorv(v[4], v[8]);
304   v[5] = xorv(v[5], v[9]);
305   v[6] = xorv(v[6], v[10]);
306   v[7] = xorv(v[7], v[11]);
307   v[4] = rot12(v[4]);
308   v[5] = rot12(v[5]);
309   v[6] = rot12(v[6]);
310   v[7] = rot12(v[7]);
311   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
312   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
313   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
314   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
315   v[0] = addv(v[0], v[4]);
316   v[1] = addv(v[1], v[5]);
317   v[2] = addv(v[2], v[6]);
318   v[3] = addv(v[3], v[7]);
319   v[12] = xorv(v[12], v[0]);
320   v[13] = xorv(v[13], v[1]);
321   v[14] = xorv(v[14], v[2]);
322   v[15] = xorv(v[15], v[3]);
323   v[12] = rot8(v[12]);
324   v[13] = rot8(v[13]);
325   v[14] = rot8(v[14]);
326   v[15] = rot8(v[15]);
327   v[8] = addv(v[8], v[12]);
328   v[9] = addv(v[9], v[13]);
329   v[10] = addv(v[10], v[14]);
330   v[11] = addv(v[11], v[15]);
331   v[4] = xorv(v[4], v[8]);
332   v[5] = xorv(v[5], v[9]);
333   v[6] = xorv(v[6], v[10]);
334   v[7] = xorv(v[7], v[11]);
335   v[4] = rot7(v[4]);
336   v[5] = rot7(v[5]);
337   v[6] = rot7(v[6]);
338   v[7] = rot7(v[7]);
339 
340   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
341   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
342   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
343   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
344   v[0] = addv(v[0], v[5]);
345   v[1] = addv(v[1], v[6]);
346   v[2] = addv(v[2], v[7]);
347   v[3] = addv(v[3], v[4]);
348   v[15] = xorv(v[15], v[0]);
349   v[12] = xorv(v[12], v[1]);
350   v[13] = xorv(v[13], v[2]);
351   v[14] = xorv(v[14], v[3]);
352   v[15] = rot16(v[15]);
353   v[12] = rot16(v[12]);
354   v[13] = rot16(v[13]);
355   v[14] = rot16(v[14]);
356   v[10] = addv(v[10], v[15]);
357   v[11] = addv(v[11], v[12]);
358   v[8] = addv(v[8], v[13]);
359   v[9] = addv(v[9], v[14]);
360   v[5] = xorv(v[5], v[10]);
361   v[6] = xorv(v[6], v[11]);
362   v[7] = xorv(v[7], v[8]);
363   v[4] = xorv(v[4], v[9]);
364   v[5] = rot12(v[5]);
365   v[6] = rot12(v[6]);
366   v[7] = rot12(v[7]);
367   v[4] = rot12(v[4]);
368   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
369   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
370   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
371   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
372   v[0] = addv(v[0], v[5]);
373   v[1] = addv(v[1], v[6]);
374   v[2] = addv(v[2], v[7]);
375   v[3] = addv(v[3], v[4]);
376   v[15] = xorv(v[15], v[0]);
377   v[12] = xorv(v[12], v[1]);
378   v[13] = xorv(v[13], v[2]);
379   v[14] = xorv(v[14], v[3]);
380   v[15] = rot8(v[15]);
381   v[12] = rot8(v[12]);
382   v[13] = rot8(v[13]);
383   v[14] = rot8(v[14]);
384   v[10] = addv(v[10], v[15]);
385   v[11] = addv(v[11], v[12]);
386   v[8] = addv(v[8], v[13]);
387   v[9] = addv(v[9], v[14]);
388   v[5] = xorv(v[5], v[10]);
389   v[6] = xorv(v[6], v[11]);
390   v[7] = xorv(v[7], v[8]);
391   v[4] = xorv(v[4], v[9]);
392   v[5] = rot7(v[5]);
393   v[6] = rot7(v[6]);
394   v[7] = rot7(v[7]);
395   v[4] = rot7(v[4]);
396 }
397 
398 INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
399   // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
400   // 22/33. Note that this doesn't split the vector into two lanes, as the
401   // AVX2 counterparts do.
402   __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
403   __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
404   __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
405   __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
406 
407   // Interleave 64-bit lanes.
408   __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
409   __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
410   __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
411   __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
412 
413   vecs[0] = abcd_0;
414   vecs[1] = abcd_1;
415   vecs[2] = abcd_2;
416   vecs[3] = abcd_3;
417 }
418 
419 INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
420                                size_t block_offset, __m128i out[16]) {
421   out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
422   out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
423   out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
424   out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
425   out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
426   out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
427   out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
428   out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
429   out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
430   out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
431   out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
432   out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
433   out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
434   out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
435   out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
436   out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
437   for (size_t i = 0; i < 4; ++i) {
438     _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
439   }
440   transpose_vecs(&out[0]);
441   transpose_vecs(&out[4]);
442   transpose_vecs(&out[8]);
443   transpose_vecs(&out[12]);
444 }
445 
446 INLINE void load_counters(uint64_t counter, bool increment_counter,
447                           __m128i *out_lo, __m128i *out_hi) {
448   const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
449   const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
450   const __m128i add1 = _mm_and_si128(mask, add0);
451   __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
452   __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
453                                   _mm_xor_si128(   l, _mm_set1_epi32(0x80000000)));
454   __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
455   *out_lo = l;
456   *out_hi = h;
457 }
458 
459 static
460 void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks,
461                        const uint32_t key[8], uint64_t counter,
462                        bool increment_counter, uint8_t flags,
463                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
464   __m128i h_vecs[8] = {
465       set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
466       set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
467   };
468   __m128i counter_low_vec, counter_high_vec;
469   load_counters(counter, increment_counter, &counter_low_vec,
470                 &counter_high_vec);
471   uint8_t block_flags = flags | flags_start;
472 
473   for (size_t block = 0; block < blocks; block++) {
474     if (block + 1 == blocks) {
475       block_flags |= flags_end;
476     }
477     __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
478     __m128i block_flags_vec = set1(block_flags);
479     __m128i msg_vecs[16];
480     transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
481 
482     __m128i v[16] = {
483         h_vecs[0],       h_vecs[1],        h_vecs[2],     h_vecs[3],
484         h_vecs[4],       h_vecs[5],        h_vecs[6],     h_vecs[7],
485         set1(IV[0]),     set1(IV[1]),      set1(IV[2]),   set1(IV[3]),
486         counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
487     };
488     round_fn(v, msg_vecs, 0);
489     round_fn(v, msg_vecs, 1);
490     round_fn(v, msg_vecs, 2);
491     round_fn(v, msg_vecs, 3);
492     round_fn(v, msg_vecs, 4);
493     round_fn(v, msg_vecs, 5);
494     round_fn(v, msg_vecs, 6);
495     h_vecs[0] = xorv(v[0], v[8]);
496     h_vecs[1] = xorv(v[1], v[9]);
497     h_vecs[2] = xorv(v[2], v[10]);
498     h_vecs[3] = xorv(v[3], v[11]);
499     h_vecs[4] = xorv(v[4], v[12]);
500     h_vecs[5] = xorv(v[5], v[13]);
501     h_vecs[6] = xorv(v[6], v[14]);
502     h_vecs[7] = xorv(v[7], v[15]);
503 
504     block_flags = flags;
505   }
506 
507   transpose_vecs(&h_vecs[0]);
508   transpose_vecs(&h_vecs[4]);
509   // The first four vecs now contain the first half of each output, and the
510   // second four vecs contain the second half of each output.
511   storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
512   storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
513   storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
514   storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
515   storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
516   storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
517   storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
518   storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
519 }
520 
521 INLINE void hash_one_sse2(const uint8_t *input, size_t blocks,
522                           const uint32_t key[8], uint64_t counter,
523                           uint8_t flags, uint8_t flags_start,
524                           uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
525   uint32_t cv[8];
526   memcpy(cv, key, BLAKE3_KEY_LEN);
527   uint8_t block_flags = flags | flags_start;
528   while (blocks > 0) {
529     if (blocks == 1) {
530       block_flags |= flags_end;
531     }
532     blake3_compress_in_place_sse2(cv, input, BLAKE3_BLOCK_LEN, counter,
533                                   block_flags);
534     input = &input[BLAKE3_BLOCK_LEN];
535     blocks -= 1;
536     block_flags = flags;
537   }
538   memcpy(out, cv, BLAKE3_OUT_LEN);
539 }
540 
541 void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
542                            size_t blocks, const uint32_t key[8],
543                            uint64_t counter, bool increment_counter,
544                            uint8_t flags, uint8_t flags_start,
545                            uint8_t flags_end, uint8_t *out) {
546   while (num_inputs >= DEGREE) {
547     blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags,
548                       flags_start, flags_end, out);
549     if (increment_counter) {
550       counter += DEGREE;
551     }
552     inputs += DEGREE;
553     num_inputs -= DEGREE;
554     out = &out[DEGREE * BLAKE3_OUT_LEN];
555   }
556   while (num_inputs > 0) {
557     hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start,
558                   flags_end, out);
559     if (increment_counter) {
560       counter += 1;
561     }
562     inputs += 1;
563     num_inputs -= 1;
564     out = &out[BLAKE3_OUT_LEN];
565   }
566 }
567