1 /*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\ 2 |* *| 3 |* Released into the public domain with CC0 1.0 *| 4 |* See 'llvm/lib/Support/BLAKE3/LICENSE' for info. *| 5 |* SPDX-License-Identifier: CC0-1.0 *| 6 |* *| 7 \*===----------------------------------------------------------------------===*/ 8 9 #include <assert.h> 10 #include <stdbool.h> 11 #include <string.h> 12 13 #include "blake3_impl.h" 14 15 const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; } 16 17 INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8], 18 uint8_t flags) { 19 memcpy(self->cv, key, BLAKE3_KEY_LEN); 20 self->chunk_counter = 0; 21 memset(self->buf, 0, BLAKE3_BLOCK_LEN); 22 self->buf_len = 0; 23 self->blocks_compressed = 0; 24 self->flags = flags; 25 } 26 27 INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8], 28 uint64_t chunk_counter) { 29 memcpy(self->cv, key, BLAKE3_KEY_LEN); 30 self->chunk_counter = chunk_counter; 31 self->blocks_compressed = 0; 32 memset(self->buf, 0, BLAKE3_BLOCK_LEN); 33 self->buf_len = 0; 34 } 35 36 INLINE size_t chunk_state_len(const blake3_chunk_state *self) { 37 return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) + 38 ((size_t)self->buf_len); 39 } 40 41 INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self, 42 const uint8_t *input, size_t input_len) { 43 size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len); 44 if (take > input_len) { 45 take = input_len; 46 } 47 uint8_t *dest = self->buf + ((size_t)self->buf_len); 48 memcpy(dest, input, take); 49 self->buf_len += (uint8_t)take; 50 return take; 51 } 52 53 INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) { 54 if (self->blocks_compressed == 0) { 55 return CHUNK_START; 56 } else { 57 return 0; 58 } 59 } 60 61 typedef struct { 62 uint32_t input_cv[8]; 63 uint64_t counter; 64 uint8_t block[BLAKE3_BLOCK_LEN]; 65 uint8_t block_len; 66 uint8_t flags; 67 } output_t; 68 69 INLINE output_t make_output(const uint32_t input_cv[8], 70 const uint8_t block[BLAKE3_BLOCK_LEN], 71 uint8_t block_len, uint64_t counter, 72 uint8_t flags) { 73 output_t ret; 74 memcpy(ret.input_cv, input_cv, 32); 75 memcpy(ret.block, block, BLAKE3_BLOCK_LEN); 76 ret.block_len = block_len; 77 ret.counter = counter; 78 ret.flags = flags; 79 return ret; 80 } 81 82 // Chaining values within a given chunk (specifically the compress_in_place 83 // interface) are represented as words. This avoids unnecessary bytes<->words 84 // conversion overhead in the portable implementation. However, the hash_many 85 // interface handles both user input and parent node blocks, so it accepts 86 // bytes. For that reason, chaining values in the CV stack are represented as 87 // bytes. 88 INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) { 89 uint32_t cv_words[8]; 90 memcpy(cv_words, self->input_cv, 32); 91 blake3_compress_in_place(cv_words, self->block, self->block_len, 92 self->counter, self->flags); 93 store_cv_words(cv, cv_words); 94 } 95 96 INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out, 97 size_t out_len) { 98 uint64_t output_block_counter = seek / 64; 99 size_t offset_within_block = seek % 64; 100 uint8_t wide_buf[64]; 101 while (out_len > 0) { 102 blake3_compress_xof(self->input_cv, self->block, self->block_len, 103 output_block_counter, self->flags | ROOT, wide_buf); 104 size_t available_bytes = 64 - offset_within_block; 105 size_t memcpy_len; 106 if (out_len > available_bytes) { 107 memcpy_len = available_bytes; 108 } else { 109 memcpy_len = out_len; 110 } 111 memcpy(out, wide_buf + offset_within_block, memcpy_len); 112 out += memcpy_len; 113 out_len -= memcpy_len; 114 output_block_counter += 1; 115 offset_within_block = 0; 116 } 117 } 118 119 INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input, 120 size_t input_len) { 121 if (self->buf_len > 0) { 122 size_t take = chunk_state_fill_buf(self, input, input_len); 123 input += take; 124 input_len -= take; 125 if (input_len > 0) { 126 blake3_compress_in_place( 127 self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter, 128 self->flags | chunk_state_maybe_start_flag(self)); 129 self->blocks_compressed += 1; 130 self->buf_len = 0; 131 memset(self->buf, 0, BLAKE3_BLOCK_LEN); 132 } 133 } 134 135 while (input_len > BLAKE3_BLOCK_LEN) { 136 blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN, 137 self->chunk_counter, 138 self->flags | chunk_state_maybe_start_flag(self)); 139 self->blocks_compressed += 1; 140 input += BLAKE3_BLOCK_LEN; 141 input_len -= BLAKE3_BLOCK_LEN; 142 } 143 144 size_t take = chunk_state_fill_buf(self, input, input_len); 145 input += take; 146 input_len -= take; 147 } 148 149 INLINE output_t chunk_state_output(const blake3_chunk_state *self) { 150 uint8_t block_flags = 151 self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END; 152 return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter, 153 block_flags); 154 } 155 156 INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], 157 const uint32_t key[8], uint8_t flags) { 158 return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT); 159 } 160 161 // Given some input larger than one chunk, return the number of bytes that 162 // should go in the left subtree. This is the largest power-of-2 number of 163 // chunks that leaves at least 1 byte for the right subtree. 164 INLINE size_t left_len(size_t content_len) { 165 // Subtract 1 to reserve at least one byte for the right side. content_len 166 // should always be greater than BLAKE3_CHUNK_LEN. 167 size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; 168 return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN; 169 } 170 171 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time 172 // on a single thread. Write out the chunk chaining values and return the 173 // number of chunks hashed. These chunks are never the root and never empty; 174 // those cases use a different codepath. 175 INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len, 176 const uint32_t key[8], 177 uint64_t chunk_counter, uint8_t flags, 178 uint8_t *out) { 179 #if defined(BLAKE3_TESTING) 180 assert(0 < input_len); 181 assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN); 182 #endif 183 184 const uint8_t *chunks_array[MAX_SIMD_DEGREE]; 185 size_t input_position = 0; 186 size_t chunks_array_len = 0; 187 while (input_len - input_position >= BLAKE3_CHUNK_LEN) { 188 chunks_array[chunks_array_len] = &input[input_position]; 189 input_position += BLAKE3_CHUNK_LEN; 190 chunks_array_len += 1; 191 } 192 193 blake3_hash_many(chunks_array, chunks_array_len, 194 BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter, 195 true, flags, CHUNK_START, CHUNK_END, out); 196 197 // Hash the remaining partial chunk, if there is one. Note that the empty 198 // chunk (meaning the empty message) is a different codepath. 199 if (input_len > input_position) { 200 uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; 201 blake3_chunk_state chunk_state; 202 chunk_state_init(&chunk_state, key, flags); 203 chunk_state.chunk_counter = counter; 204 chunk_state_update(&chunk_state, &input[input_position], 205 input_len - input_position); 206 output_t output = chunk_state_output(&chunk_state); 207 output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]); 208 return chunks_array_len + 1; 209 } else { 210 return chunks_array_len; 211 } 212 } 213 214 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time 215 // on a single thread. Write out the parent chaining values and return the 216 // number of parents hashed. (If there's an odd input chaining value left over, 217 // return it as an additional output.) These parents are never the root and 218 // never empty; those cases use a different codepath. 219 INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values, 220 size_t num_chaining_values, 221 const uint32_t key[8], uint8_t flags, 222 uint8_t *out) { 223 #if defined(BLAKE3_TESTING) 224 assert(2 <= num_chaining_values); 225 assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2); 226 #endif 227 228 const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; 229 size_t parents_array_len = 0; 230 while (num_chaining_values - (2 * parents_array_len) >= 2) { 231 parents_array[parents_array_len] = 232 &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; 233 parents_array_len += 1; 234 } 235 236 blake3_hash_many(parents_array, parents_array_len, 1, key, 237 0, // Parents always use counter 0. 238 false, flags | PARENT, 239 0, // Parents have no start flags. 240 0, // Parents have no end flags. 241 out); 242 243 // If there's an odd child left over, it becomes an output. 244 if (num_chaining_values > 2 * parents_array_len) { 245 memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], 246 &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], 247 BLAKE3_OUT_LEN); 248 return parents_array_len + 1; 249 } else { 250 return parents_array_len; 251 } 252 } 253 254 // The wide helper function returns (writes out) an array of chaining values 255 // and returns the length of that array. The number of chaining values returned 256 // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, 257 // if the input is shorter than that many chunks. The reason for maintaining a 258 // wide array of chaining values going back up the tree, is to allow the 259 // implementation to hash as many parents in parallel as possible. 260 // 261 // As a special case when the SIMD degree is 1, this function will still return 262 // at least 2 outputs. This guarantees that this function doesn't perform the 263 // root compression. (If it did, it would use the wrong flags, and also we 264 // wouldn't be able to implement exendable ouput.) Note that this function is 265 // not used when the whole input is only 1 chunk long; that's a different 266 // codepath. 267 // 268 // Why not just have the caller split the input on the first update(), instead 269 // of implementing this special rule? Because we don't want to limit SIMD or 270 // multi-threading parallelism for that update(). 271 static size_t blake3_compress_subtree_wide(const uint8_t *input, 272 size_t input_len, 273 const uint32_t key[8], 274 uint64_t chunk_counter, 275 uint8_t flags, uint8_t *out) { 276 // Note that the single chunk case does *not* bump the SIMD degree up to 2 277 // when it is 1. If this implementation adds multi-threading in the future, 278 // this gives us the option of multi-threading even the 2-chunk case, which 279 // can help performance on smaller platforms. 280 if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) { 281 return compress_chunks_parallel(input, input_len, key, chunk_counter, flags, 282 out); 283 } 284 285 // With more than simd_degree chunks, we need to recurse. Start by dividing 286 // the input into left and right subtrees. (Note that this is only optimal 287 // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree 288 // of 3 or something, we'll need a more complicated strategy.) 289 size_t left_input_len = left_len(input_len); 290 size_t right_input_len = input_len - left_input_len; 291 const uint8_t *right_input = &input[left_input_len]; 292 uint64_t right_chunk_counter = 293 chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); 294 295 // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to 296 // account for the special case of returning 2 outputs when the SIMD degree 297 // is 1. 298 uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 299 size_t degree = blake3_simd_degree(); 300 if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { 301 // The special case: We always use a degree of at least two, to make 302 // sure there are two outputs. Except, as noted above, at the chunk 303 // level, where we allow degree=1. (Note that the 1-chunk-input case is 304 // a different codepath.) 305 degree = 2; 306 } 307 uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; 308 309 // Recurse! If this implementation adds multi-threading support in the 310 // future, this is where it will go. 311 size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key, 312 chunk_counter, flags, cv_array); 313 size_t right_n = blake3_compress_subtree_wide( 314 right_input, right_input_len, key, right_chunk_counter, flags, right_cvs); 315 316 // The special case again. If simd_degree=1, then we'll have left_n=1 and 317 // right_n=1. Rather than compressing them into a single output, return 318 // them directly, to make sure we always have at least two outputs. 319 if (left_n == 1) { 320 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 321 return 2; 322 } 323 324 // Otherwise, do one layer of parent node compression. 325 size_t num_chaining_values = left_n + right_n; 326 return compress_parents_parallel(cv_array, num_chaining_values, key, flags, 327 out); 328 } 329 330 // Hash a subtree with compress_subtree_wide(), and then condense the resulting 331 // list of chaining values down to a single parent node. Don't compress that 332 // last parent node, however. Instead, return its message bytes (the 333 // concatenated chaining values of its children). This is necessary when the 334 // first call to update() supplies a complete subtree, because the topmost 335 // parent node of that subtree could end up being the root. It's also necessary 336 // for extended output in the general case. 337 // 338 // As with compress_subtree_wide(), this function is not used on inputs of 1 339 // chunk or less. That's a different codepath. 340 INLINE void compress_subtree_to_parent_node( 341 const uint8_t *input, size_t input_len, const uint32_t key[8], 342 uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { 343 #if defined(BLAKE3_TESTING) 344 assert(input_len > BLAKE3_CHUNK_LEN); 345 #endif 346 347 uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 348 size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key, 349 chunk_counter, flags, cv_array); 350 assert(num_cvs <= MAX_SIMD_DEGREE_OR_2); 351 352 // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, 353 // compress_subtree_wide() returns more than 2 chaining values. Condense 354 // them into 2 by forming parent nodes repeatedly. 355 uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; 356 // The second half of this loop condition is always true, and we just 357 // asserted it above. But GCC can't tell that it's always true, and if NDEBUG 358 // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious 359 // warnings here. GCC 8.5 is particularly sensitive, so if you're changing 360 // this code, test it against that version. 361 while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) { 362 num_cvs = 363 compress_parents_parallel(cv_array, num_cvs, key, flags, out_array); 364 memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); 365 } 366 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 367 } 368 369 INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8], 370 uint8_t flags) { 371 memcpy(self->key, key, BLAKE3_KEY_LEN); 372 chunk_state_init(&self->chunk, key, flags); 373 self->cv_stack_len = 0; 374 } 375 376 void llvm_blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); } 377 378 void llvm_blake3_hasher_init_keyed(blake3_hasher *self, 379 const uint8_t key[BLAKE3_KEY_LEN]) { 380 uint32_t key_words[8]; 381 load_key_words(key, key_words); 382 hasher_init_base(self, key_words, KEYED_HASH); 383 } 384 385 void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context, 386 size_t context_len) { 387 blake3_hasher context_hasher; 388 hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT); 389 llvm_blake3_hasher_update(&context_hasher, context, context_len); 390 uint8_t context_key[BLAKE3_KEY_LEN]; 391 llvm_blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN); 392 uint32_t context_key_words[8]; 393 load_key_words(context_key, context_key_words); 394 hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL); 395 } 396 397 void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) { 398 llvm_blake3_hasher_init_derive_key_raw(self, context, strlen(context)); 399 } 400 401 // As described in hasher_push_cv() below, we do "lazy merging", delaying 402 // merges until right before the next CV is about to be added. This is 403 // different from the reference implementation. Another difference is that we 404 // aren't always merging 1 chunk at a time. Instead, each CV might represent 405 // any power-of-two number of chunks, as long as the smaller-above-larger stack 406 // order is maintained. Instead of the "count the trailing 0-bits" algorithm 407 // described in the spec, we use a "count the total number of 1-bits" variant 408 // that doesn't require us to retain the subtree size of the CV on top of the 409 // stack. The principle is the same: each CV that should remain in the stack is 410 // represented by a 1-bit in the total number of chunks (or bytes) so far. 411 INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) { 412 size_t post_merge_stack_len = (size_t)popcnt(total_len); 413 while (self->cv_stack_len > post_merge_stack_len) { 414 uint8_t *parent_node = 415 &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN]; 416 output_t output = parent_output(parent_node, self->key, self->chunk.flags); 417 output_chaining_value(&output, parent_node); 418 self->cv_stack_len -= 1; 419 } 420 } 421 422 // In reference_impl.rs, we merge the new CV with existing CVs from the stack 423 // before pushing it. We can do that because we know more input is coming, so 424 // we know none of the merges are root. 425 // 426 // This setting is different. We want to feed as much input as possible to 427 // compress_subtree_wide(), without setting aside anything for the chunk_state. 428 // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once 429 // as a single subtree, if at all possible. 430 // 431 // This leads to two problems: 432 // 1) This 64 KiB input might be the only call that ever gets made to update. 433 // In this case, the root node of the 64 KiB subtree would be the root node 434 // of the whole tree, and it would need to be ROOT finalized. We can't 435 // compress it until we know. 436 // 2) This 64 KiB input might complete a larger tree, whose root node is 437 // similarly going to be the the root of the whole tree. For example, maybe 438 // we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the 439 // node at the root of the 256 KiB subtree until we know how to finalize it. 440 // 441 // The second problem is solved with "lazy merging". That is, when we're about 442 // to add a CV to the stack, we don't merge it with anything first, as the 443 // reference impl does. Instead we do merges using the *previous* CV that was 444 // added, which is sitting on top of the stack, and we put the new CV 445 // (unmerged) on top of the stack afterwards. This guarantees that we never 446 // merge the root node until finalize(). 447 // 448 // Solving the first problem requires an additional tool, 449 // compress_subtree_to_parent_node(). That function always returns the top 450 // *two* chaining values of the subtree it's compressing. We then do lazy 451 // merging with each of them separately, so that the second CV will always 452 // remain unmerged. (That also helps us support extendable output when we're 453 // hashing an input all-at-once.) 454 INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN], 455 uint64_t chunk_counter) { 456 hasher_merge_cv_stack(self, chunk_counter); 457 memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv, 458 BLAKE3_OUT_LEN); 459 self->cv_stack_len += 1; 460 } 461 462 void llvm_blake3_hasher_update(blake3_hasher *self, const void *input, 463 size_t input_len) { 464 // Explicitly checking for zero avoids causing UB by passing a null pointer 465 // to memcpy. This comes up in practice with things like: 466 // std::vector<uint8_t> v; 467 // blake3_hasher_update(&hasher, v.data(), v.size()); 468 if (input_len == 0) { 469 return; 470 } 471 472 const uint8_t *input_bytes = (const uint8_t *)input; 473 474 // If we have some partial chunk bytes in the internal chunk_state, we need 475 // to finish that chunk first. 476 if (chunk_state_len(&self->chunk) > 0) { 477 size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk); 478 if (take > input_len) { 479 take = input_len; 480 } 481 chunk_state_update(&self->chunk, input_bytes, take); 482 input_bytes += take; 483 input_len -= take; 484 // If we've filled the current chunk and there's more coming, finalize this 485 // chunk and proceed. In this case we know it's not the root. 486 if (input_len > 0) { 487 output_t output = chunk_state_output(&self->chunk); 488 uint8_t chunk_cv[32]; 489 output_chaining_value(&output, chunk_cv); 490 hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter); 491 chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1); 492 } else { 493 return; 494 } 495 } 496 497 // Now the chunk_state is clear, and we have more input. If there's more than 498 // a single chunk (so, definitely not the root chunk), hash the largest whole 499 // subtree we can, with the full benefits of SIMD (and maybe in the future, 500 // multi-threading) parallelism. Two restrictions: 501 // - The subtree has to be a power-of-2 number of chunks. Only subtrees along 502 // the right edge can be incomplete, and we don't know where the right edge 503 // is going to be until we get to finalize(). 504 // - The subtree must evenly divide the total number of chunks up until this 505 // point (if total is not 0). If the current incomplete subtree is only 506 // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have 507 // to complete the current subtree first. 508 // Because we might need to break up the input to form powers of 2, or to 509 // evenly divide what we already have, this part runs in a loop. 510 while (input_len > BLAKE3_CHUNK_LEN) { 511 size_t subtree_len = round_down_to_power_of_2(input_len); 512 uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN; 513 // Shrink the subtree_len until it evenly divides the count so far. We know 514 // that subtree_len itself is a power of 2, so we can use a bitmasking 515 // trick instead of an actual remainder operation. (Note that if the caller 516 // consistently passes power-of-2 inputs of the same size, as is hopefully 517 // typical, this loop condition will always fail, and subtree_len will 518 // always be the full length of the input.) 519 // 520 // An aside: We don't have to shrink subtree_len quite this much. For 521 // example, if count_so_far is 1, we could pass 2 chunks to 522 // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still 523 // get the right answer in the end, and we might get to use 2-way SIMD 524 // parallelism. The problem with this optimization, is that it gets us 525 // stuck always hashing 2 chunks. The total number of chunks will remain 526 // odd, and we'll never graduate to higher degrees of parallelism. See 527 // https://github.com/BLAKE3-team/BLAKE3/issues/69. 528 while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { 529 subtree_len /= 2; 530 } 531 // The shrunken subtree_len might now be 1 chunk long. If so, hash that one 532 // chunk by itself. Otherwise, compress the subtree into a pair of CVs. 533 uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; 534 if (subtree_len <= BLAKE3_CHUNK_LEN) { 535 blake3_chunk_state chunk_state; 536 chunk_state_init(&chunk_state, self->key, self->chunk.flags); 537 chunk_state.chunk_counter = self->chunk.chunk_counter; 538 chunk_state_update(&chunk_state, input_bytes, subtree_len); 539 output_t output = chunk_state_output(&chunk_state); 540 uint8_t cv[BLAKE3_OUT_LEN]; 541 output_chaining_value(&output, cv); 542 hasher_push_cv(self, cv, chunk_state.chunk_counter); 543 } else { 544 // This is the high-performance happy path, though getting here depends 545 // on the caller giving us a long enough input. 546 uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; 547 compress_subtree_to_parent_node(input_bytes, subtree_len, self->key, 548 self->chunk.chunk_counter, 549 self->chunk.flags, cv_pair); 550 hasher_push_cv(self, cv_pair, self->chunk.chunk_counter); 551 hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN], 552 self->chunk.chunk_counter + (subtree_chunks / 2)); 553 } 554 self->chunk.chunk_counter += subtree_chunks; 555 input_bytes += subtree_len; 556 input_len -= subtree_len; 557 } 558 559 // If there's any remaining input less than a full chunk, add it to the chunk 560 // state. In that case, also do a final merge loop to make sure the subtree 561 // stack doesn't contain any unmerged pairs. The remaining input means we 562 // know these merges are non-root. This merge loop isn't strictly necessary 563 // here, because hasher_push_chunk_cv already does its own merge loop, but it 564 // simplifies blake3_hasher_finalize below. 565 if (input_len > 0) { 566 chunk_state_update(&self->chunk, input_bytes, input_len); 567 hasher_merge_cv_stack(self, self->chunk.chunk_counter); 568 } 569 } 570 571 void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out, 572 size_t out_len) { 573 llvm_blake3_hasher_finalize_seek(self, 0, out, out_len); 574 #if LLVM_MEMORY_SANITIZER_BUILD 575 // Avoid false positives due to uninstrumented assembly code. 576 __msan_unpoison(out, out_len); 577 #endif 578 } 579 580 void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek, 581 uint8_t *out, size_t out_len) { 582 // Explicitly checking for zero avoids causing UB by passing a null pointer 583 // to memcpy. This comes up in practice with things like: 584 // std::vector<uint8_t> v; 585 // blake3_hasher_finalize(&hasher, v.data(), v.size()); 586 if (out_len == 0) { 587 return; 588 } 589 590 // If the subtree stack is empty, then the current chunk is the root. 591 if (self->cv_stack_len == 0) { 592 output_t output = chunk_state_output(&self->chunk); 593 output_root_bytes(&output, seek, out, out_len); 594 return; 595 } 596 // If there are any bytes in the chunk state, finalize that chunk and do a 597 // roll-up merge between that chunk hash and every subtree in the stack. In 598 // this case, the extra merge loop at the end of blake3_hasher_update 599 // guarantees that none of the subtrees in the stack need to be merged with 600 // each other first. Otherwise, if there are no bytes in the chunk state, 601 // then the top of the stack is a chunk hash, and we start the merge from 602 // that. 603 output_t output; 604 size_t cvs_remaining; 605 if (chunk_state_len(&self->chunk) > 0) { 606 cvs_remaining = self->cv_stack_len; 607 output = chunk_state_output(&self->chunk); 608 } else { 609 // There are always at least 2 CVs in the stack in this case. 610 cvs_remaining = self->cv_stack_len - 2; 611 output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key, 612 self->chunk.flags); 613 } 614 while (cvs_remaining > 0) { 615 cvs_remaining -= 1; 616 uint8_t parent_block[BLAKE3_BLOCK_LEN]; 617 memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32); 618 output_chaining_value(&output, &parent_block[32]); 619 output = parent_output(parent_block, self->key, self->chunk.flags); 620 } 621 output_root_bytes(&output, seek, out, out_len); 622 } 623 624 void llvm_blake3_hasher_reset(blake3_hasher *self) { 625 chunk_state_reset(&self->chunk, self->key, 0); 626 self->cv_stack_len = 0; 627 } 628