1 /*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\ 2 |* *| 3 |* Released into the public domain with CC0 1.0 *| 4 |* See 'llvm/lib/Support/BLAKE3/LICENSE' for info. *| 5 |* SPDX-License-Identifier: CC0-1.0 *| 6 |* *| 7 \*===----------------------------------------------------------------------===*/ 8 9 #include <assert.h> 10 #include <stdbool.h> 11 #include <string.h> 12 13 #include "blake3_impl.h" 14 15 const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; } 16 17 INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8], 18 uint8_t flags) { 19 memcpy(self->cv, key, BLAKE3_KEY_LEN); 20 self->chunk_counter = 0; 21 memset(self->buf, 0, BLAKE3_BLOCK_LEN); 22 self->buf_len = 0; 23 self->blocks_compressed = 0; 24 self->flags = flags; 25 } 26 27 INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8], 28 uint64_t chunk_counter) { 29 memcpy(self->cv, key, BLAKE3_KEY_LEN); 30 self->chunk_counter = chunk_counter; 31 self->blocks_compressed = 0; 32 memset(self->buf, 0, BLAKE3_BLOCK_LEN); 33 self->buf_len = 0; 34 } 35 36 INLINE size_t chunk_state_len(const blake3_chunk_state *self) { 37 return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) + 38 ((size_t)self->buf_len); 39 } 40 41 INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self, 42 const uint8_t *input, size_t input_len) { 43 size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len); 44 if (take > input_len) { 45 take = input_len; 46 } 47 uint8_t *dest = self->buf + ((size_t)self->buf_len); 48 memcpy(dest, input, take); 49 self->buf_len += (uint8_t)take; 50 return take; 51 } 52 53 INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) { 54 if (self->blocks_compressed == 0) { 55 return CHUNK_START; 56 } else { 57 return 0; 58 } 59 } 60 61 typedef struct { 62 uint32_t input_cv[8]; 63 uint64_t counter; 64 uint8_t block[BLAKE3_BLOCK_LEN]; 65 uint8_t block_len; 66 uint8_t flags; 67 } output_t; 68 69 INLINE output_t make_output(const uint32_t input_cv[8], 70 const uint8_t block[BLAKE3_BLOCK_LEN], 71 uint8_t block_len, uint64_t counter, 72 uint8_t flags) { 73 output_t ret; 74 memcpy(ret.input_cv, input_cv, 32); 75 memcpy(ret.block, block, BLAKE3_BLOCK_LEN); 76 ret.block_len = block_len; 77 ret.counter = counter; 78 ret.flags = flags; 79 return ret; 80 } 81 82 // Chaining values within a given chunk (specifically the compress_in_place 83 // interface) are represented as words. This avoids unnecessary bytes<->words 84 // conversion overhead in the portable implementation. However, the hash_many 85 // interface handles both user input and parent node blocks, so it accepts 86 // bytes. For that reason, chaining values in the CV stack are represented as 87 // bytes. 88 INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) { 89 uint32_t cv_words[8]; 90 memcpy(cv_words, self->input_cv, 32); 91 blake3_compress_in_place(cv_words, self->block, self->block_len, 92 self->counter, self->flags); 93 store_cv_words(cv, cv_words); 94 } 95 96 INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out, 97 size_t out_len) { 98 uint64_t output_block_counter = seek / 64; 99 size_t offset_within_block = seek % 64; 100 uint8_t wide_buf[64]; 101 while (out_len > 0) { 102 blake3_compress_xof(self->input_cv, self->block, self->block_len, 103 output_block_counter, self->flags | ROOT, wide_buf); 104 size_t available_bytes = 64 - offset_within_block; 105 size_t memcpy_len; 106 if (out_len > available_bytes) { 107 memcpy_len = available_bytes; 108 } else { 109 memcpy_len = out_len; 110 } 111 memcpy(out, wide_buf + offset_within_block, memcpy_len); 112 out += memcpy_len; 113 out_len -= memcpy_len; 114 output_block_counter += 1; 115 offset_within_block = 0; 116 } 117 } 118 119 INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input, 120 size_t input_len) { 121 if (self->buf_len > 0) { 122 size_t take = chunk_state_fill_buf(self, input, input_len); 123 input += take; 124 input_len -= take; 125 if (input_len > 0) { 126 blake3_compress_in_place( 127 self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter, 128 self->flags | chunk_state_maybe_start_flag(self)); 129 self->blocks_compressed += 1; 130 self->buf_len = 0; 131 memset(self->buf, 0, BLAKE3_BLOCK_LEN); 132 } 133 } 134 135 while (input_len > BLAKE3_BLOCK_LEN) { 136 blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN, 137 self->chunk_counter, 138 self->flags | chunk_state_maybe_start_flag(self)); 139 self->blocks_compressed += 1; 140 input += BLAKE3_BLOCK_LEN; 141 input_len -= BLAKE3_BLOCK_LEN; 142 } 143 144 chunk_state_fill_buf(self, input, input_len); 145 } 146 147 INLINE output_t chunk_state_output(const blake3_chunk_state *self) { 148 uint8_t block_flags = 149 self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END; 150 return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter, 151 block_flags); 152 } 153 154 INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], 155 const uint32_t key[8], uint8_t flags) { 156 return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT); 157 } 158 159 // Given some input larger than one chunk, return the number of bytes that 160 // should go in the left subtree. This is the largest power-of-2 number of 161 // chunks that leaves at least 1 byte for the right subtree. 162 INLINE size_t left_len(size_t content_len) { 163 // Subtract 1 to reserve at least one byte for the right side. content_len 164 // should always be greater than BLAKE3_CHUNK_LEN. 165 size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; 166 return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN; 167 } 168 169 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time 170 // on a single thread. Write out the chunk chaining values and return the 171 // number of chunks hashed. These chunks are never the root and never empty; 172 // those cases use a different codepath. 173 INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len, 174 const uint32_t key[8], 175 uint64_t chunk_counter, uint8_t flags, 176 uint8_t *out) { 177 #if defined(BLAKE3_TESTING) 178 assert(0 < input_len); 179 assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN); 180 #endif 181 182 const uint8_t *chunks_array[MAX_SIMD_DEGREE]; 183 size_t input_position = 0; 184 size_t chunks_array_len = 0; 185 while (input_len - input_position >= BLAKE3_CHUNK_LEN) { 186 chunks_array[chunks_array_len] = &input[input_position]; 187 input_position += BLAKE3_CHUNK_LEN; 188 chunks_array_len += 1; 189 } 190 191 blake3_hash_many(chunks_array, chunks_array_len, 192 BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter, 193 true, flags, CHUNK_START, CHUNK_END, out); 194 195 // Hash the remaining partial chunk, if there is one. Note that the empty 196 // chunk (meaning the empty message) is a different codepath. 197 if (input_len > input_position) { 198 uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; 199 blake3_chunk_state chunk_state; 200 chunk_state_init(&chunk_state, key, flags); 201 chunk_state.chunk_counter = counter; 202 chunk_state_update(&chunk_state, &input[input_position], 203 input_len - input_position); 204 output_t output = chunk_state_output(&chunk_state); 205 output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]); 206 return chunks_array_len + 1; 207 } else { 208 return chunks_array_len; 209 } 210 } 211 212 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time 213 // on a single thread. Write out the parent chaining values and return the 214 // number of parents hashed. (If there's an odd input chaining value left over, 215 // return it as an additional output.) These parents are never the root and 216 // never empty; those cases use a different codepath. 217 INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values, 218 size_t num_chaining_values, 219 const uint32_t key[8], uint8_t flags, 220 uint8_t *out) { 221 #if defined(BLAKE3_TESTING) 222 assert(2 <= num_chaining_values); 223 assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2); 224 #endif 225 226 const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; 227 size_t parents_array_len = 0; 228 while (num_chaining_values - (2 * parents_array_len) >= 2) { 229 parents_array[parents_array_len] = 230 &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; 231 parents_array_len += 1; 232 } 233 234 blake3_hash_many(parents_array, parents_array_len, 1, key, 235 0, // Parents always use counter 0. 236 false, flags | PARENT, 237 0, // Parents have no start flags. 238 0, // Parents have no end flags. 239 out); 240 241 // If there's an odd child left over, it becomes an output. 242 if (num_chaining_values > 2 * parents_array_len) { 243 memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], 244 &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], 245 BLAKE3_OUT_LEN); 246 return parents_array_len + 1; 247 } else { 248 return parents_array_len; 249 } 250 } 251 252 // The wide helper function returns (writes out) an array of chaining values 253 // and returns the length of that array. The number of chaining values returned 254 // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, 255 // if the input is shorter than that many chunks. The reason for maintaining a 256 // wide array of chaining values going back up the tree, is to allow the 257 // implementation to hash as many parents in parallel as possible. 258 // 259 // As a special case when the SIMD degree is 1, this function will still return 260 // at least 2 outputs. This guarantees that this function doesn't perform the 261 // root compression. (If it did, it would use the wrong flags, and also we 262 // wouldn't be able to implement exendable ouput.) Note that this function is 263 // not used when the whole input is only 1 chunk long; that's a different 264 // codepath. 265 // 266 // Why not just have the caller split the input on the first update(), instead 267 // of implementing this special rule? Because we don't want to limit SIMD or 268 // multi-threading parallelism for that update(). 269 static size_t blake3_compress_subtree_wide(const uint8_t *input, 270 size_t input_len, 271 const uint32_t key[8], 272 uint64_t chunk_counter, 273 uint8_t flags, uint8_t *out) { 274 // Note that the single chunk case does *not* bump the SIMD degree up to 2 275 // when it is 1. If this implementation adds multi-threading in the future, 276 // this gives us the option of multi-threading even the 2-chunk case, which 277 // can help performance on smaller platforms. 278 if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) { 279 return compress_chunks_parallel(input, input_len, key, chunk_counter, flags, 280 out); 281 } 282 283 // With more than simd_degree chunks, we need to recurse. Start by dividing 284 // the input into left and right subtrees. (Note that this is only optimal 285 // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree 286 // of 3 or something, we'll need a more complicated strategy.) 287 size_t left_input_len = left_len(input_len); 288 size_t right_input_len = input_len - left_input_len; 289 const uint8_t *right_input = &input[left_input_len]; 290 uint64_t right_chunk_counter = 291 chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); 292 293 // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to 294 // account for the special case of returning 2 outputs when the SIMD degree 295 // is 1. 296 uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 297 size_t degree = blake3_simd_degree(); 298 if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { 299 // The special case: We always use a degree of at least two, to make 300 // sure there are two outputs. Except, as noted above, at the chunk 301 // level, where we allow degree=1. (Note that the 1-chunk-input case is 302 // a different codepath.) 303 degree = 2; 304 } 305 uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; 306 307 // Recurse! If this implementation adds multi-threading support in the 308 // future, this is where it will go. 309 size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key, 310 chunk_counter, flags, cv_array); 311 size_t right_n = blake3_compress_subtree_wide( 312 right_input, right_input_len, key, right_chunk_counter, flags, right_cvs); 313 314 // The special case again. If simd_degree=1, then we'll have left_n=1 and 315 // right_n=1. Rather than compressing them into a single output, return 316 // them directly, to make sure we always have at least two outputs. 317 if (left_n == 1) { 318 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 319 return 2; 320 } 321 322 // Otherwise, do one layer of parent node compression. 323 size_t num_chaining_values = left_n + right_n; 324 return compress_parents_parallel(cv_array, num_chaining_values, key, flags, 325 out); 326 } 327 328 // Hash a subtree with compress_subtree_wide(), and then condense the resulting 329 // list of chaining values down to a single parent node. Don't compress that 330 // last parent node, however. Instead, return its message bytes (the 331 // concatenated chaining values of its children). This is necessary when the 332 // first call to update() supplies a complete subtree, because the topmost 333 // parent node of that subtree could end up being the root. It's also necessary 334 // for extended output in the general case. 335 // 336 // As with compress_subtree_wide(), this function is not used on inputs of 1 337 // chunk or less. That's a different codepath. 338 INLINE void compress_subtree_to_parent_node( 339 const uint8_t *input, size_t input_len, const uint32_t key[8], 340 uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { 341 #if defined(BLAKE3_TESTING) 342 assert(input_len > BLAKE3_CHUNK_LEN); 343 #endif 344 345 uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 346 size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key, 347 chunk_counter, flags, cv_array); 348 assert(num_cvs <= MAX_SIMD_DEGREE_OR_2); 349 350 // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, 351 // compress_subtree_wide() returns more than 2 chaining values. Condense 352 // them into 2 by forming parent nodes repeatedly. 353 uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; 354 // The second half of this loop condition is always true, and we just 355 // asserted it above. But GCC can't tell that it's always true, and if NDEBUG 356 // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious 357 // warnings here. GCC 8.5 is particularly sensitive, so if you're changing 358 // this code, test it against that version. 359 while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) { 360 num_cvs = 361 compress_parents_parallel(cv_array, num_cvs, key, flags, out_array); 362 memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); 363 } 364 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 365 } 366 367 INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8], 368 uint8_t flags) { 369 memcpy(self->key, key, BLAKE3_KEY_LEN); 370 chunk_state_init(&self->chunk, key, flags); 371 self->cv_stack_len = 0; 372 } 373 374 void llvm_blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); } 375 376 void llvm_blake3_hasher_init_keyed(blake3_hasher *self, 377 const uint8_t key[BLAKE3_KEY_LEN]) { 378 uint32_t key_words[8]; 379 load_key_words(key, key_words); 380 hasher_init_base(self, key_words, KEYED_HASH); 381 } 382 383 void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context, 384 size_t context_len) { 385 blake3_hasher context_hasher; 386 hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT); 387 llvm_blake3_hasher_update(&context_hasher, context, context_len); 388 uint8_t context_key[BLAKE3_KEY_LEN]; 389 llvm_blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN); 390 uint32_t context_key_words[8]; 391 load_key_words(context_key, context_key_words); 392 hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL); 393 } 394 395 void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) { 396 llvm_blake3_hasher_init_derive_key_raw(self, context, strlen(context)); 397 } 398 399 // As described in hasher_push_cv() below, we do "lazy merging", delaying 400 // merges until right before the next CV is about to be added. This is 401 // different from the reference implementation. Another difference is that we 402 // aren't always merging 1 chunk at a time. Instead, each CV might represent 403 // any power-of-two number of chunks, as long as the smaller-above-larger stack 404 // order is maintained. Instead of the "count the trailing 0-bits" algorithm 405 // described in the spec, we use a "count the total number of 1-bits" variant 406 // that doesn't require us to retain the subtree size of the CV on top of the 407 // stack. The principle is the same: each CV that should remain in the stack is 408 // represented by a 1-bit in the total number of chunks (or bytes) so far. 409 INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) { 410 size_t post_merge_stack_len = (size_t)popcnt(total_len); 411 while (self->cv_stack_len > post_merge_stack_len) { 412 uint8_t *parent_node = 413 &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN]; 414 output_t output = parent_output(parent_node, self->key, self->chunk.flags); 415 output_chaining_value(&output, parent_node); 416 self->cv_stack_len -= 1; 417 } 418 } 419 420 // In reference_impl.rs, we merge the new CV with existing CVs from the stack 421 // before pushing it. We can do that because we know more input is coming, so 422 // we know none of the merges are root. 423 // 424 // This setting is different. We want to feed as much input as possible to 425 // compress_subtree_wide(), without setting aside anything for the chunk_state. 426 // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once 427 // as a single subtree, if at all possible. 428 // 429 // This leads to two problems: 430 // 1) This 64 KiB input might be the only call that ever gets made to update. 431 // In this case, the root node of the 64 KiB subtree would be the root node 432 // of the whole tree, and it would need to be ROOT finalized. We can't 433 // compress it until we know. 434 // 2) This 64 KiB input might complete a larger tree, whose root node is 435 // similarly going to be the the root of the whole tree. For example, maybe 436 // we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the 437 // node at the root of the 256 KiB subtree until we know how to finalize it. 438 // 439 // The second problem is solved with "lazy merging". That is, when we're about 440 // to add a CV to the stack, we don't merge it with anything first, as the 441 // reference impl does. Instead we do merges using the *previous* CV that was 442 // added, which is sitting on top of the stack, and we put the new CV 443 // (unmerged) on top of the stack afterwards. This guarantees that we never 444 // merge the root node until finalize(). 445 // 446 // Solving the first problem requires an additional tool, 447 // compress_subtree_to_parent_node(). That function always returns the top 448 // *two* chaining values of the subtree it's compressing. We then do lazy 449 // merging with each of them separately, so that the second CV will always 450 // remain unmerged. (That also helps us support extendable output when we're 451 // hashing an input all-at-once.) 452 INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN], 453 uint64_t chunk_counter) { 454 hasher_merge_cv_stack(self, chunk_counter); 455 memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv, 456 BLAKE3_OUT_LEN); 457 self->cv_stack_len += 1; 458 } 459 460 void llvm_blake3_hasher_update(blake3_hasher *self, const void *input, 461 size_t input_len) { 462 // Explicitly checking for zero avoids causing UB by passing a null pointer 463 // to memcpy. This comes up in practice with things like: 464 // std::vector<uint8_t> v; 465 // blake3_hasher_update(&hasher, v.data(), v.size()); 466 if (input_len == 0) { 467 return; 468 } 469 470 const uint8_t *input_bytes = (const uint8_t *)input; 471 472 // If we have some partial chunk bytes in the internal chunk_state, we need 473 // to finish that chunk first. 474 if (chunk_state_len(&self->chunk) > 0) { 475 size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk); 476 if (take > input_len) { 477 take = input_len; 478 } 479 chunk_state_update(&self->chunk, input_bytes, take); 480 input_bytes += take; 481 input_len -= take; 482 // If we've filled the current chunk and there's more coming, finalize this 483 // chunk and proceed. In this case we know it's not the root. 484 if (input_len > 0) { 485 output_t output = chunk_state_output(&self->chunk); 486 uint8_t chunk_cv[32]; 487 output_chaining_value(&output, chunk_cv); 488 hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter); 489 chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1); 490 } else { 491 return; 492 } 493 } 494 495 // Now the chunk_state is clear, and we have more input. If there's more than 496 // a single chunk (so, definitely not the root chunk), hash the largest whole 497 // subtree we can, with the full benefits of SIMD (and maybe in the future, 498 // multi-threading) parallelism. Two restrictions: 499 // - The subtree has to be a power-of-2 number of chunks. Only subtrees along 500 // the right edge can be incomplete, and we don't know where the right edge 501 // is going to be until we get to finalize(). 502 // - The subtree must evenly divide the total number of chunks up until this 503 // point (if total is not 0). If the current incomplete subtree is only 504 // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have 505 // to complete the current subtree first. 506 // Because we might need to break up the input to form powers of 2, or to 507 // evenly divide what we already have, this part runs in a loop. 508 while (input_len > BLAKE3_CHUNK_LEN) { 509 size_t subtree_len = round_down_to_power_of_2(input_len); 510 uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN; 511 // Shrink the subtree_len until it evenly divides the count so far. We know 512 // that subtree_len itself is a power of 2, so we can use a bitmasking 513 // trick instead of an actual remainder operation. (Note that if the caller 514 // consistently passes power-of-2 inputs of the same size, as is hopefully 515 // typical, this loop condition will always fail, and subtree_len will 516 // always be the full length of the input.) 517 // 518 // An aside: We don't have to shrink subtree_len quite this much. For 519 // example, if count_so_far is 1, we could pass 2 chunks to 520 // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still 521 // get the right answer in the end, and we might get to use 2-way SIMD 522 // parallelism. The problem with this optimization, is that it gets us 523 // stuck always hashing 2 chunks. The total number of chunks will remain 524 // odd, and we'll never graduate to higher degrees of parallelism. See 525 // https://github.com/BLAKE3-team/BLAKE3/issues/69. 526 while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { 527 subtree_len /= 2; 528 } 529 // The shrunken subtree_len might now be 1 chunk long. If so, hash that one 530 // chunk by itself. Otherwise, compress the subtree into a pair of CVs. 531 uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; 532 if (subtree_len <= BLAKE3_CHUNK_LEN) { 533 blake3_chunk_state chunk_state; 534 chunk_state_init(&chunk_state, self->key, self->chunk.flags); 535 chunk_state.chunk_counter = self->chunk.chunk_counter; 536 chunk_state_update(&chunk_state, input_bytes, subtree_len); 537 output_t output = chunk_state_output(&chunk_state); 538 uint8_t cv[BLAKE3_OUT_LEN]; 539 output_chaining_value(&output, cv); 540 hasher_push_cv(self, cv, chunk_state.chunk_counter); 541 } else { 542 // This is the high-performance happy path, though getting here depends 543 // on the caller giving us a long enough input. 544 uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; 545 compress_subtree_to_parent_node(input_bytes, subtree_len, self->key, 546 self->chunk.chunk_counter, 547 self->chunk.flags, cv_pair); 548 hasher_push_cv(self, cv_pair, self->chunk.chunk_counter); 549 hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN], 550 self->chunk.chunk_counter + (subtree_chunks / 2)); 551 } 552 self->chunk.chunk_counter += subtree_chunks; 553 input_bytes += subtree_len; 554 input_len -= subtree_len; 555 } 556 557 // If there's any remaining input less than a full chunk, add it to the chunk 558 // state. In that case, also do a final merge loop to make sure the subtree 559 // stack doesn't contain any unmerged pairs. The remaining input means we 560 // know these merges are non-root. This merge loop isn't strictly necessary 561 // here, because hasher_push_chunk_cv already does its own merge loop, but it 562 // simplifies blake3_hasher_finalize below. 563 if (input_len > 0) { 564 chunk_state_update(&self->chunk, input_bytes, input_len); 565 hasher_merge_cv_stack(self, self->chunk.chunk_counter); 566 } 567 } 568 569 void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out, 570 size_t out_len) { 571 llvm_blake3_hasher_finalize_seek(self, 0, out, out_len); 572 #if LLVM_MEMORY_SANITIZER_BUILD 573 // Avoid false positives due to uninstrumented assembly code. 574 __msan_unpoison(out, out_len); 575 #endif 576 } 577 578 void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek, 579 uint8_t *out, size_t out_len) { 580 // Explicitly checking for zero avoids causing UB by passing a null pointer 581 // to memcpy. This comes up in practice with things like: 582 // std::vector<uint8_t> v; 583 // blake3_hasher_finalize(&hasher, v.data(), v.size()); 584 if (out_len == 0) { 585 return; 586 } 587 588 // If the subtree stack is empty, then the current chunk is the root. 589 if (self->cv_stack_len == 0) { 590 output_t output = chunk_state_output(&self->chunk); 591 output_root_bytes(&output, seek, out, out_len); 592 return; 593 } 594 // If there are any bytes in the chunk state, finalize that chunk and do a 595 // roll-up merge between that chunk hash and every subtree in the stack. In 596 // this case, the extra merge loop at the end of blake3_hasher_update 597 // guarantees that none of the subtrees in the stack need to be merged with 598 // each other first. Otherwise, if there are no bytes in the chunk state, 599 // then the top of the stack is a chunk hash, and we start the merge from 600 // that. 601 output_t output; 602 size_t cvs_remaining; 603 if (chunk_state_len(&self->chunk) > 0) { 604 cvs_remaining = self->cv_stack_len; 605 output = chunk_state_output(&self->chunk); 606 } else { 607 // There are always at least 2 CVs in the stack in this case. 608 cvs_remaining = self->cv_stack_len - 2; 609 output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key, 610 self->chunk.flags); 611 } 612 while (cvs_remaining > 0) { 613 cvs_remaining -= 1; 614 uint8_t parent_block[BLAKE3_BLOCK_LEN]; 615 memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32); 616 output_chaining_value(&output, &parent_block[32]); 617 output = parent_output(parent_block, self->key, self->chunk.flags); 618 } 619 output_root_bytes(&output, seek, out, out_len); 620 } 621 622 void llvm_blake3_hasher_reset(blake3_hasher *self) { 623 chunk_state_reset(&self->chunk, self->key, 0); 624 self->cv_stack_len = 0; 625 } 626