xref: /freebsd/contrib/llvm-project/llvm/lib/Support/BLAKE3/blake3.c (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 /*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\
2 |*                                                                            *|
3 |* Released into the public domain with CC0 1.0                               *|
4 |* See 'llvm/lib/Support/BLAKE3/LICENSE' for info.                            *|
5 |* SPDX-License-Identifier: CC0-1.0                                           *|
6 |*                                                                            *|
7 \*===----------------------------------------------------------------------===*/
8 
9 #include <assert.h>
10 #include <stdbool.h>
11 #include <string.h>
12 
13 #include "blake3_impl.h"
14 
15 const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; }
16 
17 INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8],
18                              uint8_t flags) {
19   memcpy(self->cv, key, BLAKE3_KEY_LEN);
20   self->chunk_counter = 0;
21   memset(self->buf, 0, BLAKE3_BLOCK_LEN);
22   self->buf_len = 0;
23   self->blocks_compressed = 0;
24   self->flags = flags;
25 }
26 
27 INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8],
28                               uint64_t chunk_counter) {
29   memcpy(self->cv, key, BLAKE3_KEY_LEN);
30   self->chunk_counter = chunk_counter;
31   self->blocks_compressed = 0;
32   memset(self->buf, 0, BLAKE3_BLOCK_LEN);
33   self->buf_len = 0;
34 }
35 
36 INLINE size_t chunk_state_len(const blake3_chunk_state *self) {
37   return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) +
38          ((size_t)self->buf_len);
39 }
40 
41 INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self,
42                                    const uint8_t *input, size_t input_len) {
43   size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len);
44   if (take > input_len) {
45     take = input_len;
46   }
47   uint8_t *dest = self->buf + ((size_t)self->buf_len);
48   memcpy(dest, input, take);
49   self->buf_len += (uint8_t)take;
50   return take;
51 }
52 
53 INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) {
54   if (self->blocks_compressed == 0) {
55     return CHUNK_START;
56   } else {
57     return 0;
58   }
59 }
60 
61 typedef struct {
62   uint32_t input_cv[8];
63   uint64_t counter;
64   uint8_t block[BLAKE3_BLOCK_LEN];
65   uint8_t block_len;
66   uint8_t flags;
67 } output_t;
68 
69 INLINE output_t make_output(const uint32_t input_cv[8],
70                             const uint8_t block[BLAKE3_BLOCK_LEN],
71                             uint8_t block_len, uint64_t counter,
72                             uint8_t flags) {
73   output_t ret;
74   memcpy(ret.input_cv, input_cv, 32);
75   memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
76   ret.block_len = block_len;
77   ret.counter = counter;
78   ret.flags = flags;
79   return ret;
80 }
81 
82 // Chaining values within a given chunk (specifically the compress_in_place
83 // interface) are represented as words. This avoids unnecessary bytes<->words
84 // conversion overhead in the portable implementation. However, the hash_many
85 // interface handles both user input and parent node blocks, so it accepts
86 // bytes. For that reason, chaining values in the CV stack are represented as
87 // bytes.
88 INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) {
89   uint32_t cv_words[8];
90   memcpy(cv_words, self->input_cv, 32);
91   blake3_compress_in_place(cv_words, self->block, self->block_len,
92                            self->counter, self->flags);
93   store_cv_words(cv, cv_words);
94 }
95 
96 INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out,
97                               size_t out_len) {
98   uint64_t output_block_counter = seek / 64;
99   size_t offset_within_block = seek % 64;
100   uint8_t wide_buf[64];
101   while (out_len > 0) {
102     blake3_compress_xof(self->input_cv, self->block, self->block_len,
103                         output_block_counter, self->flags | ROOT, wide_buf);
104     size_t available_bytes = 64 - offset_within_block;
105     size_t memcpy_len;
106     if (out_len > available_bytes) {
107       memcpy_len = available_bytes;
108     } else {
109       memcpy_len = out_len;
110     }
111     memcpy(out, wide_buf + offset_within_block, memcpy_len);
112     out += memcpy_len;
113     out_len -= memcpy_len;
114     output_block_counter += 1;
115     offset_within_block = 0;
116   }
117 }
118 
119 INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input,
120                                size_t input_len) {
121   if (self->buf_len > 0) {
122     size_t take = chunk_state_fill_buf(self, input, input_len);
123     input += take;
124     input_len -= take;
125     if (input_len > 0) {
126       blake3_compress_in_place(
127           self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter,
128           self->flags | chunk_state_maybe_start_flag(self));
129       self->blocks_compressed += 1;
130       self->buf_len = 0;
131       memset(self->buf, 0, BLAKE3_BLOCK_LEN);
132     }
133   }
134 
135   while (input_len > BLAKE3_BLOCK_LEN) {
136     blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN,
137                              self->chunk_counter,
138                              self->flags | chunk_state_maybe_start_flag(self));
139     self->blocks_compressed += 1;
140     input += BLAKE3_BLOCK_LEN;
141     input_len -= BLAKE3_BLOCK_LEN;
142   }
143 
144   chunk_state_fill_buf(self, input, input_len);
145 }
146 
147 INLINE output_t chunk_state_output(const blake3_chunk_state *self) {
148   uint8_t block_flags =
149       self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END;
150   return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter,
151                      block_flags);
152 }
153 
154 INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
155                               const uint32_t key[8], uint8_t flags) {
156   return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT);
157 }
158 
159 // Given some input larger than one chunk, return the number of bytes that
160 // should go in the left subtree. This is the largest power-of-2 number of
161 // chunks that leaves at least 1 byte for the right subtree.
162 INLINE size_t left_len(size_t content_len) {
163   // Subtract 1 to reserve at least one byte for the right side. content_len
164   // should always be greater than BLAKE3_CHUNK_LEN.
165   size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
166   return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
167 }
168 
169 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
170 // on a single thread. Write out the chunk chaining values and return the
171 // number of chunks hashed. These chunks are never the root and never empty;
172 // those cases use a different codepath.
173 INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len,
174                                        const uint32_t key[8],
175                                        uint64_t chunk_counter, uint8_t flags,
176                                        uint8_t *out) {
177 #if defined(BLAKE3_TESTING)
178   assert(0 < input_len);
179   assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);
180 #endif
181 
182   const uint8_t *chunks_array[MAX_SIMD_DEGREE];
183   size_t input_position = 0;
184   size_t chunks_array_len = 0;
185   while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
186     chunks_array[chunks_array_len] = &input[input_position];
187     input_position += BLAKE3_CHUNK_LEN;
188     chunks_array_len += 1;
189   }
190 
191   blake3_hash_many(chunks_array, chunks_array_len,
192                    BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter,
193                    true, flags, CHUNK_START, CHUNK_END, out);
194 
195   // Hash the remaining partial chunk, if there is one. Note that the empty
196   // chunk (meaning the empty message) is a different codepath.
197   if (input_len > input_position) {
198     uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
199     blake3_chunk_state chunk_state;
200     chunk_state_init(&chunk_state, key, flags);
201     chunk_state.chunk_counter = counter;
202     chunk_state_update(&chunk_state, &input[input_position],
203                        input_len - input_position);
204     output_t output = chunk_state_output(&chunk_state);
205     output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]);
206     return chunks_array_len + 1;
207   } else {
208     return chunks_array_len;
209   }
210 }
211 
212 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
213 // on a single thread. Write out the parent chaining values and return the
214 // number of parents hashed. (If there's an odd input chaining value left over,
215 // return it as an additional output.) These parents are never the root and
216 // never empty; those cases use a different codepath.
217 INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values,
218                                         size_t num_chaining_values,
219                                         const uint32_t key[8], uint8_t flags,
220                                         uint8_t *out) {
221 #if defined(BLAKE3_TESTING)
222   assert(2 <= num_chaining_values);
223   assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
224 #endif
225 
226   const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
227   size_t parents_array_len = 0;
228   while (num_chaining_values - (2 * parents_array_len) >= 2) {
229     parents_array[parents_array_len] =
230         &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
231     parents_array_len += 1;
232   }
233 
234   blake3_hash_many(parents_array, parents_array_len, 1, key,
235                    0, // Parents always use counter 0.
236                    false, flags | PARENT,
237                    0, // Parents have no start flags.
238                    0, // Parents have no end flags.
239                    out);
240 
241   // If there's an odd child left over, it becomes an output.
242   if (num_chaining_values > 2 * parents_array_len) {
243     memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
244            &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
245            BLAKE3_OUT_LEN);
246     return parents_array_len + 1;
247   } else {
248     return parents_array_len;
249   }
250 }
251 
252 // The wide helper function returns (writes out) an array of chaining values
253 // and returns the length of that array. The number of chaining values returned
254 // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
255 // if the input is shorter than that many chunks. The reason for maintaining a
256 // wide array of chaining values going back up the tree, is to allow the
257 // implementation to hash as many parents in parallel as possible.
258 //
259 // As a special case when the SIMD degree is 1, this function will still return
260 // at least 2 outputs. This guarantees that this function doesn't perform the
261 // root compression. (If it did, it would use the wrong flags, and also we
262 // wouldn't be able to implement exendable ouput.) Note that this function is
263 // not used when the whole input is only 1 chunk long; that's a different
264 // codepath.
265 //
266 // Why not just have the caller split the input on the first update(), instead
267 // of implementing this special rule? Because we don't want to limit SIMD or
268 // multi-threading parallelism for that update().
269 static size_t blake3_compress_subtree_wide(const uint8_t *input,
270                                            size_t input_len,
271                                            const uint32_t key[8],
272                                            uint64_t chunk_counter,
273                                            uint8_t flags, uint8_t *out) {
274   // Note that the single chunk case does *not* bump the SIMD degree up to 2
275   // when it is 1. If this implementation adds multi-threading in the future,
276   // this gives us the option of multi-threading even the 2-chunk case, which
277   // can help performance on smaller platforms.
278   if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) {
279     return compress_chunks_parallel(input, input_len, key, chunk_counter, flags,
280                                     out);
281   }
282 
283   // With more than simd_degree chunks, we need to recurse. Start by dividing
284   // the input into left and right subtrees. (Note that this is only optimal
285   // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
286   // of 3 or something, we'll need a more complicated strategy.)
287   size_t left_input_len = left_len(input_len);
288   size_t right_input_len = input_len - left_input_len;
289   const uint8_t *right_input = &input[left_input_len];
290   uint64_t right_chunk_counter =
291       chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
292 
293   // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
294   // account for the special case of returning 2 outputs when the SIMD degree
295   // is 1.
296   uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
297   size_t degree = blake3_simd_degree();
298   if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
299     // The special case: We always use a degree of at least two, to make
300     // sure there are two outputs. Except, as noted above, at the chunk
301     // level, where we allow degree=1. (Note that the 1-chunk-input case is
302     // a different codepath.)
303     degree = 2;
304   }
305   uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
306 
307   // Recurse! If this implementation adds multi-threading support in the
308   // future, this is where it will go.
309   size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key,
310                                                chunk_counter, flags, cv_array);
311   size_t right_n = blake3_compress_subtree_wide(
312       right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
313 
314   // The special case again. If simd_degree=1, then we'll have left_n=1 and
315   // right_n=1. Rather than compressing them into a single output, return
316   // them directly, to make sure we always have at least two outputs.
317   if (left_n == 1) {
318     memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
319     return 2;
320   }
321 
322   // Otherwise, do one layer of parent node compression.
323   size_t num_chaining_values = left_n + right_n;
324   return compress_parents_parallel(cv_array, num_chaining_values, key, flags,
325                                    out);
326 }
327 
328 // Hash a subtree with compress_subtree_wide(), and then condense the resulting
329 // list of chaining values down to a single parent node. Don't compress that
330 // last parent node, however. Instead, return its message bytes (the
331 // concatenated chaining values of its children). This is necessary when the
332 // first call to update() supplies a complete subtree, because the topmost
333 // parent node of that subtree could end up being the root. It's also necessary
334 // for extended output in the general case.
335 //
336 // As with compress_subtree_wide(), this function is not used on inputs of 1
337 // chunk or less. That's a different codepath.
338 INLINE void compress_subtree_to_parent_node(
339     const uint8_t *input, size_t input_len, const uint32_t key[8],
340     uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) {
341 #if defined(BLAKE3_TESTING)
342   assert(input_len > BLAKE3_CHUNK_LEN);
343 #endif
344 
345   uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
346   size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key,
347                                                 chunk_counter, flags, cv_array);
348   assert(num_cvs <= MAX_SIMD_DEGREE_OR_2);
349 
350   // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
351   // compress_subtree_wide() returns more than 2 chaining values. Condense
352   // them into 2 by forming parent nodes repeatedly.
353   uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
354   // The second half of this loop condition is always true, and we just
355   // asserted it above. But GCC can't tell that it's always true, and if NDEBUG
356   // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious
357   // warnings here. GCC 8.5 is particularly sensitive, so if you're changing
358   // this code, test it against that version.
359   while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) {
360     num_cvs =
361         compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
362     memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
363   }
364   memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
365 }
366 
367 INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8],
368                              uint8_t flags) {
369   memcpy(self->key, key, BLAKE3_KEY_LEN);
370   chunk_state_init(&self->chunk, key, flags);
371   self->cv_stack_len = 0;
372 }
373 
374 void llvm_blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); }
375 
376 void llvm_blake3_hasher_init_keyed(blake3_hasher *self,
377                               const uint8_t key[BLAKE3_KEY_LEN]) {
378   uint32_t key_words[8];
379   load_key_words(key, key_words);
380   hasher_init_base(self, key_words, KEYED_HASH);
381 }
382 
383 void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
384                                        size_t context_len) {
385   blake3_hasher context_hasher;
386   hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT);
387   llvm_blake3_hasher_update(&context_hasher, context, context_len);
388   uint8_t context_key[BLAKE3_KEY_LEN];
389   llvm_blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN);
390   uint32_t context_key_words[8];
391   load_key_words(context_key, context_key_words);
392   hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL);
393 }
394 
395 void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) {
396   llvm_blake3_hasher_init_derive_key_raw(self, context, strlen(context));
397 }
398 
399 // As described in hasher_push_cv() below, we do "lazy merging", delaying
400 // merges until right before the next CV is about to be added. This is
401 // different from the reference implementation. Another difference is that we
402 // aren't always merging 1 chunk at a time. Instead, each CV might represent
403 // any power-of-two number of chunks, as long as the smaller-above-larger stack
404 // order is maintained. Instead of the "count the trailing 0-bits" algorithm
405 // described in the spec, we use a "count the total number of 1-bits" variant
406 // that doesn't require us to retain the subtree size of the CV on top of the
407 // stack. The principle is the same: each CV that should remain in the stack is
408 // represented by a 1-bit in the total number of chunks (or bytes) so far.
409 INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) {
410   size_t post_merge_stack_len = (size_t)popcnt(total_len);
411   while (self->cv_stack_len > post_merge_stack_len) {
412     uint8_t *parent_node =
413         &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN];
414     output_t output = parent_output(parent_node, self->key, self->chunk.flags);
415     output_chaining_value(&output, parent_node);
416     self->cv_stack_len -= 1;
417   }
418 }
419 
420 // In reference_impl.rs, we merge the new CV with existing CVs from the stack
421 // before pushing it. We can do that because we know more input is coming, so
422 // we know none of the merges are root.
423 //
424 // This setting is different. We want to feed as much input as possible to
425 // compress_subtree_wide(), without setting aside anything for the chunk_state.
426 // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
427 // as a single subtree, if at all possible.
428 //
429 // This leads to two problems:
430 // 1) This 64 KiB input might be the only call that ever gets made to update.
431 //    In this case, the root node of the 64 KiB subtree would be the root node
432 //    of the whole tree, and it would need to be ROOT finalized. We can't
433 //    compress it until we know.
434 // 2) This 64 KiB input might complete a larger tree, whose root node is
435 //    similarly going to be the the root of the whole tree. For example, maybe
436 //    we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
437 //    node at the root of the 256 KiB subtree until we know how to finalize it.
438 //
439 // The second problem is solved with "lazy merging". That is, when we're about
440 // to add a CV to the stack, we don't merge it with anything first, as the
441 // reference impl does. Instead we do merges using the *previous* CV that was
442 // added, which is sitting on top of the stack, and we put the new CV
443 // (unmerged) on top of the stack afterwards. This guarantees that we never
444 // merge the root node until finalize().
445 //
446 // Solving the first problem requires an additional tool,
447 // compress_subtree_to_parent_node(). That function always returns the top
448 // *two* chaining values of the subtree it's compressing. We then do lazy
449 // merging with each of them separately, so that the second CV will always
450 // remain unmerged. (That also helps us support extendable output when we're
451 // hashing an input all-at-once.)
452 INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN],
453                            uint64_t chunk_counter) {
454   hasher_merge_cv_stack(self, chunk_counter);
455   memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
456          BLAKE3_OUT_LEN);
457   self->cv_stack_len += 1;
458 }
459 
460 void llvm_blake3_hasher_update(blake3_hasher *self, const void *input,
461                           size_t input_len) {
462   // Explicitly checking for zero avoids causing UB by passing a null pointer
463   // to memcpy. This comes up in practice with things like:
464   //   std::vector<uint8_t> v;
465   //   blake3_hasher_update(&hasher, v.data(), v.size());
466   if (input_len == 0) {
467     return;
468   }
469 
470   const uint8_t *input_bytes = (const uint8_t *)input;
471 
472   // If we have some partial chunk bytes in the internal chunk_state, we need
473   // to finish that chunk first.
474   if (chunk_state_len(&self->chunk) > 0) {
475     size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk);
476     if (take > input_len) {
477       take = input_len;
478     }
479     chunk_state_update(&self->chunk, input_bytes, take);
480     input_bytes += take;
481     input_len -= take;
482     // If we've filled the current chunk and there's more coming, finalize this
483     // chunk and proceed. In this case we know it's not the root.
484     if (input_len > 0) {
485       output_t output = chunk_state_output(&self->chunk);
486       uint8_t chunk_cv[32];
487       output_chaining_value(&output, chunk_cv);
488       hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter);
489       chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1);
490     } else {
491       return;
492     }
493   }
494 
495   // Now the chunk_state is clear, and we have more input. If there's more than
496   // a single chunk (so, definitely not the root chunk), hash the largest whole
497   // subtree we can, with the full benefits of SIMD (and maybe in the future,
498   // multi-threading) parallelism. Two restrictions:
499   // - The subtree has to be a power-of-2 number of chunks. Only subtrees along
500   //   the right edge can be incomplete, and we don't know where the right edge
501   //   is going to be until we get to finalize().
502   // - The subtree must evenly divide the total number of chunks up until this
503   //   point (if total is not 0). If the current incomplete subtree is only
504   //   waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
505   //   to complete the current subtree first.
506   // Because we might need to break up the input to form powers of 2, or to
507   // evenly divide what we already have, this part runs in a loop.
508   while (input_len > BLAKE3_CHUNK_LEN) {
509     size_t subtree_len = round_down_to_power_of_2(input_len);
510     uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
511     // Shrink the subtree_len until it evenly divides the count so far. We know
512     // that subtree_len itself is a power of 2, so we can use a bitmasking
513     // trick instead of an actual remainder operation. (Note that if the caller
514     // consistently passes power-of-2 inputs of the same size, as is hopefully
515     // typical, this loop condition will always fail, and subtree_len will
516     // always be the full length of the input.)
517     //
518     // An aside: We don't have to shrink subtree_len quite this much. For
519     // example, if count_so_far is 1, we could pass 2 chunks to
520     // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
521     // get the right answer in the end, and we might get to use 2-way SIMD
522     // parallelism. The problem with this optimization, is that it gets us
523     // stuck always hashing 2 chunks. The total number of chunks will remain
524     // odd, and we'll never graduate to higher degrees of parallelism. See
525     // https://github.com/BLAKE3-team/BLAKE3/issues/69.
526     while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
527       subtree_len /= 2;
528     }
529     // The shrunken subtree_len might now be 1 chunk long. If so, hash that one
530     // chunk by itself. Otherwise, compress the subtree into a pair of CVs.
531     uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
532     if (subtree_len <= BLAKE3_CHUNK_LEN) {
533       blake3_chunk_state chunk_state;
534       chunk_state_init(&chunk_state, self->key, self->chunk.flags);
535       chunk_state.chunk_counter = self->chunk.chunk_counter;
536       chunk_state_update(&chunk_state, input_bytes, subtree_len);
537       output_t output = chunk_state_output(&chunk_state);
538       uint8_t cv[BLAKE3_OUT_LEN];
539       output_chaining_value(&output, cv);
540       hasher_push_cv(self, cv, chunk_state.chunk_counter);
541     } else {
542       // This is the high-performance happy path, though getting here depends
543       // on the caller giving us a long enough input.
544       uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
545       compress_subtree_to_parent_node(input_bytes, subtree_len, self->key,
546                                       self->chunk.chunk_counter,
547                                       self->chunk.flags, cv_pair);
548       hasher_push_cv(self, cv_pair, self->chunk.chunk_counter);
549       hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN],
550                      self->chunk.chunk_counter + (subtree_chunks / 2));
551     }
552     self->chunk.chunk_counter += subtree_chunks;
553     input_bytes += subtree_len;
554     input_len -= subtree_len;
555   }
556 
557   // If there's any remaining input less than a full chunk, add it to the chunk
558   // state. In that case, also do a final merge loop to make sure the subtree
559   // stack doesn't contain any unmerged pairs. The remaining input means we
560   // know these merges are non-root. This merge loop isn't strictly necessary
561   // here, because hasher_push_chunk_cv already does its own merge loop, but it
562   // simplifies blake3_hasher_finalize below.
563   if (input_len > 0) {
564     chunk_state_update(&self->chunk, input_bytes, input_len);
565     hasher_merge_cv_stack(self, self->chunk.chunk_counter);
566   }
567 }
568 
569 void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
570                             size_t out_len) {
571   llvm_blake3_hasher_finalize_seek(self, 0, out, out_len);
572 #if LLVM_MEMORY_SANITIZER_BUILD
573   // Avoid false positives due to uninstrumented assembly code.
574   __msan_unpoison(out, out_len);
575 #endif
576 }
577 
578 void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
579                                  uint8_t *out, size_t out_len) {
580   // Explicitly checking for zero avoids causing UB by passing a null pointer
581   // to memcpy. This comes up in practice with things like:
582   //   std::vector<uint8_t> v;
583   //   blake3_hasher_finalize(&hasher, v.data(), v.size());
584   if (out_len == 0) {
585     return;
586   }
587 
588   // If the subtree stack is empty, then the current chunk is the root.
589   if (self->cv_stack_len == 0) {
590     output_t output = chunk_state_output(&self->chunk);
591     output_root_bytes(&output, seek, out, out_len);
592     return;
593   }
594   // If there are any bytes in the chunk state, finalize that chunk and do a
595   // roll-up merge between that chunk hash and every subtree in the stack. In
596   // this case, the extra merge loop at the end of blake3_hasher_update
597   // guarantees that none of the subtrees in the stack need to be merged with
598   // each other first. Otherwise, if there are no bytes in the chunk state,
599   // then the top of the stack is a chunk hash, and we start the merge from
600   // that.
601   output_t output;
602   size_t cvs_remaining;
603   if (chunk_state_len(&self->chunk) > 0) {
604     cvs_remaining = self->cv_stack_len;
605     output = chunk_state_output(&self->chunk);
606   } else {
607     // There are always at least 2 CVs in the stack in this case.
608     cvs_remaining = self->cv_stack_len - 2;
609     output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key,
610                            self->chunk.flags);
611   }
612   while (cvs_remaining > 0) {
613     cvs_remaining -= 1;
614     uint8_t parent_block[BLAKE3_BLOCK_LEN];
615     memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32);
616     output_chaining_value(&output, &parent_block[32]);
617     output = parent_output(parent_block, self->key, self->chunk.flags);
618   }
619   output_root_bytes(&output, seek, out, out_len);
620 }
621 
622 void llvm_blake3_hasher_reset(blake3_hasher *self) {
623   chunk_state_reset(&self->chunk, self->key, 0);
624   self->cv_stack_len = 0;
625 }
626