xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APInt.cpp (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <climits>
28 #include <cmath>
29 #include <cstdlib>
30 #include <cstring>
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "apint"
34 
35 /// A utility function for allocating memory, checking for allocation failures,
36 /// and ensuring the contents are zeroed.
37 inline static uint64_t* getClearedMemory(unsigned numWords) {
38   uint64_t *result = new uint64_t[numWords];
39   memset(result, 0, numWords * sizeof(uint64_t));
40   return result;
41 }
42 
43 /// A utility function for allocating memory and checking for allocation
44 /// failure.  The content is not zeroed.
45 inline static uint64_t* getMemory(unsigned numWords) {
46   return new uint64_t[numWords];
47 }
48 
49 /// A utility function that converts a character to a digit.
50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51   unsigned r;
52 
53   if (radix == 16 || radix == 36) {
54     r = cdigit - '0';
55     if (r <= 9)
56       return r;
57 
58     r = cdigit - 'A';
59     if (r <= radix - 11U)
60       return r + 10;
61 
62     r = cdigit - 'a';
63     if (r <= radix - 11U)
64       return r + 10;
65 
66     radix = 10;
67   }
68 
69   r = cdigit - '0';
70   if (r < radix)
71     return r;
72 
73   return -1U;
74 }
75 
76 
77 void APInt::initSlowCase(uint64_t val, bool isSigned) {
78   U.pVal = getClearedMemory(getNumWords());
79   U.pVal[0] = val;
80   if (isSigned && int64_t(val) < 0)
81     for (unsigned i = 1; i < getNumWords(); ++i)
82       U.pVal[i] = WORDTYPE_MAX;
83   clearUnusedBits();
84 }
85 
86 void APInt::initSlowCase(const APInt& that) {
87   U.pVal = getMemory(getNumWords());
88   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
89 }
90 
91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92   assert(BitWidth && "Bitwidth too small");
93   assert(bigVal.data() && "Null pointer detected!");
94   if (isSingleWord())
95     U.VAL = bigVal[0];
96   else {
97     // Get memory, cleared to 0
98     U.pVal = getClearedMemory(getNumWords());
99     // Calculate the number of words to copy
100     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101     // Copy the words from bigVal to pVal
102     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
103   }
104   // Make sure unused high bits are cleared
105   clearUnusedBits();
106 }
107 
108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109   : BitWidth(numBits) {
110   initFromArray(bigVal);
111 }
112 
113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114   : BitWidth(numBits) {
115   initFromArray(makeArrayRef(bigVal, numWords));
116 }
117 
118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119   : BitWidth(numbits) {
120   assert(BitWidth && "Bitwidth too small");
121   fromString(numbits, Str, radix);
122 }
123 
124 void APInt::reallocate(unsigned NewBitWidth) {
125   // If the number of words is the same we can just change the width and stop.
126   if (getNumWords() == getNumWords(NewBitWidth)) {
127     BitWidth = NewBitWidth;
128     return;
129   }
130 
131   // If we have an allocation, delete it.
132   if (!isSingleWord())
133     delete [] U.pVal;
134 
135   // Update BitWidth.
136   BitWidth = NewBitWidth;
137 
138   // If we are supposed to have an allocation, create it.
139   if (!isSingleWord())
140     U.pVal = getMemory(getNumWords());
141 }
142 
143 void APInt::AssignSlowCase(const APInt& RHS) {
144   // Don't do anything for X = X
145   if (this == &RHS)
146     return;
147 
148   // Adjust the bit width and handle allocations as necessary.
149   reallocate(RHS.getBitWidth());
150 
151   // Copy the data.
152   if (isSingleWord())
153     U.VAL = RHS.U.VAL;
154   else
155     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
156 }
157 
158 /// This method 'profiles' an APInt for use with FoldingSet.
159 void APInt::Profile(FoldingSetNodeID& ID) const {
160   ID.AddInteger(BitWidth);
161 
162   if (isSingleWord()) {
163     ID.AddInteger(U.VAL);
164     return;
165   }
166 
167   unsigned NumWords = getNumWords();
168   for (unsigned i = 0; i < NumWords; ++i)
169     ID.AddInteger(U.pVal[i]);
170 }
171 
172 /// Prefix increment operator. Increments the APInt by one.
173 APInt& APInt::operator++() {
174   if (isSingleWord())
175     ++U.VAL;
176   else
177     tcIncrement(U.pVal, getNumWords());
178   return clearUnusedBits();
179 }
180 
181 /// Prefix decrement operator. Decrements the APInt by one.
182 APInt& APInt::operator--() {
183   if (isSingleWord())
184     --U.VAL;
185   else
186     tcDecrement(U.pVal, getNumWords());
187   return clearUnusedBits();
188 }
189 
190 /// Adds the RHS APInt to this APInt.
191 /// @returns this, after addition of RHS.
192 /// Addition assignment operator.
193 APInt& APInt::operator+=(const APInt& RHS) {
194   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
195   if (isSingleWord())
196     U.VAL += RHS.U.VAL;
197   else
198     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
199   return clearUnusedBits();
200 }
201 
202 APInt& APInt::operator+=(uint64_t RHS) {
203   if (isSingleWord())
204     U.VAL += RHS;
205   else
206     tcAddPart(U.pVal, RHS, getNumWords());
207   return clearUnusedBits();
208 }
209 
210 /// Subtracts the RHS APInt from this APInt
211 /// @returns this, after subtraction
212 /// Subtraction assignment operator.
213 APInt& APInt::operator-=(const APInt& RHS) {
214   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215   if (isSingleWord())
216     U.VAL -= RHS.U.VAL;
217   else
218     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
219   return clearUnusedBits();
220 }
221 
222 APInt& APInt::operator-=(uint64_t RHS) {
223   if (isSingleWord())
224     U.VAL -= RHS;
225   else
226     tcSubtractPart(U.pVal, RHS, getNumWords());
227   return clearUnusedBits();
228 }
229 
230 APInt APInt::operator*(const APInt& RHS) const {
231   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
232   if (isSingleWord())
233     return APInt(BitWidth, U.VAL * RHS.U.VAL);
234 
235   APInt Result(getMemory(getNumWords()), getBitWidth());
236 
237   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
238 
239   Result.clearUnusedBits();
240   return Result;
241 }
242 
243 void APInt::AndAssignSlowCase(const APInt& RHS) {
244   tcAnd(U.pVal, RHS.U.pVal, getNumWords());
245 }
246 
247 void APInt::OrAssignSlowCase(const APInt& RHS) {
248   tcOr(U.pVal, RHS.U.pVal, getNumWords());
249 }
250 
251 void APInt::XorAssignSlowCase(const APInt& RHS) {
252   tcXor(U.pVal, RHS.U.pVal, getNumWords());
253 }
254 
255 APInt& APInt::operator*=(const APInt& RHS) {
256   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257   *this = *this * RHS;
258   return *this;
259 }
260 
261 APInt& APInt::operator*=(uint64_t RHS) {
262   if (isSingleWord()) {
263     U.VAL *= RHS;
264   } else {
265     unsigned NumWords = getNumWords();
266     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267   }
268   return clearUnusedBits();
269 }
270 
271 bool APInt::EqualSlowCase(const APInt& RHS) const {
272   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
273 }
274 
275 int APInt::compare(const APInt& RHS) const {
276   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277   if (isSingleWord())
278     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
279 
280   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
281 }
282 
283 int APInt::compareSigned(const APInt& RHS) const {
284   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285   if (isSingleWord()) {
286     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
289   }
290 
291   bool lhsNeg = isNegative();
292   bool rhsNeg = RHS.isNegative();
293 
294   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295   if (lhsNeg != rhsNeg)
296     return lhsNeg ? -1 : 1;
297 
298   // Otherwise we can just use an unsigned comparison, because even negative
299   // numbers compare correctly this way if both have the same signed-ness.
300   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
301 }
302 
303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304   unsigned loWord = whichWord(loBit);
305   unsigned hiWord = whichWord(hiBit);
306 
307   // Create an initial mask for the low word with zeros below loBit.
308   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
309 
310   // If hiBit is not aligned, we need a high mask.
311   unsigned hiShiftAmt = whichBit(hiBit);
312   if (hiShiftAmt != 0) {
313     // Create a high mask with zeros above hiBit.
314     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316     // set the bits in hiWord.
317     if (hiWord == loWord)
318       loMask &= hiMask;
319     else
320       U.pVal[hiWord] |= hiMask;
321   }
322   // Apply the mask to the low word.
323   U.pVal[loWord] |= loMask;
324 
325   // Fill any words between loWord and hiWord with all ones.
326   for (unsigned word = loWord + 1; word < hiWord; ++word)
327     U.pVal[word] = WORDTYPE_MAX;
328 }
329 
330 /// Toggle every bit to its opposite value.
331 void APInt::flipAllBitsSlowCase() {
332   tcComplement(U.pVal, getNumWords());
333   clearUnusedBits();
334 }
335 
336 /// Toggle a given bit to its opposite value whose position is given
337 /// as "bitPosition".
338 /// Toggles a given bit to its opposite value.
339 void APInt::flipBit(unsigned bitPosition) {
340   assert(bitPosition < BitWidth && "Out of the bit-width range!");
341   if ((*this)[bitPosition]) clearBit(bitPosition);
342   else setBit(bitPosition);
343 }
344 
345 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
346   unsigned subBitWidth = subBits.getBitWidth();
347   assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
348          "Illegal bit insertion");
349 
350   // Insertion is a direct copy.
351   if (subBitWidth == BitWidth) {
352     *this = subBits;
353     return;
354   }
355 
356   // Single word result can be done as a direct bitmask.
357   if (isSingleWord()) {
358     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
359     U.VAL &= ~(mask << bitPosition);
360     U.VAL |= (subBits.U.VAL << bitPosition);
361     return;
362   }
363 
364   unsigned loBit = whichBit(bitPosition);
365   unsigned loWord = whichWord(bitPosition);
366   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
367 
368   // Insertion within a single word can be done as a direct bitmask.
369   if (loWord == hi1Word) {
370     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
371     U.pVal[loWord] &= ~(mask << loBit);
372     U.pVal[loWord] |= (subBits.U.VAL << loBit);
373     return;
374   }
375 
376   // Insert on word boundaries.
377   if (loBit == 0) {
378     // Direct copy whole words.
379     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
380     memcpy(U.pVal + loWord, subBits.getRawData(),
381            numWholeSubWords * APINT_WORD_SIZE);
382 
383     // Mask+insert remaining bits.
384     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
385     if (remainingBits != 0) {
386       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
387       U.pVal[hi1Word] &= ~mask;
388       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
389     }
390     return;
391   }
392 
393   // General case - set/clear individual bits in dst based on src.
394   // TODO - there is scope for optimization here, but at the moment this code
395   // path is barely used so prefer readability over performance.
396   for (unsigned i = 0; i != subBitWidth; ++i) {
397     if (subBits[i])
398       setBit(bitPosition + i);
399     else
400       clearBit(bitPosition + i);
401   }
402 }
403 
404 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
405   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
406   subBits &= maskBits;
407   if (isSingleWord()) {
408     U.VAL &= ~(maskBits << bitPosition);
409     U.VAL |= subBits << bitPosition;
410     return;
411   }
412 
413   unsigned loBit = whichBit(bitPosition);
414   unsigned loWord = whichWord(bitPosition);
415   unsigned hiWord = whichWord(bitPosition + numBits - 1);
416   if (loWord == hiWord) {
417     U.pVal[loWord] &= ~(maskBits << loBit);
418     U.pVal[loWord] |= subBits << loBit;
419     return;
420   }
421 
422   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
423   unsigned wordBits = 8 * sizeof(WordType);
424   U.pVal[loWord] &= ~(maskBits << loBit);
425   U.pVal[loWord] |= subBits << loBit;
426 
427   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
428   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
429 }
430 
431 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
432   assert(numBits > 0 && "Can't extract zero bits");
433   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
434          "Illegal bit extraction");
435 
436   if (isSingleWord())
437     return APInt(numBits, U.VAL >> bitPosition);
438 
439   unsigned loBit = whichBit(bitPosition);
440   unsigned loWord = whichWord(bitPosition);
441   unsigned hiWord = whichWord(bitPosition + numBits - 1);
442 
443   // Single word result extracting bits from a single word source.
444   if (loWord == hiWord)
445     return APInt(numBits, U.pVal[loWord] >> loBit);
446 
447   // Extracting bits that start on a source word boundary can be done
448   // as a fast memory copy.
449   if (loBit == 0)
450     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
451 
452   // General case - shift + copy source words directly into place.
453   APInt Result(numBits, 0);
454   unsigned NumSrcWords = getNumWords();
455   unsigned NumDstWords = Result.getNumWords();
456 
457   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
458   for (unsigned word = 0; word < NumDstWords; ++word) {
459     uint64_t w0 = U.pVal[loWord + word];
460     uint64_t w1 =
461         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
462     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
463   }
464 
465   return Result.clearUnusedBits();
466 }
467 
468 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
469                                        unsigned bitPosition) const {
470   assert(numBits > 0 && "Can't extract zero bits");
471   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
472          "Illegal bit extraction");
473   assert(numBits <= 64 && "Illegal bit extraction");
474 
475   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
476   if (isSingleWord())
477     return (U.VAL >> bitPosition) & maskBits;
478 
479   unsigned loBit = whichBit(bitPosition);
480   unsigned loWord = whichWord(bitPosition);
481   unsigned hiWord = whichWord(bitPosition + numBits - 1);
482   if (loWord == hiWord)
483     return (U.pVal[loWord] >> loBit) & maskBits;
484 
485   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
486   unsigned wordBits = 8 * sizeof(WordType);
487   uint64_t retBits = U.pVal[loWord] >> loBit;
488   retBits |= U.pVal[hiWord] << (wordBits - loBit);
489   retBits &= maskBits;
490   return retBits;
491 }
492 
493 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
494   assert(!str.empty() && "Invalid string length");
495   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
496           radix == 36) &&
497          "Radix should be 2, 8, 10, 16, or 36!");
498 
499   size_t slen = str.size();
500 
501   // Each computation below needs to know if it's negative.
502   StringRef::iterator p = str.begin();
503   unsigned isNegative = *p == '-';
504   if (*p == '-' || *p == '+') {
505     p++;
506     slen--;
507     assert(slen && "String is only a sign, needs a value.");
508   }
509 
510   // For radixes of power-of-two values, the bits required is accurately and
511   // easily computed
512   if (radix == 2)
513     return slen + isNegative;
514   if (radix == 8)
515     return slen * 3 + isNegative;
516   if (radix == 16)
517     return slen * 4 + isNegative;
518 
519   // FIXME: base 36
520 
521   // This is grossly inefficient but accurate. We could probably do something
522   // with a computation of roughly slen*64/20 and then adjust by the value of
523   // the first few digits. But, I'm not sure how accurate that could be.
524 
525   // Compute a sufficient number of bits that is always large enough but might
526   // be too large. This avoids the assertion in the constructor. This
527   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
528   // bits in that case.
529   unsigned sufficient
530     = radix == 10? (slen == 1 ? 4 : slen * 64/18)
531                  : (slen == 1 ? 7 : slen * 16/3);
532 
533   // Convert to the actual binary value.
534   APInt tmp(sufficient, StringRef(p, slen), radix);
535 
536   // Compute how many bits are required. If the log is infinite, assume we need
537   // just bit. If the log is exact and value is negative, then the value is
538   // MinSignedValue with (log + 1) bits.
539   unsigned log = tmp.logBase2();
540   if (log == (unsigned)-1) {
541     return isNegative + 1;
542   } else if (isNegative && tmp.isPowerOf2()) {
543     return isNegative + log;
544   } else {
545     return isNegative + log + 1;
546   }
547 }
548 
549 hash_code llvm::hash_value(const APInt &Arg) {
550   if (Arg.isSingleWord())
551     return hash_combine(Arg.BitWidth, Arg.U.VAL);
552 
553   return hash_combine(
554       Arg.BitWidth,
555       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
556 }
557 
558 bool APInt::isSplat(unsigned SplatSizeInBits) const {
559   assert(getBitWidth() % SplatSizeInBits == 0 &&
560          "SplatSizeInBits must divide width!");
561   // We can check that all parts of an integer are equal by making use of a
562   // little trick: rotate and check if it's still the same value.
563   return *this == rotl(SplatSizeInBits);
564 }
565 
566 /// This function returns the high "numBits" bits of this APInt.
567 APInt APInt::getHiBits(unsigned numBits) const {
568   return this->lshr(BitWidth - numBits);
569 }
570 
571 /// This function returns the low "numBits" bits of this APInt.
572 APInt APInt::getLoBits(unsigned numBits) const {
573   APInt Result(getLowBitsSet(BitWidth, numBits));
574   Result &= *this;
575   return Result;
576 }
577 
578 /// Return a value containing V broadcasted over NewLen bits.
579 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
580   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
581 
582   APInt Val = V.zextOrSelf(NewLen);
583   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
584     Val |= Val << I;
585 
586   return Val;
587 }
588 
589 unsigned APInt::countLeadingZerosSlowCase() const {
590   unsigned Count = 0;
591   for (int i = getNumWords()-1; i >= 0; --i) {
592     uint64_t V = U.pVal[i];
593     if (V == 0)
594       Count += APINT_BITS_PER_WORD;
595     else {
596       Count += llvm::countLeadingZeros(V);
597       break;
598     }
599   }
600   // Adjust for unused bits in the most significant word (they are zero).
601   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
602   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
603   return Count;
604 }
605 
606 unsigned APInt::countLeadingOnesSlowCase() const {
607   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
608   unsigned shift;
609   if (!highWordBits) {
610     highWordBits = APINT_BITS_PER_WORD;
611     shift = 0;
612   } else {
613     shift = APINT_BITS_PER_WORD - highWordBits;
614   }
615   int i = getNumWords() - 1;
616   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
617   if (Count == highWordBits) {
618     for (i--; i >= 0; --i) {
619       if (U.pVal[i] == WORDTYPE_MAX)
620         Count += APINT_BITS_PER_WORD;
621       else {
622         Count += llvm::countLeadingOnes(U.pVal[i]);
623         break;
624       }
625     }
626   }
627   return Count;
628 }
629 
630 unsigned APInt::countTrailingZerosSlowCase() const {
631   unsigned Count = 0;
632   unsigned i = 0;
633   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
634     Count += APINT_BITS_PER_WORD;
635   if (i < getNumWords())
636     Count += llvm::countTrailingZeros(U.pVal[i]);
637   return std::min(Count, BitWidth);
638 }
639 
640 unsigned APInt::countTrailingOnesSlowCase() const {
641   unsigned Count = 0;
642   unsigned i = 0;
643   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
644     Count += APINT_BITS_PER_WORD;
645   if (i < getNumWords())
646     Count += llvm::countTrailingOnes(U.pVal[i]);
647   assert(Count <= BitWidth);
648   return Count;
649 }
650 
651 unsigned APInt::countPopulationSlowCase() const {
652   unsigned Count = 0;
653   for (unsigned i = 0; i < getNumWords(); ++i)
654     Count += llvm::countPopulation(U.pVal[i]);
655   return Count;
656 }
657 
658 bool APInt::intersectsSlowCase(const APInt &RHS) const {
659   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
660     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
661       return true;
662 
663   return false;
664 }
665 
666 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
667   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
668     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
669       return false;
670 
671   return true;
672 }
673 
674 APInt APInt::byteSwap() const {
675   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
676   if (BitWidth == 16)
677     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
678   if (BitWidth == 32)
679     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
680   if (BitWidth <= 64) {
681     uint64_t Tmp1 = ByteSwap_64(U.VAL);
682     Tmp1 >>= (64 - BitWidth);
683     return APInt(BitWidth, Tmp1);
684   }
685 
686   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
687   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
688     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
689   if (Result.BitWidth != BitWidth) {
690     Result.lshrInPlace(Result.BitWidth - BitWidth);
691     Result.BitWidth = BitWidth;
692   }
693   return Result;
694 }
695 
696 APInt APInt::reverseBits() const {
697   switch (BitWidth) {
698   case 64:
699     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
700   case 32:
701     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
702   case 16:
703     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
704   case 8:
705     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
706   default:
707     break;
708   }
709 
710   APInt Val(*this);
711   APInt Reversed(BitWidth, 0);
712   unsigned S = BitWidth;
713 
714   for (; Val != 0; Val.lshrInPlace(1)) {
715     Reversed <<= 1;
716     Reversed |= Val[0];
717     --S;
718   }
719 
720   Reversed <<= S;
721   return Reversed;
722 }
723 
724 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
725   // Fast-path a common case.
726   if (A == B) return A;
727 
728   // Corner cases: if either operand is zero, the other is the gcd.
729   if (!A) return B;
730   if (!B) return A;
731 
732   // Count common powers of 2 and remove all other powers of 2.
733   unsigned Pow2;
734   {
735     unsigned Pow2_A = A.countTrailingZeros();
736     unsigned Pow2_B = B.countTrailingZeros();
737     if (Pow2_A > Pow2_B) {
738       A.lshrInPlace(Pow2_A - Pow2_B);
739       Pow2 = Pow2_B;
740     } else if (Pow2_B > Pow2_A) {
741       B.lshrInPlace(Pow2_B - Pow2_A);
742       Pow2 = Pow2_A;
743     } else {
744       Pow2 = Pow2_A;
745     }
746   }
747 
748   // Both operands are odd multiples of 2^Pow_2:
749   //
750   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
751   //
752   // This is a modified version of Stein's algorithm, taking advantage of
753   // efficient countTrailingZeros().
754   while (A != B) {
755     if (A.ugt(B)) {
756       A -= B;
757       A.lshrInPlace(A.countTrailingZeros() - Pow2);
758     } else {
759       B -= A;
760       B.lshrInPlace(B.countTrailingZeros() - Pow2);
761     }
762   }
763 
764   return A;
765 }
766 
767 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
768   uint64_t I = bit_cast<uint64_t>(Double);
769 
770   // Get the sign bit from the highest order bit
771   bool isNeg = I >> 63;
772 
773   // Get the 11-bit exponent and adjust for the 1023 bit bias
774   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
775 
776   // If the exponent is negative, the value is < 0 so just return 0.
777   if (exp < 0)
778     return APInt(width, 0u);
779 
780   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
781   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
782 
783   // If the exponent doesn't shift all bits out of the mantissa
784   if (exp < 52)
785     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
786                     APInt(width, mantissa >> (52 - exp));
787 
788   // If the client didn't provide enough bits for us to shift the mantissa into
789   // then the result is undefined, just return 0
790   if (width <= exp - 52)
791     return APInt(width, 0);
792 
793   // Otherwise, we have to shift the mantissa bits up to the right location
794   APInt Tmp(width, mantissa);
795   Tmp <<= (unsigned)exp - 52;
796   return isNeg ? -Tmp : Tmp;
797 }
798 
799 /// This function converts this APInt to a double.
800 /// The layout for double is as following (IEEE Standard 754):
801 ///  --------------------------------------
802 /// |  Sign    Exponent    Fraction    Bias |
803 /// |-------------------------------------- |
804 /// |  1[63]   11[62-52]   52[51-00]   1023 |
805 ///  --------------------------------------
806 double APInt::roundToDouble(bool isSigned) const {
807 
808   // Handle the simple case where the value is contained in one uint64_t.
809   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
810   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
811     if (isSigned) {
812       int64_t sext = SignExtend64(getWord(0), BitWidth);
813       return double(sext);
814     } else
815       return double(getWord(0));
816   }
817 
818   // Determine if the value is negative.
819   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
820 
821   // Construct the absolute value if we're negative.
822   APInt Tmp(isNeg ? -(*this) : (*this));
823 
824   // Figure out how many bits we're using.
825   unsigned n = Tmp.getActiveBits();
826 
827   // The exponent (without bias normalization) is just the number of bits
828   // we are using. Note that the sign bit is gone since we constructed the
829   // absolute value.
830   uint64_t exp = n;
831 
832   // Return infinity for exponent overflow
833   if (exp > 1023) {
834     if (!isSigned || !isNeg)
835       return std::numeric_limits<double>::infinity();
836     else
837       return -std::numeric_limits<double>::infinity();
838   }
839   exp += 1023; // Increment for 1023 bias
840 
841   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
842   // extract the high 52 bits from the correct words in pVal.
843   uint64_t mantissa;
844   unsigned hiWord = whichWord(n-1);
845   if (hiWord == 0) {
846     mantissa = Tmp.U.pVal[0];
847     if (n > 52)
848       mantissa >>= n - 52; // shift down, we want the top 52 bits.
849   } else {
850     assert(hiWord > 0 && "huh?");
851     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
852     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
853     mantissa = hibits | lobits;
854   }
855 
856   // The leading bit of mantissa is implicit, so get rid of it.
857   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
858   uint64_t I = sign | (exp << 52) | mantissa;
859   return bit_cast<double>(I);
860 }
861 
862 // Truncate to new width.
863 APInt APInt::trunc(unsigned width) const {
864   assert(width < BitWidth && "Invalid APInt Truncate request");
865   assert(width && "Can't truncate to 0 bits");
866 
867   if (width <= APINT_BITS_PER_WORD)
868     return APInt(width, getRawData()[0]);
869 
870   APInt Result(getMemory(getNumWords(width)), width);
871 
872   // Copy full words.
873   unsigned i;
874   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
875     Result.U.pVal[i] = U.pVal[i];
876 
877   // Truncate and copy any partial word.
878   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
879   if (bits != 0)
880     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
881 
882   return Result;
883 }
884 
885 // Truncate to new width with unsigned saturation.
886 APInt APInt::truncUSat(unsigned width) const {
887   assert(width < BitWidth && "Invalid APInt Truncate request");
888   assert(width && "Can't truncate to 0 bits");
889 
890   // Can we just losslessly truncate it?
891   if (isIntN(width))
892     return trunc(width);
893   // If not, then just return the new limit.
894   return APInt::getMaxValue(width);
895 }
896 
897 // Truncate to new width with signed saturation.
898 APInt APInt::truncSSat(unsigned width) const {
899   assert(width < BitWidth && "Invalid APInt Truncate request");
900   assert(width && "Can't truncate to 0 bits");
901 
902   // Can we just losslessly truncate it?
903   if (isSignedIntN(width))
904     return trunc(width);
905   // If not, then just return the new limits.
906   return isNegative() ? APInt::getSignedMinValue(width)
907                       : APInt::getSignedMaxValue(width);
908 }
909 
910 // Sign extend to a new width.
911 APInt APInt::sext(unsigned Width) const {
912   assert(Width > BitWidth && "Invalid APInt SignExtend request");
913 
914   if (Width <= APINT_BITS_PER_WORD)
915     return APInt(Width, SignExtend64(U.VAL, BitWidth));
916 
917   APInt Result(getMemory(getNumWords(Width)), Width);
918 
919   // Copy words.
920   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
921 
922   // Sign extend the last word since there may be unused bits in the input.
923   Result.U.pVal[getNumWords() - 1] =
924       SignExtend64(Result.U.pVal[getNumWords() - 1],
925                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
926 
927   // Fill with sign bits.
928   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
929               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
930   Result.clearUnusedBits();
931   return Result;
932 }
933 
934 //  Zero extend to a new width.
935 APInt APInt::zext(unsigned width) const {
936   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
937 
938   if (width <= APINT_BITS_PER_WORD)
939     return APInt(width, U.VAL);
940 
941   APInt Result(getMemory(getNumWords(width)), width);
942 
943   // Copy words.
944   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
945 
946   // Zero remaining words.
947   std::memset(Result.U.pVal + getNumWords(), 0,
948               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
949 
950   return Result;
951 }
952 
953 APInt APInt::zextOrTrunc(unsigned width) const {
954   if (BitWidth < width)
955     return zext(width);
956   if (BitWidth > width)
957     return trunc(width);
958   return *this;
959 }
960 
961 APInt APInt::sextOrTrunc(unsigned width) const {
962   if (BitWidth < width)
963     return sext(width);
964   if (BitWidth > width)
965     return trunc(width);
966   return *this;
967 }
968 
969 APInt APInt::zextOrSelf(unsigned width) const {
970   if (BitWidth < width)
971     return zext(width);
972   return *this;
973 }
974 
975 APInt APInt::sextOrSelf(unsigned width) const {
976   if (BitWidth < width)
977     return sext(width);
978   return *this;
979 }
980 
981 /// Arithmetic right-shift this APInt by shiftAmt.
982 /// Arithmetic right-shift function.
983 void APInt::ashrInPlace(const APInt &shiftAmt) {
984   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
985 }
986 
987 /// Arithmetic right-shift this APInt by shiftAmt.
988 /// Arithmetic right-shift function.
989 void APInt::ashrSlowCase(unsigned ShiftAmt) {
990   // Don't bother performing a no-op shift.
991   if (!ShiftAmt)
992     return;
993 
994   // Save the original sign bit for later.
995   bool Negative = isNegative();
996 
997   // WordShift is the inter-part shift; BitShift is intra-part shift.
998   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
999   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1000 
1001   unsigned WordsToMove = getNumWords() - WordShift;
1002   if (WordsToMove != 0) {
1003     // Sign extend the last word to fill in the unused bits.
1004     U.pVal[getNumWords() - 1] = SignExtend64(
1005         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1006 
1007     // Fastpath for moving by whole words.
1008     if (BitShift == 0) {
1009       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1010     } else {
1011       // Move the words containing significant bits.
1012       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1013         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1014                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1015 
1016       // Handle the last word which has no high bits to copy.
1017       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1018       // Sign extend one more time.
1019       U.pVal[WordsToMove - 1] =
1020           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1021     }
1022   }
1023 
1024   // Fill in the remainder based on the original sign.
1025   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1026               WordShift * APINT_WORD_SIZE);
1027   clearUnusedBits();
1028 }
1029 
1030 /// Logical right-shift this APInt by shiftAmt.
1031 /// Logical right-shift function.
1032 void APInt::lshrInPlace(const APInt &shiftAmt) {
1033   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1034 }
1035 
1036 /// Logical right-shift this APInt by shiftAmt.
1037 /// Logical right-shift function.
1038 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1039   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1040 }
1041 
1042 /// Left-shift this APInt by shiftAmt.
1043 /// Left-shift function.
1044 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1045   // It's undefined behavior in C to shift by BitWidth or greater.
1046   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1047   return *this;
1048 }
1049 
1050 void APInt::shlSlowCase(unsigned ShiftAmt) {
1051   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1052   clearUnusedBits();
1053 }
1054 
1055 // Calculate the rotate amount modulo the bit width.
1056 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1057   unsigned rotBitWidth = rotateAmt.getBitWidth();
1058   APInt rot = rotateAmt;
1059   if (rotBitWidth < BitWidth) {
1060     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1061     // e.g. APInt(1, 32) would give APInt(1, 0).
1062     rot = rotateAmt.zext(BitWidth);
1063   }
1064   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1065   return rot.getLimitedValue(BitWidth);
1066 }
1067 
1068 APInt APInt::rotl(const APInt &rotateAmt) const {
1069   return rotl(rotateModulo(BitWidth, rotateAmt));
1070 }
1071 
1072 APInt APInt::rotl(unsigned rotateAmt) const {
1073   rotateAmt %= BitWidth;
1074   if (rotateAmt == 0)
1075     return *this;
1076   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1077 }
1078 
1079 APInt APInt::rotr(const APInt &rotateAmt) const {
1080   return rotr(rotateModulo(BitWidth, rotateAmt));
1081 }
1082 
1083 APInt APInt::rotr(unsigned rotateAmt) const {
1084   rotateAmt %= BitWidth;
1085   if (rotateAmt == 0)
1086     return *this;
1087   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1088 }
1089 
1090 // Square Root - this method computes and returns the square root of "this".
1091 // Three mechanisms are used for computation. For small values (<= 5 bits),
1092 // a table lookup is done. This gets some performance for common cases. For
1093 // values using less than 52 bits, the value is converted to double and then
1094 // the libc sqrt function is called. The result is rounded and then converted
1095 // back to a uint64_t which is then used to construct the result. Finally,
1096 // the Babylonian method for computing square roots is used.
1097 APInt APInt::sqrt() const {
1098 
1099   // Determine the magnitude of the value.
1100   unsigned magnitude = getActiveBits();
1101 
1102   // Use a fast table for some small values. This also gets rid of some
1103   // rounding errors in libc sqrt for small values.
1104   if (magnitude <= 5) {
1105     static const uint8_t results[32] = {
1106       /*     0 */ 0,
1107       /*  1- 2 */ 1, 1,
1108       /*  3- 6 */ 2, 2, 2, 2,
1109       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1110       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1111       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1112       /*    31 */ 6
1113     };
1114     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1115   }
1116 
1117   // If the magnitude of the value fits in less than 52 bits (the precision of
1118   // an IEEE double precision floating point value), then we can use the
1119   // libc sqrt function which will probably use a hardware sqrt computation.
1120   // This should be faster than the algorithm below.
1121   if (magnitude < 52) {
1122     return APInt(BitWidth,
1123                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1124                                                                : U.pVal[0])))));
1125   }
1126 
1127   // Okay, all the short cuts are exhausted. We must compute it. The following
1128   // is a classical Babylonian method for computing the square root. This code
1129   // was adapted to APInt from a wikipedia article on such computations.
1130   // See http://www.wikipedia.org/ and go to the page named
1131   // Calculate_an_integer_square_root.
1132   unsigned nbits = BitWidth, i = 4;
1133   APInt testy(BitWidth, 16);
1134   APInt x_old(BitWidth, 1);
1135   APInt x_new(BitWidth, 0);
1136   APInt two(BitWidth, 2);
1137 
1138   // Select a good starting value using binary logarithms.
1139   for (;; i += 2, testy = testy.shl(2))
1140     if (i >= nbits || this->ule(testy)) {
1141       x_old = x_old.shl(i / 2);
1142       break;
1143     }
1144 
1145   // Use the Babylonian method to arrive at the integer square root:
1146   for (;;) {
1147     x_new = (this->udiv(x_old) + x_old).udiv(two);
1148     if (x_old.ule(x_new))
1149       break;
1150     x_old = x_new;
1151   }
1152 
1153   // Make sure we return the closest approximation
1154   // NOTE: The rounding calculation below is correct. It will produce an
1155   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1156   // determined to be a rounding issue with pari/gp as it begins to use a
1157   // floating point representation after 192 bits. There are no discrepancies
1158   // between this algorithm and pari/gp for bit widths < 192 bits.
1159   APInt square(x_old * x_old);
1160   APInt nextSquare((x_old + 1) * (x_old +1));
1161   if (this->ult(square))
1162     return x_old;
1163   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1164   APInt midpoint((nextSquare - square).udiv(two));
1165   APInt offset(*this - square);
1166   if (offset.ult(midpoint))
1167     return x_old;
1168   return x_old + 1;
1169 }
1170 
1171 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1172 /// iterative extended Euclidean algorithm is used to solve for this value,
1173 /// however we simplify it to speed up calculating only the inverse, and take
1174 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1175 /// (potentially large) APInts around.
1176 /// WARNING: a value of '0' may be returned,
1177 ///          signifying that no multiplicative inverse exists!
1178 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1179   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1180 
1181   // Using the properties listed at the following web page (accessed 06/21/08):
1182   //   http://www.numbertheory.org/php/euclid.html
1183   // (especially the properties numbered 3, 4 and 9) it can be proved that
1184   // BitWidth bits suffice for all the computations in the algorithm implemented
1185   // below. More precisely, this number of bits suffice if the multiplicative
1186   // inverse exists, but may not suffice for the general extended Euclidean
1187   // algorithm.
1188 
1189   APInt r[2] = { modulo, *this };
1190   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1191   APInt q(BitWidth, 0);
1192 
1193   unsigned i;
1194   for (i = 0; r[i^1] != 0; i ^= 1) {
1195     // An overview of the math without the confusing bit-flipping:
1196     // q = r[i-2] / r[i-1]
1197     // r[i] = r[i-2] % r[i-1]
1198     // t[i] = t[i-2] - t[i-1] * q
1199     udivrem(r[i], r[i^1], q, r[i]);
1200     t[i] -= t[i^1] * q;
1201   }
1202 
1203   // If this APInt and the modulo are not coprime, there is no multiplicative
1204   // inverse, so return 0. We check this by looking at the next-to-last
1205   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1206   // algorithm.
1207   if (r[i] != 1)
1208     return APInt(BitWidth, 0);
1209 
1210   // The next-to-last t is the multiplicative inverse.  However, we are
1211   // interested in a positive inverse. Calculate a positive one from a negative
1212   // one if necessary. A simple addition of the modulo suffices because
1213   // abs(t[i]) is known to be less than *this/2 (see the link above).
1214   if (t[i].isNegative())
1215     t[i] += modulo;
1216 
1217   return std::move(t[i]);
1218 }
1219 
1220 /// Calculate the magic numbers required to implement a signed integer division
1221 /// by a constant as a sequence of multiplies, adds and shifts.  Requires that
1222 /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
1223 /// Warren, Jr., chapter 10.
1224 APInt::ms APInt::magic() const {
1225   const APInt& d = *this;
1226   unsigned p;
1227   APInt ad, anc, delta, q1, r1, q2, r2, t;
1228   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1229   struct ms mag;
1230 
1231   ad = d.abs();
1232   t = signedMin + (d.lshr(d.getBitWidth() - 1));
1233   anc = t - 1 - t.urem(ad);   // absolute value of nc
1234   p = d.getBitWidth() - 1;    // initialize p
1235   q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
1236   r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
1237   q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
1238   r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
1239   do {
1240     p = p + 1;
1241     q1 = q1<<1;          // update q1 = 2p/abs(nc)
1242     r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
1243     if (r1.uge(anc)) {  // must be unsigned comparison
1244       q1 = q1 + 1;
1245       r1 = r1 - anc;
1246     }
1247     q2 = q2<<1;          // update q2 = 2p/abs(d)
1248     r2 = r2<<1;          // update r2 = rem(2p/abs(d))
1249     if (r2.uge(ad)) {   // must be unsigned comparison
1250       q2 = q2 + 1;
1251       r2 = r2 - ad;
1252     }
1253     delta = ad - r2;
1254   } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1255 
1256   mag.m = q2 + 1;
1257   if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
1258   mag.s = p - d.getBitWidth();          // resulting shift
1259   return mag;
1260 }
1261 
1262 /// Calculate the magic numbers required to implement an unsigned integer
1263 /// division by a constant as a sequence of multiplies, adds and shifts.
1264 /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
1265 /// S. Warren, Jr., chapter 10.
1266 /// LeadingZeros can be used to simplify the calculation if the upper bits
1267 /// of the divided value are known zero.
1268 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1269   const APInt& d = *this;
1270   unsigned p;
1271   APInt nc, delta, q1, r1, q2, r2;
1272   struct mu magu;
1273   magu.a = 0;               // initialize "add" indicator
1274   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1275   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1276   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1277 
1278   nc = allOnes - (allOnes - d).urem(d);
1279   p = d.getBitWidth() - 1;  // initialize p
1280   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
1281   r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
1282   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
1283   r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
1284   do {
1285     p = p + 1;
1286     if (r1.uge(nc - r1)) {
1287       q1 = q1 + q1 + 1;  // update q1
1288       r1 = r1 + r1 - nc; // update r1
1289     }
1290     else {
1291       q1 = q1+q1; // update q1
1292       r1 = r1+r1; // update r1
1293     }
1294     if ((r2 + 1).uge(d - r2)) {
1295       if (q2.uge(signedMax)) magu.a = 1;
1296       q2 = q2+q2 + 1;     // update q2
1297       r2 = r2+r2 + 1 - d; // update r2
1298     }
1299     else {
1300       if (q2.uge(signedMin)) magu.a = 1;
1301       q2 = q2+q2;     // update q2
1302       r2 = r2+r2 + 1; // update r2
1303     }
1304     delta = d - 1 - r2;
1305   } while (p < d.getBitWidth()*2 &&
1306            (q1.ult(delta) || (q1 == delta && r1 == 0)));
1307   magu.m = q2 + 1; // resulting magic number
1308   magu.s = p - d.getBitWidth();  // resulting shift
1309   return magu;
1310 }
1311 
1312 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1313 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1314 /// variables here have the same names as in the algorithm. Comments explain
1315 /// the algorithm and any deviation from it.
1316 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1317                      unsigned m, unsigned n) {
1318   assert(u && "Must provide dividend");
1319   assert(v && "Must provide divisor");
1320   assert(q && "Must provide quotient");
1321   assert(u != v && u != q && v != q && "Must use different memory");
1322   assert(n>1 && "n must be > 1");
1323 
1324   // b denotes the base of the number system. In our case b is 2^32.
1325   const uint64_t b = uint64_t(1) << 32;
1326 
1327 // The DEBUG macros here tend to be spam in the debug output if you're not
1328 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1329 #ifdef KNUTH_DEBUG
1330 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1331 #else
1332 #define DEBUG_KNUTH(X) do {} while(false)
1333 #endif
1334 
1335   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1336   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1337   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1338   DEBUG_KNUTH(dbgs() << " by");
1339   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1340   DEBUG_KNUTH(dbgs() << '\n');
1341   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1342   // u and v by d. Note that we have taken Knuth's advice here to use a power
1343   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1344   // 2 allows us to shift instead of multiply and it is easy to determine the
1345   // shift amount from the leading zeros.  We are basically normalizing the u
1346   // and v so that its high bits are shifted to the top of v's range without
1347   // overflow. Note that this can require an extra word in u so that u must
1348   // be of length m+n+1.
1349   unsigned shift = countLeadingZeros(v[n-1]);
1350   uint32_t v_carry = 0;
1351   uint32_t u_carry = 0;
1352   if (shift) {
1353     for (unsigned i = 0; i < m+n; ++i) {
1354       uint32_t u_tmp = u[i] >> (32 - shift);
1355       u[i] = (u[i] << shift) | u_carry;
1356       u_carry = u_tmp;
1357     }
1358     for (unsigned i = 0; i < n; ++i) {
1359       uint32_t v_tmp = v[i] >> (32 - shift);
1360       v[i] = (v[i] << shift) | v_carry;
1361       v_carry = v_tmp;
1362     }
1363   }
1364   u[m+n] = u_carry;
1365 
1366   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1367   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1368   DEBUG_KNUTH(dbgs() << " by");
1369   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1370   DEBUG_KNUTH(dbgs() << '\n');
1371 
1372   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1373   int j = m;
1374   do {
1375     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1376     // D3. [Calculate q'.].
1377     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1378     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1379     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1380     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1381     // on v[n-2] determines at high speed most of the cases in which the trial
1382     // value qp is one too large, and it eliminates all cases where qp is two
1383     // too large.
1384     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1385     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1386     uint64_t qp = dividend / v[n-1];
1387     uint64_t rp = dividend % v[n-1];
1388     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1389       qp--;
1390       rp += v[n-1];
1391       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1392         qp--;
1393     }
1394     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1395 
1396     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1397     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1398     // consists of a simple multiplication by a one-place number, combined with
1399     // a subtraction.
1400     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1401     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1402     // true value plus b**(n+1), namely as the b's complement of
1403     // the true value, and a "borrow" to the left should be remembered.
1404     int64_t borrow = 0;
1405     for (unsigned i = 0; i < n; ++i) {
1406       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1407       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1408       u[j+i] = Lo_32(subres);
1409       borrow = Hi_32(p) - Hi_32(subres);
1410       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1411                         << ", borrow = " << borrow << '\n');
1412     }
1413     bool isNeg = u[j+n] < borrow;
1414     u[j+n] -= Lo_32(borrow);
1415 
1416     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1417     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1418     DEBUG_KNUTH(dbgs() << '\n');
1419 
1420     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1421     // negative, go to step D6; otherwise go on to step D7.
1422     q[j] = Lo_32(qp);
1423     if (isNeg) {
1424       // D6. [Add back]. The probability that this step is necessary is very
1425       // small, on the order of only 2/b. Make sure that test data accounts for
1426       // this possibility. Decrease q[j] by 1
1427       q[j]--;
1428       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1429       // A carry will occur to the left of u[j+n], and it should be ignored
1430       // since it cancels with the borrow that occurred in D4.
1431       bool carry = false;
1432       for (unsigned i = 0; i < n; i++) {
1433         uint32_t limit = std::min(u[j+i],v[i]);
1434         u[j+i] += v[i] + carry;
1435         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1436       }
1437       u[j+n] += carry;
1438     }
1439     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1440     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1441     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1442 
1443     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1444   } while (--j >= 0);
1445 
1446   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1447   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1448   DEBUG_KNUTH(dbgs() << '\n');
1449 
1450   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1451   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1452   // compute the remainder (urem uses this).
1453   if (r) {
1454     // The value d is expressed by the "shift" value above since we avoided
1455     // multiplication by d by using a shift left. So, all we have to do is
1456     // shift right here.
1457     if (shift) {
1458       uint32_t carry = 0;
1459       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1460       for (int i = n-1; i >= 0; i--) {
1461         r[i] = (u[i] >> shift) | carry;
1462         carry = u[i] << (32 - shift);
1463         DEBUG_KNUTH(dbgs() << " " << r[i]);
1464       }
1465     } else {
1466       for (int i = n-1; i >= 0; i--) {
1467         r[i] = u[i];
1468         DEBUG_KNUTH(dbgs() << " " << r[i]);
1469       }
1470     }
1471     DEBUG_KNUTH(dbgs() << '\n');
1472   }
1473   DEBUG_KNUTH(dbgs() << '\n');
1474 }
1475 
1476 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1477                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1478   assert(lhsWords >= rhsWords && "Fractional result");
1479 
1480   // First, compose the values into an array of 32-bit words instead of
1481   // 64-bit words. This is a necessity of both the "short division" algorithm
1482   // and the Knuth "classical algorithm" which requires there to be native
1483   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1484   // can't use 64-bit operands here because we don't have native results of
1485   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1486   // work on large-endian machines.
1487   unsigned n = rhsWords * 2;
1488   unsigned m = (lhsWords * 2) - n;
1489 
1490   // Allocate space for the temporary values we need either on the stack, if
1491   // it will fit, or on the heap if it won't.
1492   uint32_t SPACE[128];
1493   uint32_t *U = nullptr;
1494   uint32_t *V = nullptr;
1495   uint32_t *Q = nullptr;
1496   uint32_t *R = nullptr;
1497   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1498     U = &SPACE[0];
1499     V = &SPACE[m+n+1];
1500     Q = &SPACE[(m+n+1) + n];
1501     if (Remainder)
1502       R = &SPACE[(m+n+1) + n + (m+n)];
1503   } else {
1504     U = new uint32_t[m + n + 1];
1505     V = new uint32_t[n];
1506     Q = new uint32_t[m+n];
1507     if (Remainder)
1508       R = new uint32_t[n];
1509   }
1510 
1511   // Initialize the dividend
1512   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1513   for (unsigned i = 0; i < lhsWords; ++i) {
1514     uint64_t tmp = LHS[i];
1515     U[i * 2] = Lo_32(tmp);
1516     U[i * 2 + 1] = Hi_32(tmp);
1517   }
1518   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1519 
1520   // Initialize the divisor
1521   memset(V, 0, (n)*sizeof(uint32_t));
1522   for (unsigned i = 0; i < rhsWords; ++i) {
1523     uint64_t tmp = RHS[i];
1524     V[i * 2] = Lo_32(tmp);
1525     V[i * 2 + 1] = Hi_32(tmp);
1526   }
1527 
1528   // initialize the quotient and remainder
1529   memset(Q, 0, (m+n) * sizeof(uint32_t));
1530   if (Remainder)
1531     memset(R, 0, n * sizeof(uint32_t));
1532 
1533   // Now, adjust m and n for the Knuth division. n is the number of words in
1534   // the divisor. m is the number of words by which the dividend exceeds the
1535   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1536   // contain any zero words or the Knuth algorithm fails.
1537   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1538     n--;
1539     m++;
1540   }
1541   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1542     m--;
1543 
1544   // If we're left with only a single word for the divisor, Knuth doesn't work
1545   // so we implement the short division algorithm here. This is much simpler
1546   // and faster because we are certain that we can divide a 64-bit quantity
1547   // by a 32-bit quantity at hardware speed and short division is simply a
1548   // series of such operations. This is just like doing short division but we
1549   // are using base 2^32 instead of base 10.
1550   assert(n != 0 && "Divide by zero?");
1551   if (n == 1) {
1552     uint32_t divisor = V[0];
1553     uint32_t remainder = 0;
1554     for (int i = m; i >= 0; i--) {
1555       uint64_t partial_dividend = Make_64(remainder, U[i]);
1556       if (partial_dividend == 0) {
1557         Q[i] = 0;
1558         remainder = 0;
1559       } else if (partial_dividend < divisor) {
1560         Q[i] = 0;
1561         remainder = Lo_32(partial_dividend);
1562       } else if (partial_dividend == divisor) {
1563         Q[i] = 1;
1564         remainder = 0;
1565       } else {
1566         Q[i] = Lo_32(partial_dividend / divisor);
1567         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1568       }
1569     }
1570     if (R)
1571       R[0] = remainder;
1572   } else {
1573     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1574     // case n > 1.
1575     KnuthDiv(U, V, Q, R, m, n);
1576   }
1577 
1578   // If the caller wants the quotient
1579   if (Quotient) {
1580     for (unsigned i = 0; i < lhsWords; ++i)
1581       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1582   }
1583 
1584   // If the caller wants the remainder
1585   if (Remainder) {
1586     for (unsigned i = 0; i < rhsWords; ++i)
1587       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1588   }
1589 
1590   // Clean up the memory we allocated.
1591   if (U != &SPACE[0]) {
1592     delete [] U;
1593     delete [] V;
1594     delete [] Q;
1595     delete [] R;
1596   }
1597 }
1598 
1599 APInt APInt::udiv(const APInt &RHS) const {
1600   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1601 
1602   // First, deal with the easy case
1603   if (isSingleWord()) {
1604     assert(RHS.U.VAL != 0 && "Divide by zero?");
1605     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1606   }
1607 
1608   // Get some facts about the LHS and RHS number of bits and words
1609   unsigned lhsWords = getNumWords(getActiveBits());
1610   unsigned rhsBits  = RHS.getActiveBits();
1611   unsigned rhsWords = getNumWords(rhsBits);
1612   assert(rhsWords && "Divided by zero???");
1613 
1614   // Deal with some degenerate cases
1615   if (!lhsWords)
1616     // 0 / X ===> 0
1617     return APInt(BitWidth, 0);
1618   if (rhsBits == 1)
1619     // X / 1 ===> X
1620     return *this;
1621   if (lhsWords < rhsWords || this->ult(RHS))
1622     // X / Y ===> 0, iff X < Y
1623     return APInt(BitWidth, 0);
1624   if (*this == RHS)
1625     // X / X ===> 1
1626     return APInt(BitWidth, 1);
1627   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1628     // All high words are zero, just use native divide
1629     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1630 
1631   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1632   APInt Quotient(BitWidth, 0); // to hold result.
1633   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1634   return Quotient;
1635 }
1636 
1637 APInt APInt::udiv(uint64_t RHS) const {
1638   assert(RHS != 0 && "Divide by zero?");
1639 
1640   // First, deal with the easy case
1641   if (isSingleWord())
1642     return APInt(BitWidth, U.VAL / RHS);
1643 
1644   // Get some facts about the LHS words.
1645   unsigned lhsWords = getNumWords(getActiveBits());
1646 
1647   // Deal with some degenerate cases
1648   if (!lhsWords)
1649     // 0 / X ===> 0
1650     return APInt(BitWidth, 0);
1651   if (RHS == 1)
1652     // X / 1 ===> X
1653     return *this;
1654   if (this->ult(RHS))
1655     // X / Y ===> 0, iff X < Y
1656     return APInt(BitWidth, 0);
1657   if (*this == RHS)
1658     // X / X ===> 1
1659     return APInt(BitWidth, 1);
1660   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1661     // All high words are zero, just use native divide
1662     return APInt(BitWidth, this->U.pVal[0] / RHS);
1663 
1664   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1665   APInt Quotient(BitWidth, 0); // to hold result.
1666   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1667   return Quotient;
1668 }
1669 
1670 APInt APInt::sdiv(const APInt &RHS) const {
1671   if (isNegative()) {
1672     if (RHS.isNegative())
1673       return (-(*this)).udiv(-RHS);
1674     return -((-(*this)).udiv(RHS));
1675   }
1676   if (RHS.isNegative())
1677     return -(this->udiv(-RHS));
1678   return this->udiv(RHS);
1679 }
1680 
1681 APInt APInt::sdiv(int64_t RHS) const {
1682   if (isNegative()) {
1683     if (RHS < 0)
1684       return (-(*this)).udiv(-RHS);
1685     return -((-(*this)).udiv(RHS));
1686   }
1687   if (RHS < 0)
1688     return -(this->udiv(-RHS));
1689   return this->udiv(RHS);
1690 }
1691 
1692 APInt APInt::urem(const APInt &RHS) const {
1693   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1694   if (isSingleWord()) {
1695     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1696     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1697   }
1698 
1699   // Get some facts about the LHS
1700   unsigned lhsWords = getNumWords(getActiveBits());
1701 
1702   // Get some facts about the RHS
1703   unsigned rhsBits = RHS.getActiveBits();
1704   unsigned rhsWords = getNumWords(rhsBits);
1705   assert(rhsWords && "Performing remainder operation by zero ???");
1706 
1707   // Check the degenerate cases
1708   if (lhsWords == 0)
1709     // 0 % Y ===> 0
1710     return APInt(BitWidth, 0);
1711   if (rhsBits == 1)
1712     // X % 1 ===> 0
1713     return APInt(BitWidth, 0);
1714   if (lhsWords < rhsWords || this->ult(RHS))
1715     // X % Y ===> X, iff X < Y
1716     return *this;
1717   if (*this == RHS)
1718     // X % X == 0;
1719     return APInt(BitWidth, 0);
1720   if (lhsWords == 1)
1721     // All high words are zero, just use native remainder
1722     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1723 
1724   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1725   APInt Remainder(BitWidth, 0);
1726   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1727   return Remainder;
1728 }
1729 
1730 uint64_t APInt::urem(uint64_t RHS) const {
1731   assert(RHS != 0 && "Remainder by zero?");
1732 
1733   if (isSingleWord())
1734     return U.VAL % RHS;
1735 
1736   // Get some facts about the LHS
1737   unsigned lhsWords = getNumWords(getActiveBits());
1738 
1739   // Check the degenerate cases
1740   if (lhsWords == 0)
1741     // 0 % Y ===> 0
1742     return 0;
1743   if (RHS == 1)
1744     // X % 1 ===> 0
1745     return 0;
1746   if (this->ult(RHS))
1747     // X % Y ===> X, iff X < Y
1748     return getZExtValue();
1749   if (*this == RHS)
1750     // X % X == 0;
1751     return 0;
1752   if (lhsWords == 1)
1753     // All high words are zero, just use native remainder
1754     return U.pVal[0] % RHS;
1755 
1756   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1757   uint64_t Remainder;
1758   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1759   return Remainder;
1760 }
1761 
1762 APInt APInt::srem(const APInt &RHS) const {
1763   if (isNegative()) {
1764     if (RHS.isNegative())
1765       return -((-(*this)).urem(-RHS));
1766     return -((-(*this)).urem(RHS));
1767   }
1768   if (RHS.isNegative())
1769     return this->urem(-RHS);
1770   return this->urem(RHS);
1771 }
1772 
1773 int64_t APInt::srem(int64_t RHS) const {
1774   if (isNegative()) {
1775     if (RHS < 0)
1776       return -((-(*this)).urem(-RHS));
1777     return -((-(*this)).urem(RHS));
1778   }
1779   if (RHS < 0)
1780     return this->urem(-RHS);
1781   return this->urem(RHS);
1782 }
1783 
1784 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1785                     APInt &Quotient, APInt &Remainder) {
1786   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1787   unsigned BitWidth = LHS.BitWidth;
1788 
1789   // First, deal with the easy case
1790   if (LHS.isSingleWord()) {
1791     assert(RHS.U.VAL != 0 && "Divide by zero?");
1792     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1793     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1794     Quotient = APInt(BitWidth, QuotVal);
1795     Remainder = APInt(BitWidth, RemVal);
1796     return;
1797   }
1798 
1799   // Get some size facts about the dividend and divisor
1800   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1801   unsigned rhsBits  = RHS.getActiveBits();
1802   unsigned rhsWords = getNumWords(rhsBits);
1803   assert(rhsWords && "Performing divrem operation by zero ???");
1804 
1805   // Check the degenerate cases
1806   if (lhsWords == 0) {
1807     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1808     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1809     return;
1810   }
1811 
1812   if (rhsBits == 1) {
1813     Quotient = LHS;                   // X / 1 ===> X
1814     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1815   }
1816 
1817   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1818     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1819     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1820     return;
1821   }
1822 
1823   if (LHS == RHS) {
1824     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1825     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1826     return;
1827   }
1828 
1829   // Make sure there is enough space to hold the results.
1830   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1831   // change the size. This is necessary if Quotient or Remainder is aliased
1832   // with LHS or RHS.
1833   Quotient.reallocate(BitWidth);
1834   Remainder.reallocate(BitWidth);
1835 
1836   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1837     // There is only one word to consider so use the native versions.
1838     uint64_t lhsValue = LHS.U.pVal[0];
1839     uint64_t rhsValue = RHS.U.pVal[0];
1840     Quotient = lhsValue / rhsValue;
1841     Remainder = lhsValue % rhsValue;
1842     return;
1843   }
1844 
1845   // Okay, lets do it the long way
1846   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1847          Remainder.U.pVal);
1848   // Clear the rest of the Quotient and Remainder.
1849   std::memset(Quotient.U.pVal + lhsWords, 0,
1850               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1851   std::memset(Remainder.U.pVal + rhsWords, 0,
1852               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1853 }
1854 
1855 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1856                     uint64_t &Remainder) {
1857   assert(RHS != 0 && "Divide by zero?");
1858   unsigned BitWidth = LHS.BitWidth;
1859 
1860   // First, deal with the easy case
1861   if (LHS.isSingleWord()) {
1862     uint64_t QuotVal = LHS.U.VAL / RHS;
1863     Remainder = LHS.U.VAL % RHS;
1864     Quotient = APInt(BitWidth, QuotVal);
1865     return;
1866   }
1867 
1868   // Get some size facts about the dividend and divisor
1869   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1870 
1871   // Check the degenerate cases
1872   if (lhsWords == 0) {
1873     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1874     Remainder = 0;                    // 0 % Y ===> 0
1875     return;
1876   }
1877 
1878   if (RHS == 1) {
1879     Quotient = LHS;                   // X / 1 ===> X
1880     Remainder = 0;                    // X % 1 ===> 0
1881     return;
1882   }
1883 
1884   if (LHS.ult(RHS)) {
1885     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1886     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1887     return;
1888   }
1889 
1890   if (LHS == RHS) {
1891     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1892     Remainder = 0;                    // X % X ===> 0;
1893     return;
1894   }
1895 
1896   // Make sure there is enough space to hold the results.
1897   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1898   // change the size. This is necessary if Quotient is aliased with LHS.
1899   Quotient.reallocate(BitWidth);
1900 
1901   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1902     // There is only one word to consider so use the native versions.
1903     uint64_t lhsValue = LHS.U.pVal[0];
1904     Quotient = lhsValue / RHS;
1905     Remainder = lhsValue % RHS;
1906     return;
1907   }
1908 
1909   // Okay, lets do it the long way
1910   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1911   // Clear the rest of the Quotient.
1912   std::memset(Quotient.U.pVal + lhsWords, 0,
1913               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1914 }
1915 
1916 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1917                     APInt &Quotient, APInt &Remainder) {
1918   if (LHS.isNegative()) {
1919     if (RHS.isNegative())
1920       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1921     else {
1922       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1923       Quotient.negate();
1924     }
1925     Remainder.negate();
1926   } else if (RHS.isNegative()) {
1927     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1928     Quotient.negate();
1929   } else {
1930     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1931   }
1932 }
1933 
1934 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1935                     APInt &Quotient, int64_t &Remainder) {
1936   uint64_t R = Remainder;
1937   if (LHS.isNegative()) {
1938     if (RHS < 0)
1939       APInt::udivrem(-LHS, -RHS, Quotient, R);
1940     else {
1941       APInt::udivrem(-LHS, RHS, Quotient, R);
1942       Quotient.negate();
1943     }
1944     R = -R;
1945   } else if (RHS < 0) {
1946     APInt::udivrem(LHS, -RHS, Quotient, R);
1947     Quotient.negate();
1948   } else {
1949     APInt::udivrem(LHS, RHS, Quotient, R);
1950   }
1951   Remainder = R;
1952 }
1953 
1954 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1955   APInt Res = *this+RHS;
1956   Overflow = isNonNegative() == RHS.isNonNegative() &&
1957              Res.isNonNegative() != isNonNegative();
1958   return Res;
1959 }
1960 
1961 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1962   APInt Res = *this+RHS;
1963   Overflow = Res.ult(RHS);
1964   return Res;
1965 }
1966 
1967 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1968   APInt Res = *this - RHS;
1969   Overflow = isNonNegative() != RHS.isNonNegative() &&
1970              Res.isNonNegative() != isNonNegative();
1971   return Res;
1972 }
1973 
1974 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1975   APInt Res = *this-RHS;
1976   Overflow = Res.ugt(*this);
1977   return Res;
1978 }
1979 
1980 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1981   // MININT/-1  -->  overflow.
1982   Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1983   return sdiv(RHS);
1984 }
1985 
1986 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1987   APInt Res = *this * RHS;
1988 
1989   if (*this != 0 && RHS != 0)
1990     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1991   else
1992     Overflow = false;
1993   return Res;
1994 }
1995 
1996 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1997   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1998     Overflow = true;
1999     return *this * RHS;
2000   }
2001 
2002   APInt Res = lshr(1) * RHS;
2003   Overflow = Res.isNegative();
2004   Res <<= 1;
2005   if ((*this)[0]) {
2006     Res += RHS;
2007     if (Res.ult(RHS))
2008       Overflow = true;
2009   }
2010   return Res;
2011 }
2012 
2013 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2014   Overflow = ShAmt.uge(getBitWidth());
2015   if (Overflow)
2016     return APInt(BitWidth, 0);
2017 
2018   if (isNonNegative()) // Don't allow sign change.
2019     Overflow = ShAmt.uge(countLeadingZeros());
2020   else
2021     Overflow = ShAmt.uge(countLeadingOnes());
2022 
2023   return *this << ShAmt;
2024 }
2025 
2026 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2027   Overflow = ShAmt.uge(getBitWidth());
2028   if (Overflow)
2029     return APInt(BitWidth, 0);
2030 
2031   Overflow = ShAmt.ugt(countLeadingZeros());
2032 
2033   return *this << ShAmt;
2034 }
2035 
2036 APInt APInt::sadd_sat(const APInt &RHS) const {
2037   bool Overflow;
2038   APInt Res = sadd_ov(RHS, Overflow);
2039   if (!Overflow)
2040     return Res;
2041 
2042   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2043                       : APInt::getSignedMaxValue(BitWidth);
2044 }
2045 
2046 APInt APInt::uadd_sat(const APInt &RHS) const {
2047   bool Overflow;
2048   APInt Res = uadd_ov(RHS, Overflow);
2049   if (!Overflow)
2050     return Res;
2051 
2052   return APInt::getMaxValue(BitWidth);
2053 }
2054 
2055 APInt APInt::ssub_sat(const APInt &RHS) const {
2056   bool Overflow;
2057   APInt Res = ssub_ov(RHS, Overflow);
2058   if (!Overflow)
2059     return Res;
2060 
2061   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2062                       : APInt::getSignedMaxValue(BitWidth);
2063 }
2064 
2065 APInt APInt::usub_sat(const APInt &RHS) const {
2066   bool Overflow;
2067   APInt Res = usub_ov(RHS, Overflow);
2068   if (!Overflow)
2069     return Res;
2070 
2071   return APInt(BitWidth, 0);
2072 }
2073 
2074 APInt APInt::smul_sat(const APInt &RHS) const {
2075   bool Overflow;
2076   APInt Res = smul_ov(RHS, Overflow);
2077   if (!Overflow)
2078     return Res;
2079 
2080   // The result is negative if one and only one of inputs is negative.
2081   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2082 
2083   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2084                        : APInt::getSignedMaxValue(BitWidth);
2085 }
2086 
2087 APInt APInt::umul_sat(const APInt &RHS) const {
2088   bool Overflow;
2089   APInt Res = umul_ov(RHS, Overflow);
2090   if (!Overflow)
2091     return Res;
2092 
2093   return APInt::getMaxValue(BitWidth);
2094 }
2095 
2096 APInt APInt::sshl_sat(const APInt &RHS) const {
2097   bool Overflow;
2098   APInt Res = sshl_ov(RHS, Overflow);
2099   if (!Overflow)
2100     return Res;
2101 
2102   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2103                       : APInt::getSignedMaxValue(BitWidth);
2104 }
2105 
2106 APInt APInt::ushl_sat(const APInt &RHS) const {
2107   bool Overflow;
2108   APInt Res = ushl_ov(RHS, Overflow);
2109   if (!Overflow)
2110     return Res;
2111 
2112   return APInt::getMaxValue(BitWidth);
2113 }
2114 
2115 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2116   // Check our assumptions here
2117   assert(!str.empty() && "Invalid string length");
2118   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2119           radix == 36) &&
2120          "Radix should be 2, 8, 10, 16, or 36!");
2121 
2122   StringRef::iterator p = str.begin();
2123   size_t slen = str.size();
2124   bool isNeg = *p == '-';
2125   if (*p == '-' || *p == '+') {
2126     p++;
2127     slen--;
2128     assert(slen && "String is only a sign, needs a value.");
2129   }
2130   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2131   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2132   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2133   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2134          "Insufficient bit width");
2135 
2136   // Allocate memory if needed
2137   if (isSingleWord())
2138     U.VAL = 0;
2139   else
2140     U.pVal = getClearedMemory(getNumWords());
2141 
2142   // Figure out if we can shift instead of multiply
2143   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2144 
2145   // Enter digit traversal loop
2146   for (StringRef::iterator e = str.end(); p != e; ++p) {
2147     unsigned digit = getDigit(*p, radix);
2148     assert(digit < radix && "Invalid character in digit string");
2149 
2150     // Shift or multiply the value by the radix
2151     if (slen > 1) {
2152       if (shift)
2153         *this <<= shift;
2154       else
2155         *this *= radix;
2156     }
2157 
2158     // Add in the digit we just interpreted
2159     *this += digit;
2160   }
2161   // If its negative, put it in two's complement form
2162   if (isNeg)
2163     this->negate();
2164 }
2165 
2166 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2167                      bool Signed, bool formatAsCLiteral) const {
2168   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2169           Radix == 36) &&
2170          "Radix should be 2, 8, 10, 16, or 36!");
2171 
2172   const char *Prefix = "";
2173   if (formatAsCLiteral) {
2174     switch (Radix) {
2175       case 2:
2176         // Binary literals are a non-standard extension added in gcc 4.3:
2177         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2178         Prefix = "0b";
2179         break;
2180       case 8:
2181         Prefix = "0";
2182         break;
2183       case 10:
2184         break; // No prefix
2185       case 16:
2186         Prefix = "0x";
2187         break;
2188       default:
2189         llvm_unreachable("Invalid radix!");
2190     }
2191   }
2192 
2193   // First, check for a zero value and just short circuit the logic below.
2194   if (*this == 0) {
2195     while (*Prefix) {
2196       Str.push_back(*Prefix);
2197       ++Prefix;
2198     };
2199     Str.push_back('0');
2200     return;
2201   }
2202 
2203   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2204 
2205   if (isSingleWord()) {
2206     char Buffer[65];
2207     char *BufPtr = std::end(Buffer);
2208 
2209     uint64_t N;
2210     if (!Signed) {
2211       N = getZExtValue();
2212     } else {
2213       int64_t I = getSExtValue();
2214       if (I >= 0) {
2215         N = I;
2216       } else {
2217         Str.push_back('-');
2218         N = -(uint64_t)I;
2219       }
2220     }
2221 
2222     while (*Prefix) {
2223       Str.push_back(*Prefix);
2224       ++Prefix;
2225     };
2226 
2227     while (N) {
2228       *--BufPtr = Digits[N % Radix];
2229       N /= Radix;
2230     }
2231     Str.append(BufPtr, std::end(Buffer));
2232     return;
2233   }
2234 
2235   APInt Tmp(*this);
2236 
2237   if (Signed && isNegative()) {
2238     // They want to print the signed version and it is a negative value
2239     // Flip the bits and add one to turn it into the equivalent positive
2240     // value and put a '-' in the result.
2241     Tmp.negate();
2242     Str.push_back('-');
2243   }
2244 
2245   while (*Prefix) {
2246     Str.push_back(*Prefix);
2247     ++Prefix;
2248   };
2249 
2250   // We insert the digits backward, then reverse them to get the right order.
2251   unsigned StartDig = Str.size();
2252 
2253   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2254   // because the number of bits per digit (1, 3 and 4 respectively) divides
2255   // equally.  We just shift until the value is zero.
2256   if (Radix == 2 || Radix == 8 || Radix == 16) {
2257     // Just shift tmp right for each digit width until it becomes zero
2258     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2259     unsigned MaskAmt = Radix - 1;
2260 
2261     while (Tmp.getBoolValue()) {
2262       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2263       Str.push_back(Digits[Digit]);
2264       Tmp.lshrInPlace(ShiftAmt);
2265     }
2266   } else {
2267     while (Tmp.getBoolValue()) {
2268       uint64_t Digit;
2269       udivrem(Tmp, Radix, Tmp, Digit);
2270       assert(Digit < Radix && "divide failed");
2271       Str.push_back(Digits[Digit]);
2272     }
2273   }
2274 
2275   // Reverse the digits before returning.
2276   std::reverse(Str.begin()+StartDig, Str.end());
2277 }
2278 
2279 /// Returns the APInt as a std::string. Note that this is an inefficient method.
2280 /// It is better to pass in a SmallVector/SmallString to the methods above.
2281 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2282   SmallString<40> S;
2283   toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2284   return std::string(S.str());
2285 }
2286 
2287 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2288 LLVM_DUMP_METHOD void APInt::dump() const {
2289   SmallString<40> S, U;
2290   this->toStringUnsigned(U);
2291   this->toStringSigned(S);
2292   dbgs() << "APInt(" << BitWidth << "b, "
2293          << U << "u " << S << "s)\n";
2294 }
2295 #endif
2296 
2297 void APInt::print(raw_ostream &OS, bool isSigned) const {
2298   SmallString<40> S;
2299   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2300   OS << S;
2301 }
2302 
2303 // This implements a variety of operations on a representation of
2304 // arbitrary precision, two's-complement, bignum integer values.
2305 
2306 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2307 // and unrestricting assumption.
2308 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2309               "Part width must be divisible by 2!");
2310 
2311 /* Some handy functions local to this file.  */
2312 
2313 /* Returns the integer part with the least significant BITS set.
2314    BITS cannot be zero.  */
2315 static inline APInt::WordType lowBitMask(unsigned bits) {
2316   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2317 
2318   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2319 }
2320 
2321 /* Returns the value of the lower half of PART.  */
2322 static inline APInt::WordType lowHalf(APInt::WordType part) {
2323   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2324 }
2325 
2326 /* Returns the value of the upper half of PART.  */
2327 static inline APInt::WordType highHalf(APInt::WordType part) {
2328   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2329 }
2330 
2331 /* Returns the bit number of the most significant set bit of a part.
2332    If the input number has no bits set -1U is returned.  */
2333 static unsigned partMSB(APInt::WordType value) {
2334   return findLastSet(value, ZB_Max);
2335 }
2336 
2337 /* Returns the bit number of the least significant set bit of a
2338    part.  If the input number has no bits set -1U is returned.  */
2339 static unsigned partLSB(APInt::WordType value) {
2340   return findFirstSet(value, ZB_Max);
2341 }
2342 
2343 /* Sets the least significant part of a bignum to the input value, and
2344    zeroes out higher parts.  */
2345 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2346   assert(parts > 0);
2347 
2348   dst[0] = part;
2349   for (unsigned i = 1; i < parts; i++)
2350     dst[i] = 0;
2351 }
2352 
2353 /* Assign one bignum to another.  */
2354 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2355   for (unsigned i = 0; i < parts; i++)
2356     dst[i] = src[i];
2357 }
2358 
2359 /* Returns true if a bignum is zero, false otherwise.  */
2360 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2361   for (unsigned i = 0; i < parts; i++)
2362     if (src[i])
2363       return false;
2364 
2365   return true;
2366 }
2367 
2368 /* Extract the given bit of a bignum; returns 0 or 1.  */
2369 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2370   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2371 }
2372 
2373 /* Set the given bit of a bignum. */
2374 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2375   parts[whichWord(bit)] |= maskBit(bit);
2376 }
2377 
2378 /* Clears the given bit of a bignum. */
2379 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2380   parts[whichWord(bit)] &= ~maskBit(bit);
2381 }
2382 
2383 /* Returns the bit number of the least significant set bit of a
2384    number.  If the input number has no bits set -1U is returned.  */
2385 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2386   for (unsigned i = 0; i < n; i++) {
2387     if (parts[i] != 0) {
2388       unsigned lsb = partLSB(parts[i]);
2389 
2390       return lsb + i * APINT_BITS_PER_WORD;
2391     }
2392   }
2393 
2394   return -1U;
2395 }
2396 
2397 /* Returns the bit number of the most significant set bit of a number.
2398    If the input number has no bits set -1U is returned.  */
2399 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2400   do {
2401     --n;
2402 
2403     if (parts[n] != 0) {
2404       unsigned msb = partMSB(parts[n]);
2405 
2406       return msb + n * APINT_BITS_PER_WORD;
2407     }
2408   } while (n);
2409 
2410   return -1U;
2411 }
2412 
2413 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2414    srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2415    the least significant bit of DST.  All high bits above srcBITS in
2416    DST are zero-filled.  */
2417 void
2418 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2419                  unsigned srcBits, unsigned srcLSB) {
2420   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2421   assert(dstParts <= dstCount);
2422 
2423   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2424   tcAssign (dst, src + firstSrcPart, dstParts);
2425 
2426   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2427   tcShiftRight (dst, dstParts, shift);
2428 
2429   /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2430      in DST.  If this is less that srcBits, append the rest, else
2431      clear the high bits.  */
2432   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2433   if (n < srcBits) {
2434     WordType mask = lowBitMask (srcBits - n);
2435     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2436                           << n % APINT_BITS_PER_WORD);
2437   } else if (n > srcBits) {
2438     if (srcBits % APINT_BITS_PER_WORD)
2439       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2440   }
2441 
2442   /* Clear high parts.  */
2443   while (dstParts < dstCount)
2444     dst[dstParts++] = 0;
2445 }
2446 
2447 /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
2448 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2449                              WordType c, unsigned parts) {
2450   assert(c <= 1);
2451 
2452   for (unsigned i = 0; i < parts; i++) {
2453     WordType l = dst[i];
2454     if (c) {
2455       dst[i] += rhs[i] + 1;
2456       c = (dst[i] <= l);
2457     } else {
2458       dst[i] += rhs[i];
2459       c = (dst[i] < l);
2460     }
2461   }
2462 
2463   return c;
2464 }
2465 
2466 /// This function adds a single "word" integer, src, to the multiple
2467 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2468 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2469 /// @returns the carry of the addition.
2470 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2471                                  unsigned parts) {
2472   for (unsigned i = 0; i < parts; ++i) {
2473     dst[i] += src;
2474     if (dst[i] >= src)
2475       return 0; // No need to carry so exit early.
2476     src = 1; // Carry one to next digit.
2477   }
2478 
2479   return 1;
2480 }
2481 
2482 /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
2483 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2484                                   WordType c, unsigned parts) {
2485   assert(c <= 1);
2486 
2487   for (unsigned i = 0; i < parts; i++) {
2488     WordType l = dst[i];
2489     if (c) {
2490       dst[i] -= rhs[i] + 1;
2491       c = (dst[i] >= l);
2492     } else {
2493       dst[i] -= rhs[i];
2494       c = (dst[i] > l);
2495     }
2496   }
2497 
2498   return c;
2499 }
2500 
2501 /// This function subtracts a single "word" (64-bit word), src, from
2502 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2503 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2504 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2505 /// exhausted. In other words, if src > dst then this function returns 1,
2506 /// otherwise 0.
2507 /// @returns the borrow out of the subtraction
2508 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2509                                       unsigned parts) {
2510   for (unsigned i = 0; i < parts; ++i) {
2511     WordType Dst = dst[i];
2512     dst[i] -= src;
2513     if (src <= Dst)
2514       return 0; // No need to borrow so exit early.
2515     src = 1; // We have to "borrow 1" from next "word"
2516   }
2517 
2518   return 1;
2519 }
2520 
2521 /* Negate a bignum in-place.  */
2522 void APInt::tcNegate(WordType *dst, unsigned parts) {
2523   tcComplement(dst, parts);
2524   tcIncrement(dst, parts);
2525 }
2526 
2527 /*  DST += SRC * MULTIPLIER + CARRY   if add is true
2528     DST  = SRC * MULTIPLIER + CARRY   if add is false
2529 
2530     Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2531     they must start at the same point, i.e. DST == SRC.
2532 
2533     If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2534     returned.  Otherwise DST is filled with the least significant
2535     DSTPARTS parts of the result, and if all of the omitted higher
2536     parts were zero return zero, otherwise overflow occurred and
2537     return one.  */
2538 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2539                           WordType multiplier, WordType carry,
2540                           unsigned srcParts, unsigned dstParts,
2541                           bool add) {
2542   /* Otherwise our writes of DST kill our later reads of SRC.  */
2543   assert(dst <= src || dst >= src + srcParts);
2544   assert(dstParts <= srcParts + 1);
2545 
2546   /* N loops; minimum of dstParts and srcParts.  */
2547   unsigned n = std::min(dstParts, srcParts);
2548 
2549   for (unsigned i = 0; i < n; i++) {
2550     WordType low, mid, high, srcPart;
2551 
2552       /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2553 
2554          This cannot overflow, because
2555 
2556          (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2557 
2558          which is less than n^2.  */
2559 
2560     srcPart = src[i];
2561 
2562     if (multiplier == 0 || srcPart == 0) {
2563       low = carry;
2564       high = 0;
2565     } else {
2566       low = lowHalf(srcPart) * lowHalf(multiplier);
2567       high = highHalf(srcPart) * highHalf(multiplier);
2568 
2569       mid = lowHalf(srcPart) * highHalf(multiplier);
2570       high += highHalf(mid);
2571       mid <<= APINT_BITS_PER_WORD / 2;
2572       if (low + mid < low)
2573         high++;
2574       low += mid;
2575 
2576       mid = highHalf(srcPart) * lowHalf(multiplier);
2577       high += highHalf(mid);
2578       mid <<= APINT_BITS_PER_WORD / 2;
2579       if (low + mid < low)
2580         high++;
2581       low += mid;
2582 
2583       /* Now add carry.  */
2584       if (low + carry < low)
2585         high++;
2586       low += carry;
2587     }
2588 
2589     if (add) {
2590       /* And now DST[i], and store the new low part there.  */
2591       if (low + dst[i] < low)
2592         high++;
2593       dst[i] += low;
2594     } else
2595       dst[i] = low;
2596 
2597     carry = high;
2598   }
2599 
2600   if (srcParts < dstParts) {
2601     /* Full multiplication, there is no overflow.  */
2602     assert(srcParts + 1 == dstParts);
2603     dst[srcParts] = carry;
2604     return 0;
2605   }
2606 
2607   /* We overflowed if there is carry.  */
2608   if (carry)
2609     return 1;
2610 
2611   /* We would overflow if any significant unwritten parts would be
2612      non-zero.  This is true if any remaining src parts are non-zero
2613      and the multiplier is non-zero.  */
2614   if (multiplier)
2615     for (unsigned i = dstParts; i < srcParts; i++)
2616       if (src[i])
2617         return 1;
2618 
2619   /* We fitted in the narrow destination.  */
2620   return 0;
2621 }
2622 
2623 /* DST = LHS * RHS, where DST has the same width as the operands and
2624    is filled with the least significant parts of the result.  Returns
2625    one if overflow occurred, otherwise zero.  DST must be disjoint
2626    from both operands.  */
2627 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2628                       const WordType *rhs, unsigned parts) {
2629   assert(dst != lhs && dst != rhs);
2630 
2631   int overflow = 0;
2632   tcSet(dst, 0, parts);
2633 
2634   for (unsigned i = 0; i < parts; i++)
2635     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2636                                parts - i, true);
2637 
2638   return overflow;
2639 }
2640 
2641 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2642 /// operands. No overflow occurs. DST must be disjoint from both operands.
2643 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2644                            const WordType *rhs, unsigned lhsParts,
2645                            unsigned rhsParts) {
2646   /* Put the narrower number on the LHS for less loops below.  */
2647   if (lhsParts > rhsParts)
2648     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2649 
2650   assert(dst != lhs && dst != rhs);
2651 
2652   tcSet(dst, 0, rhsParts);
2653 
2654   for (unsigned i = 0; i < lhsParts; i++)
2655     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2656 }
2657 
2658 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2659    Otherwise set LHS to LHS / RHS with the fractional part discarded,
2660    set REMAINDER to the remainder, return zero.  i.e.
2661 
2662    OLD_LHS = RHS * LHS + REMAINDER
2663 
2664    SCRATCH is a bignum of the same size as the operands and result for
2665    use by the routine; its contents need not be initialized and are
2666    destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2667 */
2668 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2669                     WordType *remainder, WordType *srhs,
2670                     unsigned parts) {
2671   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2672 
2673   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2674   if (shiftCount == 0)
2675     return true;
2676 
2677   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2678   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2679   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2680 
2681   tcAssign(srhs, rhs, parts);
2682   tcShiftLeft(srhs, parts, shiftCount);
2683   tcAssign(remainder, lhs, parts);
2684   tcSet(lhs, 0, parts);
2685 
2686   /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2687      the total.  */
2688   for (;;) {
2689     int compare = tcCompare(remainder, srhs, parts);
2690     if (compare >= 0) {
2691       tcSubtract(remainder, srhs, 0, parts);
2692       lhs[n] |= mask;
2693     }
2694 
2695     if (shiftCount == 0)
2696       break;
2697     shiftCount--;
2698     tcShiftRight(srhs, parts, 1);
2699     if ((mask >>= 1) == 0) {
2700       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2701       n--;
2702     }
2703   }
2704 
2705   return false;
2706 }
2707 
2708 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2709 /// no restrictions on Count.
2710 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2711   // Don't bother performing a no-op shift.
2712   if (!Count)
2713     return;
2714 
2715   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2716   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2717   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2718 
2719   // Fastpath for moving by whole words.
2720   if (BitShift == 0) {
2721     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2722   } else {
2723     while (Words-- > WordShift) {
2724       Dst[Words] = Dst[Words - WordShift] << BitShift;
2725       if (Words > WordShift)
2726         Dst[Words] |=
2727           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2728     }
2729   }
2730 
2731   // Fill in the remainder with 0s.
2732   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2733 }
2734 
2735 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2736 /// are no restrictions on Count.
2737 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2738   // Don't bother performing a no-op shift.
2739   if (!Count)
2740     return;
2741 
2742   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2743   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2744   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2745 
2746   unsigned WordsToMove = Words - WordShift;
2747   // Fastpath for moving by whole words.
2748   if (BitShift == 0) {
2749     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2750   } else {
2751     for (unsigned i = 0; i != WordsToMove; ++i) {
2752       Dst[i] = Dst[i + WordShift] >> BitShift;
2753       if (i + 1 != WordsToMove)
2754         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2755     }
2756   }
2757 
2758   // Fill in the remainder with 0s.
2759   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2760 }
2761 
2762 /* Bitwise and of two bignums.  */
2763 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2764   for (unsigned i = 0; i < parts; i++)
2765     dst[i] &= rhs[i];
2766 }
2767 
2768 /* Bitwise inclusive or of two bignums.  */
2769 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2770   for (unsigned i = 0; i < parts; i++)
2771     dst[i] |= rhs[i];
2772 }
2773 
2774 /* Bitwise exclusive or of two bignums.  */
2775 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2776   for (unsigned i = 0; i < parts; i++)
2777     dst[i] ^= rhs[i];
2778 }
2779 
2780 /* Complement a bignum in-place.  */
2781 void APInt::tcComplement(WordType *dst, unsigned parts) {
2782   for (unsigned i = 0; i < parts; i++)
2783     dst[i] = ~dst[i];
2784 }
2785 
2786 /* Comparison (unsigned) of two bignums.  */
2787 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2788                      unsigned parts) {
2789   while (parts) {
2790     parts--;
2791     if (lhs[parts] != rhs[parts])
2792       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2793   }
2794 
2795   return 0;
2796 }
2797 
2798 /* Set the least significant BITS bits of a bignum, clear the
2799    rest.  */
2800 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2801                                       unsigned bits) {
2802   unsigned i = 0;
2803   while (bits > APINT_BITS_PER_WORD) {
2804     dst[i++] = ~(WordType) 0;
2805     bits -= APINT_BITS_PER_WORD;
2806   }
2807 
2808   if (bits)
2809     dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2810 
2811   while (i < parts)
2812     dst[i++] = 0;
2813 }
2814 
2815 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2816                                    APInt::Rounding RM) {
2817   // Currently udivrem always rounds down.
2818   switch (RM) {
2819   case APInt::Rounding::DOWN:
2820   case APInt::Rounding::TOWARD_ZERO:
2821     return A.udiv(B);
2822   case APInt::Rounding::UP: {
2823     APInt Quo, Rem;
2824     APInt::udivrem(A, B, Quo, Rem);
2825     if (Rem == 0)
2826       return Quo;
2827     return Quo + 1;
2828   }
2829   }
2830   llvm_unreachable("Unknown APInt::Rounding enum");
2831 }
2832 
2833 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2834                                    APInt::Rounding RM) {
2835   switch (RM) {
2836   case APInt::Rounding::DOWN:
2837   case APInt::Rounding::UP: {
2838     APInt Quo, Rem;
2839     APInt::sdivrem(A, B, Quo, Rem);
2840     if (Rem == 0)
2841       return Quo;
2842     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2843     // We want to check whether the non-integer part of the mathematical value
2844     // is negative or not. If the non-integer part is negative, we need to round
2845     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2846     // already rounded down.
2847     if (RM == APInt::Rounding::DOWN) {
2848       if (Rem.isNegative() != B.isNegative())
2849         return Quo - 1;
2850       return Quo;
2851     }
2852     if (Rem.isNegative() != B.isNegative())
2853       return Quo;
2854     return Quo + 1;
2855   }
2856   // Currently sdiv rounds towards zero.
2857   case APInt::Rounding::TOWARD_ZERO:
2858     return A.sdiv(B);
2859   }
2860   llvm_unreachable("Unknown APInt::Rounding enum");
2861 }
2862 
2863 Optional<APInt>
2864 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2865                                            unsigned RangeWidth) {
2866   unsigned CoeffWidth = A.getBitWidth();
2867   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2868   assert(RangeWidth <= CoeffWidth &&
2869          "Value range width should be less than coefficient width");
2870   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2871 
2872   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2873                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2874 
2875   // Identify 0 as a (non)solution immediately.
2876   if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2877     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2878     return APInt(CoeffWidth, 0);
2879   }
2880 
2881   // The result of APInt arithmetic has the same bit width as the operands,
2882   // so it can actually lose high bits. A product of two n-bit integers needs
2883   // 2n-1 bits to represent the full value.
2884   // The operation done below (on quadratic coefficients) that can produce
2885   // the largest value is the evaluation of the equation during bisection,
2886   // which needs 3 times the bitwidth of the coefficient, so the total number
2887   // of required bits is 3n.
2888   //
2889   // The purpose of this extension is to simulate the set Z of all integers,
2890   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2891   // and negative numbers (not so much in a modulo arithmetic). The method
2892   // used to solve the equation is based on the standard formula for real
2893   // numbers, and uses the concepts of "positive" and "negative" with their
2894   // usual meanings.
2895   CoeffWidth *= 3;
2896   A = A.sext(CoeffWidth);
2897   B = B.sext(CoeffWidth);
2898   C = C.sext(CoeffWidth);
2899 
2900   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2901   // the bit width has increased.
2902   if (A.isNegative()) {
2903     A.negate();
2904     B.negate();
2905     C.negate();
2906   }
2907 
2908   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2909   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2910   // and R = 2^BitWidth.
2911   // Since we're trying not only to find exact solutions, but also values
2912   // that "wrap around", such a set will always have a solution, i.e. an x
2913   // that satisfies at least one of the equations, or such that |q(x)|
2914   // exceeds kR, while |q(x-1)| for the same k does not.
2915   //
2916   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2917   // positive solution n (in the above sense), and also such that the n
2918   // will be the least among all solutions corresponding to k = 0, 1, ...
2919   // (more precisely, the least element in the set
2920   //   { n(k) | k is such that a solution n(k) exists }).
2921   //
2922   // Consider the parabola (over real numbers) that corresponds to the
2923   // quadratic equation. Since A > 0, the arms of the parabola will point
2924   // up. Picking different values of k will shift it up and down by R.
2925   //
2926   // We want to shift the parabola in such a way as to reduce the problem
2927   // of solving q(x) = kR to solving shifted_q(x) = 0.
2928   // (The interesting solutions are the ceilings of the real number
2929   // solutions.)
2930   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2931   APInt TwoA = 2 * A;
2932   APInt SqrB = B * B;
2933   bool PickLow;
2934 
2935   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2936     assert(A.isStrictlyPositive());
2937     APInt T = V.abs().urem(A);
2938     if (T.isNullValue())
2939       return V;
2940     return V.isNegative() ? V+T : V+(A-T);
2941   };
2942 
2943   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2944   // iff B is positive.
2945   if (B.isNonNegative()) {
2946     // If B >= 0, the vertex it at a negative location (or at 0), so in
2947     // order to have a non-negative solution we need to pick k that makes
2948     // C-kR negative. To satisfy all the requirements for the solution
2949     // that we are looking for, it needs to be closest to 0 of all k.
2950     C = C.srem(R);
2951     if (C.isStrictlyPositive())
2952       C -= R;
2953     // Pick the greater solution.
2954     PickLow = false;
2955   } else {
2956     // If B < 0, the vertex is at a positive location. For any solution
2957     // to exist, the discriminant must be non-negative. This means that
2958     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2959     // lower bound on values of k: kR >= C - B^2/4A.
2960     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2961     // Round LowkR up (towards +inf) to the nearest kR.
2962     LowkR = RoundUp(LowkR, R);
2963 
2964     // If there exists k meeting the condition above, and such that
2965     // C-kR > 0, there will be two positive real number solutions of
2966     // q(x) = kR. Out of all such values of k, pick the one that makes
2967     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2968     // In other words, find maximum k such that LowkR <= kR < C.
2969     if (C.sgt(LowkR)) {
2970       // If LowkR < C, then such a k is guaranteed to exist because
2971       // LowkR itself is a multiple of R.
2972       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2973       // Pick the smaller solution.
2974       PickLow = true;
2975     } else {
2976       // If C-kR < 0 for all potential k's, it means that one solution
2977       // will be negative, while the other will be positive. The positive
2978       // solution will shift towards 0 if the parabola is moved up.
2979       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2980       // to 0, or in other words, out of all parabolas that have solutions,
2981       // pick the one that is the farthest "up").
2982       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2983       C -= LowkR;
2984       // Pick the greater solution.
2985       PickLow = false;
2986     }
2987   }
2988 
2989   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2990                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2991 
2992   APInt D = SqrB - 4*A*C;
2993   assert(D.isNonNegative() && "Negative discriminant");
2994   APInt SQ = D.sqrt();
2995 
2996   APInt Q = SQ * SQ;
2997   bool InexactSQ = Q != D;
2998   // The calculated SQ may actually be greater than the exact (non-integer)
2999   // value. If that's the case, decrement SQ to get a value that is lower.
3000   if (Q.sgt(D))
3001     SQ -= 1;
3002 
3003   APInt X;
3004   APInt Rem;
3005 
3006   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
3007   // When using the quadratic formula directly, the calculated low root
3008   // may be greater than the exact one, since we would be subtracting SQ.
3009   // To make sure that the calculated root is not greater than the exact
3010   // one, subtract SQ+1 when calculating the low root (for inexact value
3011   // of SQ).
3012   if (PickLow)
3013     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
3014   else
3015     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
3016 
3017   // The updated coefficients should be such that the (exact) solution is
3018   // positive. Since APInt division rounds towards 0, the calculated one
3019   // can be 0, but cannot be negative.
3020   assert(X.isNonNegative() && "Solution should be non-negative");
3021 
3022   if (!InexactSQ && Rem.isNullValue()) {
3023     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
3024     return X;
3025   }
3026 
3027   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
3028   // The exact value of the square root of D should be between SQ and SQ+1.
3029   // This implies that the solution should be between that corresponding to
3030   // SQ (i.e. X) and that corresponding to SQ+1.
3031   //
3032   // The calculated X cannot be greater than the exact (real) solution.
3033   // Actually it must be strictly less than the exact solution, while
3034   // X+1 will be greater than or equal to it.
3035 
3036   APInt VX = (A*X + B)*X + C;
3037   APInt VY = VX + TwoA*X + A + B;
3038   bool SignChange = VX.isNegative() != VY.isNegative() ||
3039                     VX.isNullValue() != VY.isNullValue();
3040   // If the sign did not change between X and X+1, X is not a valid solution.
3041   // This could happen when the actual (exact) roots don't have an integer
3042   // between them, so they would both be contained between X and X+1.
3043   if (!SignChange) {
3044     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
3045     return None;
3046   }
3047 
3048   X += 1;
3049   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
3050   return X;
3051 }
3052 
3053 Optional<unsigned>
3054 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
3055   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
3056   if (A == B)
3057     return llvm::None;
3058   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
3059 }
3060 
3061 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3062 /// with the integer held in IntVal.
3063 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3064                             unsigned StoreBytes) {
3065   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3066   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3067 
3068   if (sys::IsLittleEndianHost) {
3069     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3070     // destination from LSB to MSB: Do a straight copy.
3071     memcpy(Dst, Src, StoreBytes);
3072   } else {
3073     // Big-endian host - the source is an array of 64 bit words ordered from
3074     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3075     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3076     while (StoreBytes > sizeof(uint64_t)) {
3077       StoreBytes -= sizeof(uint64_t);
3078       // May not be aligned so use memcpy.
3079       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3080       Src += sizeof(uint64_t);
3081     }
3082 
3083     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3084   }
3085 }
3086 
3087 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3088 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3089 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3090                              unsigned LoadBytes) {
3091   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3092   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3093                    const_cast<uint64_t *>(IntVal.getRawData()));
3094 
3095   if (sys::IsLittleEndianHost)
3096     // Little-endian host - the destination must be ordered from LSB to MSB.
3097     // The source is ordered from LSB to MSB: Do a straight copy.
3098     memcpy(Dst, Src, LoadBytes);
3099   else {
3100     // Big-endian - the destination is an array of 64 bit words ordered from
3101     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3102     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3103     // a word.
3104     while (LoadBytes > sizeof(uint64_t)) {
3105       LoadBytes -= sizeof(uint64_t);
3106       // May not be aligned so use memcpy.
3107       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3108       Dst += sizeof(uint64_t);
3109     }
3110 
3111     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3112   }
3113 }
3114