xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APInt.cpp (revision ada4cd3f7710d9759e391e84ad21b7763062bdbc)
1  //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements a class to represent arbitrary precision integer
10  // constant values and provide a variety of arithmetic operations on them.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/ADT/APInt.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/FoldingSet.h"
17  #include "llvm/ADT/Hashing.h"
18  #include "llvm/ADT/SmallString.h"
19  #include "llvm/ADT/StringRef.h"
20  #include "llvm/ADT/bit.h"
21  #include "llvm/Config/llvm-config.h"
22  #include "llvm/Support/Alignment.h"
23  #include "llvm/Support/Debug.h"
24  #include "llvm/Support/ErrorHandling.h"
25  #include "llvm/Support/MathExtras.h"
26  #include "llvm/Support/raw_ostream.h"
27  #include <cmath>
28  #include <optional>
29  
30  using namespace llvm;
31  
32  #define DEBUG_TYPE "apint"
33  
34  /// A utility function for allocating memory, checking for allocation failures,
35  /// and ensuring the contents are zeroed.
36  inline static uint64_t* getClearedMemory(unsigned numWords) {
37    uint64_t *result = new uint64_t[numWords];
38    memset(result, 0, numWords * sizeof(uint64_t));
39    return result;
40  }
41  
42  /// A utility function for allocating memory and checking for allocation
43  /// failure.  The content is not zeroed.
44  inline static uint64_t* getMemory(unsigned numWords) {
45    return new uint64_t[numWords];
46  }
47  
48  /// A utility function that converts a character to a digit.
49  inline static unsigned getDigit(char cdigit, uint8_t radix) {
50    unsigned r;
51  
52    if (radix == 16 || radix == 36) {
53      r = cdigit - '0';
54      if (r <= 9)
55        return r;
56  
57      r = cdigit - 'A';
58      if (r <= radix - 11U)
59        return r + 10;
60  
61      r = cdigit - 'a';
62      if (r <= radix - 11U)
63        return r + 10;
64  
65      radix = 10;
66    }
67  
68    r = cdigit - '0';
69    if (r < radix)
70      return r;
71  
72    return UINT_MAX;
73  }
74  
75  
76  void APInt::initSlowCase(uint64_t val, bool isSigned) {
77    U.pVal = getClearedMemory(getNumWords());
78    U.pVal[0] = val;
79    if (isSigned && int64_t(val) < 0)
80      for (unsigned i = 1; i < getNumWords(); ++i)
81        U.pVal[i] = WORDTYPE_MAX;
82    clearUnusedBits();
83  }
84  
85  void APInt::initSlowCase(const APInt& that) {
86    U.pVal = getMemory(getNumWords());
87    memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
88  }
89  
90  void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91    assert(bigVal.data() && "Null pointer detected!");
92    if (isSingleWord())
93      U.VAL = bigVal[0];
94    else {
95      // Get memory, cleared to 0
96      U.pVal = getClearedMemory(getNumWords());
97      // Calculate the number of words to copy
98      unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99      // Copy the words from bigVal to pVal
100      memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
101    }
102    // Make sure unused high bits are cleared
103    clearUnusedBits();
104  }
105  
106  APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
107    initFromArray(bigVal);
108  }
109  
110  APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111      : BitWidth(numBits) {
112    initFromArray(ArrayRef(bigVal, numWords));
113  }
114  
115  APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
116      : BitWidth(numbits) {
117    fromString(numbits, Str, radix);
118  }
119  
120  void APInt::reallocate(unsigned NewBitWidth) {
121    // If the number of words is the same we can just change the width and stop.
122    if (getNumWords() == getNumWords(NewBitWidth)) {
123      BitWidth = NewBitWidth;
124      return;
125    }
126  
127    // If we have an allocation, delete it.
128    if (!isSingleWord())
129      delete [] U.pVal;
130  
131    // Update BitWidth.
132    BitWidth = NewBitWidth;
133  
134    // If we are supposed to have an allocation, create it.
135    if (!isSingleWord())
136      U.pVal = getMemory(getNumWords());
137  }
138  
139  void APInt::assignSlowCase(const APInt &RHS) {
140    // Don't do anything for X = X
141    if (this == &RHS)
142      return;
143  
144    // Adjust the bit width and handle allocations as necessary.
145    reallocate(RHS.getBitWidth());
146  
147    // Copy the data.
148    if (isSingleWord())
149      U.VAL = RHS.U.VAL;
150    else
151      memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
152  }
153  
154  /// This method 'profiles' an APInt for use with FoldingSet.
155  void APInt::Profile(FoldingSetNodeID& ID) const {
156    ID.AddInteger(BitWidth);
157  
158    if (isSingleWord()) {
159      ID.AddInteger(U.VAL);
160      return;
161    }
162  
163    unsigned NumWords = getNumWords();
164    for (unsigned i = 0; i < NumWords; ++i)
165      ID.AddInteger(U.pVal[i]);
166  }
167  
168  bool APInt::isAligned(Align A) const {
169    if (isZero())
170      return true;
171    const unsigned TrailingZeroes = countr_zero();
172    const unsigned MinimumTrailingZeroes = Log2(A);
173    return TrailingZeroes >= MinimumTrailingZeroes;
174  }
175  
176  /// Prefix increment operator. Increments the APInt by one.
177  APInt& APInt::operator++() {
178    if (isSingleWord())
179      ++U.VAL;
180    else
181      tcIncrement(U.pVal, getNumWords());
182    return clearUnusedBits();
183  }
184  
185  /// Prefix decrement operator. Decrements the APInt by one.
186  APInt& APInt::operator--() {
187    if (isSingleWord())
188      --U.VAL;
189    else
190      tcDecrement(U.pVal, getNumWords());
191    return clearUnusedBits();
192  }
193  
194  /// Adds the RHS APInt to this APInt.
195  /// @returns this, after addition of RHS.
196  /// Addition assignment operator.
197  APInt& APInt::operator+=(const APInt& RHS) {
198    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
199    if (isSingleWord())
200      U.VAL += RHS.U.VAL;
201    else
202      tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
203    return clearUnusedBits();
204  }
205  
206  APInt& APInt::operator+=(uint64_t RHS) {
207    if (isSingleWord())
208      U.VAL += RHS;
209    else
210      tcAddPart(U.pVal, RHS, getNumWords());
211    return clearUnusedBits();
212  }
213  
214  /// Subtracts the RHS APInt from this APInt
215  /// @returns this, after subtraction
216  /// Subtraction assignment operator.
217  APInt& APInt::operator-=(const APInt& RHS) {
218    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
219    if (isSingleWord())
220      U.VAL -= RHS.U.VAL;
221    else
222      tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
223    return clearUnusedBits();
224  }
225  
226  APInt& APInt::operator-=(uint64_t RHS) {
227    if (isSingleWord())
228      U.VAL -= RHS;
229    else
230      tcSubtractPart(U.pVal, RHS, getNumWords());
231    return clearUnusedBits();
232  }
233  
234  APInt APInt::operator*(const APInt& RHS) const {
235    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236    if (isSingleWord())
237      return APInt(BitWidth, U.VAL * RHS.U.VAL);
238  
239    APInt Result(getMemory(getNumWords()), getBitWidth());
240    tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
241    Result.clearUnusedBits();
242    return Result;
243  }
244  
245  void APInt::andAssignSlowCase(const APInt &RHS) {
246    WordType *dst = U.pVal, *rhs = RHS.U.pVal;
247    for (size_t i = 0, e = getNumWords(); i != e; ++i)
248      dst[i] &= rhs[i];
249  }
250  
251  void APInt::orAssignSlowCase(const APInt &RHS) {
252    WordType *dst = U.pVal, *rhs = RHS.U.pVal;
253    for (size_t i = 0, e = getNumWords(); i != e; ++i)
254      dst[i] |= rhs[i];
255  }
256  
257  void APInt::xorAssignSlowCase(const APInt &RHS) {
258    WordType *dst = U.pVal, *rhs = RHS.U.pVal;
259    for (size_t i = 0, e = getNumWords(); i != e; ++i)
260      dst[i] ^= rhs[i];
261  }
262  
263  APInt &APInt::operator*=(const APInt &RHS) {
264    *this = *this * RHS;
265    return *this;
266  }
267  
268  APInt& APInt::operator*=(uint64_t RHS) {
269    if (isSingleWord()) {
270      U.VAL *= RHS;
271    } else {
272      unsigned NumWords = getNumWords();
273      tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
274    }
275    return clearUnusedBits();
276  }
277  
278  bool APInt::equalSlowCase(const APInt &RHS) const {
279    return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
280  }
281  
282  int APInt::compare(const APInt& RHS) const {
283    assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
284    if (isSingleWord())
285      return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
286  
287    return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
288  }
289  
290  int APInt::compareSigned(const APInt& RHS) const {
291    assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
292    if (isSingleWord()) {
293      int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
294      int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
295      return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
296    }
297  
298    bool lhsNeg = isNegative();
299    bool rhsNeg = RHS.isNegative();
300  
301    // If the sign bits don't match, then (LHS < RHS) if LHS is negative
302    if (lhsNeg != rhsNeg)
303      return lhsNeg ? -1 : 1;
304  
305    // Otherwise we can just use an unsigned comparison, because even negative
306    // numbers compare correctly this way if both have the same signed-ness.
307    return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
308  }
309  
310  void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
311    unsigned loWord = whichWord(loBit);
312    unsigned hiWord = whichWord(hiBit);
313  
314    // Create an initial mask for the low word with zeros below loBit.
315    uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
316  
317    // If hiBit is not aligned, we need a high mask.
318    unsigned hiShiftAmt = whichBit(hiBit);
319    if (hiShiftAmt != 0) {
320      // Create a high mask with zeros above hiBit.
321      uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
322      // If loWord and hiWord are equal, then we combine the masks. Otherwise,
323      // set the bits in hiWord.
324      if (hiWord == loWord)
325        loMask &= hiMask;
326      else
327        U.pVal[hiWord] |= hiMask;
328    }
329    // Apply the mask to the low word.
330    U.pVal[loWord] |= loMask;
331  
332    // Fill any words between loWord and hiWord with all ones.
333    for (unsigned word = loWord + 1; word < hiWord; ++word)
334      U.pVal[word] = WORDTYPE_MAX;
335  }
336  
337  // Complement a bignum in-place.
338  static void tcComplement(APInt::WordType *dst, unsigned parts) {
339    for (unsigned i = 0; i < parts; i++)
340      dst[i] = ~dst[i];
341  }
342  
343  /// Toggle every bit to its opposite value.
344  void APInt::flipAllBitsSlowCase() {
345    tcComplement(U.pVal, getNumWords());
346    clearUnusedBits();
347  }
348  
349  /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
350  /// equivalent to:
351  ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
352  /// In the slow case, we know the result is large.
353  APInt APInt::concatSlowCase(const APInt &NewLSB) const {
354    unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
355    APInt Result = NewLSB.zext(NewWidth);
356    Result.insertBits(*this, NewLSB.getBitWidth());
357    return Result;
358  }
359  
360  /// Toggle a given bit to its opposite value whose position is given
361  /// as "bitPosition".
362  /// Toggles a given bit to its opposite value.
363  void APInt::flipBit(unsigned bitPosition) {
364    assert(bitPosition < BitWidth && "Out of the bit-width range!");
365    setBitVal(bitPosition, !(*this)[bitPosition]);
366  }
367  
368  void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
369    unsigned subBitWidth = subBits.getBitWidth();
370    assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
371  
372    // inserting no bits is a noop.
373    if (subBitWidth == 0)
374      return;
375  
376    // Insertion is a direct copy.
377    if (subBitWidth == BitWidth) {
378      *this = subBits;
379      return;
380    }
381  
382    // Single word result can be done as a direct bitmask.
383    if (isSingleWord()) {
384      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
385      U.VAL &= ~(mask << bitPosition);
386      U.VAL |= (subBits.U.VAL << bitPosition);
387      return;
388    }
389  
390    unsigned loBit = whichBit(bitPosition);
391    unsigned loWord = whichWord(bitPosition);
392    unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
393  
394    // Insertion within a single word can be done as a direct bitmask.
395    if (loWord == hi1Word) {
396      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
397      U.pVal[loWord] &= ~(mask << loBit);
398      U.pVal[loWord] |= (subBits.U.VAL << loBit);
399      return;
400    }
401  
402    // Insert on word boundaries.
403    if (loBit == 0) {
404      // Direct copy whole words.
405      unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
406      memcpy(U.pVal + loWord, subBits.getRawData(),
407             numWholeSubWords * APINT_WORD_SIZE);
408  
409      // Mask+insert remaining bits.
410      unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
411      if (remainingBits != 0) {
412        uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
413        U.pVal[hi1Word] &= ~mask;
414        U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
415      }
416      return;
417    }
418  
419    // General case - set/clear individual bits in dst based on src.
420    // TODO - there is scope for optimization here, but at the moment this code
421    // path is barely used so prefer readability over performance.
422    for (unsigned i = 0; i != subBitWidth; ++i)
423      setBitVal(bitPosition + i, subBits[i]);
424  }
425  
426  void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
427    uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
428    subBits &= maskBits;
429    if (isSingleWord()) {
430      U.VAL &= ~(maskBits << bitPosition);
431      U.VAL |= subBits << bitPosition;
432      return;
433    }
434  
435    unsigned loBit = whichBit(bitPosition);
436    unsigned loWord = whichWord(bitPosition);
437    unsigned hiWord = whichWord(bitPosition + numBits - 1);
438    if (loWord == hiWord) {
439      U.pVal[loWord] &= ~(maskBits << loBit);
440      U.pVal[loWord] |= subBits << loBit;
441      return;
442    }
443  
444    static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
445    unsigned wordBits = 8 * sizeof(WordType);
446    U.pVal[loWord] &= ~(maskBits << loBit);
447    U.pVal[loWord] |= subBits << loBit;
448  
449    U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
450    U.pVal[hiWord] |= subBits >> (wordBits - loBit);
451  }
452  
453  APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
454    assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
455           "Illegal bit extraction");
456  
457    if (isSingleWord())
458      return APInt(numBits, U.VAL >> bitPosition);
459  
460    unsigned loBit = whichBit(bitPosition);
461    unsigned loWord = whichWord(bitPosition);
462    unsigned hiWord = whichWord(bitPosition + numBits - 1);
463  
464    // Single word result extracting bits from a single word source.
465    if (loWord == hiWord)
466      return APInt(numBits, U.pVal[loWord] >> loBit);
467  
468    // Extracting bits that start on a source word boundary can be done
469    // as a fast memory copy.
470    if (loBit == 0)
471      return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
472  
473    // General case - shift + copy source words directly into place.
474    APInt Result(numBits, 0);
475    unsigned NumSrcWords = getNumWords();
476    unsigned NumDstWords = Result.getNumWords();
477  
478    uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
479    for (unsigned word = 0; word < NumDstWords; ++word) {
480      uint64_t w0 = U.pVal[loWord + word];
481      uint64_t w1 =
482          (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
483      DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
484    }
485  
486    return Result.clearUnusedBits();
487  }
488  
489  uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
490                                         unsigned bitPosition) const {
491    assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
492           "Illegal bit extraction");
493    assert(numBits <= 64 && "Illegal bit extraction");
494  
495    uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
496    if (isSingleWord())
497      return (U.VAL >> bitPosition) & maskBits;
498  
499    unsigned loBit = whichBit(bitPosition);
500    unsigned loWord = whichWord(bitPosition);
501    unsigned hiWord = whichWord(bitPosition + numBits - 1);
502    if (loWord == hiWord)
503      return (U.pVal[loWord] >> loBit) & maskBits;
504  
505    static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
506    unsigned wordBits = 8 * sizeof(WordType);
507    uint64_t retBits = U.pVal[loWord] >> loBit;
508    retBits |= U.pVal[hiWord] << (wordBits - loBit);
509    retBits &= maskBits;
510    return retBits;
511  }
512  
513  unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
514    assert(!Str.empty() && "Invalid string length");
515    size_t StrLen = Str.size();
516  
517    // Each computation below needs to know if it's negative.
518    unsigned IsNegative = false;
519    if (Str[0] == '-' || Str[0] == '+') {
520      IsNegative = Str[0] == '-';
521      StrLen--;
522      assert(StrLen && "String is only a sign, needs a value.");
523    }
524  
525    // For radixes of power-of-two values, the bits required is accurately and
526    // easily computed.
527    if (Radix == 2)
528      return StrLen + IsNegative;
529    if (Radix == 8)
530      return StrLen * 3 + IsNegative;
531    if (Radix == 16)
532      return StrLen * 4 + IsNegative;
533  
534    // Compute a sufficient number of bits that is always large enough but might
535    // be too large. This avoids the assertion in the constructor. This
536    // calculation doesn't work appropriately for the numbers 0-9, so just use 4
537    // bits in that case.
538    if (Radix == 10)
539      return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
540  
541    assert(Radix == 36);
542    return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
543  }
544  
545  unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
546    // Compute a sufficient number of bits that is always large enough but might
547    // be too large.
548    unsigned sufficient = getSufficientBitsNeeded(str, radix);
549  
550    // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
551    // return the value directly. For bases 10 and 36, we need to do extra work.
552    if (radix == 2 || radix == 8 || radix == 16)
553      return sufficient;
554  
555    // This is grossly inefficient but accurate. We could probably do something
556    // with a computation of roughly slen*64/20 and then adjust by the value of
557    // the first few digits. But, I'm not sure how accurate that could be.
558    size_t slen = str.size();
559  
560    // Each computation below needs to know if it's negative.
561    StringRef::iterator p = str.begin();
562    unsigned isNegative = *p == '-';
563    if (*p == '-' || *p == '+') {
564      p++;
565      slen--;
566      assert(slen && "String is only a sign, needs a value.");
567    }
568  
569  
570    // Convert to the actual binary value.
571    APInt tmp(sufficient, StringRef(p, slen), radix);
572  
573    // Compute how many bits are required. If the log is infinite, assume we need
574    // just bit. If the log is exact and value is negative, then the value is
575    // MinSignedValue with (log + 1) bits.
576    unsigned log = tmp.logBase2();
577    if (log == (unsigned)-1) {
578      return isNegative + 1;
579    } else if (isNegative && tmp.isPowerOf2()) {
580      return isNegative + log;
581    } else {
582      return isNegative + log + 1;
583    }
584  }
585  
586  hash_code llvm::hash_value(const APInt &Arg) {
587    if (Arg.isSingleWord())
588      return hash_combine(Arg.BitWidth, Arg.U.VAL);
589  
590    return hash_combine(
591        Arg.BitWidth,
592        hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
593  }
594  
595  unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
596    return static_cast<unsigned>(hash_value(Key));
597  }
598  
599  bool APInt::isSplat(unsigned SplatSizeInBits) const {
600    assert(getBitWidth() % SplatSizeInBits == 0 &&
601           "SplatSizeInBits must divide width!");
602    // We can check that all parts of an integer are equal by making use of a
603    // little trick: rotate and check if it's still the same value.
604    return *this == rotl(SplatSizeInBits);
605  }
606  
607  /// This function returns the high "numBits" bits of this APInt.
608  APInt APInt::getHiBits(unsigned numBits) const {
609    return this->lshr(BitWidth - numBits);
610  }
611  
612  /// This function returns the low "numBits" bits of this APInt.
613  APInt APInt::getLoBits(unsigned numBits) const {
614    APInt Result(getLowBitsSet(BitWidth, numBits));
615    Result &= *this;
616    return Result;
617  }
618  
619  /// Return a value containing V broadcasted over NewLen bits.
620  APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
621    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
622  
623    APInt Val = V.zext(NewLen);
624    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
625      Val |= Val << I;
626  
627    return Val;
628  }
629  
630  unsigned APInt::countLeadingZerosSlowCase() const {
631    unsigned Count = 0;
632    for (int i = getNumWords()-1; i >= 0; --i) {
633      uint64_t V = U.pVal[i];
634      if (V == 0)
635        Count += APINT_BITS_PER_WORD;
636      else {
637        Count += llvm::countl_zero(V);
638        break;
639      }
640    }
641    // Adjust for unused bits in the most significant word (they are zero).
642    unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
643    Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
644    return Count;
645  }
646  
647  unsigned APInt::countLeadingOnesSlowCase() const {
648    unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
649    unsigned shift;
650    if (!highWordBits) {
651      highWordBits = APINT_BITS_PER_WORD;
652      shift = 0;
653    } else {
654      shift = APINT_BITS_PER_WORD - highWordBits;
655    }
656    int i = getNumWords() - 1;
657    unsigned Count = llvm::countl_one(U.pVal[i] << shift);
658    if (Count == highWordBits) {
659      for (i--; i >= 0; --i) {
660        if (U.pVal[i] == WORDTYPE_MAX)
661          Count += APINT_BITS_PER_WORD;
662        else {
663          Count += llvm::countl_one(U.pVal[i]);
664          break;
665        }
666      }
667    }
668    return Count;
669  }
670  
671  unsigned APInt::countTrailingZerosSlowCase() const {
672    unsigned Count = 0;
673    unsigned i = 0;
674    for (; i < getNumWords() && U.pVal[i] == 0; ++i)
675      Count += APINT_BITS_PER_WORD;
676    if (i < getNumWords())
677      Count += llvm::countr_zero(U.pVal[i]);
678    return std::min(Count, BitWidth);
679  }
680  
681  unsigned APInt::countTrailingOnesSlowCase() const {
682    unsigned Count = 0;
683    unsigned i = 0;
684    for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
685      Count += APINT_BITS_PER_WORD;
686    if (i < getNumWords())
687      Count += llvm::countr_one(U.pVal[i]);
688    assert(Count <= BitWidth);
689    return Count;
690  }
691  
692  unsigned APInt::countPopulationSlowCase() const {
693    unsigned Count = 0;
694    for (unsigned i = 0; i < getNumWords(); ++i)
695      Count += llvm::popcount(U.pVal[i]);
696    return Count;
697  }
698  
699  bool APInt::intersectsSlowCase(const APInt &RHS) const {
700    for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701      if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
702        return true;
703  
704    return false;
705  }
706  
707  bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
708    for (unsigned i = 0, e = getNumWords(); i != e; ++i)
709      if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
710        return false;
711  
712    return true;
713  }
714  
715  APInt APInt::byteSwap() const {
716    assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
717    if (BitWidth == 16)
718      return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
719    if (BitWidth == 32)
720      return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
721    if (BitWidth <= 64) {
722      uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
723      Tmp1 >>= (64 - BitWidth);
724      return APInt(BitWidth, Tmp1);
725    }
726  
727    APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
728    for (unsigned I = 0, N = getNumWords(); I != N; ++I)
729      Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
730    if (Result.BitWidth != BitWidth) {
731      Result.lshrInPlace(Result.BitWidth - BitWidth);
732      Result.BitWidth = BitWidth;
733    }
734    return Result;
735  }
736  
737  APInt APInt::reverseBits() const {
738    switch (BitWidth) {
739    case 64:
740      return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
741    case 32:
742      return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
743    case 16:
744      return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
745    case 8:
746      return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
747    case 0:
748      return *this;
749    default:
750      break;
751    }
752  
753    APInt Val(*this);
754    APInt Reversed(BitWidth, 0);
755    unsigned S = BitWidth;
756  
757    for (; Val != 0; Val.lshrInPlace(1)) {
758      Reversed <<= 1;
759      Reversed |= Val[0];
760      --S;
761    }
762  
763    Reversed <<= S;
764    return Reversed;
765  }
766  
767  APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
768    // Fast-path a common case.
769    if (A == B) return A;
770  
771    // Corner cases: if either operand is zero, the other is the gcd.
772    if (!A) return B;
773    if (!B) return A;
774  
775    // Count common powers of 2 and remove all other powers of 2.
776    unsigned Pow2;
777    {
778      unsigned Pow2_A = A.countr_zero();
779      unsigned Pow2_B = B.countr_zero();
780      if (Pow2_A > Pow2_B) {
781        A.lshrInPlace(Pow2_A - Pow2_B);
782        Pow2 = Pow2_B;
783      } else if (Pow2_B > Pow2_A) {
784        B.lshrInPlace(Pow2_B - Pow2_A);
785        Pow2 = Pow2_A;
786      } else {
787        Pow2 = Pow2_A;
788      }
789    }
790  
791    // Both operands are odd multiples of 2^Pow_2:
792    //
793    //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
794    //
795    // This is a modified version of Stein's algorithm, taking advantage of
796    // efficient countTrailingZeros().
797    while (A != B) {
798      if (A.ugt(B)) {
799        A -= B;
800        A.lshrInPlace(A.countr_zero() - Pow2);
801      } else {
802        B -= A;
803        B.lshrInPlace(B.countr_zero() - Pow2);
804      }
805    }
806  
807    return A;
808  }
809  
810  APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
811    uint64_t I = bit_cast<uint64_t>(Double);
812  
813    // Get the sign bit from the highest order bit
814    bool isNeg = I >> 63;
815  
816    // Get the 11-bit exponent and adjust for the 1023 bit bias
817    int64_t exp = ((I >> 52) & 0x7ff) - 1023;
818  
819    // If the exponent is negative, the value is < 0 so just return 0.
820    if (exp < 0)
821      return APInt(width, 0u);
822  
823    // Extract the mantissa by clearing the top 12 bits (sign + exponent).
824    uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
825  
826    // If the exponent doesn't shift all bits out of the mantissa
827    if (exp < 52)
828      return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
829                      APInt(width, mantissa >> (52 - exp));
830  
831    // If the client didn't provide enough bits for us to shift the mantissa into
832    // then the result is undefined, just return 0
833    if (width <= exp - 52)
834      return APInt(width, 0);
835  
836    // Otherwise, we have to shift the mantissa bits up to the right location
837    APInt Tmp(width, mantissa);
838    Tmp <<= (unsigned)exp - 52;
839    return isNeg ? -Tmp : Tmp;
840  }
841  
842  /// This function converts this APInt to a double.
843  /// The layout for double is as following (IEEE Standard 754):
844  ///  --------------------------------------
845  /// |  Sign    Exponent    Fraction    Bias |
846  /// |-------------------------------------- |
847  /// |  1[63]   11[62-52]   52[51-00]   1023 |
848  ///  --------------------------------------
849  double APInt::roundToDouble(bool isSigned) const {
850  
851    // Handle the simple case where the value is contained in one uint64_t.
852    // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
853    if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
854      if (isSigned) {
855        int64_t sext = SignExtend64(getWord(0), BitWidth);
856        return double(sext);
857      } else
858        return double(getWord(0));
859    }
860  
861    // Determine if the value is negative.
862    bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
863  
864    // Construct the absolute value if we're negative.
865    APInt Tmp(isNeg ? -(*this) : (*this));
866  
867    // Figure out how many bits we're using.
868    unsigned n = Tmp.getActiveBits();
869  
870    // The exponent (without bias normalization) is just the number of bits
871    // we are using. Note that the sign bit is gone since we constructed the
872    // absolute value.
873    uint64_t exp = n;
874  
875    // Return infinity for exponent overflow
876    if (exp > 1023) {
877      if (!isSigned || !isNeg)
878        return std::numeric_limits<double>::infinity();
879      else
880        return -std::numeric_limits<double>::infinity();
881    }
882    exp += 1023; // Increment for 1023 bias
883  
884    // Number of bits in mantissa is 52. To obtain the mantissa value, we must
885    // extract the high 52 bits from the correct words in pVal.
886    uint64_t mantissa;
887    unsigned hiWord = whichWord(n-1);
888    if (hiWord == 0) {
889      mantissa = Tmp.U.pVal[0];
890      if (n > 52)
891        mantissa >>= n - 52; // shift down, we want the top 52 bits.
892    } else {
893      assert(hiWord > 0 && "huh?");
894      uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
895      uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
896      mantissa = hibits | lobits;
897    }
898  
899    // The leading bit of mantissa is implicit, so get rid of it.
900    uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
901    uint64_t I = sign | (exp << 52) | mantissa;
902    return bit_cast<double>(I);
903  }
904  
905  // Truncate to new width.
906  APInt APInt::trunc(unsigned width) const {
907    assert(width <= BitWidth && "Invalid APInt Truncate request");
908  
909    if (width <= APINT_BITS_PER_WORD)
910      return APInt(width, getRawData()[0]);
911  
912    if (width == BitWidth)
913      return *this;
914  
915    APInt Result(getMemory(getNumWords(width)), width);
916  
917    // Copy full words.
918    unsigned i;
919    for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
920      Result.U.pVal[i] = U.pVal[i];
921  
922    // Truncate and copy any partial word.
923    unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
924    if (bits != 0)
925      Result.U.pVal[i] = U.pVal[i] << bits >> bits;
926  
927    return Result;
928  }
929  
930  // Truncate to new width with unsigned saturation.
931  APInt APInt::truncUSat(unsigned width) const {
932    assert(width <= BitWidth && "Invalid APInt Truncate request");
933  
934    // Can we just losslessly truncate it?
935    if (isIntN(width))
936      return trunc(width);
937    // If not, then just return the new limit.
938    return APInt::getMaxValue(width);
939  }
940  
941  // Truncate to new width with signed saturation.
942  APInt APInt::truncSSat(unsigned width) const {
943    assert(width <= BitWidth && "Invalid APInt Truncate request");
944  
945    // Can we just losslessly truncate it?
946    if (isSignedIntN(width))
947      return trunc(width);
948    // If not, then just return the new limits.
949    return isNegative() ? APInt::getSignedMinValue(width)
950                        : APInt::getSignedMaxValue(width);
951  }
952  
953  // Sign extend to a new width.
954  APInt APInt::sext(unsigned Width) const {
955    assert(Width >= BitWidth && "Invalid APInt SignExtend request");
956  
957    if (Width <= APINT_BITS_PER_WORD)
958      return APInt(Width, SignExtend64(U.VAL, BitWidth));
959  
960    if (Width == BitWidth)
961      return *this;
962  
963    APInt Result(getMemory(getNumWords(Width)), Width);
964  
965    // Copy words.
966    std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
967  
968    // Sign extend the last word since there may be unused bits in the input.
969    Result.U.pVal[getNumWords() - 1] =
970        SignExtend64(Result.U.pVal[getNumWords() - 1],
971                     ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
972  
973    // Fill with sign bits.
974    std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
975                (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
976    Result.clearUnusedBits();
977    return Result;
978  }
979  
980  //  Zero extend to a new width.
981  APInt APInt::zext(unsigned width) const {
982    assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
983  
984    if (width <= APINT_BITS_PER_WORD)
985      return APInt(width, U.VAL);
986  
987    if (width == BitWidth)
988      return *this;
989  
990    APInt Result(getMemory(getNumWords(width)), width);
991  
992    // Copy words.
993    std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
994  
995    // Zero remaining words.
996    std::memset(Result.U.pVal + getNumWords(), 0,
997                (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
998  
999    return Result;
1000  }
1001  
1002  APInt APInt::zextOrTrunc(unsigned width) const {
1003    if (BitWidth < width)
1004      return zext(width);
1005    if (BitWidth > width)
1006      return trunc(width);
1007    return *this;
1008  }
1009  
1010  APInt APInt::sextOrTrunc(unsigned width) const {
1011    if (BitWidth < width)
1012      return sext(width);
1013    if (BitWidth > width)
1014      return trunc(width);
1015    return *this;
1016  }
1017  
1018  /// Arithmetic right-shift this APInt by shiftAmt.
1019  /// Arithmetic right-shift function.
1020  void APInt::ashrInPlace(const APInt &shiftAmt) {
1021    ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1022  }
1023  
1024  /// Arithmetic right-shift this APInt by shiftAmt.
1025  /// Arithmetic right-shift function.
1026  void APInt::ashrSlowCase(unsigned ShiftAmt) {
1027    // Don't bother performing a no-op shift.
1028    if (!ShiftAmt)
1029      return;
1030  
1031    // Save the original sign bit for later.
1032    bool Negative = isNegative();
1033  
1034    // WordShift is the inter-part shift; BitShift is intra-part shift.
1035    unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1036    unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1037  
1038    unsigned WordsToMove = getNumWords() - WordShift;
1039    if (WordsToMove != 0) {
1040      // Sign extend the last word to fill in the unused bits.
1041      U.pVal[getNumWords() - 1] = SignExtend64(
1042          U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1043  
1044      // Fastpath for moving by whole words.
1045      if (BitShift == 0) {
1046        std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1047      } else {
1048        // Move the words containing significant bits.
1049        for (unsigned i = 0; i != WordsToMove - 1; ++i)
1050          U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1051                      (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1052  
1053        // Handle the last word which has no high bits to copy.
1054        U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1055        // Sign extend one more time.
1056        U.pVal[WordsToMove - 1] =
1057            SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1058      }
1059    }
1060  
1061    // Fill in the remainder based on the original sign.
1062    std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1063                WordShift * APINT_WORD_SIZE);
1064    clearUnusedBits();
1065  }
1066  
1067  /// Logical right-shift this APInt by shiftAmt.
1068  /// Logical right-shift function.
1069  void APInt::lshrInPlace(const APInt &shiftAmt) {
1070    lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1071  }
1072  
1073  /// Logical right-shift this APInt by shiftAmt.
1074  /// Logical right-shift function.
1075  void APInt::lshrSlowCase(unsigned ShiftAmt) {
1076    tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1077  }
1078  
1079  /// Left-shift this APInt by shiftAmt.
1080  /// Left-shift function.
1081  APInt &APInt::operator<<=(const APInt &shiftAmt) {
1082    // It's undefined behavior in C to shift by BitWidth or greater.
1083    *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1084    return *this;
1085  }
1086  
1087  void APInt::shlSlowCase(unsigned ShiftAmt) {
1088    tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1089    clearUnusedBits();
1090  }
1091  
1092  // Calculate the rotate amount modulo the bit width.
1093  static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1094    if (LLVM_UNLIKELY(BitWidth == 0))
1095      return 0;
1096    unsigned rotBitWidth = rotateAmt.getBitWidth();
1097    APInt rot = rotateAmt;
1098    if (rotBitWidth < BitWidth) {
1099      // Extend the rotate APInt, so that the urem doesn't divide by 0.
1100      // e.g. APInt(1, 32) would give APInt(1, 0).
1101      rot = rotateAmt.zext(BitWidth);
1102    }
1103    rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1104    return rot.getLimitedValue(BitWidth);
1105  }
1106  
1107  APInt APInt::rotl(const APInt &rotateAmt) const {
1108    return rotl(rotateModulo(BitWidth, rotateAmt));
1109  }
1110  
1111  APInt APInt::rotl(unsigned rotateAmt) const {
1112    if (LLVM_UNLIKELY(BitWidth == 0))
1113      return *this;
1114    rotateAmt %= BitWidth;
1115    if (rotateAmt == 0)
1116      return *this;
1117    return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1118  }
1119  
1120  APInt APInt::rotr(const APInt &rotateAmt) const {
1121    return rotr(rotateModulo(BitWidth, rotateAmt));
1122  }
1123  
1124  APInt APInt::rotr(unsigned rotateAmt) const {
1125    if (BitWidth == 0)
1126      return *this;
1127    rotateAmt %= BitWidth;
1128    if (rotateAmt == 0)
1129      return *this;
1130    return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1131  }
1132  
1133  /// \returns the nearest log base 2 of this APInt. Ties round up.
1134  ///
1135  /// NOTE: When we have a BitWidth of 1, we define:
1136  ///
1137  ///   log2(0) = UINT32_MAX
1138  ///   log2(1) = 0
1139  ///
1140  /// to get around any mathematical concerns resulting from
1141  /// referencing 2 in a space where 2 does no exist.
1142  unsigned APInt::nearestLogBase2() const {
1143    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1144    // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1145    // UINT32_MAX.
1146    if (BitWidth == 1)
1147      return U.VAL - 1;
1148  
1149    // Handle the zero case.
1150    if (isZero())
1151      return UINT32_MAX;
1152  
1153    // The non-zero case is handled by computing:
1154    //
1155    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1156    //
1157    // where x[i] is referring to the value of the ith bit of x.
1158    unsigned lg = logBase2();
1159    return lg + unsigned((*this)[lg - 1]);
1160  }
1161  
1162  // Square Root - this method computes and returns the square root of "this".
1163  // Three mechanisms are used for computation. For small values (<= 5 bits),
1164  // a table lookup is done. This gets some performance for common cases. For
1165  // values using less than 52 bits, the value is converted to double and then
1166  // the libc sqrt function is called. The result is rounded and then converted
1167  // back to a uint64_t which is then used to construct the result. Finally,
1168  // the Babylonian method for computing square roots is used.
1169  APInt APInt::sqrt() const {
1170  
1171    // Determine the magnitude of the value.
1172    unsigned magnitude = getActiveBits();
1173  
1174    // Use a fast table for some small values. This also gets rid of some
1175    // rounding errors in libc sqrt for small values.
1176    if (magnitude <= 5) {
1177      static const uint8_t results[32] = {
1178        /*     0 */ 0,
1179        /*  1- 2 */ 1, 1,
1180        /*  3- 6 */ 2, 2, 2, 2,
1181        /*  7-12 */ 3, 3, 3, 3, 3, 3,
1182        /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1183        /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184        /*    31 */ 6
1185      };
1186      return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1187    }
1188  
1189    // If the magnitude of the value fits in less than 52 bits (the precision of
1190    // an IEEE double precision floating point value), then we can use the
1191    // libc sqrt function which will probably use a hardware sqrt computation.
1192    // This should be faster than the algorithm below.
1193    if (magnitude < 52) {
1194      return APInt(BitWidth,
1195                   uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1196                                                                 : U.pVal[0])))));
1197    }
1198  
1199    // Okay, all the short cuts are exhausted. We must compute it. The following
1200    // is a classical Babylonian method for computing the square root. This code
1201    // was adapted to APInt from a wikipedia article on such computations.
1202    // See http://www.wikipedia.org/ and go to the page named
1203    // Calculate_an_integer_square_root.
1204    unsigned nbits = BitWidth, i = 4;
1205    APInt testy(BitWidth, 16);
1206    APInt x_old(BitWidth, 1);
1207    APInt x_new(BitWidth, 0);
1208    APInt two(BitWidth, 2);
1209  
1210    // Select a good starting value using binary logarithms.
1211    for (;; i += 2, testy = testy.shl(2))
1212      if (i >= nbits || this->ule(testy)) {
1213        x_old = x_old.shl(i / 2);
1214        break;
1215      }
1216  
1217    // Use the Babylonian method to arrive at the integer square root:
1218    for (;;) {
1219      x_new = (this->udiv(x_old) + x_old).udiv(two);
1220      if (x_old.ule(x_new))
1221        break;
1222      x_old = x_new;
1223    }
1224  
1225    // Make sure we return the closest approximation
1226    // NOTE: The rounding calculation below is correct. It will produce an
1227    // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1228    // determined to be a rounding issue with pari/gp as it begins to use a
1229    // floating point representation after 192 bits. There are no discrepancies
1230    // between this algorithm and pari/gp for bit widths < 192 bits.
1231    APInt square(x_old * x_old);
1232    APInt nextSquare((x_old + 1) * (x_old +1));
1233    if (this->ult(square))
1234      return x_old;
1235    assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1236    APInt midpoint((nextSquare - square).udiv(two));
1237    APInt offset(*this - square);
1238    if (offset.ult(midpoint))
1239      return x_old;
1240    return x_old + 1;
1241  }
1242  
1243  /// Computes the multiplicative inverse of this APInt for a given modulo. The
1244  /// iterative extended Euclidean algorithm is used to solve for this value,
1245  /// however we simplify it to speed up calculating only the inverse, and take
1246  /// advantage of div+rem calculations. We also use some tricks to avoid copying
1247  /// (potentially large) APInts around.
1248  /// WARNING: a value of '0' may be returned,
1249  ///          signifying that no multiplicative inverse exists!
1250  APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1251    assert(ult(modulo) && "This APInt must be smaller than the modulo");
1252  
1253    // Using the properties listed at the following web page (accessed 06/21/08):
1254    //   http://www.numbertheory.org/php/euclid.html
1255    // (especially the properties numbered 3, 4 and 9) it can be proved that
1256    // BitWidth bits suffice for all the computations in the algorithm implemented
1257    // below. More precisely, this number of bits suffice if the multiplicative
1258    // inverse exists, but may not suffice for the general extended Euclidean
1259    // algorithm.
1260  
1261    APInt r[2] = { modulo, *this };
1262    APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1263    APInt q(BitWidth, 0);
1264  
1265    unsigned i;
1266    for (i = 0; r[i^1] != 0; i ^= 1) {
1267      // An overview of the math without the confusing bit-flipping:
1268      // q = r[i-2] / r[i-1]
1269      // r[i] = r[i-2] % r[i-1]
1270      // t[i] = t[i-2] - t[i-1] * q
1271      udivrem(r[i], r[i^1], q, r[i]);
1272      t[i] -= t[i^1] * q;
1273    }
1274  
1275    // If this APInt and the modulo are not coprime, there is no multiplicative
1276    // inverse, so return 0. We check this by looking at the next-to-last
1277    // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1278    // algorithm.
1279    if (r[i] != 1)
1280      return APInt(BitWidth, 0);
1281  
1282    // The next-to-last t is the multiplicative inverse.  However, we are
1283    // interested in a positive inverse. Calculate a positive one from a negative
1284    // one if necessary. A simple addition of the modulo suffices because
1285    // abs(t[i]) is known to be less than *this/2 (see the link above).
1286    if (t[i].isNegative())
1287      t[i] += modulo;
1288  
1289    return std::move(t[i]);
1290  }
1291  
1292  /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1293  /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1294  /// variables here have the same names as in the algorithm. Comments explain
1295  /// the algorithm and any deviation from it.
1296  static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1297                       unsigned m, unsigned n) {
1298    assert(u && "Must provide dividend");
1299    assert(v && "Must provide divisor");
1300    assert(q && "Must provide quotient");
1301    assert(u != v && u != q && v != q && "Must use different memory");
1302    assert(n>1 && "n must be > 1");
1303  
1304    // b denotes the base of the number system. In our case b is 2^32.
1305    const uint64_t b = uint64_t(1) << 32;
1306  
1307  // The DEBUG macros here tend to be spam in the debug output if you're not
1308  // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1309  #ifdef KNUTH_DEBUG
1310  #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1311  #else
1312  #define DEBUG_KNUTH(X) do {} while(false)
1313  #endif
1314  
1315    DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1316    DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1317    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1318    DEBUG_KNUTH(dbgs() << " by");
1319    DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1320    DEBUG_KNUTH(dbgs() << '\n');
1321    // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1322    // u and v by d. Note that we have taken Knuth's advice here to use a power
1323    // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1324    // 2 allows us to shift instead of multiply and it is easy to determine the
1325    // shift amount from the leading zeros.  We are basically normalizing the u
1326    // and v so that its high bits are shifted to the top of v's range without
1327    // overflow. Note that this can require an extra word in u so that u must
1328    // be of length m+n+1.
1329    unsigned shift = llvm::countl_zero(v[n - 1]);
1330    uint32_t v_carry = 0;
1331    uint32_t u_carry = 0;
1332    if (shift) {
1333      for (unsigned i = 0; i < m+n; ++i) {
1334        uint32_t u_tmp = u[i] >> (32 - shift);
1335        u[i] = (u[i] << shift) | u_carry;
1336        u_carry = u_tmp;
1337      }
1338      for (unsigned i = 0; i < n; ++i) {
1339        uint32_t v_tmp = v[i] >> (32 - shift);
1340        v[i] = (v[i] << shift) | v_carry;
1341        v_carry = v_tmp;
1342      }
1343    }
1344    u[m+n] = u_carry;
1345  
1346    DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1347    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1348    DEBUG_KNUTH(dbgs() << " by");
1349    DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1350    DEBUG_KNUTH(dbgs() << '\n');
1351  
1352    // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1353    int j = m;
1354    do {
1355      DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1356      // D3. [Calculate q'.].
1357      //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1358      //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1359      // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1360      // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1361      // on v[n-2] determines at high speed most of the cases in which the trial
1362      // value qp is one too large, and it eliminates all cases where qp is two
1363      // too large.
1364      uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1365      DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1366      uint64_t qp = dividend / v[n-1];
1367      uint64_t rp = dividend % v[n-1];
1368      if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1369        qp--;
1370        rp += v[n-1];
1371        if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1372          qp--;
1373      }
1374      DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1375  
1376      // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1377      // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1378      // consists of a simple multiplication by a one-place number, combined with
1379      // a subtraction.
1380      // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1381      // this step is actually negative, (u[j+n]...u[j]) should be left as the
1382      // true value plus b**(n+1), namely as the b's complement of
1383      // the true value, and a "borrow" to the left should be remembered.
1384      int64_t borrow = 0;
1385      for (unsigned i = 0; i < n; ++i) {
1386        uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1387        int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1388        u[j+i] = Lo_32(subres);
1389        borrow = Hi_32(p) - Hi_32(subres);
1390        DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1391                          << ", borrow = " << borrow << '\n');
1392      }
1393      bool isNeg = u[j+n] < borrow;
1394      u[j+n] -= Lo_32(borrow);
1395  
1396      DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1397      DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1398      DEBUG_KNUTH(dbgs() << '\n');
1399  
1400      // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1401      // negative, go to step D6; otherwise go on to step D7.
1402      q[j] = Lo_32(qp);
1403      if (isNeg) {
1404        // D6. [Add back]. The probability that this step is necessary is very
1405        // small, on the order of only 2/b. Make sure that test data accounts for
1406        // this possibility. Decrease q[j] by 1
1407        q[j]--;
1408        // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1409        // A carry will occur to the left of u[j+n], and it should be ignored
1410        // since it cancels with the borrow that occurred in D4.
1411        bool carry = false;
1412        for (unsigned i = 0; i < n; i++) {
1413          uint32_t limit = std::min(u[j+i],v[i]);
1414          u[j+i] += v[i] + carry;
1415          carry = u[j+i] < limit || (carry && u[j+i] == limit);
1416        }
1417        u[j+n] += carry;
1418      }
1419      DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1420      DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1421      DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1422  
1423      // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1424    } while (--j >= 0);
1425  
1426    DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1427    DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1428    DEBUG_KNUTH(dbgs() << '\n');
1429  
1430    // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1431    // remainder may be obtained by dividing u[...] by d. If r is non-null we
1432    // compute the remainder (urem uses this).
1433    if (r) {
1434      // The value d is expressed by the "shift" value above since we avoided
1435      // multiplication by d by using a shift left. So, all we have to do is
1436      // shift right here.
1437      if (shift) {
1438        uint32_t carry = 0;
1439        DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1440        for (int i = n-1; i >= 0; i--) {
1441          r[i] = (u[i] >> shift) | carry;
1442          carry = u[i] << (32 - shift);
1443          DEBUG_KNUTH(dbgs() << " " << r[i]);
1444        }
1445      } else {
1446        for (int i = n-1; i >= 0; i--) {
1447          r[i] = u[i];
1448          DEBUG_KNUTH(dbgs() << " " << r[i]);
1449        }
1450      }
1451      DEBUG_KNUTH(dbgs() << '\n');
1452    }
1453    DEBUG_KNUTH(dbgs() << '\n');
1454  }
1455  
1456  void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1457                     unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1458    assert(lhsWords >= rhsWords && "Fractional result");
1459  
1460    // First, compose the values into an array of 32-bit words instead of
1461    // 64-bit words. This is a necessity of both the "short division" algorithm
1462    // and the Knuth "classical algorithm" which requires there to be native
1463    // operations for +, -, and * on an m bit value with an m*2 bit result. We
1464    // can't use 64-bit operands here because we don't have native results of
1465    // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1466    // work on large-endian machines.
1467    unsigned n = rhsWords * 2;
1468    unsigned m = (lhsWords * 2) - n;
1469  
1470    // Allocate space for the temporary values we need either on the stack, if
1471    // it will fit, or on the heap if it won't.
1472    uint32_t SPACE[128];
1473    uint32_t *U = nullptr;
1474    uint32_t *V = nullptr;
1475    uint32_t *Q = nullptr;
1476    uint32_t *R = nullptr;
1477    if ((Remainder?4:3)*n+2*m+1 <= 128) {
1478      U = &SPACE[0];
1479      V = &SPACE[m+n+1];
1480      Q = &SPACE[(m+n+1) + n];
1481      if (Remainder)
1482        R = &SPACE[(m+n+1) + n + (m+n)];
1483    } else {
1484      U = new uint32_t[m + n + 1];
1485      V = new uint32_t[n];
1486      Q = new uint32_t[m+n];
1487      if (Remainder)
1488        R = new uint32_t[n];
1489    }
1490  
1491    // Initialize the dividend
1492    memset(U, 0, (m+n+1)*sizeof(uint32_t));
1493    for (unsigned i = 0; i < lhsWords; ++i) {
1494      uint64_t tmp = LHS[i];
1495      U[i * 2] = Lo_32(tmp);
1496      U[i * 2 + 1] = Hi_32(tmp);
1497    }
1498    U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1499  
1500    // Initialize the divisor
1501    memset(V, 0, (n)*sizeof(uint32_t));
1502    for (unsigned i = 0; i < rhsWords; ++i) {
1503      uint64_t tmp = RHS[i];
1504      V[i * 2] = Lo_32(tmp);
1505      V[i * 2 + 1] = Hi_32(tmp);
1506    }
1507  
1508    // initialize the quotient and remainder
1509    memset(Q, 0, (m+n) * sizeof(uint32_t));
1510    if (Remainder)
1511      memset(R, 0, n * sizeof(uint32_t));
1512  
1513    // Now, adjust m and n for the Knuth division. n is the number of words in
1514    // the divisor. m is the number of words by which the dividend exceeds the
1515    // divisor (i.e. m+n is the length of the dividend). These sizes must not
1516    // contain any zero words or the Knuth algorithm fails.
1517    for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1518      n--;
1519      m++;
1520    }
1521    for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1522      m--;
1523  
1524    // If we're left with only a single word for the divisor, Knuth doesn't work
1525    // so we implement the short division algorithm here. This is much simpler
1526    // and faster because we are certain that we can divide a 64-bit quantity
1527    // by a 32-bit quantity at hardware speed and short division is simply a
1528    // series of such operations. This is just like doing short division but we
1529    // are using base 2^32 instead of base 10.
1530    assert(n != 0 && "Divide by zero?");
1531    if (n == 1) {
1532      uint32_t divisor = V[0];
1533      uint32_t remainder = 0;
1534      for (int i = m; i >= 0; i--) {
1535        uint64_t partial_dividend = Make_64(remainder, U[i]);
1536        if (partial_dividend == 0) {
1537          Q[i] = 0;
1538          remainder = 0;
1539        } else if (partial_dividend < divisor) {
1540          Q[i] = 0;
1541          remainder = Lo_32(partial_dividend);
1542        } else if (partial_dividend == divisor) {
1543          Q[i] = 1;
1544          remainder = 0;
1545        } else {
1546          Q[i] = Lo_32(partial_dividend / divisor);
1547          remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1548        }
1549      }
1550      if (R)
1551        R[0] = remainder;
1552    } else {
1553      // Now we're ready to invoke the Knuth classical divide algorithm. In this
1554      // case n > 1.
1555      KnuthDiv(U, V, Q, R, m, n);
1556    }
1557  
1558    // If the caller wants the quotient
1559    if (Quotient) {
1560      for (unsigned i = 0; i < lhsWords; ++i)
1561        Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1562    }
1563  
1564    // If the caller wants the remainder
1565    if (Remainder) {
1566      for (unsigned i = 0; i < rhsWords; ++i)
1567        Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1568    }
1569  
1570    // Clean up the memory we allocated.
1571    if (U != &SPACE[0]) {
1572      delete [] U;
1573      delete [] V;
1574      delete [] Q;
1575      delete [] R;
1576    }
1577  }
1578  
1579  APInt APInt::udiv(const APInt &RHS) const {
1580    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1581  
1582    // First, deal with the easy case
1583    if (isSingleWord()) {
1584      assert(RHS.U.VAL != 0 && "Divide by zero?");
1585      return APInt(BitWidth, U.VAL / RHS.U.VAL);
1586    }
1587  
1588    // Get some facts about the LHS and RHS number of bits and words
1589    unsigned lhsWords = getNumWords(getActiveBits());
1590    unsigned rhsBits  = RHS.getActiveBits();
1591    unsigned rhsWords = getNumWords(rhsBits);
1592    assert(rhsWords && "Divided by zero???");
1593  
1594    // Deal with some degenerate cases
1595    if (!lhsWords)
1596      // 0 / X ===> 0
1597      return APInt(BitWidth, 0);
1598    if (rhsBits == 1)
1599      // X / 1 ===> X
1600      return *this;
1601    if (lhsWords < rhsWords || this->ult(RHS))
1602      // X / Y ===> 0, iff X < Y
1603      return APInt(BitWidth, 0);
1604    if (*this == RHS)
1605      // X / X ===> 1
1606      return APInt(BitWidth, 1);
1607    if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1608      // All high words are zero, just use native divide
1609      return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1610  
1611    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1612    APInt Quotient(BitWidth, 0); // to hold result.
1613    divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1614    return Quotient;
1615  }
1616  
1617  APInt APInt::udiv(uint64_t RHS) const {
1618    assert(RHS != 0 && "Divide by zero?");
1619  
1620    // First, deal with the easy case
1621    if (isSingleWord())
1622      return APInt(BitWidth, U.VAL / RHS);
1623  
1624    // Get some facts about the LHS words.
1625    unsigned lhsWords = getNumWords(getActiveBits());
1626  
1627    // Deal with some degenerate cases
1628    if (!lhsWords)
1629      // 0 / X ===> 0
1630      return APInt(BitWidth, 0);
1631    if (RHS == 1)
1632      // X / 1 ===> X
1633      return *this;
1634    if (this->ult(RHS))
1635      // X / Y ===> 0, iff X < Y
1636      return APInt(BitWidth, 0);
1637    if (*this == RHS)
1638      // X / X ===> 1
1639      return APInt(BitWidth, 1);
1640    if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1641      // All high words are zero, just use native divide
1642      return APInt(BitWidth, this->U.pVal[0] / RHS);
1643  
1644    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1645    APInt Quotient(BitWidth, 0); // to hold result.
1646    divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1647    return Quotient;
1648  }
1649  
1650  APInt APInt::sdiv(const APInt &RHS) const {
1651    if (isNegative()) {
1652      if (RHS.isNegative())
1653        return (-(*this)).udiv(-RHS);
1654      return -((-(*this)).udiv(RHS));
1655    }
1656    if (RHS.isNegative())
1657      return -(this->udiv(-RHS));
1658    return this->udiv(RHS);
1659  }
1660  
1661  APInt APInt::sdiv(int64_t RHS) const {
1662    if (isNegative()) {
1663      if (RHS < 0)
1664        return (-(*this)).udiv(-RHS);
1665      return -((-(*this)).udiv(RHS));
1666    }
1667    if (RHS < 0)
1668      return -(this->udiv(-RHS));
1669    return this->udiv(RHS);
1670  }
1671  
1672  APInt APInt::urem(const APInt &RHS) const {
1673    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1674    if (isSingleWord()) {
1675      assert(RHS.U.VAL != 0 && "Remainder by zero?");
1676      return APInt(BitWidth, U.VAL % RHS.U.VAL);
1677    }
1678  
1679    // Get some facts about the LHS
1680    unsigned lhsWords = getNumWords(getActiveBits());
1681  
1682    // Get some facts about the RHS
1683    unsigned rhsBits = RHS.getActiveBits();
1684    unsigned rhsWords = getNumWords(rhsBits);
1685    assert(rhsWords && "Performing remainder operation by zero ???");
1686  
1687    // Check the degenerate cases
1688    if (lhsWords == 0)
1689      // 0 % Y ===> 0
1690      return APInt(BitWidth, 0);
1691    if (rhsBits == 1)
1692      // X % 1 ===> 0
1693      return APInt(BitWidth, 0);
1694    if (lhsWords < rhsWords || this->ult(RHS))
1695      // X % Y ===> X, iff X < Y
1696      return *this;
1697    if (*this == RHS)
1698      // X % X == 0;
1699      return APInt(BitWidth, 0);
1700    if (lhsWords == 1)
1701      // All high words are zero, just use native remainder
1702      return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1703  
1704    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1705    APInt Remainder(BitWidth, 0);
1706    divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1707    return Remainder;
1708  }
1709  
1710  uint64_t APInt::urem(uint64_t RHS) const {
1711    assert(RHS != 0 && "Remainder by zero?");
1712  
1713    if (isSingleWord())
1714      return U.VAL % RHS;
1715  
1716    // Get some facts about the LHS
1717    unsigned lhsWords = getNumWords(getActiveBits());
1718  
1719    // Check the degenerate cases
1720    if (lhsWords == 0)
1721      // 0 % Y ===> 0
1722      return 0;
1723    if (RHS == 1)
1724      // X % 1 ===> 0
1725      return 0;
1726    if (this->ult(RHS))
1727      // X % Y ===> X, iff X < Y
1728      return getZExtValue();
1729    if (*this == RHS)
1730      // X % X == 0;
1731      return 0;
1732    if (lhsWords == 1)
1733      // All high words are zero, just use native remainder
1734      return U.pVal[0] % RHS;
1735  
1736    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1737    uint64_t Remainder;
1738    divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1739    return Remainder;
1740  }
1741  
1742  APInt APInt::srem(const APInt &RHS) const {
1743    if (isNegative()) {
1744      if (RHS.isNegative())
1745        return -((-(*this)).urem(-RHS));
1746      return -((-(*this)).urem(RHS));
1747    }
1748    if (RHS.isNegative())
1749      return this->urem(-RHS);
1750    return this->urem(RHS);
1751  }
1752  
1753  int64_t APInt::srem(int64_t RHS) const {
1754    if (isNegative()) {
1755      if (RHS < 0)
1756        return -((-(*this)).urem(-RHS));
1757      return -((-(*this)).urem(RHS));
1758    }
1759    if (RHS < 0)
1760      return this->urem(-RHS);
1761    return this->urem(RHS);
1762  }
1763  
1764  void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1765                      APInt &Quotient, APInt &Remainder) {
1766    assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1767    unsigned BitWidth = LHS.BitWidth;
1768  
1769    // First, deal with the easy case
1770    if (LHS.isSingleWord()) {
1771      assert(RHS.U.VAL != 0 && "Divide by zero?");
1772      uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1773      uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1774      Quotient = APInt(BitWidth, QuotVal);
1775      Remainder = APInt(BitWidth, RemVal);
1776      return;
1777    }
1778  
1779    // Get some size facts about the dividend and divisor
1780    unsigned lhsWords = getNumWords(LHS.getActiveBits());
1781    unsigned rhsBits  = RHS.getActiveBits();
1782    unsigned rhsWords = getNumWords(rhsBits);
1783    assert(rhsWords && "Performing divrem operation by zero ???");
1784  
1785    // Check the degenerate cases
1786    if (lhsWords == 0) {
1787      Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1788      Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1789      return;
1790    }
1791  
1792    if (rhsBits == 1) {
1793      Quotient = LHS;                   // X / 1 ===> X
1794      Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1795    }
1796  
1797    if (lhsWords < rhsWords || LHS.ult(RHS)) {
1798      Remainder = LHS;                  // X % Y ===> X, iff X < Y
1799      Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1800      return;
1801    }
1802  
1803    if (LHS == RHS) {
1804      Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1805      Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1806      return;
1807    }
1808  
1809    // Make sure there is enough space to hold the results.
1810    // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1811    // change the size. This is necessary if Quotient or Remainder is aliased
1812    // with LHS or RHS.
1813    Quotient.reallocate(BitWidth);
1814    Remainder.reallocate(BitWidth);
1815  
1816    if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1817      // There is only one word to consider so use the native versions.
1818      uint64_t lhsValue = LHS.U.pVal[0];
1819      uint64_t rhsValue = RHS.U.pVal[0];
1820      Quotient = lhsValue / rhsValue;
1821      Remainder = lhsValue % rhsValue;
1822      return;
1823    }
1824  
1825    // Okay, lets do it the long way
1826    divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1827           Remainder.U.pVal);
1828    // Clear the rest of the Quotient and Remainder.
1829    std::memset(Quotient.U.pVal + lhsWords, 0,
1830                (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1831    std::memset(Remainder.U.pVal + rhsWords, 0,
1832                (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1833  }
1834  
1835  void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1836                      uint64_t &Remainder) {
1837    assert(RHS != 0 && "Divide by zero?");
1838    unsigned BitWidth = LHS.BitWidth;
1839  
1840    // First, deal with the easy case
1841    if (LHS.isSingleWord()) {
1842      uint64_t QuotVal = LHS.U.VAL / RHS;
1843      Remainder = LHS.U.VAL % RHS;
1844      Quotient = APInt(BitWidth, QuotVal);
1845      return;
1846    }
1847  
1848    // Get some size facts about the dividend and divisor
1849    unsigned lhsWords = getNumWords(LHS.getActiveBits());
1850  
1851    // Check the degenerate cases
1852    if (lhsWords == 0) {
1853      Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1854      Remainder = 0;                    // 0 % Y ===> 0
1855      return;
1856    }
1857  
1858    if (RHS == 1) {
1859      Quotient = LHS;                   // X / 1 ===> X
1860      Remainder = 0;                    // X % 1 ===> 0
1861      return;
1862    }
1863  
1864    if (LHS.ult(RHS)) {
1865      Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1866      Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1867      return;
1868    }
1869  
1870    if (LHS == RHS) {
1871      Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1872      Remainder = 0;                    // X % X ===> 0;
1873      return;
1874    }
1875  
1876    // Make sure there is enough space to hold the results.
1877    // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1878    // change the size. This is necessary if Quotient is aliased with LHS.
1879    Quotient.reallocate(BitWidth);
1880  
1881    if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1882      // There is only one word to consider so use the native versions.
1883      uint64_t lhsValue = LHS.U.pVal[0];
1884      Quotient = lhsValue / RHS;
1885      Remainder = lhsValue % RHS;
1886      return;
1887    }
1888  
1889    // Okay, lets do it the long way
1890    divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1891    // Clear the rest of the Quotient.
1892    std::memset(Quotient.U.pVal + lhsWords, 0,
1893                (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1894  }
1895  
1896  void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1897                      APInt &Quotient, APInt &Remainder) {
1898    if (LHS.isNegative()) {
1899      if (RHS.isNegative())
1900        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1901      else {
1902        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1903        Quotient.negate();
1904      }
1905      Remainder.negate();
1906    } else if (RHS.isNegative()) {
1907      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1908      Quotient.negate();
1909    } else {
1910      APInt::udivrem(LHS, RHS, Quotient, Remainder);
1911    }
1912  }
1913  
1914  void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1915                      APInt &Quotient, int64_t &Remainder) {
1916    uint64_t R = Remainder;
1917    if (LHS.isNegative()) {
1918      if (RHS < 0)
1919        APInt::udivrem(-LHS, -RHS, Quotient, R);
1920      else {
1921        APInt::udivrem(-LHS, RHS, Quotient, R);
1922        Quotient.negate();
1923      }
1924      R = -R;
1925    } else if (RHS < 0) {
1926      APInt::udivrem(LHS, -RHS, Quotient, R);
1927      Quotient.negate();
1928    } else {
1929      APInt::udivrem(LHS, RHS, Quotient, R);
1930    }
1931    Remainder = R;
1932  }
1933  
1934  APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1935    APInt Res = *this+RHS;
1936    Overflow = isNonNegative() == RHS.isNonNegative() &&
1937               Res.isNonNegative() != isNonNegative();
1938    return Res;
1939  }
1940  
1941  APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1942    APInt Res = *this+RHS;
1943    Overflow = Res.ult(RHS);
1944    return Res;
1945  }
1946  
1947  APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1948    APInt Res = *this - RHS;
1949    Overflow = isNonNegative() != RHS.isNonNegative() &&
1950               Res.isNonNegative() != isNonNegative();
1951    return Res;
1952  }
1953  
1954  APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1955    APInt Res = *this-RHS;
1956    Overflow = Res.ugt(*this);
1957    return Res;
1958  }
1959  
1960  APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1961    // MININT/-1  -->  overflow.
1962    Overflow = isMinSignedValue() && RHS.isAllOnes();
1963    return sdiv(RHS);
1964  }
1965  
1966  APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1967    APInt Res = *this * RHS;
1968  
1969    if (RHS != 0)
1970      Overflow = Res.sdiv(RHS) != *this ||
1971                 (isMinSignedValue() && RHS.isAllOnes());
1972    else
1973      Overflow = false;
1974    return Res;
1975  }
1976  
1977  APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1978    if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1979      Overflow = true;
1980      return *this * RHS;
1981    }
1982  
1983    APInt Res = lshr(1) * RHS;
1984    Overflow = Res.isNegative();
1985    Res <<= 1;
1986    if ((*this)[0]) {
1987      Res += RHS;
1988      if (Res.ult(RHS))
1989        Overflow = true;
1990    }
1991    return Res;
1992  }
1993  
1994  APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1995    return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1996  }
1997  
1998  APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1999    Overflow = ShAmt >= getBitWidth();
2000    if (Overflow)
2001      return APInt(BitWidth, 0);
2002  
2003    if (isNonNegative()) // Don't allow sign change.
2004      Overflow = ShAmt >= countl_zero();
2005    else
2006      Overflow = ShAmt >= countl_one();
2007  
2008    return *this << ShAmt;
2009  }
2010  
2011  APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2012    return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2013  }
2014  
2015  APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
2016    Overflow = ShAmt >= getBitWidth();
2017    if (Overflow)
2018      return APInt(BitWidth, 0);
2019  
2020    Overflow = ShAmt > countl_zero();
2021  
2022    return *this << ShAmt;
2023  }
2024  
2025  APInt APInt::sadd_sat(const APInt &RHS) const {
2026    bool Overflow;
2027    APInt Res = sadd_ov(RHS, Overflow);
2028    if (!Overflow)
2029      return Res;
2030  
2031    return isNegative() ? APInt::getSignedMinValue(BitWidth)
2032                        : APInt::getSignedMaxValue(BitWidth);
2033  }
2034  
2035  APInt APInt::uadd_sat(const APInt &RHS) const {
2036    bool Overflow;
2037    APInt Res = uadd_ov(RHS, Overflow);
2038    if (!Overflow)
2039      return Res;
2040  
2041    return APInt::getMaxValue(BitWidth);
2042  }
2043  
2044  APInt APInt::ssub_sat(const APInt &RHS) const {
2045    bool Overflow;
2046    APInt Res = ssub_ov(RHS, Overflow);
2047    if (!Overflow)
2048      return Res;
2049  
2050    return isNegative() ? APInt::getSignedMinValue(BitWidth)
2051                        : APInt::getSignedMaxValue(BitWidth);
2052  }
2053  
2054  APInt APInt::usub_sat(const APInt &RHS) const {
2055    bool Overflow;
2056    APInt Res = usub_ov(RHS, Overflow);
2057    if (!Overflow)
2058      return Res;
2059  
2060    return APInt(BitWidth, 0);
2061  }
2062  
2063  APInt APInt::smul_sat(const APInt &RHS) const {
2064    bool Overflow;
2065    APInt Res = smul_ov(RHS, Overflow);
2066    if (!Overflow)
2067      return Res;
2068  
2069    // The result is negative if one and only one of inputs is negative.
2070    bool ResIsNegative = isNegative() ^ RHS.isNegative();
2071  
2072    return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2073                         : APInt::getSignedMaxValue(BitWidth);
2074  }
2075  
2076  APInt APInt::umul_sat(const APInt &RHS) const {
2077    bool Overflow;
2078    APInt Res = umul_ov(RHS, Overflow);
2079    if (!Overflow)
2080      return Res;
2081  
2082    return APInt::getMaxValue(BitWidth);
2083  }
2084  
2085  APInt APInt::sshl_sat(const APInt &RHS) const {
2086    return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2087  }
2088  
2089  APInt APInt::sshl_sat(unsigned RHS) const {
2090    bool Overflow;
2091    APInt Res = sshl_ov(RHS, Overflow);
2092    if (!Overflow)
2093      return Res;
2094  
2095    return isNegative() ? APInt::getSignedMinValue(BitWidth)
2096                        : APInt::getSignedMaxValue(BitWidth);
2097  }
2098  
2099  APInt APInt::ushl_sat(const APInt &RHS) const {
2100    return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2101  }
2102  
2103  APInt APInt::ushl_sat(unsigned RHS) const {
2104    bool Overflow;
2105    APInt Res = ushl_ov(RHS, Overflow);
2106    if (!Overflow)
2107      return Res;
2108  
2109    return APInt::getMaxValue(BitWidth);
2110  }
2111  
2112  void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2113    // Check our assumptions here
2114    assert(!str.empty() && "Invalid string length");
2115    assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2116            radix == 36) &&
2117           "Radix should be 2, 8, 10, 16, or 36!");
2118  
2119    StringRef::iterator p = str.begin();
2120    size_t slen = str.size();
2121    bool isNeg = *p == '-';
2122    if (*p == '-' || *p == '+') {
2123      p++;
2124      slen--;
2125      assert(slen && "String is only a sign, needs a value.");
2126    }
2127    assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2128    assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2129    assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2130    assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2131           "Insufficient bit width");
2132  
2133    // Allocate memory if needed
2134    if (isSingleWord())
2135      U.VAL = 0;
2136    else
2137      U.pVal = getClearedMemory(getNumWords());
2138  
2139    // Figure out if we can shift instead of multiply
2140    unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2141  
2142    // Enter digit traversal loop
2143    for (StringRef::iterator e = str.end(); p != e; ++p) {
2144      unsigned digit = getDigit(*p, radix);
2145      assert(digit < radix && "Invalid character in digit string");
2146  
2147      // Shift or multiply the value by the radix
2148      if (slen > 1) {
2149        if (shift)
2150          *this <<= shift;
2151        else
2152          *this *= radix;
2153      }
2154  
2155      // Add in the digit we just interpreted
2156      *this += digit;
2157    }
2158    // If its negative, put it in two's complement form
2159    if (isNeg)
2160      this->negate();
2161  }
2162  
2163  void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2164                       bool formatAsCLiteral, bool UpperCase) const {
2165    assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2166            Radix == 36) &&
2167           "Radix should be 2, 8, 10, 16, or 36!");
2168  
2169    const char *Prefix = "";
2170    if (formatAsCLiteral) {
2171      switch (Radix) {
2172        case 2:
2173          // Binary literals are a non-standard extension added in gcc 4.3:
2174          // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2175          Prefix = "0b";
2176          break;
2177        case 8:
2178          Prefix = "0";
2179          break;
2180        case 10:
2181          break; // No prefix
2182        case 16:
2183          Prefix = "0x";
2184          break;
2185        default:
2186          llvm_unreachable("Invalid radix!");
2187      }
2188    }
2189  
2190    // First, check for a zero value and just short circuit the logic below.
2191    if (isZero()) {
2192      while (*Prefix) {
2193        Str.push_back(*Prefix);
2194        ++Prefix;
2195      };
2196      Str.push_back('0');
2197      return;
2198    }
2199  
2200    static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2201                                     "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2202    const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2203  
2204    if (isSingleWord()) {
2205      char Buffer[65];
2206      char *BufPtr = std::end(Buffer);
2207  
2208      uint64_t N;
2209      if (!Signed) {
2210        N = getZExtValue();
2211      } else {
2212        int64_t I = getSExtValue();
2213        if (I >= 0) {
2214          N = I;
2215        } else {
2216          Str.push_back('-');
2217          N = -(uint64_t)I;
2218        }
2219      }
2220  
2221      while (*Prefix) {
2222        Str.push_back(*Prefix);
2223        ++Prefix;
2224      };
2225  
2226      while (N) {
2227        *--BufPtr = Digits[N % Radix];
2228        N /= Radix;
2229      }
2230      Str.append(BufPtr, std::end(Buffer));
2231      return;
2232    }
2233  
2234    APInt Tmp(*this);
2235  
2236    if (Signed && isNegative()) {
2237      // They want to print the signed version and it is a negative value
2238      // Flip the bits and add one to turn it into the equivalent positive
2239      // value and put a '-' in the result.
2240      Tmp.negate();
2241      Str.push_back('-');
2242    }
2243  
2244    while (*Prefix) {
2245      Str.push_back(*Prefix);
2246      ++Prefix;
2247    };
2248  
2249    // We insert the digits backward, then reverse them to get the right order.
2250    unsigned StartDig = Str.size();
2251  
2252    // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2253    // because the number of bits per digit (1, 3 and 4 respectively) divides
2254    // equally.  We just shift until the value is zero.
2255    if (Radix == 2 || Radix == 8 || Radix == 16) {
2256      // Just shift tmp right for each digit width until it becomes zero
2257      unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2258      unsigned MaskAmt = Radix - 1;
2259  
2260      while (Tmp.getBoolValue()) {
2261        unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2262        Str.push_back(Digits[Digit]);
2263        Tmp.lshrInPlace(ShiftAmt);
2264      }
2265    } else {
2266      while (Tmp.getBoolValue()) {
2267        uint64_t Digit;
2268        udivrem(Tmp, Radix, Tmp, Digit);
2269        assert(Digit < Radix && "divide failed");
2270        Str.push_back(Digits[Digit]);
2271      }
2272    }
2273  
2274    // Reverse the digits before returning.
2275    std::reverse(Str.begin()+StartDig, Str.end());
2276  }
2277  
2278  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2279  LLVM_DUMP_METHOD void APInt::dump() const {
2280    SmallString<40> S, U;
2281    this->toStringUnsigned(U);
2282    this->toStringSigned(S);
2283    dbgs() << "APInt(" << BitWidth << "b, "
2284           << U << "u " << S << "s)\n";
2285  }
2286  #endif
2287  
2288  void APInt::print(raw_ostream &OS, bool isSigned) const {
2289    SmallString<40> S;
2290    this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2291    OS << S;
2292  }
2293  
2294  // This implements a variety of operations on a representation of
2295  // arbitrary precision, two's-complement, bignum integer values.
2296  
2297  // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2298  // and unrestricting assumption.
2299  static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2300                "Part width must be divisible by 2!");
2301  
2302  // Returns the integer part with the least significant BITS set.
2303  // BITS cannot be zero.
2304  static inline APInt::WordType lowBitMask(unsigned bits) {
2305    assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2306    return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2307  }
2308  
2309  /// Returns the value of the lower half of PART.
2310  static inline APInt::WordType lowHalf(APInt::WordType part) {
2311    return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2312  }
2313  
2314  /// Returns the value of the upper half of PART.
2315  static inline APInt::WordType highHalf(APInt::WordType part) {
2316    return part >> (APInt::APINT_BITS_PER_WORD / 2);
2317  }
2318  
2319  /// Sets the least significant part of a bignum to the input value, and zeroes
2320  /// out higher parts.
2321  void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2322    assert(parts > 0);
2323    dst[0] = part;
2324    for (unsigned i = 1; i < parts; i++)
2325      dst[i] = 0;
2326  }
2327  
2328  /// Assign one bignum to another.
2329  void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2330    for (unsigned i = 0; i < parts; i++)
2331      dst[i] = src[i];
2332  }
2333  
2334  /// Returns true if a bignum is zero, false otherwise.
2335  bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2336    for (unsigned i = 0; i < parts; i++)
2337      if (src[i])
2338        return false;
2339  
2340    return true;
2341  }
2342  
2343  /// Extract the given bit of a bignum; returns 0 or 1.
2344  int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2345    return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2346  }
2347  
2348  /// Set the given bit of a bignum.
2349  void APInt::tcSetBit(WordType *parts, unsigned bit) {
2350    parts[whichWord(bit)] |= maskBit(bit);
2351  }
2352  
2353  /// Clears the given bit of a bignum.
2354  void APInt::tcClearBit(WordType *parts, unsigned bit) {
2355    parts[whichWord(bit)] &= ~maskBit(bit);
2356  }
2357  
2358  /// Returns the bit number of the least significant set bit of a number.  If the
2359  /// input number has no bits set UINT_MAX is returned.
2360  unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2361    for (unsigned i = 0; i < n; i++) {
2362      if (parts[i] != 0) {
2363        unsigned lsb = llvm::countr_zero(parts[i]);
2364        return lsb + i * APINT_BITS_PER_WORD;
2365      }
2366    }
2367  
2368    return UINT_MAX;
2369  }
2370  
2371  /// Returns the bit number of the most significant set bit of a number.
2372  /// If the input number has no bits set UINT_MAX is returned.
2373  unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2374    do {
2375      --n;
2376  
2377      if (parts[n] != 0) {
2378        static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2379        unsigned msb = llvm::Log2_64(parts[n]);
2380  
2381        return msb + n * APINT_BITS_PER_WORD;
2382      }
2383    } while (n);
2384  
2385    return UINT_MAX;
2386  }
2387  
2388  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2389  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2390  /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2391  /// */
2392  void
2393  APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2394                   unsigned srcBits, unsigned srcLSB) {
2395    unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2396    assert(dstParts <= dstCount);
2397  
2398    unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2399    tcAssign(dst, src + firstSrcPart, dstParts);
2400  
2401    unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2402    tcShiftRight(dst, dstParts, shift);
2403  
2404    // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2405    // in DST.  If this is less that srcBits, append the rest, else
2406    // clear the high bits.
2407    unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2408    if (n < srcBits) {
2409      WordType mask = lowBitMask (srcBits - n);
2410      dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2411                            << n % APINT_BITS_PER_WORD);
2412    } else if (n > srcBits) {
2413      if (srcBits % APINT_BITS_PER_WORD)
2414        dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2415    }
2416  
2417    // Clear high parts.
2418    while (dstParts < dstCount)
2419      dst[dstParts++] = 0;
2420  }
2421  
2422  //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2423  APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2424                               WordType c, unsigned parts) {
2425    assert(c <= 1);
2426  
2427    for (unsigned i = 0; i < parts; i++) {
2428      WordType l = dst[i];
2429      if (c) {
2430        dst[i] += rhs[i] + 1;
2431        c = (dst[i] <= l);
2432      } else {
2433        dst[i] += rhs[i];
2434        c = (dst[i] < l);
2435      }
2436    }
2437  
2438    return c;
2439  }
2440  
2441  /// This function adds a single "word" integer, src, to the multiple
2442  /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2443  /// 1 is returned if there is a carry out, otherwise 0 is returned.
2444  /// @returns the carry of the addition.
2445  APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2446                                   unsigned parts) {
2447    for (unsigned i = 0; i < parts; ++i) {
2448      dst[i] += src;
2449      if (dst[i] >= src)
2450        return 0; // No need to carry so exit early.
2451      src = 1; // Carry one to next digit.
2452    }
2453  
2454    return 1;
2455  }
2456  
2457  /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2458  APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2459                                    WordType c, unsigned parts) {
2460    assert(c <= 1);
2461  
2462    for (unsigned i = 0; i < parts; i++) {
2463      WordType l = dst[i];
2464      if (c) {
2465        dst[i] -= rhs[i] + 1;
2466        c = (dst[i] >= l);
2467      } else {
2468        dst[i] -= rhs[i];
2469        c = (dst[i] > l);
2470      }
2471    }
2472  
2473    return c;
2474  }
2475  
2476  /// This function subtracts a single "word" (64-bit word), src, from
2477  /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2478  /// no further borrowing is needed or it runs out of "words" in dst.  The result
2479  /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2480  /// exhausted. In other words, if src > dst then this function returns 1,
2481  /// otherwise 0.
2482  /// @returns the borrow out of the subtraction
2483  APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2484                                        unsigned parts) {
2485    for (unsigned i = 0; i < parts; ++i) {
2486      WordType Dst = dst[i];
2487      dst[i] -= src;
2488      if (src <= Dst)
2489        return 0; // No need to borrow so exit early.
2490      src = 1; // We have to "borrow 1" from next "word"
2491    }
2492  
2493    return 1;
2494  }
2495  
2496  /// Negate a bignum in-place.
2497  void APInt::tcNegate(WordType *dst, unsigned parts) {
2498    tcComplement(dst, parts);
2499    tcIncrement(dst, parts);
2500  }
2501  
2502  /// DST += SRC * MULTIPLIER + CARRY   if add is true
2503  /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2504  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2505  /// they must start at the same point, i.e. DST == SRC.
2506  /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2507  /// returned.  Otherwise DST is filled with the least significant
2508  /// DSTPARTS parts of the result, and if all of the omitted higher
2509  /// parts were zero return zero, otherwise overflow occurred and
2510  /// return one.
2511  int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2512                            WordType multiplier, WordType carry,
2513                            unsigned srcParts, unsigned dstParts,
2514                            bool add) {
2515    // Otherwise our writes of DST kill our later reads of SRC.
2516    assert(dst <= src || dst >= src + srcParts);
2517    assert(dstParts <= srcParts + 1);
2518  
2519    // N loops; minimum of dstParts and srcParts.
2520    unsigned n = std::min(dstParts, srcParts);
2521  
2522    for (unsigned i = 0; i < n; i++) {
2523      // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2524      // This cannot overflow, because:
2525      //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2526      // which is less than n^2.
2527      WordType srcPart = src[i];
2528      WordType low, mid, high;
2529      if (multiplier == 0 || srcPart == 0) {
2530        low = carry;
2531        high = 0;
2532      } else {
2533        low = lowHalf(srcPart) * lowHalf(multiplier);
2534        high = highHalf(srcPart) * highHalf(multiplier);
2535  
2536        mid = lowHalf(srcPart) * highHalf(multiplier);
2537        high += highHalf(mid);
2538        mid <<= APINT_BITS_PER_WORD / 2;
2539        if (low + mid < low)
2540          high++;
2541        low += mid;
2542  
2543        mid = highHalf(srcPart) * lowHalf(multiplier);
2544        high += highHalf(mid);
2545        mid <<= APINT_BITS_PER_WORD / 2;
2546        if (low + mid < low)
2547          high++;
2548        low += mid;
2549  
2550        // Now add carry.
2551        if (low + carry < low)
2552          high++;
2553        low += carry;
2554      }
2555  
2556      if (add) {
2557        // And now DST[i], and store the new low part there.
2558        if (low + dst[i] < low)
2559          high++;
2560        dst[i] += low;
2561      } else
2562        dst[i] = low;
2563  
2564      carry = high;
2565    }
2566  
2567    if (srcParts < dstParts) {
2568      // Full multiplication, there is no overflow.
2569      assert(srcParts + 1 == dstParts);
2570      dst[srcParts] = carry;
2571      return 0;
2572    }
2573  
2574    // We overflowed if there is carry.
2575    if (carry)
2576      return 1;
2577  
2578    // We would overflow if any significant unwritten parts would be
2579    // non-zero.  This is true if any remaining src parts are non-zero
2580    // and the multiplier is non-zero.
2581    if (multiplier)
2582      for (unsigned i = dstParts; i < srcParts; i++)
2583        if (src[i])
2584          return 1;
2585  
2586    // We fitted in the narrow destination.
2587    return 0;
2588  }
2589  
2590  /// DST = LHS * RHS, where DST has the same width as the operands and
2591  /// is filled with the least significant parts of the result.  Returns
2592  /// one if overflow occurred, otherwise zero.  DST must be disjoint
2593  /// from both operands.
2594  int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2595                        const WordType *rhs, unsigned parts) {
2596    assert(dst != lhs && dst != rhs);
2597  
2598    int overflow = 0;
2599    tcSet(dst, 0, parts);
2600  
2601    for (unsigned i = 0; i < parts; i++)
2602      overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2603                                 parts - i, true);
2604  
2605    return overflow;
2606  }
2607  
2608  /// DST = LHS * RHS, where DST has width the sum of the widths of the
2609  /// operands. No overflow occurs. DST must be disjoint from both operands.
2610  void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2611                             const WordType *rhs, unsigned lhsParts,
2612                             unsigned rhsParts) {
2613    // Put the narrower number on the LHS for less loops below.
2614    if (lhsParts > rhsParts)
2615      return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2616  
2617    assert(dst != lhs && dst != rhs);
2618  
2619    tcSet(dst, 0, rhsParts);
2620  
2621    for (unsigned i = 0; i < lhsParts; i++)
2622      tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2623  }
2624  
2625  // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2626  // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2627  // set REMAINDER to the remainder, return zero.  i.e.
2628  //
2629  //   OLD_LHS = RHS * LHS + REMAINDER
2630  //
2631  // SCRATCH is a bignum of the same size as the operands and result for
2632  // use by the routine; its contents need not be initialized and are
2633  // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2634  int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2635                      WordType *remainder, WordType *srhs,
2636                      unsigned parts) {
2637    assert(lhs != remainder && lhs != srhs && remainder != srhs);
2638  
2639    unsigned shiftCount = tcMSB(rhs, parts) + 1;
2640    if (shiftCount == 0)
2641      return true;
2642  
2643    shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2644    unsigned n = shiftCount / APINT_BITS_PER_WORD;
2645    WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2646  
2647    tcAssign(srhs, rhs, parts);
2648    tcShiftLeft(srhs, parts, shiftCount);
2649    tcAssign(remainder, lhs, parts);
2650    tcSet(lhs, 0, parts);
2651  
2652    // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2653    // total.
2654    for (;;) {
2655      int compare = tcCompare(remainder, srhs, parts);
2656      if (compare >= 0) {
2657        tcSubtract(remainder, srhs, 0, parts);
2658        lhs[n] |= mask;
2659      }
2660  
2661      if (shiftCount == 0)
2662        break;
2663      shiftCount--;
2664      tcShiftRight(srhs, parts, 1);
2665      if ((mask >>= 1) == 0) {
2666        mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2667        n--;
2668      }
2669    }
2670  
2671    return false;
2672  }
2673  
2674  /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2675  /// no restrictions on Count.
2676  void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2677    // Don't bother performing a no-op shift.
2678    if (!Count)
2679      return;
2680  
2681    // WordShift is the inter-part shift; BitShift is the intra-part shift.
2682    unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2683    unsigned BitShift = Count % APINT_BITS_PER_WORD;
2684  
2685    // Fastpath for moving by whole words.
2686    if (BitShift == 0) {
2687      std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2688    } else {
2689      while (Words-- > WordShift) {
2690        Dst[Words] = Dst[Words - WordShift] << BitShift;
2691        if (Words > WordShift)
2692          Dst[Words] |=
2693            Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2694      }
2695    }
2696  
2697    // Fill in the remainder with 0s.
2698    std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2699  }
2700  
2701  /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2702  /// are no restrictions on Count.
2703  void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2704    // Don't bother performing a no-op shift.
2705    if (!Count)
2706      return;
2707  
2708    // WordShift is the inter-part shift; BitShift is the intra-part shift.
2709    unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2710    unsigned BitShift = Count % APINT_BITS_PER_WORD;
2711  
2712    unsigned WordsToMove = Words - WordShift;
2713    // Fastpath for moving by whole words.
2714    if (BitShift == 0) {
2715      std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2716    } else {
2717      for (unsigned i = 0; i != WordsToMove; ++i) {
2718        Dst[i] = Dst[i + WordShift] >> BitShift;
2719        if (i + 1 != WordsToMove)
2720          Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2721      }
2722    }
2723  
2724    // Fill in the remainder with 0s.
2725    std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2726  }
2727  
2728  // Comparison (unsigned) of two bignums.
2729  int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2730                       unsigned parts) {
2731    while (parts) {
2732      parts--;
2733      if (lhs[parts] != rhs[parts])
2734        return (lhs[parts] > rhs[parts]) ? 1 : -1;
2735    }
2736  
2737    return 0;
2738  }
2739  
2740  APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2741                                     APInt::Rounding RM) {
2742    // Currently udivrem always rounds down.
2743    switch (RM) {
2744    case APInt::Rounding::DOWN:
2745    case APInt::Rounding::TOWARD_ZERO:
2746      return A.udiv(B);
2747    case APInt::Rounding::UP: {
2748      APInt Quo, Rem;
2749      APInt::udivrem(A, B, Quo, Rem);
2750      if (Rem.isZero())
2751        return Quo;
2752      return Quo + 1;
2753    }
2754    }
2755    llvm_unreachable("Unknown APInt::Rounding enum");
2756  }
2757  
2758  APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2759                                     APInt::Rounding RM) {
2760    switch (RM) {
2761    case APInt::Rounding::DOWN:
2762    case APInt::Rounding::UP: {
2763      APInt Quo, Rem;
2764      APInt::sdivrem(A, B, Quo, Rem);
2765      if (Rem.isZero())
2766        return Quo;
2767      // This algorithm deals with arbitrary rounding mode used by sdivrem.
2768      // We want to check whether the non-integer part of the mathematical value
2769      // is negative or not. If the non-integer part is negative, we need to round
2770      // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2771      // already rounded down.
2772      if (RM == APInt::Rounding::DOWN) {
2773        if (Rem.isNegative() != B.isNegative())
2774          return Quo - 1;
2775        return Quo;
2776      }
2777      if (Rem.isNegative() != B.isNegative())
2778        return Quo;
2779      return Quo + 1;
2780    }
2781    // Currently sdiv rounds towards zero.
2782    case APInt::Rounding::TOWARD_ZERO:
2783      return A.sdiv(B);
2784    }
2785    llvm_unreachable("Unknown APInt::Rounding enum");
2786  }
2787  
2788  std::optional<APInt>
2789  llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2790                                             unsigned RangeWidth) {
2791    unsigned CoeffWidth = A.getBitWidth();
2792    assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2793    assert(RangeWidth <= CoeffWidth &&
2794           "Value range width should be less than coefficient width");
2795    assert(RangeWidth > 1 && "Value range bit width should be > 1");
2796  
2797    LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2798                      << "x + " << C << ", rw:" << RangeWidth << '\n');
2799  
2800    // Identify 0 as a (non)solution immediately.
2801    if (C.sextOrTrunc(RangeWidth).isZero()) {
2802      LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2803      return APInt(CoeffWidth, 0);
2804    }
2805  
2806    // The result of APInt arithmetic has the same bit width as the operands,
2807    // so it can actually lose high bits. A product of two n-bit integers needs
2808    // 2n-1 bits to represent the full value.
2809    // The operation done below (on quadratic coefficients) that can produce
2810    // the largest value is the evaluation of the equation during bisection,
2811    // which needs 3 times the bitwidth of the coefficient, so the total number
2812    // of required bits is 3n.
2813    //
2814    // The purpose of this extension is to simulate the set Z of all integers,
2815    // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2816    // and negative numbers (not so much in a modulo arithmetic). The method
2817    // used to solve the equation is based on the standard formula for real
2818    // numbers, and uses the concepts of "positive" and "negative" with their
2819    // usual meanings.
2820    CoeffWidth *= 3;
2821    A = A.sext(CoeffWidth);
2822    B = B.sext(CoeffWidth);
2823    C = C.sext(CoeffWidth);
2824  
2825    // Make A > 0 for simplicity. Negate cannot overflow at this point because
2826    // the bit width has increased.
2827    if (A.isNegative()) {
2828      A.negate();
2829      B.negate();
2830      C.negate();
2831    }
2832  
2833    // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2834    // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2835    // and R = 2^BitWidth.
2836    // Since we're trying not only to find exact solutions, but also values
2837    // that "wrap around", such a set will always have a solution, i.e. an x
2838    // that satisfies at least one of the equations, or such that |q(x)|
2839    // exceeds kR, while |q(x-1)| for the same k does not.
2840    //
2841    // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2842    // positive solution n (in the above sense), and also such that the n
2843    // will be the least among all solutions corresponding to k = 0, 1, ...
2844    // (more precisely, the least element in the set
2845    //   { n(k) | k is such that a solution n(k) exists }).
2846    //
2847    // Consider the parabola (over real numbers) that corresponds to the
2848    // quadratic equation. Since A > 0, the arms of the parabola will point
2849    // up. Picking different values of k will shift it up and down by R.
2850    //
2851    // We want to shift the parabola in such a way as to reduce the problem
2852    // of solving q(x) = kR to solving shifted_q(x) = 0.
2853    // (The interesting solutions are the ceilings of the real number
2854    // solutions.)
2855    APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2856    APInt TwoA = 2 * A;
2857    APInt SqrB = B * B;
2858    bool PickLow;
2859  
2860    auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2861      assert(A.isStrictlyPositive());
2862      APInt T = V.abs().urem(A);
2863      if (T.isZero())
2864        return V;
2865      return V.isNegative() ? V+T : V+(A-T);
2866    };
2867  
2868    // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2869    // iff B is positive.
2870    if (B.isNonNegative()) {
2871      // If B >= 0, the vertex it at a negative location (or at 0), so in
2872      // order to have a non-negative solution we need to pick k that makes
2873      // C-kR negative. To satisfy all the requirements for the solution
2874      // that we are looking for, it needs to be closest to 0 of all k.
2875      C = C.srem(R);
2876      if (C.isStrictlyPositive())
2877        C -= R;
2878      // Pick the greater solution.
2879      PickLow = false;
2880    } else {
2881      // If B < 0, the vertex is at a positive location. For any solution
2882      // to exist, the discriminant must be non-negative. This means that
2883      // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2884      // lower bound on values of k: kR >= C - B^2/4A.
2885      APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2886      // Round LowkR up (towards +inf) to the nearest kR.
2887      LowkR = RoundUp(LowkR, R);
2888  
2889      // If there exists k meeting the condition above, and such that
2890      // C-kR > 0, there will be two positive real number solutions of
2891      // q(x) = kR. Out of all such values of k, pick the one that makes
2892      // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2893      // In other words, find maximum k such that LowkR <= kR < C.
2894      if (C.sgt(LowkR)) {
2895        // If LowkR < C, then such a k is guaranteed to exist because
2896        // LowkR itself is a multiple of R.
2897        C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2898        // Pick the smaller solution.
2899        PickLow = true;
2900      } else {
2901        // If C-kR < 0 for all potential k's, it means that one solution
2902        // will be negative, while the other will be positive. The positive
2903        // solution will shift towards 0 if the parabola is moved up.
2904        // Pick the kR closest to the lower bound (i.e. make C-kR closest
2905        // to 0, or in other words, out of all parabolas that have solutions,
2906        // pick the one that is the farthest "up").
2907        // Since LowkR is itself a multiple of R, simply take C-LowkR.
2908        C -= LowkR;
2909        // Pick the greater solution.
2910        PickLow = false;
2911      }
2912    }
2913  
2914    LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2915                      << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2916  
2917    APInt D = SqrB - 4*A*C;
2918    assert(D.isNonNegative() && "Negative discriminant");
2919    APInt SQ = D.sqrt();
2920  
2921    APInt Q = SQ * SQ;
2922    bool InexactSQ = Q != D;
2923    // The calculated SQ may actually be greater than the exact (non-integer)
2924    // value. If that's the case, decrement SQ to get a value that is lower.
2925    if (Q.sgt(D))
2926      SQ -= 1;
2927  
2928    APInt X;
2929    APInt Rem;
2930  
2931    // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2932    // When using the quadratic formula directly, the calculated low root
2933    // may be greater than the exact one, since we would be subtracting SQ.
2934    // To make sure that the calculated root is not greater than the exact
2935    // one, subtract SQ+1 when calculating the low root (for inexact value
2936    // of SQ).
2937    if (PickLow)
2938      APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2939    else
2940      APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2941  
2942    // The updated coefficients should be such that the (exact) solution is
2943    // positive. Since APInt division rounds towards 0, the calculated one
2944    // can be 0, but cannot be negative.
2945    assert(X.isNonNegative() && "Solution should be non-negative");
2946  
2947    if (!InexactSQ && Rem.isZero()) {
2948      LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2949      return X;
2950    }
2951  
2952    assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2953    // The exact value of the square root of D should be between SQ and SQ+1.
2954    // This implies that the solution should be between that corresponding to
2955    // SQ (i.e. X) and that corresponding to SQ+1.
2956    //
2957    // The calculated X cannot be greater than the exact (real) solution.
2958    // Actually it must be strictly less than the exact solution, while
2959    // X+1 will be greater than or equal to it.
2960  
2961    APInt VX = (A*X + B)*X + C;
2962    APInt VY = VX + TwoA*X + A + B;
2963    bool SignChange =
2964        VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2965    // If the sign did not change between X and X+1, X is not a valid solution.
2966    // This could happen when the actual (exact) roots don't have an integer
2967    // between them, so they would both be contained between X and X+1.
2968    if (!SignChange) {
2969      LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2970      return std::nullopt;
2971    }
2972  
2973    X += 1;
2974    LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2975    return X;
2976  }
2977  
2978  std::optional<unsigned>
2979  llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2980    assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2981    if (A == B)
2982      return std::nullopt;
2983    return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2984  }
2985  
2986  APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2987                                     bool MatchAllBits) {
2988    unsigned OldBitWidth = A.getBitWidth();
2989    assert((((OldBitWidth % NewBitWidth) == 0) ||
2990            ((NewBitWidth % OldBitWidth) == 0)) &&
2991           "One size should be a multiple of the other one. "
2992           "Can't do fractional scaling.");
2993  
2994    // Check for matching bitwidths.
2995    if (OldBitWidth == NewBitWidth)
2996      return A;
2997  
2998    APInt NewA = APInt::getZero(NewBitWidth);
2999  
3000    // Check for null input.
3001    if (A.isZero())
3002      return NewA;
3003  
3004    if (NewBitWidth > OldBitWidth) {
3005      // Repeat bits.
3006      unsigned Scale = NewBitWidth / OldBitWidth;
3007      for (unsigned i = 0; i != OldBitWidth; ++i)
3008        if (A[i])
3009          NewA.setBits(i * Scale, (i + 1) * Scale);
3010    } else {
3011      unsigned Scale = OldBitWidth / NewBitWidth;
3012      for (unsigned i = 0; i != NewBitWidth; ++i) {
3013        if (MatchAllBits) {
3014          if (A.extractBits(Scale, i * Scale).isAllOnes())
3015            NewA.setBit(i);
3016        } else {
3017          if (!A.extractBits(Scale, i * Scale).isZero())
3018            NewA.setBit(i);
3019        }
3020      }
3021    }
3022  
3023    return NewA;
3024  }
3025  
3026  /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3027  /// with the integer held in IntVal.
3028  void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3029                              unsigned StoreBytes) {
3030    assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3031    const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3032  
3033    if (sys::IsLittleEndianHost) {
3034      // Little-endian host - the source is ordered from LSB to MSB.  Order the
3035      // destination from LSB to MSB: Do a straight copy.
3036      memcpy(Dst, Src, StoreBytes);
3037    } else {
3038      // Big-endian host - the source is an array of 64 bit words ordered from
3039      // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3040      // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3041      while (StoreBytes > sizeof(uint64_t)) {
3042        StoreBytes -= sizeof(uint64_t);
3043        // May not be aligned so use memcpy.
3044        memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3045        Src += sizeof(uint64_t);
3046      }
3047  
3048      memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3049    }
3050  }
3051  
3052  /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3053  /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3054  void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3055                               unsigned LoadBytes) {
3056    assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3057    uint8_t *Dst = reinterpret_cast<uint8_t *>(
3058                     const_cast<uint64_t *>(IntVal.getRawData()));
3059  
3060    if (sys::IsLittleEndianHost)
3061      // Little-endian host - the destination must be ordered from LSB to MSB.
3062      // The source is ordered from LSB to MSB: Do a straight copy.
3063      memcpy(Dst, Src, LoadBytes);
3064    else {
3065      // Big-endian - the destination is an array of 64 bit words ordered from
3066      // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3067      // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3068      // a word.
3069      while (LoadBytes > sizeof(uint64_t)) {
3070        LoadBytes -= sizeof(uint64_t);
3071        // May not be aligned so use memcpy.
3072        memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3073        Dst += sizeof(uint64_t);
3074      }
3075  
3076      memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3077    }
3078  }
3079