xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APInt.cpp (revision a977168c48d45085cdf0c40f9b9bde3850b1f3ea)
1  //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements a class to represent arbitrary precision integer
10  // constant values and provide a variety of arithmetic operations on them.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/ADT/APInt.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/FoldingSet.h"
17  #include "llvm/ADT/Hashing.h"
18  #include "llvm/ADT/Optional.h"
19  #include "llvm/ADT/SmallString.h"
20  #include "llvm/ADT/StringRef.h"
21  #include "llvm/ADT/bit.h"
22  #include "llvm/Config/llvm-config.h"
23  #include "llvm/Support/Debug.h"
24  #include "llvm/Support/ErrorHandling.h"
25  #include "llvm/Support/MathExtras.h"
26  #include "llvm/Support/raw_ostream.h"
27  #include <cmath>
28  #include <cstring>
29  using namespace llvm;
30  
31  #define DEBUG_TYPE "apint"
32  
33  /// A utility function for allocating memory, checking for allocation failures,
34  /// and ensuring the contents are zeroed.
35  inline static uint64_t* getClearedMemory(unsigned numWords) {
36    uint64_t *result = new uint64_t[numWords];
37    memset(result, 0, numWords * sizeof(uint64_t));
38    return result;
39  }
40  
41  /// A utility function for allocating memory and checking for allocation
42  /// failure.  The content is not zeroed.
43  inline static uint64_t* getMemory(unsigned numWords) {
44    return new uint64_t[numWords];
45  }
46  
47  /// A utility function that converts a character to a digit.
48  inline static unsigned getDigit(char cdigit, uint8_t radix) {
49    unsigned r;
50  
51    if (radix == 16 || radix == 36) {
52      r = cdigit - '0';
53      if (r <= 9)
54        return r;
55  
56      r = cdigit - 'A';
57      if (r <= radix - 11U)
58        return r + 10;
59  
60      r = cdigit - 'a';
61      if (r <= radix - 11U)
62        return r + 10;
63  
64      radix = 10;
65    }
66  
67    r = cdigit - '0';
68    if (r < radix)
69      return r;
70  
71    return -1U;
72  }
73  
74  
75  void APInt::initSlowCase(uint64_t val, bool isSigned) {
76    U.pVal = getClearedMemory(getNumWords());
77    U.pVal[0] = val;
78    if (isSigned && int64_t(val) < 0)
79      for (unsigned i = 1; i < getNumWords(); ++i)
80        U.pVal[i] = WORDTYPE_MAX;
81    clearUnusedBits();
82  }
83  
84  void APInt::initSlowCase(const APInt& that) {
85    U.pVal = getMemory(getNumWords());
86    memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
87  }
88  
89  void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
90    assert(bigVal.data() && "Null pointer detected!");
91    if (isSingleWord())
92      U.VAL = bigVal[0];
93    else {
94      // Get memory, cleared to 0
95      U.pVal = getClearedMemory(getNumWords());
96      // Calculate the number of words to copy
97      unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
98      // Copy the words from bigVal to pVal
99      memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
100    }
101    // Make sure unused high bits are cleared
102    clearUnusedBits();
103  }
104  
105  APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
106    initFromArray(bigVal);
107  }
108  
109  APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
110      : BitWidth(numBits) {
111    initFromArray(makeArrayRef(bigVal, numWords));
112  }
113  
114  APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
115      : BitWidth(numbits) {
116    fromString(numbits, Str, radix);
117  }
118  
119  void APInt::reallocate(unsigned NewBitWidth) {
120    // If the number of words is the same we can just change the width and stop.
121    if (getNumWords() == getNumWords(NewBitWidth)) {
122      BitWidth = NewBitWidth;
123      return;
124    }
125  
126    // If we have an allocation, delete it.
127    if (!isSingleWord())
128      delete [] U.pVal;
129  
130    // Update BitWidth.
131    BitWidth = NewBitWidth;
132  
133    // If we are supposed to have an allocation, create it.
134    if (!isSingleWord())
135      U.pVal = getMemory(getNumWords());
136  }
137  
138  void APInt::assignSlowCase(const APInt &RHS) {
139    // Don't do anything for X = X
140    if (this == &RHS)
141      return;
142  
143    // Adjust the bit width and handle allocations as necessary.
144    reallocate(RHS.getBitWidth());
145  
146    // Copy the data.
147    if (isSingleWord())
148      U.VAL = RHS.U.VAL;
149    else
150      memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
151  }
152  
153  /// This method 'profiles' an APInt for use with FoldingSet.
154  void APInt::Profile(FoldingSetNodeID& ID) const {
155    ID.AddInteger(BitWidth);
156  
157    if (isSingleWord()) {
158      ID.AddInteger(U.VAL);
159      return;
160    }
161  
162    unsigned NumWords = getNumWords();
163    for (unsigned i = 0; i < NumWords; ++i)
164      ID.AddInteger(U.pVal[i]);
165  }
166  
167  /// Prefix increment operator. Increments the APInt by one.
168  APInt& APInt::operator++() {
169    if (isSingleWord())
170      ++U.VAL;
171    else
172      tcIncrement(U.pVal, getNumWords());
173    return clearUnusedBits();
174  }
175  
176  /// Prefix decrement operator. Decrements the APInt by one.
177  APInt& APInt::operator--() {
178    if (isSingleWord())
179      --U.VAL;
180    else
181      tcDecrement(U.pVal, getNumWords());
182    return clearUnusedBits();
183  }
184  
185  /// Adds the RHS APInt to this APInt.
186  /// @returns this, after addition of RHS.
187  /// Addition assignment operator.
188  APInt& APInt::operator+=(const APInt& RHS) {
189    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
190    if (isSingleWord())
191      U.VAL += RHS.U.VAL;
192    else
193      tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
194    return clearUnusedBits();
195  }
196  
197  APInt& APInt::operator+=(uint64_t RHS) {
198    if (isSingleWord())
199      U.VAL += RHS;
200    else
201      tcAddPart(U.pVal, RHS, getNumWords());
202    return clearUnusedBits();
203  }
204  
205  /// Subtracts the RHS APInt from this APInt
206  /// @returns this, after subtraction
207  /// Subtraction assignment operator.
208  APInt& APInt::operator-=(const APInt& RHS) {
209    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
210    if (isSingleWord())
211      U.VAL -= RHS.U.VAL;
212    else
213      tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
214    return clearUnusedBits();
215  }
216  
217  APInt& APInt::operator-=(uint64_t RHS) {
218    if (isSingleWord())
219      U.VAL -= RHS;
220    else
221      tcSubtractPart(U.pVal, RHS, getNumWords());
222    return clearUnusedBits();
223  }
224  
225  APInt APInt::operator*(const APInt& RHS) const {
226    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
227    if (isSingleWord())
228      return APInt(BitWidth, U.VAL * RHS.U.VAL);
229  
230    APInt Result(getMemory(getNumWords()), getBitWidth());
231    tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
232    Result.clearUnusedBits();
233    return Result;
234  }
235  
236  void APInt::andAssignSlowCase(const APInt &RHS) {
237    WordType *dst = U.pVal, *rhs = RHS.U.pVal;
238    for (size_t i = 0, e = getNumWords(); i != e; ++i)
239      dst[i] &= rhs[i];
240  }
241  
242  void APInt::orAssignSlowCase(const APInt &RHS) {
243    WordType *dst = U.pVal, *rhs = RHS.U.pVal;
244    for (size_t i = 0, e = getNumWords(); i != e; ++i)
245      dst[i] |= rhs[i];
246  }
247  
248  void APInt::xorAssignSlowCase(const APInt &RHS) {
249    WordType *dst = U.pVal, *rhs = RHS.U.pVal;
250    for (size_t i = 0, e = getNumWords(); i != e; ++i)
251      dst[i] ^= rhs[i];
252  }
253  
254  APInt &APInt::operator*=(const APInt &RHS) {
255    *this = *this * RHS;
256    return *this;
257  }
258  
259  APInt& APInt::operator*=(uint64_t RHS) {
260    if (isSingleWord()) {
261      U.VAL *= RHS;
262    } else {
263      unsigned NumWords = getNumWords();
264      tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265    }
266    return clearUnusedBits();
267  }
268  
269  bool APInt::equalSlowCase(const APInt &RHS) const {
270    return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
271  }
272  
273  int APInt::compare(const APInt& RHS) const {
274    assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
275    if (isSingleWord())
276      return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
277  
278    return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
279  }
280  
281  int APInt::compareSigned(const APInt& RHS) const {
282    assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
283    if (isSingleWord()) {
284      int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285      int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
286      return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
287    }
288  
289    bool lhsNeg = isNegative();
290    bool rhsNeg = RHS.isNegative();
291  
292    // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293    if (lhsNeg != rhsNeg)
294      return lhsNeg ? -1 : 1;
295  
296    // Otherwise we can just use an unsigned comparison, because even negative
297    // numbers compare correctly this way if both have the same signed-ness.
298    return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
299  }
300  
301  void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302    unsigned loWord = whichWord(loBit);
303    unsigned hiWord = whichWord(hiBit);
304  
305    // Create an initial mask for the low word with zeros below loBit.
306    uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
307  
308    // If hiBit is not aligned, we need a high mask.
309    unsigned hiShiftAmt = whichBit(hiBit);
310    if (hiShiftAmt != 0) {
311      // Create a high mask with zeros above hiBit.
312      uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
313      // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314      // set the bits in hiWord.
315      if (hiWord == loWord)
316        loMask &= hiMask;
317      else
318        U.pVal[hiWord] |= hiMask;
319    }
320    // Apply the mask to the low word.
321    U.pVal[loWord] |= loMask;
322  
323    // Fill any words between loWord and hiWord with all ones.
324    for (unsigned word = loWord + 1; word < hiWord; ++word)
325      U.pVal[word] = WORDTYPE_MAX;
326  }
327  
328  // Complement a bignum in-place.
329  static void tcComplement(APInt::WordType *dst, unsigned parts) {
330    for (unsigned i = 0; i < parts; i++)
331      dst[i] = ~dst[i];
332  }
333  
334  /// Toggle every bit to its opposite value.
335  void APInt::flipAllBitsSlowCase() {
336    tcComplement(U.pVal, getNumWords());
337    clearUnusedBits();
338  }
339  
340  /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
341  /// equivalent to:
342  ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
343  /// In the slow case, we know the result is large.
344  APInt APInt::concatSlowCase(const APInt &NewLSB) const {
345    unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
346    APInt Result = NewLSB.zextOrSelf(NewWidth);
347    Result.insertBits(*this, NewLSB.getBitWidth());
348    return Result;
349  }
350  
351  /// Toggle a given bit to its opposite value whose position is given
352  /// as "bitPosition".
353  /// Toggles a given bit to its opposite value.
354  void APInt::flipBit(unsigned bitPosition) {
355    assert(bitPosition < BitWidth && "Out of the bit-width range!");
356    setBitVal(bitPosition, !(*this)[bitPosition]);
357  }
358  
359  void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
360    unsigned subBitWidth = subBits.getBitWidth();
361    assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
362  
363    // inserting no bits is a noop.
364    if (subBitWidth == 0)
365      return;
366  
367    // Insertion is a direct copy.
368    if (subBitWidth == BitWidth) {
369      *this = subBits;
370      return;
371    }
372  
373    // Single word result can be done as a direct bitmask.
374    if (isSingleWord()) {
375      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
376      U.VAL &= ~(mask << bitPosition);
377      U.VAL |= (subBits.U.VAL << bitPosition);
378      return;
379    }
380  
381    unsigned loBit = whichBit(bitPosition);
382    unsigned loWord = whichWord(bitPosition);
383    unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
384  
385    // Insertion within a single word can be done as a direct bitmask.
386    if (loWord == hi1Word) {
387      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
388      U.pVal[loWord] &= ~(mask << loBit);
389      U.pVal[loWord] |= (subBits.U.VAL << loBit);
390      return;
391    }
392  
393    // Insert on word boundaries.
394    if (loBit == 0) {
395      // Direct copy whole words.
396      unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
397      memcpy(U.pVal + loWord, subBits.getRawData(),
398             numWholeSubWords * APINT_WORD_SIZE);
399  
400      // Mask+insert remaining bits.
401      unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
402      if (remainingBits != 0) {
403        uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
404        U.pVal[hi1Word] &= ~mask;
405        U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
406      }
407      return;
408    }
409  
410    // General case - set/clear individual bits in dst based on src.
411    // TODO - there is scope for optimization here, but at the moment this code
412    // path is barely used so prefer readability over performance.
413    for (unsigned i = 0; i != subBitWidth; ++i)
414      setBitVal(bitPosition + i, subBits[i]);
415  }
416  
417  void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
418    uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
419    subBits &= maskBits;
420    if (isSingleWord()) {
421      U.VAL &= ~(maskBits << bitPosition);
422      U.VAL |= subBits << bitPosition;
423      return;
424    }
425  
426    unsigned loBit = whichBit(bitPosition);
427    unsigned loWord = whichWord(bitPosition);
428    unsigned hiWord = whichWord(bitPosition + numBits - 1);
429    if (loWord == hiWord) {
430      U.pVal[loWord] &= ~(maskBits << loBit);
431      U.pVal[loWord] |= subBits << loBit;
432      return;
433    }
434  
435    static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
436    unsigned wordBits = 8 * sizeof(WordType);
437    U.pVal[loWord] &= ~(maskBits << loBit);
438    U.pVal[loWord] |= subBits << loBit;
439  
440    U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
441    U.pVal[hiWord] |= subBits >> (wordBits - loBit);
442  }
443  
444  APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
445    assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
446           "Illegal bit extraction");
447  
448    if (isSingleWord())
449      return APInt(numBits, U.VAL >> bitPosition);
450  
451    unsigned loBit = whichBit(bitPosition);
452    unsigned loWord = whichWord(bitPosition);
453    unsigned hiWord = whichWord(bitPosition + numBits - 1);
454  
455    // Single word result extracting bits from a single word source.
456    if (loWord == hiWord)
457      return APInt(numBits, U.pVal[loWord] >> loBit);
458  
459    // Extracting bits that start on a source word boundary can be done
460    // as a fast memory copy.
461    if (loBit == 0)
462      return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
463  
464    // General case - shift + copy source words directly into place.
465    APInt Result(numBits, 0);
466    unsigned NumSrcWords = getNumWords();
467    unsigned NumDstWords = Result.getNumWords();
468  
469    uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
470    for (unsigned word = 0; word < NumDstWords; ++word) {
471      uint64_t w0 = U.pVal[loWord + word];
472      uint64_t w1 =
473          (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
474      DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
475    }
476  
477    return Result.clearUnusedBits();
478  }
479  
480  uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
481                                         unsigned bitPosition) const {
482    assert(numBits > 0 && "Can't extract zero bits");
483    assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
484           "Illegal bit extraction");
485    assert(numBits <= 64 && "Illegal bit extraction");
486  
487    uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
488    if (isSingleWord())
489      return (U.VAL >> bitPosition) & maskBits;
490  
491    unsigned loBit = whichBit(bitPosition);
492    unsigned loWord = whichWord(bitPosition);
493    unsigned hiWord = whichWord(bitPosition + numBits - 1);
494    if (loWord == hiWord)
495      return (U.pVal[loWord] >> loBit) & maskBits;
496  
497    static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
498    unsigned wordBits = 8 * sizeof(WordType);
499    uint64_t retBits = U.pVal[loWord] >> loBit;
500    retBits |= U.pVal[hiWord] << (wordBits - loBit);
501    retBits &= maskBits;
502    return retBits;
503  }
504  
505  unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
506    assert(!str.empty() && "Invalid string length");
507    assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
508            radix == 36) &&
509           "Radix should be 2, 8, 10, 16, or 36!");
510  
511    size_t slen = str.size();
512  
513    // Each computation below needs to know if it's negative.
514    StringRef::iterator p = str.begin();
515    unsigned isNegative = *p == '-';
516    if (*p == '-' || *p == '+') {
517      p++;
518      slen--;
519      assert(slen && "String is only a sign, needs a value.");
520    }
521  
522    // For radixes of power-of-two values, the bits required is accurately and
523    // easily computed
524    if (radix == 2)
525      return slen + isNegative;
526    if (radix == 8)
527      return slen * 3 + isNegative;
528    if (radix == 16)
529      return slen * 4 + isNegative;
530  
531    // FIXME: base 36
532  
533    // This is grossly inefficient but accurate. We could probably do something
534    // with a computation of roughly slen*64/20 and then adjust by the value of
535    // the first few digits. But, I'm not sure how accurate that could be.
536  
537    // Compute a sufficient number of bits that is always large enough but might
538    // be too large. This avoids the assertion in the constructor. This
539    // calculation doesn't work appropriately for the numbers 0-9, so just use 4
540    // bits in that case.
541    unsigned sufficient
542      = radix == 10? (slen == 1 ? 4 : slen * 64/18)
543                   : (slen == 1 ? 7 : slen * 16/3);
544  
545    // Convert to the actual binary value.
546    APInt tmp(sufficient, StringRef(p, slen), radix);
547  
548    // Compute how many bits are required. If the log is infinite, assume we need
549    // just bit. If the log is exact and value is negative, then the value is
550    // MinSignedValue with (log + 1) bits.
551    unsigned log = tmp.logBase2();
552    if (log == (unsigned)-1) {
553      return isNegative + 1;
554    } else if (isNegative && tmp.isPowerOf2()) {
555      return isNegative + log;
556    } else {
557      return isNegative + log + 1;
558    }
559  }
560  
561  hash_code llvm::hash_value(const APInt &Arg) {
562    if (Arg.isSingleWord())
563      return hash_combine(Arg.BitWidth, Arg.U.VAL);
564  
565    return hash_combine(
566        Arg.BitWidth,
567        hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
568  }
569  
570  unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
571    return static_cast<unsigned>(hash_value(Key));
572  }
573  
574  bool APInt::isSplat(unsigned SplatSizeInBits) const {
575    assert(getBitWidth() % SplatSizeInBits == 0 &&
576           "SplatSizeInBits must divide width!");
577    // We can check that all parts of an integer are equal by making use of a
578    // little trick: rotate and check if it's still the same value.
579    return *this == rotl(SplatSizeInBits);
580  }
581  
582  /// This function returns the high "numBits" bits of this APInt.
583  APInt APInt::getHiBits(unsigned numBits) const {
584    return this->lshr(BitWidth - numBits);
585  }
586  
587  /// This function returns the low "numBits" bits of this APInt.
588  APInt APInt::getLoBits(unsigned numBits) const {
589    APInt Result(getLowBitsSet(BitWidth, numBits));
590    Result &= *this;
591    return Result;
592  }
593  
594  /// Return a value containing V broadcasted over NewLen bits.
595  APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
596    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
597  
598    APInt Val = V.zextOrSelf(NewLen);
599    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
600      Val |= Val << I;
601  
602    return Val;
603  }
604  
605  unsigned APInt::countLeadingZerosSlowCase() const {
606    unsigned Count = 0;
607    for (int i = getNumWords()-1; i >= 0; --i) {
608      uint64_t V = U.pVal[i];
609      if (V == 0)
610        Count += APINT_BITS_PER_WORD;
611      else {
612        Count += llvm::countLeadingZeros(V);
613        break;
614      }
615    }
616    // Adjust for unused bits in the most significant word (they are zero).
617    unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
618    Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
619    return Count;
620  }
621  
622  unsigned APInt::countLeadingOnesSlowCase() const {
623    unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
624    unsigned shift;
625    if (!highWordBits) {
626      highWordBits = APINT_BITS_PER_WORD;
627      shift = 0;
628    } else {
629      shift = APINT_BITS_PER_WORD - highWordBits;
630    }
631    int i = getNumWords() - 1;
632    unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
633    if (Count == highWordBits) {
634      for (i--; i >= 0; --i) {
635        if (U.pVal[i] == WORDTYPE_MAX)
636          Count += APINT_BITS_PER_WORD;
637        else {
638          Count += llvm::countLeadingOnes(U.pVal[i]);
639          break;
640        }
641      }
642    }
643    return Count;
644  }
645  
646  unsigned APInt::countTrailingZerosSlowCase() const {
647    unsigned Count = 0;
648    unsigned i = 0;
649    for (; i < getNumWords() && U.pVal[i] == 0; ++i)
650      Count += APINT_BITS_PER_WORD;
651    if (i < getNumWords())
652      Count += llvm::countTrailingZeros(U.pVal[i]);
653    return std::min(Count, BitWidth);
654  }
655  
656  unsigned APInt::countTrailingOnesSlowCase() const {
657    unsigned Count = 0;
658    unsigned i = 0;
659    for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
660      Count += APINT_BITS_PER_WORD;
661    if (i < getNumWords())
662      Count += llvm::countTrailingOnes(U.pVal[i]);
663    assert(Count <= BitWidth);
664    return Count;
665  }
666  
667  unsigned APInt::countPopulationSlowCase() const {
668    unsigned Count = 0;
669    for (unsigned i = 0; i < getNumWords(); ++i)
670      Count += llvm::countPopulation(U.pVal[i]);
671    return Count;
672  }
673  
674  bool APInt::intersectsSlowCase(const APInt &RHS) const {
675    for (unsigned i = 0, e = getNumWords(); i != e; ++i)
676      if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
677        return true;
678  
679    return false;
680  }
681  
682  bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
683    for (unsigned i = 0, e = getNumWords(); i != e; ++i)
684      if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
685        return false;
686  
687    return true;
688  }
689  
690  APInt APInt::byteSwap() const {
691    assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
692    if (BitWidth == 16)
693      return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
694    if (BitWidth == 32)
695      return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
696    if (BitWidth <= 64) {
697      uint64_t Tmp1 = ByteSwap_64(U.VAL);
698      Tmp1 >>= (64 - BitWidth);
699      return APInt(BitWidth, Tmp1);
700    }
701  
702    APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
703    for (unsigned I = 0, N = getNumWords(); I != N; ++I)
704      Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
705    if (Result.BitWidth != BitWidth) {
706      Result.lshrInPlace(Result.BitWidth - BitWidth);
707      Result.BitWidth = BitWidth;
708    }
709    return Result;
710  }
711  
712  APInt APInt::reverseBits() const {
713    switch (BitWidth) {
714    case 64:
715      return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
716    case 32:
717      return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
718    case 16:
719      return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
720    case 8:
721      return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
722    case 0:
723      return *this;
724    default:
725      break;
726    }
727  
728    APInt Val(*this);
729    APInt Reversed(BitWidth, 0);
730    unsigned S = BitWidth;
731  
732    for (; Val != 0; Val.lshrInPlace(1)) {
733      Reversed <<= 1;
734      Reversed |= Val[0];
735      --S;
736    }
737  
738    Reversed <<= S;
739    return Reversed;
740  }
741  
742  APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
743    // Fast-path a common case.
744    if (A == B) return A;
745  
746    // Corner cases: if either operand is zero, the other is the gcd.
747    if (!A) return B;
748    if (!B) return A;
749  
750    // Count common powers of 2 and remove all other powers of 2.
751    unsigned Pow2;
752    {
753      unsigned Pow2_A = A.countTrailingZeros();
754      unsigned Pow2_B = B.countTrailingZeros();
755      if (Pow2_A > Pow2_B) {
756        A.lshrInPlace(Pow2_A - Pow2_B);
757        Pow2 = Pow2_B;
758      } else if (Pow2_B > Pow2_A) {
759        B.lshrInPlace(Pow2_B - Pow2_A);
760        Pow2 = Pow2_A;
761      } else {
762        Pow2 = Pow2_A;
763      }
764    }
765  
766    // Both operands are odd multiples of 2^Pow_2:
767    //
768    //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
769    //
770    // This is a modified version of Stein's algorithm, taking advantage of
771    // efficient countTrailingZeros().
772    while (A != B) {
773      if (A.ugt(B)) {
774        A -= B;
775        A.lshrInPlace(A.countTrailingZeros() - Pow2);
776      } else {
777        B -= A;
778        B.lshrInPlace(B.countTrailingZeros() - Pow2);
779      }
780    }
781  
782    return A;
783  }
784  
785  APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
786    uint64_t I = bit_cast<uint64_t>(Double);
787  
788    // Get the sign bit from the highest order bit
789    bool isNeg = I >> 63;
790  
791    // Get the 11-bit exponent and adjust for the 1023 bit bias
792    int64_t exp = ((I >> 52) & 0x7ff) - 1023;
793  
794    // If the exponent is negative, the value is < 0 so just return 0.
795    if (exp < 0)
796      return APInt(width, 0u);
797  
798    // Extract the mantissa by clearing the top 12 bits (sign + exponent).
799    uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
800  
801    // If the exponent doesn't shift all bits out of the mantissa
802    if (exp < 52)
803      return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
804                      APInt(width, mantissa >> (52 - exp));
805  
806    // If the client didn't provide enough bits for us to shift the mantissa into
807    // then the result is undefined, just return 0
808    if (width <= exp - 52)
809      return APInt(width, 0);
810  
811    // Otherwise, we have to shift the mantissa bits up to the right location
812    APInt Tmp(width, mantissa);
813    Tmp <<= (unsigned)exp - 52;
814    return isNeg ? -Tmp : Tmp;
815  }
816  
817  /// This function converts this APInt to a double.
818  /// The layout for double is as following (IEEE Standard 754):
819  ///  --------------------------------------
820  /// |  Sign    Exponent    Fraction    Bias |
821  /// |-------------------------------------- |
822  /// |  1[63]   11[62-52]   52[51-00]   1023 |
823  ///  --------------------------------------
824  double APInt::roundToDouble(bool isSigned) const {
825  
826    // Handle the simple case where the value is contained in one uint64_t.
827    // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
828    if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
829      if (isSigned) {
830        int64_t sext = SignExtend64(getWord(0), BitWidth);
831        return double(sext);
832      } else
833        return double(getWord(0));
834    }
835  
836    // Determine if the value is negative.
837    bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
838  
839    // Construct the absolute value if we're negative.
840    APInt Tmp(isNeg ? -(*this) : (*this));
841  
842    // Figure out how many bits we're using.
843    unsigned n = Tmp.getActiveBits();
844  
845    // The exponent (without bias normalization) is just the number of bits
846    // we are using. Note that the sign bit is gone since we constructed the
847    // absolute value.
848    uint64_t exp = n;
849  
850    // Return infinity for exponent overflow
851    if (exp > 1023) {
852      if (!isSigned || !isNeg)
853        return std::numeric_limits<double>::infinity();
854      else
855        return -std::numeric_limits<double>::infinity();
856    }
857    exp += 1023; // Increment for 1023 bias
858  
859    // Number of bits in mantissa is 52. To obtain the mantissa value, we must
860    // extract the high 52 bits from the correct words in pVal.
861    uint64_t mantissa;
862    unsigned hiWord = whichWord(n-1);
863    if (hiWord == 0) {
864      mantissa = Tmp.U.pVal[0];
865      if (n > 52)
866        mantissa >>= n - 52; // shift down, we want the top 52 bits.
867    } else {
868      assert(hiWord > 0 && "huh?");
869      uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
870      uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
871      mantissa = hibits | lobits;
872    }
873  
874    // The leading bit of mantissa is implicit, so get rid of it.
875    uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
876    uint64_t I = sign | (exp << 52) | mantissa;
877    return bit_cast<double>(I);
878  }
879  
880  // Truncate to new width.
881  APInt APInt::trunc(unsigned width) const {
882    assert(width < BitWidth && "Invalid APInt Truncate request");
883  
884    if (width <= APINT_BITS_PER_WORD)
885      return APInt(width, getRawData()[0]);
886  
887    APInt Result(getMemory(getNumWords(width)), width);
888  
889    // Copy full words.
890    unsigned i;
891    for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
892      Result.U.pVal[i] = U.pVal[i];
893  
894    // Truncate and copy any partial word.
895    unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
896    if (bits != 0)
897      Result.U.pVal[i] = U.pVal[i] << bits >> bits;
898  
899    return Result;
900  }
901  
902  // Truncate to new width with unsigned saturation.
903  APInt APInt::truncUSat(unsigned width) const {
904    assert(width < BitWidth && "Invalid APInt Truncate request");
905  
906    // Can we just losslessly truncate it?
907    if (isIntN(width))
908      return trunc(width);
909    // If not, then just return the new limit.
910    return APInt::getMaxValue(width);
911  }
912  
913  // Truncate to new width with signed saturation.
914  APInt APInt::truncSSat(unsigned width) const {
915    assert(width < BitWidth && "Invalid APInt Truncate request");
916  
917    // Can we just losslessly truncate it?
918    if (isSignedIntN(width))
919      return trunc(width);
920    // If not, then just return the new limits.
921    return isNegative() ? APInt::getSignedMinValue(width)
922                        : APInt::getSignedMaxValue(width);
923  }
924  
925  // Sign extend to a new width.
926  APInt APInt::sext(unsigned Width) const {
927    assert(Width > BitWidth && "Invalid APInt SignExtend request");
928  
929    if (Width <= APINT_BITS_PER_WORD)
930      return APInt(Width, SignExtend64(U.VAL, BitWidth));
931  
932    APInt Result(getMemory(getNumWords(Width)), Width);
933  
934    // Copy words.
935    std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
936  
937    // Sign extend the last word since there may be unused bits in the input.
938    Result.U.pVal[getNumWords() - 1] =
939        SignExtend64(Result.U.pVal[getNumWords() - 1],
940                     ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
941  
942    // Fill with sign bits.
943    std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
944                (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
945    Result.clearUnusedBits();
946    return Result;
947  }
948  
949  //  Zero extend to a new width.
950  APInt APInt::zext(unsigned width) const {
951    assert(width > BitWidth && "Invalid APInt ZeroExtend request");
952  
953    if (width <= APINT_BITS_PER_WORD)
954      return APInt(width, U.VAL);
955  
956    APInt Result(getMemory(getNumWords(width)), width);
957  
958    // Copy words.
959    std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
960  
961    // Zero remaining words.
962    std::memset(Result.U.pVal + getNumWords(), 0,
963                (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
964  
965    return Result;
966  }
967  
968  APInt APInt::zextOrTrunc(unsigned width) const {
969    if (BitWidth < width)
970      return zext(width);
971    if (BitWidth > width)
972      return trunc(width);
973    return *this;
974  }
975  
976  APInt APInt::sextOrTrunc(unsigned width) const {
977    if (BitWidth < width)
978      return sext(width);
979    if (BitWidth > width)
980      return trunc(width);
981    return *this;
982  }
983  
984  APInt APInt::truncOrSelf(unsigned width) const {
985    if (BitWidth > width)
986      return trunc(width);
987    return *this;
988  }
989  
990  APInt APInt::zextOrSelf(unsigned width) const {
991    if (BitWidth < width)
992      return zext(width);
993    return *this;
994  }
995  
996  APInt APInt::sextOrSelf(unsigned width) const {
997    if (BitWidth < width)
998      return sext(width);
999    return *this;
1000  }
1001  
1002  /// Arithmetic right-shift this APInt by shiftAmt.
1003  /// Arithmetic right-shift function.
1004  void APInt::ashrInPlace(const APInt &shiftAmt) {
1005    ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1006  }
1007  
1008  /// Arithmetic right-shift this APInt by shiftAmt.
1009  /// Arithmetic right-shift function.
1010  void APInt::ashrSlowCase(unsigned ShiftAmt) {
1011    // Don't bother performing a no-op shift.
1012    if (!ShiftAmt)
1013      return;
1014  
1015    // Save the original sign bit for later.
1016    bool Negative = isNegative();
1017  
1018    // WordShift is the inter-part shift; BitShift is intra-part shift.
1019    unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1020    unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1021  
1022    unsigned WordsToMove = getNumWords() - WordShift;
1023    if (WordsToMove != 0) {
1024      // Sign extend the last word to fill in the unused bits.
1025      U.pVal[getNumWords() - 1] = SignExtend64(
1026          U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1027  
1028      // Fastpath for moving by whole words.
1029      if (BitShift == 0) {
1030        std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1031      } else {
1032        // Move the words containing significant bits.
1033        for (unsigned i = 0; i != WordsToMove - 1; ++i)
1034          U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1035                      (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1036  
1037        // Handle the last word which has no high bits to copy.
1038        U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1039        // Sign extend one more time.
1040        U.pVal[WordsToMove - 1] =
1041            SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1042      }
1043    }
1044  
1045    // Fill in the remainder based on the original sign.
1046    std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1047                WordShift * APINT_WORD_SIZE);
1048    clearUnusedBits();
1049  }
1050  
1051  /// Logical right-shift this APInt by shiftAmt.
1052  /// Logical right-shift function.
1053  void APInt::lshrInPlace(const APInt &shiftAmt) {
1054    lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1055  }
1056  
1057  /// Logical right-shift this APInt by shiftAmt.
1058  /// Logical right-shift function.
1059  void APInt::lshrSlowCase(unsigned ShiftAmt) {
1060    tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1061  }
1062  
1063  /// Left-shift this APInt by shiftAmt.
1064  /// Left-shift function.
1065  APInt &APInt::operator<<=(const APInt &shiftAmt) {
1066    // It's undefined behavior in C to shift by BitWidth or greater.
1067    *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1068    return *this;
1069  }
1070  
1071  void APInt::shlSlowCase(unsigned ShiftAmt) {
1072    tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1073    clearUnusedBits();
1074  }
1075  
1076  // Calculate the rotate amount modulo the bit width.
1077  static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1078    if (LLVM_UNLIKELY(BitWidth == 0))
1079      return 0;
1080    unsigned rotBitWidth = rotateAmt.getBitWidth();
1081    APInt rot = rotateAmt;
1082    if (rotBitWidth < BitWidth) {
1083      // Extend the rotate APInt, so that the urem doesn't divide by 0.
1084      // e.g. APInt(1, 32) would give APInt(1, 0).
1085      rot = rotateAmt.zext(BitWidth);
1086    }
1087    rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1088    return rot.getLimitedValue(BitWidth);
1089  }
1090  
1091  APInt APInt::rotl(const APInt &rotateAmt) const {
1092    return rotl(rotateModulo(BitWidth, rotateAmt));
1093  }
1094  
1095  APInt APInt::rotl(unsigned rotateAmt) const {
1096    if (LLVM_UNLIKELY(BitWidth == 0))
1097      return *this;
1098    rotateAmt %= BitWidth;
1099    if (rotateAmt == 0)
1100      return *this;
1101    return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1102  }
1103  
1104  APInt APInt::rotr(const APInt &rotateAmt) const {
1105    return rotr(rotateModulo(BitWidth, rotateAmt));
1106  }
1107  
1108  APInt APInt::rotr(unsigned rotateAmt) const {
1109    if (BitWidth == 0)
1110      return *this;
1111    rotateAmt %= BitWidth;
1112    if (rotateAmt == 0)
1113      return *this;
1114    return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1115  }
1116  
1117  /// \returns the nearest log base 2 of this APInt. Ties round up.
1118  ///
1119  /// NOTE: When we have a BitWidth of 1, we define:
1120  ///
1121  ///   log2(0) = UINT32_MAX
1122  ///   log2(1) = 0
1123  ///
1124  /// to get around any mathematical concerns resulting from
1125  /// referencing 2 in a space where 2 does no exist.
1126  unsigned APInt::nearestLogBase2() const {
1127    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1128    // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1129    // UINT32_MAX.
1130    if (BitWidth == 1)
1131      return U.VAL - 1;
1132  
1133    // Handle the zero case.
1134    if (isZero())
1135      return UINT32_MAX;
1136  
1137    // The non-zero case is handled by computing:
1138    //
1139    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1140    //
1141    // where x[i] is referring to the value of the ith bit of x.
1142    unsigned lg = logBase2();
1143    return lg + unsigned((*this)[lg - 1]);
1144  }
1145  
1146  // Square Root - this method computes and returns the square root of "this".
1147  // Three mechanisms are used for computation. For small values (<= 5 bits),
1148  // a table lookup is done. This gets some performance for common cases. For
1149  // values using less than 52 bits, the value is converted to double and then
1150  // the libc sqrt function is called. The result is rounded and then converted
1151  // back to a uint64_t which is then used to construct the result. Finally,
1152  // the Babylonian method for computing square roots is used.
1153  APInt APInt::sqrt() const {
1154  
1155    // Determine the magnitude of the value.
1156    unsigned magnitude = getActiveBits();
1157  
1158    // Use a fast table for some small values. This also gets rid of some
1159    // rounding errors in libc sqrt for small values.
1160    if (magnitude <= 5) {
1161      static const uint8_t results[32] = {
1162        /*     0 */ 0,
1163        /*  1- 2 */ 1, 1,
1164        /*  3- 6 */ 2, 2, 2, 2,
1165        /*  7-12 */ 3, 3, 3, 3, 3, 3,
1166        /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1167        /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1168        /*    31 */ 6
1169      };
1170      return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1171    }
1172  
1173    // If the magnitude of the value fits in less than 52 bits (the precision of
1174    // an IEEE double precision floating point value), then we can use the
1175    // libc sqrt function which will probably use a hardware sqrt computation.
1176    // This should be faster than the algorithm below.
1177    if (magnitude < 52) {
1178      return APInt(BitWidth,
1179                   uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1180                                                                 : U.pVal[0])))));
1181    }
1182  
1183    // Okay, all the short cuts are exhausted. We must compute it. The following
1184    // is a classical Babylonian method for computing the square root. This code
1185    // was adapted to APInt from a wikipedia article on such computations.
1186    // See http://www.wikipedia.org/ and go to the page named
1187    // Calculate_an_integer_square_root.
1188    unsigned nbits = BitWidth, i = 4;
1189    APInt testy(BitWidth, 16);
1190    APInt x_old(BitWidth, 1);
1191    APInt x_new(BitWidth, 0);
1192    APInt two(BitWidth, 2);
1193  
1194    // Select a good starting value using binary logarithms.
1195    for (;; i += 2, testy = testy.shl(2))
1196      if (i >= nbits || this->ule(testy)) {
1197        x_old = x_old.shl(i / 2);
1198        break;
1199      }
1200  
1201    // Use the Babylonian method to arrive at the integer square root:
1202    for (;;) {
1203      x_new = (this->udiv(x_old) + x_old).udiv(two);
1204      if (x_old.ule(x_new))
1205        break;
1206      x_old = x_new;
1207    }
1208  
1209    // Make sure we return the closest approximation
1210    // NOTE: The rounding calculation below is correct. It will produce an
1211    // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1212    // determined to be a rounding issue with pari/gp as it begins to use a
1213    // floating point representation after 192 bits. There are no discrepancies
1214    // between this algorithm and pari/gp for bit widths < 192 bits.
1215    APInt square(x_old * x_old);
1216    APInt nextSquare((x_old + 1) * (x_old +1));
1217    if (this->ult(square))
1218      return x_old;
1219    assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1220    APInt midpoint((nextSquare - square).udiv(two));
1221    APInt offset(*this - square);
1222    if (offset.ult(midpoint))
1223      return x_old;
1224    return x_old + 1;
1225  }
1226  
1227  /// Computes the multiplicative inverse of this APInt for a given modulo. The
1228  /// iterative extended Euclidean algorithm is used to solve for this value,
1229  /// however we simplify it to speed up calculating only the inverse, and take
1230  /// advantage of div+rem calculations. We also use some tricks to avoid copying
1231  /// (potentially large) APInts around.
1232  /// WARNING: a value of '0' may be returned,
1233  ///          signifying that no multiplicative inverse exists!
1234  APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1235    assert(ult(modulo) && "This APInt must be smaller than the modulo");
1236  
1237    // Using the properties listed at the following web page (accessed 06/21/08):
1238    //   http://www.numbertheory.org/php/euclid.html
1239    // (especially the properties numbered 3, 4 and 9) it can be proved that
1240    // BitWidth bits suffice for all the computations in the algorithm implemented
1241    // below. More precisely, this number of bits suffice if the multiplicative
1242    // inverse exists, but may not suffice for the general extended Euclidean
1243    // algorithm.
1244  
1245    APInt r[2] = { modulo, *this };
1246    APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1247    APInt q(BitWidth, 0);
1248  
1249    unsigned i;
1250    for (i = 0; r[i^1] != 0; i ^= 1) {
1251      // An overview of the math without the confusing bit-flipping:
1252      // q = r[i-2] / r[i-1]
1253      // r[i] = r[i-2] % r[i-1]
1254      // t[i] = t[i-2] - t[i-1] * q
1255      udivrem(r[i], r[i^1], q, r[i]);
1256      t[i] -= t[i^1] * q;
1257    }
1258  
1259    // If this APInt and the modulo are not coprime, there is no multiplicative
1260    // inverse, so return 0. We check this by looking at the next-to-last
1261    // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1262    // algorithm.
1263    if (r[i] != 1)
1264      return APInt(BitWidth, 0);
1265  
1266    // The next-to-last t is the multiplicative inverse.  However, we are
1267    // interested in a positive inverse. Calculate a positive one from a negative
1268    // one if necessary. A simple addition of the modulo suffices because
1269    // abs(t[i]) is known to be less than *this/2 (see the link above).
1270    if (t[i].isNegative())
1271      t[i] += modulo;
1272  
1273    return std::move(t[i]);
1274  }
1275  
1276  /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1277  /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1278  /// variables here have the same names as in the algorithm. Comments explain
1279  /// the algorithm and any deviation from it.
1280  static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1281                       unsigned m, unsigned n) {
1282    assert(u && "Must provide dividend");
1283    assert(v && "Must provide divisor");
1284    assert(q && "Must provide quotient");
1285    assert(u != v && u != q && v != q && "Must use different memory");
1286    assert(n>1 && "n must be > 1");
1287  
1288    // b denotes the base of the number system. In our case b is 2^32.
1289    const uint64_t b = uint64_t(1) << 32;
1290  
1291  // The DEBUG macros here tend to be spam in the debug output if you're not
1292  // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1293  #ifdef KNUTH_DEBUG
1294  #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1295  #else
1296  #define DEBUG_KNUTH(X) do {} while(false)
1297  #endif
1298  
1299    DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1300    DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1301    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1302    DEBUG_KNUTH(dbgs() << " by");
1303    DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1304    DEBUG_KNUTH(dbgs() << '\n');
1305    // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1306    // u and v by d. Note that we have taken Knuth's advice here to use a power
1307    // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1308    // 2 allows us to shift instead of multiply and it is easy to determine the
1309    // shift amount from the leading zeros.  We are basically normalizing the u
1310    // and v so that its high bits are shifted to the top of v's range without
1311    // overflow. Note that this can require an extra word in u so that u must
1312    // be of length m+n+1.
1313    unsigned shift = countLeadingZeros(v[n-1]);
1314    uint32_t v_carry = 0;
1315    uint32_t u_carry = 0;
1316    if (shift) {
1317      for (unsigned i = 0; i < m+n; ++i) {
1318        uint32_t u_tmp = u[i] >> (32 - shift);
1319        u[i] = (u[i] << shift) | u_carry;
1320        u_carry = u_tmp;
1321      }
1322      for (unsigned i = 0; i < n; ++i) {
1323        uint32_t v_tmp = v[i] >> (32 - shift);
1324        v[i] = (v[i] << shift) | v_carry;
1325        v_carry = v_tmp;
1326      }
1327    }
1328    u[m+n] = u_carry;
1329  
1330    DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1331    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1332    DEBUG_KNUTH(dbgs() << " by");
1333    DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1334    DEBUG_KNUTH(dbgs() << '\n');
1335  
1336    // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1337    int j = m;
1338    do {
1339      DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1340      // D3. [Calculate q'.].
1341      //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1342      //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1343      // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1344      // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1345      // on v[n-2] determines at high speed most of the cases in which the trial
1346      // value qp is one too large, and it eliminates all cases where qp is two
1347      // too large.
1348      uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1349      DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1350      uint64_t qp = dividend / v[n-1];
1351      uint64_t rp = dividend % v[n-1];
1352      if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1353        qp--;
1354        rp += v[n-1];
1355        if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1356          qp--;
1357      }
1358      DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1359  
1360      // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1361      // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1362      // consists of a simple multiplication by a one-place number, combined with
1363      // a subtraction.
1364      // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1365      // this step is actually negative, (u[j+n]...u[j]) should be left as the
1366      // true value plus b**(n+1), namely as the b's complement of
1367      // the true value, and a "borrow" to the left should be remembered.
1368      int64_t borrow = 0;
1369      for (unsigned i = 0; i < n; ++i) {
1370        uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1371        int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1372        u[j+i] = Lo_32(subres);
1373        borrow = Hi_32(p) - Hi_32(subres);
1374        DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1375                          << ", borrow = " << borrow << '\n');
1376      }
1377      bool isNeg = u[j+n] < borrow;
1378      u[j+n] -= Lo_32(borrow);
1379  
1380      DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1381      DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1382      DEBUG_KNUTH(dbgs() << '\n');
1383  
1384      // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1385      // negative, go to step D6; otherwise go on to step D7.
1386      q[j] = Lo_32(qp);
1387      if (isNeg) {
1388        // D6. [Add back]. The probability that this step is necessary is very
1389        // small, on the order of only 2/b. Make sure that test data accounts for
1390        // this possibility. Decrease q[j] by 1
1391        q[j]--;
1392        // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1393        // A carry will occur to the left of u[j+n], and it should be ignored
1394        // since it cancels with the borrow that occurred in D4.
1395        bool carry = false;
1396        for (unsigned i = 0; i < n; i++) {
1397          uint32_t limit = std::min(u[j+i],v[i]);
1398          u[j+i] += v[i] + carry;
1399          carry = u[j+i] < limit || (carry && u[j+i] == limit);
1400        }
1401        u[j+n] += carry;
1402      }
1403      DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1404      DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1405      DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1406  
1407      // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1408    } while (--j >= 0);
1409  
1410    DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1411    DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1412    DEBUG_KNUTH(dbgs() << '\n');
1413  
1414    // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1415    // remainder may be obtained by dividing u[...] by d. If r is non-null we
1416    // compute the remainder (urem uses this).
1417    if (r) {
1418      // The value d is expressed by the "shift" value above since we avoided
1419      // multiplication by d by using a shift left. So, all we have to do is
1420      // shift right here.
1421      if (shift) {
1422        uint32_t carry = 0;
1423        DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1424        for (int i = n-1; i >= 0; i--) {
1425          r[i] = (u[i] >> shift) | carry;
1426          carry = u[i] << (32 - shift);
1427          DEBUG_KNUTH(dbgs() << " " << r[i]);
1428        }
1429      } else {
1430        for (int i = n-1; i >= 0; i--) {
1431          r[i] = u[i];
1432          DEBUG_KNUTH(dbgs() << " " << r[i]);
1433        }
1434      }
1435      DEBUG_KNUTH(dbgs() << '\n');
1436    }
1437    DEBUG_KNUTH(dbgs() << '\n');
1438  }
1439  
1440  void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1441                     unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1442    assert(lhsWords >= rhsWords && "Fractional result");
1443  
1444    // First, compose the values into an array of 32-bit words instead of
1445    // 64-bit words. This is a necessity of both the "short division" algorithm
1446    // and the Knuth "classical algorithm" which requires there to be native
1447    // operations for +, -, and * on an m bit value with an m*2 bit result. We
1448    // can't use 64-bit operands here because we don't have native results of
1449    // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1450    // work on large-endian machines.
1451    unsigned n = rhsWords * 2;
1452    unsigned m = (lhsWords * 2) - n;
1453  
1454    // Allocate space for the temporary values we need either on the stack, if
1455    // it will fit, or on the heap if it won't.
1456    uint32_t SPACE[128];
1457    uint32_t *U = nullptr;
1458    uint32_t *V = nullptr;
1459    uint32_t *Q = nullptr;
1460    uint32_t *R = nullptr;
1461    if ((Remainder?4:3)*n+2*m+1 <= 128) {
1462      U = &SPACE[0];
1463      V = &SPACE[m+n+1];
1464      Q = &SPACE[(m+n+1) + n];
1465      if (Remainder)
1466        R = &SPACE[(m+n+1) + n + (m+n)];
1467    } else {
1468      U = new uint32_t[m + n + 1];
1469      V = new uint32_t[n];
1470      Q = new uint32_t[m+n];
1471      if (Remainder)
1472        R = new uint32_t[n];
1473    }
1474  
1475    // Initialize the dividend
1476    memset(U, 0, (m+n+1)*sizeof(uint32_t));
1477    for (unsigned i = 0; i < lhsWords; ++i) {
1478      uint64_t tmp = LHS[i];
1479      U[i * 2] = Lo_32(tmp);
1480      U[i * 2 + 1] = Hi_32(tmp);
1481    }
1482    U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1483  
1484    // Initialize the divisor
1485    memset(V, 0, (n)*sizeof(uint32_t));
1486    for (unsigned i = 0; i < rhsWords; ++i) {
1487      uint64_t tmp = RHS[i];
1488      V[i * 2] = Lo_32(tmp);
1489      V[i * 2 + 1] = Hi_32(tmp);
1490    }
1491  
1492    // initialize the quotient and remainder
1493    memset(Q, 0, (m+n) * sizeof(uint32_t));
1494    if (Remainder)
1495      memset(R, 0, n * sizeof(uint32_t));
1496  
1497    // Now, adjust m and n for the Knuth division. n is the number of words in
1498    // the divisor. m is the number of words by which the dividend exceeds the
1499    // divisor (i.e. m+n is the length of the dividend). These sizes must not
1500    // contain any zero words or the Knuth algorithm fails.
1501    for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1502      n--;
1503      m++;
1504    }
1505    for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1506      m--;
1507  
1508    // If we're left with only a single word for the divisor, Knuth doesn't work
1509    // so we implement the short division algorithm here. This is much simpler
1510    // and faster because we are certain that we can divide a 64-bit quantity
1511    // by a 32-bit quantity at hardware speed and short division is simply a
1512    // series of such operations. This is just like doing short division but we
1513    // are using base 2^32 instead of base 10.
1514    assert(n != 0 && "Divide by zero?");
1515    if (n == 1) {
1516      uint32_t divisor = V[0];
1517      uint32_t remainder = 0;
1518      for (int i = m; i >= 0; i--) {
1519        uint64_t partial_dividend = Make_64(remainder, U[i]);
1520        if (partial_dividend == 0) {
1521          Q[i] = 0;
1522          remainder = 0;
1523        } else if (partial_dividend < divisor) {
1524          Q[i] = 0;
1525          remainder = Lo_32(partial_dividend);
1526        } else if (partial_dividend == divisor) {
1527          Q[i] = 1;
1528          remainder = 0;
1529        } else {
1530          Q[i] = Lo_32(partial_dividend / divisor);
1531          remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1532        }
1533      }
1534      if (R)
1535        R[0] = remainder;
1536    } else {
1537      // Now we're ready to invoke the Knuth classical divide algorithm. In this
1538      // case n > 1.
1539      KnuthDiv(U, V, Q, R, m, n);
1540    }
1541  
1542    // If the caller wants the quotient
1543    if (Quotient) {
1544      for (unsigned i = 0; i < lhsWords; ++i)
1545        Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1546    }
1547  
1548    // If the caller wants the remainder
1549    if (Remainder) {
1550      for (unsigned i = 0; i < rhsWords; ++i)
1551        Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1552    }
1553  
1554    // Clean up the memory we allocated.
1555    if (U != &SPACE[0]) {
1556      delete [] U;
1557      delete [] V;
1558      delete [] Q;
1559      delete [] R;
1560    }
1561  }
1562  
1563  APInt APInt::udiv(const APInt &RHS) const {
1564    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1565  
1566    // First, deal with the easy case
1567    if (isSingleWord()) {
1568      assert(RHS.U.VAL != 0 && "Divide by zero?");
1569      return APInt(BitWidth, U.VAL / RHS.U.VAL);
1570    }
1571  
1572    // Get some facts about the LHS and RHS number of bits and words
1573    unsigned lhsWords = getNumWords(getActiveBits());
1574    unsigned rhsBits  = RHS.getActiveBits();
1575    unsigned rhsWords = getNumWords(rhsBits);
1576    assert(rhsWords && "Divided by zero???");
1577  
1578    // Deal with some degenerate cases
1579    if (!lhsWords)
1580      // 0 / X ===> 0
1581      return APInt(BitWidth, 0);
1582    if (rhsBits == 1)
1583      // X / 1 ===> X
1584      return *this;
1585    if (lhsWords < rhsWords || this->ult(RHS))
1586      // X / Y ===> 0, iff X < Y
1587      return APInt(BitWidth, 0);
1588    if (*this == RHS)
1589      // X / X ===> 1
1590      return APInt(BitWidth, 1);
1591    if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1592      // All high words are zero, just use native divide
1593      return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1594  
1595    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1596    APInt Quotient(BitWidth, 0); // to hold result.
1597    divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1598    return Quotient;
1599  }
1600  
1601  APInt APInt::udiv(uint64_t RHS) const {
1602    assert(RHS != 0 && "Divide by zero?");
1603  
1604    // First, deal with the easy case
1605    if (isSingleWord())
1606      return APInt(BitWidth, U.VAL / RHS);
1607  
1608    // Get some facts about the LHS words.
1609    unsigned lhsWords = getNumWords(getActiveBits());
1610  
1611    // Deal with some degenerate cases
1612    if (!lhsWords)
1613      // 0 / X ===> 0
1614      return APInt(BitWidth, 0);
1615    if (RHS == 1)
1616      // X / 1 ===> X
1617      return *this;
1618    if (this->ult(RHS))
1619      // X / Y ===> 0, iff X < Y
1620      return APInt(BitWidth, 0);
1621    if (*this == RHS)
1622      // X / X ===> 1
1623      return APInt(BitWidth, 1);
1624    if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1625      // All high words are zero, just use native divide
1626      return APInt(BitWidth, this->U.pVal[0] / RHS);
1627  
1628    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1629    APInt Quotient(BitWidth, 0); // to hold result.
1630    divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1631    return Quotient;
1632  }
1633  
1634  APInt APInt::sdiv(const APInt &RHS) const {
1635    if (isNegative()) {
1636      if (RHS.isNegative())
1637        return (-(*this)).udiv(-RHS);
1638      return -((-(*this)).udiv(RHS));
1639    }
1640    if (RHS.isNegative())
1641      return -(this->udiv(-RHS));
1642    return this->udiv(RHS);
1643  }
1644  
1645  APInt APInt::sdiv(int64_t RHS) const {
1646    if (isNegative()) {
1647      if (RHS < 0)
1648        return (-(*this)).udiv(-RHS);
1649      return -((-(*this)).udiv(RHS));
1650    }
1651    if (RHS < 0)
1652      return -(this->udiv(-RHS));
1653    return this->udiv(RHS);
1654  }
1655  
1656  APInt APInt::urem(const APInt &RHS) const {
1657    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1658    if (isSingleWord()) {
1659      assert(RHS.U.VAL != 0 && "Remainder by zero?");
1660      return APInt(BitWidth, U.VAL % RHS.U.VAL);
1661    }
1662  
1663    // Get some facts about the LHS
1664    unsigned lhsWords = getNumWords(getActiveBits());
1665  
1666    // Get some facts about the RHS
1667    unsigned rhsBits = RHS.getActiveBits();
1668    unsigned rhsWords = getNumWords(rhsBits);
1669    assert(rhsWords && "Performing remainder operation by zero ???");
1670  
1671    // Check the degenerate cases
1672    if (lhsWords == 0)
1673      // 0 % Y ===> 0
1674      return APInt(BitWidth, 0);
1675    if (rhsBits == 1)
1676      // X % 1 ===> 0
1677      return APInt(BitWidth, 0);
1678    if (lhsWords < rhsWords || this->ult(RHS))
1679      // X % Y ===> X, iff X < Y
1680      return *this;
1681    if (*this == RHS)
1682      // X % X == 0;
1683      return APInt(BitWidth, 0);
1684    if (lhsWords == 1)
1685      // All high words are zero, just use native remainder
1686      return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1687  
1688    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1689    APInt Remainder(BitWidth, 0);
1690    divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1691    return Remainder;
1692  }
1693  
1694  uint64_t APInt::urem(uint64_t RHS) const {
1695    assert(RHS != 0 && "Remainder by zero?");
1696  
1697    if (isSingleWord())
1698      return U.VAL % RHS;
1699  
1700    // Get some facts about the LHS
1701    unsigned lhsWords = getNumWords(getActiveBits());
1702  
1703    // Check the degenerate cases
1704    if (lhsWords == 0)
1705      // 0 % Y ===> 0
1706      return 0;
1707    if (RHS == 1)
1708      // X % 1 ===> 0
1709      return 0;
1710    if (this->ult(RHS))
1711      // X % Y ===> X, iff X < Y
1712      return getZExtValue();
1713    if (*this == RHS)
1714      // X % X == 0;
1715      return 0;
1716    if (lhsWords == 1)
1717      // All high words are zero, just use native remainder
1718      return U.pVal[0] % RHS;
1719  
1720    // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1721    uint64_t Remainder;
1722    divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1723    return Remainder;
1724  }
1725  
1726  APInt APInt::srem(const APInt &RHS) const {
1727    if (isNegative()) {
1728      if (RHS.isNegative())
1729        return -((-(*this)).urem(-RHS));
1730      return -((-(*this)).urem(RHS));
1731    }
1732    if (RHS.isNegative())
1733      return this->urem(-RHS);
1734    return this->urem(RHS);
1735  }
1736  
1737  int64_t APInt::srem(int64_t RHS) const {
1738    if (isNegative()) {
1739      if (RHS < 0)
1740        return -((-(*this)).urem(-RHS));
1741      return -((-(*this)).urem(RHS));
1742    }
1743    if (RHS < 0)
1744      return this->urem(-RHS);
1745    return this->urem(RHS);
1746  }
1747  
1748  void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1749                      APInt &Quotient, APInt &Remainder) {
1750    assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1751    unsigned BitWidth = LHS.BitWidth;
1752  
1753    // First, deal with the easy case
1754    if (LHS.isSingleWord()) {
1755      assert(RHS.U.VAL != 0 && "Divide by zero?");
1756      uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1757      uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1758      Quotient = APInt(BitWidth, QuotVal);
1759      Remainder = APInt(BitWidth, RemVal);
1760      return;
1761    }
1762  
1763    // Get some size facts about the dividend and divisor
1764    unsigned lhsWords = getNumWords(LHS.getActiveBits());
1765    unsigned rhsBits  = RHS.getActiveBits();
1766    unsigned rhsWords = getNumWords(rhsBits);
1767    assert(rhsWords && "Performing divrem operation by zero ???");
1768  
1769    // Check the degenerate cases
1770    if (lhsWords == 0) {
1771      Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1772      Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1773      return;
1774    }
1775  
1776    if (rhsBits == 1) {
1777      Quotient = LHS;                   // X / 1 ===> X
1778      Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1779    }
1780  
1781    if (lhsWords < rhsWords || LHS.ult(RHS)) {
1782      Remainder = LHS;                  // X % Y ===> X, iff X < Y
1783      Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1784      return;
1785    }
1786  
1787    if (LHS == RHS) {
1788      Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1789      Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1790      return;
1791    }
1792  
1793    // Make sure there is enough space to hold the results.
1794    // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1795    // change the size. This is necessary if Quotient or Remainder is aliased
1796    // with LHS or RHS.
1797    Quotient.reallocate(BitWidth);
1798    Remainder.reallocate(BitWidth);
1799  
1800    if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1801      // There is only one word to consider so use the native versions.
1802      uint64_t lhsValue = LHS.U.pVal[0];
1803      uint64_t rhsValue = RHS.U.pVal[0];
1804      Quotient = lhsValue / rhsValue;
1805      Remainder = lhsValue % rhsValue;
1806      return;
1807    }
1808  
1809    // Okay, lets do it the long way
1810    divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1811           Remainder.U.pVal);
1812    // Clear the rest of the Quotient and Remainder.
1813    std::memset(Quotient.U.pVal + lhsWords, 0,
1814                (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1815    std::memset(Remainder.U.pVal + rhsWords, 0,
1816                (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1817  }
1818  
1819  void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1820                      uint64_t &Remainder) {
1821    assert(RHS != 0 && "Divide by zero?");
1822    unsigned BitWidth = LHS.BitWidth;
1823  
1824    // First, deal with the easy case
1825    if (LHS.isSingleWord()) {
1826      uint64_t QuotVal = LHS.U.VAL / RHS;
1827      Remainder = LHS.U.VAL % RHS;
1828      Quotient = APInt(BitWidth, QuotVal);
1829      return;
1830    }
1831  
1832    // Get some size facts about the dividend and divisor
1833    unsigned lhsWords = getNumWords(LHS.getActiveBits());
1834  
1835    // Check the degenerate cases
1836    if (lhsWords == 0) {
1837      Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1838      Remainder = 0;                    // 0 % Y ===> 0
1839      return;
1840    }
1841  
1842    if (RHS == 1) {
1843      Quotient = LHS;                   // X / 1 ===> X
1844      Remainder = 0;                    // X % 1 ===> 0
1845      return;
1846    }
1847  
1848    if (LHS.ult(RHS)) {
1849      Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1850      Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1851      return;
1852    }
1853  
1854    if (LHS == RHS) {
1855      Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1856      Remainder = 0;                    // X % X ===> 0;
1857      return;
1858    }
1859  
1860    // Make sure there is enough space to hold the results.
1861    // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1862    // change the size. This is necessary if Quotient is aliased with LHS.
1863    Quotient.reallocate(BitWidth);
1864  
1865    if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1866      // There is only one word to consider so use the native versions.
1867      uint64_t lhsValue = LHS.U.pVal[0];
1868      Quotient = lhsValue / RHS;
1869      Remainder = lhsValue % RHS;
1870      return;
1871    }
1872  
1873    // Okay, lets do it the long way
1874    divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1875    // Clear the rest of the Quotient.
1876    std::memset(Quotient.U.pVal + lhsWords, 0,
1877                (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1878  }
1879  
1880  void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1881                      APInt &Quotient, APInt &Remainder) {
1882    if (LHS.isNegative()) {
1883      if (RHS.isNegative())
1884        APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1885      else {
1886        APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1887        Quotient.negate();
1888      }
1889      Remainder.negate();
1890    } else if (RHS.isNegative()) {
1891      APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1892      Quotient.negate();
1893    } else {
1894      APInt::udivrem(LHS, RHS, Quotient, Remainder);
1895    }
1896  }
1897  
1898  void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1899                      APInt &Quotient, int64_t &Remainder) {
1900    uint64_t R = Remainder;
1901    if (LHS.isNegative()) {
1902      if (RHS < 0)
1903        APInt::udivrem(-LHS, -RHS, Quotient, R);
1904      else {
1905        APInt::udivrem(-LHS, RHS, Quotient, R);
1906        Quotient.negate();
1907      }
1908      R = -R;
1909    } else if (RHS < 0) {
1910      APInt::udivrem(LHS, -RHS, Quotient, R);
1911      Quotient.negate();
1912    } else {
1913      APInt::udivrem(LHS, RHS, Quotient, R);
1914    }
1915    Remainder = R;
1916  }
1917  
1918  APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1919    APInt Res = *this+RHS;
1920    Overflow = isNonNegative() == RHS.isNonNegative() &&
1921               Res.isNonNegative() != isNonNegative();
1922    return Res;
1923  }
1924  
1925  APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1926    APInt Res = *this+RHS;
1927    Overflow = Res.ult(RHS);
1928    return Res;
1929  }
1930  
1931  APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1932    APInt Res = *this - RHS;
1933    Overflow = isNonNegative() != RHS.isNonNegative() &&
1934               Res.isNonNegative() != isNonNegative();
1935    return Res;
1936  }
1937  
1938  APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1939    APInt Res = *this-RHS;
1940    Overflow = Res.ugt(*this);
1941    return Res;
1942  }
1943  
1944  APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1945    // MININT/-1  -->  overflow.
1946    Overflow = isMinSignedValue() && RHS.isAllOnes();
1947    return sdiv(RHS);
1948  }
1949  
1950  APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1951    APInt Res = *this * RHS;
1952  
1953    if (RHS != 0)
1954      Overflow = Res.sdiv(RHS) != *this ||
1955                 (isMinSignedValue() && RHS.isAllOnes());
1956    else
1957      Overflow = false;
1958    return Res;
1959  }
1960  
1961  APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1962    if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1963      Overflow = true;
1964      return *this * RHS;
1965    }
1966  
1967    APInt Res = lshr(1) * RHS;
1968    Overflow = Res.isNegative();
1969    Res <<= 1;
1970    if ((*this)[0]) {
1971      Res += RHS;
1972      if (Res.ult(RHS))
1973        Overflow = true;
1974    }
1975    return Res;
1976  }
1977  
1978  APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1979    Overflow = ShAmt.uge(getBitWidth());
1980    if (Overflow)
1981      return APInt(BitWidth, 0);
1982  
1983    if (isNonNegative()) // Don't allow sign change.
1984      Overflow = ShAmt.uge(countLeadingZeros());
1985    else
1986      Overflow = ShAmt.uge(countLeadingOnes());
1987  
1988    return *this << ShAmt;
1989  }
1990  
1991  APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1992    Overflow = ShAmt.uge(getBitWidth());
1993    if (Overflow)
1994      return APInt(BitWidth, 0);
1995  
1996    Overflow = ShAmt.ugt(countLeadingZeros());
1997  
1998    return *this << ShAmt;
1999  }
2000  
2001  APInt APInt::sadd_sat(const APInt &RHS) const {
2002    bool Overflow;
2003    APInt Res = sadd_ov(RHS, Overflow);
2004    if (!Overflow)
2005      return Res;
2006  
2007    return isNegative() ? APInt::getSignedMinValue(BitWidth)
2008                        : APInt::getSignedMaxValue(BitWidth);
2009  }
2010  
2011  APInt APInt::uadd_sat(const APInt &RHS) const {
2012    bool Overflow;
2013    APInt Res = uadd_ov(RHS, Overflow);
2014    if (!Overflow)
2015      return Res;
2016  
2017    return APInt::getMaxValue(BitWidth);
2018  }
2019  
2020  APInt APInt::ssub_sat(const APInt &RHS) const {
2021    bool Overflow;
2022    APInt Res = ssub_ov(RHS, Overflow);
2023    if (!Overflow)
2024      return Res;
2025  
2026    return isNegative() ? APInt::getSignedMinValue(BitWidth)
2027                        : APInt::getSignedMaxValue(BitWidth);
2028  }
2029  
2030  APInt APInt::usub_sat(const APInt &RHS) const {
2031    bool Overflow;
2032    APInt Res = usub_ov(RHS, Overflow);
2033    if (!Overflow)
2034      return Res;
2035  
2036    return APInt(BitWidth, 0);
2037  }
2038  
2039  APInt APInt::smul_sat(const APInt &RHS) const {
2040    bool Overflow;
2041    APInt Res = smul_ov(RHS, Overflow);
2042    if (!Overflow)
2043      return Res;
2044  
2045    // The result is negative if one and only one of inputs is negative.
2046    bool ResIsNegative = isNegative() ^ RHS.isNegative();
2047  
2048    return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2049                         : APInt::getSignedMaxValue(BitWidth);
2050  }
2051  
2052  APInt APInt::umul_sat(const APInt &RHS) const {
2053    bool Overflow;
2054    APInt Res = umul_ov(RHS, Overflow);
2055    if (!Overflow)
2056      return Res;
2057  
2058    return APInt::getMaxValue(BitWidth);
2059  }
2060  
2061  APInt APInt::sshl_sat(const APInt &RHS) const {
2062    bool Overflow;
2063    APInt Res = sshl_ov(RHS, Overflow);
2064    if (!Overflow)
2065      return Res;
2066  
2067    return isNegative() ? APInt::getSignedMinValue(BitWidth)
2068                        : APInt::getSignedMaxValue(BitWidth);
2069  }
2070  
2071  APInt APInt::ushl_sat(const APInt &RHS) const {
2072    bool Overflow;
2073    APInt Res = ushl_ov(RHS, Overflow);
2074    if (!Overflow)
2075      return Res;
2076  
2077    return APInt::getMaxValue(BitWidth);
2078  }
2079  
2080  void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2081    // Check our assumptions here
2082    assert(!str.empty() && "Invalid string length");
2083    assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2084            radix == 36) &&
2085           "Radix should be 2, 8, 10, 16, or 36!");
2086  
2087    StringRef::iterator p = str.begin();
2088    size_t slen = str.size();
2089    bool isNeg = *p == '-';
2090    if (*p == '-' || *p == '+') {
2091      p++;
2092      slen--;
2093      assert(slen && "String is only a sign, needs a value.");
2094    }
2095    assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2096    assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2097    assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2098    assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2099           "Insufficient bit width");
2100  
2101    // Allocate memory if needed
2102    if (isSingleWord())
2103      U.VAL = 0;
2104    else
2105      U.pVal = getClearedMemory(getNumWords());
2106  
2107    // Figure out if we can shift instead of multiply
2108    unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2109  
2110    // Enter digit traversal loop
2111    for (StringRef::iterator e = str.end(); p != e; ++p) {
2112      unsigned digit = getDigit(*p, radix);
2113      assert(digit < radix && "Invalid character in digit string");
2114  
2115      // Shift or multiply the value by the radix
2116      if (slen > 1) {
2117        if (shift)
2118          *this <<= shift;
2119        else
2120          *this *= radix;
2121      }
2122  
2123      // Add in the digit we just interpreted
2124      *this += digit;
2125    }
2126    // If its negative, put it in two's complement form
2127    if (isNeg)
2128      this->negate();
2129  }
2130  
2131  void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2132                       bool Signed, bool formatAsCLiteral) const {
2133    assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2134            Radix == 36) &&
2135           "Radix should be 2, 8, 10, 16, or 36!");
2136  
2137    const char *Prefix = "";
2138    if (formatAsCLiteral) {
2139      switch (Radix) {
2140        case 2:
2141          // Binary literals are a non-standard extension added in gcc 4.3:
2142          // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2143          Prefix = "0b";
2144          break;
2145        case 8:
2146          Prefix = "0";
2147          break;
2148        case 10:
2149          break; // No prefix
2150        case 16:
2151          Prefix = "0x";
2152          break;
2153        default:
2154          llvm_unreachable("Invalid radix!");
2155      }
2156    }
2157  
2158    // First, check for a zero value and just short circuit the logic below.
2159    if (isZero()) {
2160      while (*Prefix) {
2161        Str.push_back(*Prefix);
2162        ++Prefix;
2163      };
2164      Str.push_back('0');
2165      return;
2166    }
2167  
2168    static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2169  
2170    if (isSingleWord()) {
2171      char Buffer[65];
2172      char *BufPtr = std::end(Buffer);
2173  
2174      uint64_t N;
2175      if (!Signed) {
2176        N = getZExtValue();
2177      } else {
2178        int64_t I = getSExtValue();
2179        if (I >= 0) {
2180          N = I;
2181        } else {
2182          Str.push_back('-');
2183          N = -(uint64_t)I;
2184        }
2185      }
2186  
2187      while (*Prefix) {
2188        Str.push_back(*Prefix);
2189        ++Prefix;
2190      };
2191  
2192      while (N) {
2193        *--BufPtr = Digits[N % Radix];
2194        N /= Radix;
2195      }
2196      Str.append(BufPtr, std::end(Buffer));
2197      return;
2198    }
2199  
2200    APInt Tmp(*this);
2201  
2202    if (Signed && isNegative()) {
2203      // They want to print the signed version and it is a negative value
2204      // Flip the bits and add one to turn it into the equivalent positive
2205      // value and put a '-' in the result.
2206      Tmp.negate();
2207      Str.push_back('-');
2208    }
2209  
2210    while (*Prefix) {
2211      Str.push_back(*Prefix);
2212      ++Prefix;
2213    };
2214  
2215    // We insert the digits backward, then reverse them to get the right order.
2216    unsigned StartDig = Str.size();
2217  
2218    // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2219    // because the number of bits per digit (1, 3 and 4 respectively) divides
2220    // equally.  We just shift until the value is zero.
2221    if (Radix == 2 || Radix == 8 || Radix == 16) {
2222      // Just shift tmp right for each digit width until it becomes zero
2223      unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2224      unsigned MaskAmt = Radix - 1;
2225  
2226      while (Tmp.getBoolValue()) {
2227        unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2228        Str.push_back(Digits[Digit]);
2229        Tmp.lshrInPlace(ShiftAmt);
2230      }
2231    } else {
2232      while (Tmp.getBoolValue()) {
2233        uint64_t Digit;
2234        udivrem(Tmp, Radix, Tmp, Digit);
2235        assert(Digit < Radix && "divide failed");
2236        Str.push_back(Digits[Digit]);
2237      }
2238    }
2239  
2240    // Reverse the digits before returning.
2241    std::reverse(Str.begin()+StartDig, Str.end());
2242  }
2243  
2244  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2245  LLVM_DUMP_METHOD void APInt::dump() const {
2246    SmallString<40> S, U;
2247    this->toStringUnsigned(U);
2248    this->toStringSigned(S);
2249    dbgs() << "APInt(" << BitWidth << "b, "
2250           << U << "u " << S << "s)\n";
2251  }
2252  #endif
2253  
2254  void APInt::print(raw_ostream &OS, bool isSigned) const {
2255    SmallString<40> S;
2256    this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2257    OS << S;
2258  }
2259  
2260  // This implements a variety of operations on a representation of
2261  // arbitrary precision, two's-complement, bignum integer values.
2262  
2263  // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2264  // and unrestricting assumption.
2265  static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2266                "Part width must be divisible by 2!");
2267  
2268  // Returns the integer part with the least significant BITS set.
2269  // BITS cannot be zero.
2270  static inline APInt::WordType lowBitMask(unsigned bits) {
2271    assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2272    return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2273  }
2274  
2275  /// Returns the value of the lower half of PART.
2276  static inline APInt::WordType lowHalf(APInt::WordType part) {
2277    return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2278  }
2279  
2280  /// Returns the value of the upper half of PART.
2281  static inline APInt::WordType highHalf(APInt::WordType part) {
2282    return part >> (APInt::APINT_BITS_PER_WORD / 2);
2283  }
2284  
2285  /// Returns the bit number of the most significant set bit of a part.
2286  /// If the input number has no bits set -1U is returned.
2287  static unsigned partMSB(APInt::WordType value) {
2288    return findLastSet(value, ZB_Max);
2289  }
2290  
2291  /// Returns the bit number of the least significant set bit of a part.  If the
2292  /// input number has no bits set -1U is returned.
2293  static unsigned partLSB(APInt::WordType value) {
2294    return findFirstSet(value, ZB_Max);
2295  }
2296  
2297  /// Sets the least significant part of a bignum to the input value, and zeroes
2298  /// out higher parts.
2299  void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2300    assert(parts > 0);
2301    dst[0] = part;
2302    for (unsigned i = 1; i < parts; i++)
2303      dst[i] = 0;
2304  }
2305  
2306  /// Assign one bignum to another.
2307  void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2308    for (unsigned i = 0; i < parts; i++)
2309      dst[i] = src[i];
2310  }
2311  
2312  /// Returns true if a bignum is zero, false otherwise.
2313  bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2314    for (unsigned i = 0; i < parts; i++)
2315      if (src[i])
2316        return false;
2317  
2318    return true;
2319  }
2320  
2321  /// Extract the given bit of a bignum; returns 0 or 1.
2322  int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2323    return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2324  }
2325  
2326  /// Set the given bit of a bignum.
2327  void APInt::tcSetBit(WordType *parts, unsigned bit) {
2328    parts[whichWord(bit)] |= maskBit(bit);
2329  }
2330  
2331  /// Clears the given bit of a bignum.
2332  void APInt::tcClearBit(WordType *parts, unsigned bit) {
2333    parts[whichWord(bit)] &= ~maskBit(bit);
2334  }
2335  
2336  /// Returns the bit number of the least significant set bit of a number.  If the
2337  /// input number has no bits set -1U is returned.
2338  unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2339    for (unsigned i = 0; i < n; i++) {
2340      if (parts[i] != 0) {
2341        unsigned lsb = partLSB(parts[i]);
2342        return lsb + i * APINT_BITS_PER_WORD;
2343      }
2344    }
2345  
2346    return -1U;
2347  }
2348  
2349  /// Returns the bit number of the most significant set bit of a number.
2350  /// If the input number has no bits set -1U is returned.
2351  unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2352    do {
2353      --n;
2354  
2355      if (parts[n] != 0) {
2356        unsigned msb = partMSB(parts[n]);
2357  
2358        return msb + n * APINT_BITS_PER_WORD;
2359      }
2360    } while (n);
2361  
2362    return -1U;
2363  }
2364  
2365  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2366  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2367  /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2368  /// */
2369  void
2370  APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2371                   unsigned srcBits, unsigned srcLSB) {
2372    unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2373    assert(dstParts <= dstCount);
2374  
2375    unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2376    tcAssign(dst, src + firstSrcPart, dstParts);
2377  
2378    unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2379    tcShiftRight(dst, dstParts, shift);
2380  
2381    // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2382    // in DST.  If this is less that srcBits, append the rest, else
2383    // clear the high bits.
2384    unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2385    if (n < srcBits) {
2386      WordType mask = lowBitMask (srcBits - n);
2387      dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2388                            << n % APINT_BITS_PER_WORD);
2389    } else if (n > srcBits) {
2390      if (srcBits % APINT_BITS_PER_WORD)
2391        dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2392    }
2393  
2394    // Clear high parts.
2395    while (dstParts < dstCount)
2396      dst[dstParts++] = 0;
2397  }
2398  
2399  //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2400  APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2401                               WordType c, unsigned parts) {
2402    assert(c <= 1);
2403  
2404    for (unsigned i = 0; i < parts; i++) {
2405      WordType l = dst[i];
2406      if (c) {
2407        dst[i] += rhs[i] + 1;
2408        c = (dst[i] <= l);
2409      } else {
2410        dst[i] += rhs[i];
2411        c = (dst[i] < l);
2412      }
2413    }
2414  
2415    return c;
2416  }
2417  
2418  /// This function adds a single "word" integer, src, to the multiple
2419  /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2420  /// 1 is returned if there is a carry out, otherwise 0 is returned.
2421  /// @returns the carry of the addition.
2422  APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2423                                   unsigned parts) {
2424    for (unsigned i = 0; i < parts; ++i) {
2425      dst[i] += src;
2426      if (dst[i] >= src)
2427        return 0; // No need to carry so exit early.
2428      src = 1; // Carry one to next digit.
2429    }
2430  
2431    return 1;
2432  }
2433  
2434  /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2435  APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2436                                    WordType c, unsigned parts) {
2437    assert(c <= 1);
2438  
2439    for (unsigned i = 0; i < parts; i++) {
2440      WordType l = dst[i];
2441      if (c) {
2442        dst[i] -= rhs[i] + 1;
2443        c = (dst[i] >= l);
2444      } else {
2445        dst[i] -= rhs[i];
2446        c = (dst[i] > l);
2447      }
2448    }
2449  
2450    return c;
2451  }
2452  
2453  /// This function subtracts a single "word" (64-bit word), src, from
2454  /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2455  /// no further borrowing is needed or it runs out of "words" in dst.  The result
2456  /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2457  /// exhausted. In other words, if src > dst then this function returns 1,
2458  /// otherwise 0.
2459  /// @returns the borrow out of the subtraction
2460  APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2461                                        unsigned parts) {
2462    for (unsigned i = 0; i < parts; ++i) {
2463      WordType Dst = dst[i];
2464      dst[i] -= src;
2465      if (src <= Dst)
2466        return 0; // No need to borrow so exit early.
2467      src = 1; // We have to "borrow 1" from next "word"
2468    }
2469  
2470    return 1;
2471  }
2472  
2473  /// Negate a bignum in-place.
2474  void APInt::tcNegate(WordType *dst, unsigned parts) {
2475    tcComplement(dst, parts);
2476    tcIncrement(dst, parts);
2477  }
2478  
2479  /// DST += SRC * MULTIPLIER + CARRY   if add is true
2480  /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2481  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2482  /// they must start at the same point, i.e. DST == SRC.
2483  /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2484  /// returned.  Otherwise DST is filled with the least significant
2485  /// DSTPARTS parts of the result, and if all of the omitted higher
2486  /// parts were zero return zero, otherwise overflow occurred and
2487  /// return one.
2488  int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2489                            WordType multiplier, WordType carry,
2490                            unsigned srcParts, unsigned dstParts,
2491                            bool add) {
2492    // Otherwise our writes of DST kill our later reads of SRC.
2493    assert(dst <= src || dst >= src + srcParts);
2494    assert(dstParts <= srcParts + 1);
2495  
2496    // N loops; minimum of dstParts and srcParts.
2497    unsigned n = std::min(dstParts, srcParts);
2498  
2499    for (unsigned i = 0; i < n; i++) {
2500      // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2501      // This cannot overflow, because:
2502      //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2503      // which is less than n^2.
2504      WordType srcPart = src[i];
2505      WordType low, mid, high;
2506      if (multiplier == 0 || srcPart == 0) {
2507        low = carry;
2508        high = 0;
2509      } else {
2510        low = lowHalf(srcPart) * lowHalf(multiplier);
2511        high = highHalf(srcPart) * highHalf(multiplier);
2512  
2513        mid = lowHalf(srcPart) * highHalf(multiplier);
2514        high += highHalf(mid);
2515        mid <<= APINT_BITS_PER_WORD / 2;
2516        if (low + mid < low)
2517          high++;
2518        low += mid;
2519  
2520        mid = highHalf(srcPart) * lowHalf(multiplier);
2521        high += highHalf(mid);
2522        mid <<= APINT_BITS_PER_WORD / 2;
2523        if (low + mid < low)
2524          high++;
2525        low += mid;
2526  
2527        // Now add carry.
2528        if (low + carry < low)
2529          high++;
2530        low += carry;
2531      }
2532  
2533      if (add) {
2534        // And now DST[i], and store the new low part there.
2535        if (low + dst[i] < low)
2536          high++;
2537        dst[i] += low;
2538      } else
2539        dst[i] = low;
2540  
2541      carry = high;
2542    }
2543  
2544    if (srcParts < dstParts) {
2545      // Full multiplication, there is no overflow.
2546      assert(srcParts + 1 == dstParts);
2547      dst[srcParts] = carry;
2548      return 0;
2549    }
2550  
2551    // We overflowed if there is carry.
2552    if (carry)
2553      return 1;
2554  
2555    // We would overflow if any significant unwritten parts would be
2556    // non-zero.  This is true if any remaining src parts are non-zero
2557    // and the multiplier is non-zero.
2558    if (multiplier)
2559      for (unsigned i = dstParts; i < srcParts; i++)
2560        if (src[i])
2561          return 1;
2562  
2563    // We fitted in the narrow destination.
2564    return 0;
2565  }
2566  
2567  /// DST = LHS * RHS, where DST has the same width as the operands and
2568  /// is filled with the least significant parts of the result.  Returns
2569  /// one if overflow occurred, otherwise zero.  DST must be disjoint
2570  /// from both operands.
2571  int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2572                        const WordType *rhs, unsigned parts) {
2573    assert(dst != lhs && dst != rhs);
2574  
2575    int overflow = 0;
2576    tcSet(dst, 0, parts);
2577  
2578    for (unsigned i = 0; i < parts; i++)
2579      overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2580                                 parts - i, true);
2581  
2582    return overflow;
2583  }
2584  
2585  /// DST = LHS * RHS, where DST has width the sum of the widths of the
2586  /// operands. No overflow occurs. DST must be disjoint from both operands.
2587  void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2588                             const WordType *rhs, unsigned lhsParts,
2589                             unsigned rhsParts) {
2590    // Put the narrower number on the LHS for less loops below.
2591    if (lhsParts > rhsParts)
2592      return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2593  
2594    assert(dst != lhs && dst != rhs);
2595  
2596    tcSet(dst, 0, rhsParts);
2597  
2598    for (unsigned i = 0; i < lhsParts; i++)
2599      tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2600  }
2601  
2602  // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2603  // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2604  // set REMAINDER to the remainder, return zero.  i.e.
2605  //
2606  //   OLD_LHS = RHS * LHS + REMAINDER
2607  //
2608  // SCRATCH is a bignum of the same size as the operands and result for
2609  // use by the routine; its contents need not be initialized and are
2610  // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2611  int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2612                      WordType *remainder, WordType *srhs,
2613                      unsigned parts) {
2614    assert(lhs != remainder && lhs != srhs && remainder != srhs);
2615  
2616    unsigned shiftCount = tcMSB(rhs, parts) + 1;
2617    if (shiftCount == 0)
2618      return true;
2619  
2620    shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2621    unsigned n = shiftCount / APINT_BITS_PER_WORD;
2622    WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2623  
2624    tcAssign(srhs, rhs, parts);
2625    tcShiftLeft(srhs, parts, shiftCount);
2626    tcAssign(remainder, lhs, parts);
2627    tcSet(lhs, 0, parts);
2628  
2629    // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2630    // total.
2631    for (;;) {
2632      int compare = tcCompare(remainder, srhs, parts);
2633      if (compare >= 0) {
2634        tcSubtract(remainder, srhs, 0, parts);
2635        lhs[n] |= mask;
2636      }
2637  
2638      if (shiftCount == 0)
2639        break;
2640      shiftCount--;
2641      tcShiftRight(srhs, parts, 1);
2642      if ((mask >>= 1) == 0) {
2643        mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2644        n--;
2645      }
2646    }
2647  
2648    return false;
2649  }
2650  
2651  /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2652  /// no restrictions on Count.
2653  void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2654    // Don't bother performing a no-op shift.
2655    if (!Count)
2656      return;
2657  
2658    // WordShift is the inter-part shift; BitShift is the intra-part shift.
2659    unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2660    unsigned BitShift = Count % APINT_BITS_PER_WORD;
2661  
2662    // Fastpath for moving by whole words.
2663    if (BitShift == 0) {
2664      std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2665    } else {
2666      while (Words-- > WordShift) {
2667        Dst[Words] = Dst[Words - WordShift] << BitShift;
2668        if (Words > WordShift)
2669          Dst[Words] |=
2670            Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2671      }
2672    }
2673  
2674    // Fill in the remainder with 0s.
2675    std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2676  }
2677  
2678  /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2679  /// are no restrictions on Count.
2680  void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2681    // Don't bother performing a no-op shift.
2682    if (!Count)
2683      return;
2684  
2685    // WordShift is the inter-part shift; BitShift is the intra-part shift.
2686    unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2687    unsigned BitShift = Count % APINT_BITS_PER_WORD;
2688  
2689    unsigned WordsToMove = Words - WordShift;
2690    // Fastpath for moving by whole words.
2691    if (BitShift == 0) {
2692      std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2693    } else {
2694      for (unsigned i = 0; i != WordsToMove; ++i) {
2695        Dst[i] = Dst[i + WordShift] >> BitShift;
2696        if (i + 1 != WordsToMove)
2697          Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2698      }
2699    }
2700  
2701    // Fill in the remainder with 0s.
2702    std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2703  }
2704  
2705  // Comparison (unsigned) of two bignums.
2706  int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2707                       unsigned parts) {
2708    while (parts) {
2709      parts--;
2710      if (lhs[parts] != rhs[parts])
2711        return (lhs[parts] > rhs[parts]) ? 1 : -1;
2712    }
2713  
2714    return 0;
2715  }
2716  
2717  APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2718                                     APInt::Rounding RM) {
2719    // Currently udivrem always rounds down.
2720    switch (RM) {
2721    case APInt::Rounding::DOWN:
2722    case APInt::Rounding::TOWARD_ZERO:
2723      return A.udiv(B);
2724    case APInt::Rounding::UP: {
2725      APInt Quo, Rem;
2726      APInt::udivrem(A, B, Quo, Rem);
2727      if (Rem.isZero())
2728        return Quo;
2729      return Quo + 1;
2730    }
2731    }
2732    llvm_unreachable("Unknown APInt::Rounding enum");
2733  }
2734  
2735  APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2736                                     APInt::Rounding RM) {
2737    switch (RM) {
2738    case APInt::Rounding::DOWN:
2739    case APInt::Rounding::UP: {
2740      APInt Quo, Rem;
2741      APInt::sdivrem(A, B, Quo, Rem);
2742      if (Rem.isZero())
2743        return Quo;
2744      // This algorithm deals with arbitrary rounding mode used by sdivrem.
2745      // We want to check whether the non-integer part of the mathematical value
2746      // is negative or not. If the non-integer part is negative, we need to round
2747      // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2748      // already rounded down.
2749      if (RM == APInt::Rounding::DOWN) {
2750        if (Rem.isNegative() != B.isNegative())
2751          return Quo - 1;
2752        return Quo;
2753      }
2754      if (Rem.isNegative() != B.isNegative())
2755        return Quo;
2756      return Quo + 1;
2757    }
2758    // Currently sdiv rounds towards zero.
2759    case APInt::Rounding::TOWARD_ZERO:
2760      return A.sdiv(B);
2761    }
2762    llvm_unreachable("Unknown APInt::Rounding enum");
2763  }
2764  
2765  Optional<APInt>
2766  llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2767                                             unsigned RangeWidth) {
2768    unsigned CoeffWidth = A.getBitWidth();
2769    assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2770    assert(RangeWidth <= CoeffWidth &&
2771           "Value range width should be less than coefficient width");
2772    assert(RangeWidth > 1 && "Value range bit width should be > 1");
2773  
2774    LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2775                      << "x + " << C << ", rw:" << RangeWidth << '\n');
2776  
2777    // Identify 0 as a (non)solution immediately.
2778    if (C.sextOrTrunc(RangeWidth).isZero()) {
2779      LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2780      return APInt(CoeffWidth, 0);
2781    }
2782  
2783    // The result of APInt arithmetic has the same bit width as the operands,
2784    // so it can actually lose high bits. A product of two n-bit integers needs
2785    // 2n-1 bits to represent the full value.
2786    // The operation done below (on quadratic coefficients) that can produce
2787    // the largest value is the evaluation of the equation during bisection,
2788    // which needs 3 times the bitwidth of the coefficient, so the total number
2789    // of required bits is 3n.
2790    //
2791    // The purpose of this extension is to simulate the set Z of all integers,
2792    // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2793    // and negative numbers (not so much in a modulo arithmetic). The method
2794    // used to solve the equation is based on the standard formula for real
2795    // numbers, and uses the concepts of "positive" and "negative" with their
2796    // usual meanings.
2797    CoeffWidth *= 3;
2798    A = A.sext(CoeffWidth);
2799    B = B.sext(CoeffWidth);
2800    C = C.sext(CoeffWidth);
2801  
2802    // Make A > 0 for simplicity. Negate cannot overflow at this point because
2803    // the bit width has increased.
2804    if (A.isNegative()) {
2805      A.negate();
2806      B.negate();
2807      C.negate();
2808    }
2809  
2810    // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2811    // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2812    // and R = 2^BitWidth.
2813    // Since we're trying not only to find exact solutions, but also values
2814    // that "wrap around", such a set will always have a solution, i.e. an x
2815    // that satisfies at least one of the equations, or such that |q(x)|
2816    // exceeds kR, while |q(x-1)| for the same k does not.
2817    //
2818    // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2819    // positive solution n (in the above sense), and also such that the n
2820    // will be the least among all solutions corresponding to k = 0, 1, ...
2821    // (more precisely, the least element in the set
2822    //   { n(k) | k is such that a solution n(k) exists }).
2823    //
2824    // Consider the parabola (over real numbers) that corresponds to the
2825    // quadratic equation. Since A > 0, the arms of the parabola will point
2826    // up. Picking different values of k will shift it up and down by R.
2827    //
2828    // We want to shift the parabola in such a way as to reduce the problem
2829    // of solving q(x) = kR to solving shifted_q(x) = 0.
2830    // (The interesting solutions are the ceilings of the real number
2831    // solutions.)
2832    APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2833    APInt TwoA = 2 * A;
2834    APInt SqrB = B * B;
2835    bool PickLow;
2836  
2837    auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2838      assert(A.isStrictlyPositive());
2839      APInt T = V.abs().urem(A);
2840      if (T.isZero())
2841        return V;
2842      return V.isNegative() ? V+T : V+(A-T);
2843    };
2844  
2845    // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2846    // iff B is positive.
2847    if (B.isNonNegative()) {
2848      // If B >= 0, the vertex it at a negative location (or at 0), so in
2849      // order to have a non-negative solution we need to pick k that makes
2850      // C-kR negative. To satisfy all the requirements for the solution
2851      // that we are looking for, it needs to be closest to 0 of all k.
2852      C = C.srem(R);
2853      if (C.isStrictlyPositive())
2854        C -= R;
2855      // Pick the greater solution.
2856      PickLow = false;
2857    } else {
2858      // If B < 0, the vertex is at a positive location. For any solution
2859      // to exist, the discriminant must be non-negative. This means that
2860      // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2861      // lower bound on values of k: kR >= C - B^2/4A.
2862      APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2863      // Round LowkR up (towards +inf) to the nearest kR.
2864      LowkR = RoundUp(LowkR, R);
2865  
2866      // If there exists k meeting the condition above, and such that
2867      // C-kR > 0, there will be two positive real number solutions of
2868      // q(x) = kR. Out of all such values of k, pick the one that makes
2869      // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2870      // In other words, find maximum k such that LowkR <= kR < C.
2871      if (C.sgt(LowkR)) {
2872        // If LowkR < C, then such a k is guaranteed to exist because
2873        // LowkR itself is a multiple of R.
2874        C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2875        // Pick the smaller solution.
2876        PickLow = true;
2877      } else {
2878        // If C-kR < 0 for all potential k's, it means that one solution
2879        // will be negative, while the other will be positive. The positive
2880        // solution will shift towards 0 if the parabola is moved up.
2881        // Pick the kR closest to the lower bound (i.e. make C-kR closest
2882        // to 0, or in other words, out of all parabolas that have solutions,
2883        // pick the one that is the farthest "up").
2884        // Since LowkR is itself a multiple of R, simply take C-LowkR.
2885        C -= LowkR;
2886        // Pick the greater solution.
2887        PickLow = false;
2888      }
2889    }
2890  
2891    LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2892                      << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2893  
2894    APInt D = SqrB - 4*A*C;
2895    assert(D.isNonNegative() && "Negative discriminant");
2896    APInt SQ = D.sqrt();
2897  
2898    APInt Q = SQ * SQ;
2899    bool InexactSQ = Q != D;
2900    // The calculated SQ may actually be greater than the exact (non-integer)
2901    // value. If that's the case, decrement SQ to get a value that is lower.
2902    if (Q.sgt(D))
2903      SQ -= 1;
2904  
2905    APInt X;
2906    APInt Rem;
2907  
2908    // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2909    // When using the quadratic formula directly, the calculated low root
2910    // may be greater than the exact one, since we would be subtracting SQ.
2911    // To make sure that the calculated root is not greater than the exact
2912    // one, subtract SQ+1 when calculating the low root (for inexact value
2913    // of SQ).
2914    if (PickLow)
2915      APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2916    else
2917      APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2918  
2919    // The updated coefficients should be such that the (exact) solution is
2920    // positive. Since APInt division rounds towards 0, the calculated one
2921    // can be 0, but cannot be negative.
2922    assert(X.isNonNegative() && "Solution should be non-negative");
2923  
2924    if (!InexactSQ && Rem.isZero()) {
2925      LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2926      return X;
2927    }
2928  
2929    assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2930    // The exact value of the square root of D should be between SQ and SQ+1.
2931    // This implies that the solution should be between that corresponding to
2932    // SQ (i.e. X) and that corresponding to SQ+1.
2933    //
2934    // The calculated X cannot be greater than the exact (real) solution.
2935    // Actually it must be strictly less than the exact solution, while
2936    // X+1 will be greater than or equal to it.
2937  
2938    APInt VX = (A*X + B)*X + C;
2939    APInt VY = VX + TwoA*X + A + B;
2940    bool SignChange =
2941        VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2942    // If the sign did not change between X and X+1, X is not a valid solution.
2943    // This could happen when the actual (exact) roots don't have an integer
2944    // between them, so they would both be contained between X and X+1.
2945    if (!SignChange) {
2946      LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2947      return None;
2948    }
2949  
2950    X += 1;
2951    LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2952    return X;
2953  }
2954  
2955  Optional<unsigned>
2956  llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2957    assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2958    if (A == B)
2959      return llvm::None;
2960    return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
2961  }
2962  
2963  APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) {
2964    unsigned OldBitWidth = A.getBitWidth();
2965    assert((((OldBitWidth % NewBitWidth) == 0) ||
2966            ((NewBitWidth % OldBitWidth) == 0)) &&
2967           "One size should be a multiple of the other one. "
2968           "Can't do fractional scaling.");
2969  
2970    // Check for matching bitwidths.
2971    if (OldBitWidth == NewBitWidth)
2972      return A;
2973  
2974    APInt NewA = APInt::getZero(NewBitWidth);
2975  
2976    // Check for null input.
2977    if (A.isZero())
2978      return NewA;
2979  
2980    if (NewBitWidth > OldBitWidth) {
2981      // Repeat bits.
2982      unsigned Scale = NewBitWidth / OldBitWidth;
2983      for (unsigned i = 0; i != OldBitWidth; ++i)
2984        if (A[i])
2985          NewA.setBits(i * Scale, (i + 1) * Scale);
2986    } else {
2987      // Merge bits - if any old bit is set, then set scale equivalent new bit.
2988      unsigned Scale = OldBitWidth / NewBitWidth;
2989      for (unsigned i = 0; i != NewBitWidth; ++i)
2990        if (!A.extractBits(Scale, i * Scale).isZero())
2991          NewA.setBit(i);
2992    }
2993  
2994    return NewA;
2995  }
2996  
2997  /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2998  /// with the integer held in IntVal.
2999  void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3000                              unsigned StoreBytes) {
3001    assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3002    const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3003  
3004    if (sys::IsLittleEndianHost) {
3005      // Little-endian host - the source is ordered from LSB to MSB.  Order the
3006      // destination from LSB to MSB: Do a straight copy.
3007      memcpy(Dst, Src, StoreBytes);
3008    } else {
3009      // Big-endian host - the source is an array of 64 bit words ordered from
3010      // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3011      // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3012      while (StoreBytes > sizeof(uint64_t)) {
3013        StoreBytes -= sizeof(uint64_t);
3014        // May not be aligned so use memcpy.
3015        memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3016        Src += sizeof(uint64_t);
3017      }
3018  
3019      memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3020    }
3021  }
3022  
3023  /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3024  /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3025  void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3026                               unsigned LoadBytes) {
3027    assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3028    uint8_t *Dst = reinterpret_cast<uint8_t *>(
3029                     const_cast<uint64_t *>(IntVal.getRawData()));
3030  
3031    if (sys::IsLittleEndianHost)
3032      // Little-endian host - the destination must be ordered from LSB to MSB.
3033      // The source is ordered from LSB to MSB: Do a straight copy.
3034      memcpy(Dst, Src, LoadBytes);
3035    else {
3036      // Big-endian - the destination is an array of 64 bit words ordered from
3037      // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3038      // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3039      // a word.
3040      while (LoadBytes > sizeof(uint64_t)) {
3041        LoadBytes -= sizeof(uint64_t);
3042        // May not be aligned so use memcpy.
3043        memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3044        Dst += sizeof(uint64_t);
3045      }
3046  
3047      memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3048    }
3049  }
3050