xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APInt.cpp (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/bit.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Alignment.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <optional>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "apint"
33 
34 /// A utility function for allocating memory, checking for allocation failures,
35 /// and ensuring the contents are zeroed.
36 inline static uint64_t* getClearedMemory(unsigned numWords) {
37   uint64_t *result = new uint64_t[numWords];
38   memset(result, 0, numWords * sizeof(uint64_t));
39   return result;
40 }
41 
42 /// A utility function for allocating memory and checking for allocation
43 /// failure.  The content is not zeroed.
44 inline static uint64_t* getMemory(unsigned numWords) {
45   return new uint64_t[numWords];
46 }
47 
48 /// A utility function that converts a character to a digit.
49 inline static unsigned getDigit(char cdigit, uint8_t radix) {
50   unsigned r;
51 
52   if (radix == 16 || radix == 36) {
53     r = cdigit - '0';
54     if (r <= 9)
55       return r;
56 
57     r = cdigit - 'A';
58     if (r <= radix - 11U)
59       return r + 10;
60 
61     r = cdigit - 'a';
62     if (r <= radix - 11U)
63       return r + 10;
64 
65     radix = 10;
66   }
67 
68   r = cdigit - '0';
69   if (r < radix)
70     return r;
71 
72   return UINT_MAX;
73 }
74 
75 
76 void APInt::initSlowCase(uint64_t val, bool isSigned) {
77   U.pVal = getClearedMemory(getNumWords());
78   U.pVal[0] = val;
79   if (isSigned && int64_t(val) < 0)
80     for (unsigned i = 1; i < getNumWords(); ++i)
81       U.pVal[i] = WORDTYPE_MAX;
82   clearUnusedBits();
83 }
84 
85 void APInt::initSlowCase(const APInt& that) {
86   U.pVal = getMemory(getNumWords());
87   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
88 }
89 
90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91   assert(bigVal.data() && "Null pointer detected!");
92   if (isSingleWord())
93     U.VAL = bigVal[0];
94   else {
95     // Get memory, cleared to 0
96     U.pVal = getClearedMemory(getNumWords());
97     // Calculate the number of words to copy
98     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99     // Copy the words from bigVal to pVal
100     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
101   }
102   // Make sure unused high bits are cleared
103   clearUnusedBits();
104 }
105 
106 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
107   initFromArray(bigVal);
108 }
109 
110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111     : BitWidth(numBits) {
112   initFromArray(ArrayRef(bigVal, numWords));
113 }
114 
115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
116     : BitWidth(numbits) {
117   fromString(numbits, Str, radix);
118 }
119 
120 void APInt::reallocate(unsigned NewBitWidth) {
121   // If the number of words is the same we can just change the width and stop.
122   if (getNumWords() == getNumWords(NewBitWidth)) {
123     BitWidth = NewBitWidth;
124     return;
125   }
126 
127   // If we have an allocation, delete it.
128   if (!isSingleWord())
129     delete [] U.pVal;
130 
131   // Update BitWidth.
132   BitWidth = NewBitWidth;
133 
134   // If we are supposed to have an allocation, create it.
135   if (!isSingleWord())
136     U.pVal = getMemory(getNumWords());
137 }
138 
139 void APInt::assignSlowCase(const APInt &RHS) {
140   // Don't do anything for X = X
141   if (this == &RHS)
142     return;
143 
144   // Adjust the bit width and handle allocations as necessary.
145   reallocate(RHS.getBitWidth());
146 
147   // Copy the data.
148   if (isSingleWord())
149     U.VAL = RHS.U.VAL;
150   else
151     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
152 }
153 
154 /// This method 'profiles' an APInt for use with FoldingSet.
155 void APInt::Profile(FoldingSetNodeID& ID) const {
156   ID.AddInteger(BitWidth);
157 
158   if (isSingleWord()) {
159     ID.AddInteger(U.VAL);
160     return;
161   }
162 
163   unsigned NumWords = getNumWords();
164   for (unsigned i = 0; i < NumWords; ++i)
165     ID.AddInteger(U.pVal[i]);
166 }
167 
168 bool APInt::isAligned(Align A) const {
169   if (isZero())
170     return true;
171   const unsigned TrailingZeroes = countr_zero();
172   const unsigned MinimumTrailingZeroes = Log2(A);
173   return TrailingZeroes >= MinimumTrailingZeroes;
174 }
175 
176 /// Prefix increment operator. Increments the APInt by one.
177 APInt& APInt::operator++() {
178   if (isSingleWord())
179     ++U.VAL;
180   else
181     tcIncrement(U.pVal, getNumWords());
182   return clearUnusedBits();
183 }
184 
185 /// Prefix decrement operator. Decrements the APInt by one.
186 APInt& APInt::operator--() {
187   if (isSingleWord())
188     --U.VAL;
189   else
190     tcDecrement(U.pVal, getNumWords());
191   return clearUnusedBits();
192 }
193 
194 /// Adds the RHS APInt to this APInt.
195 /// @returns this, after addition of RHS.
196 /// Addition assignment operator.
197 APInt& APInt::operator+=(const APInt& RHS) {
198   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
199   if (isSingleWord())
200     U.VAL += RHS.U.VAL;
201   else
202     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
203   return clearUnusedBits();
204 }
205 
206 APInt& APInt::operator+=(uint64_t RHS) {
207   if (isSingleWord())
208     U.VAL += RHS;
209   else
210     tcAddPart(U.pVal, RHS, getNumWords());
211   return clearUnusedBits();
212 }
213 
214 /// Subtracts the RHS APInt from this APInt
215 /// @returns this, after subtraction
216 /// Subtraction assignment operator.
217 APInt& APInt::operator-=(const APInt& RHS) {
218   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
219   if (isSingleWord())
220     U.VAL -= RHS.U.VAL;
221   else
222     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
223   return clearUnusedBits();
224 }
225 
226 APInt& APInt::operator-=(uint64_t RHS) {
227   if (isSingleWord())
228     U.VAL -= RHS;
229   else
230     tcSubtractPart(U.pVal, RHS, getNumWords());
231   return clearUnusedBits();
232 }
233 
234 APInt APInt::operator*(const APInt& RHS) const {
235   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236   if (isSingleWord())
237     return APInt(BitWidth, U.VAL * RHS.U.VAL);
238 
239   APInt Result(getMemory(getNumWords()), getBitWidth());
240   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
241   Result.clearUnusedBits();
242   return Result;
243 }
244 
245 void APInt::andAssignSlowCase(const APInt &RHS) {
246   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
247   for (size_t i = 0, e = getNumWords(); i != e; ++i)
248     dst[i] &= rhs[i];
249 }
250 
251 void APInt::orAssignSlowCase(const APInt &RHS) {
252   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
253   for (size_t i = 0, e = getNumWords(); i != e; ++i)
254     dst[i] |= rhs[i];
255 }
256 
257 void APInt::xorAssignSlowCase(const APInt &RHS) {
258   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
259   for (size_t i = 0, e = getNumWords(); i != e; ++i)
260     dst[i] ^= rhs[i];
261 }
262 
263 APInt &APInt::operator*=(const APInt &RHS) {
264   *this = *this * RHS;
265   return *this;
266 }
267 
268 APInt& APInt::operator*=(uint64_t RHS) {
269   if (isSingleWord()) {
270     U.VAL *= RHS;
271   } else {
272     unsigned NumWords = getNumWords();
273     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
274   }
275   return clearUnusedBits();
276 }
277 
278 bool APInt::equalSlowCase(const APInt &RHS) const {
279   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
280 }
281 
282 int APInt::compare(const APInt& RHS) const {
283   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
284   if (isSingleWord())
285     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
286 
287   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
288 }
289 
290 int APInt::compareSigned(const APInt& RHS) const {
291   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
292   if (isSingleWord()) {
293     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
294     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
295     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
296   }
297 
298   bool lhsNeg = isNegative();
299   bool rhsNeg = RHS.isNegative();
300 
301   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
302   if (lhsNeg != rhsNeg)
303     return lhsNeg ? -1 : 1;
304 
305   // Otherwise we can just use an unsigned comparison, because even negative
306   // numbers compare correctly this way if both have the same signed-ness.
307   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
308 }
309 
310 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
311   unsigned loWord = whichWord(loBit);
312   unsigned hiWord = whichWord(hiBit);
313 
314   // Create an initial mask for the low word with zeros below loBit.
315   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
316 
317   // If hiBit is not aligned, we need a high mask.
318   unsigned hiShiftAmt = whichBit(hiBit);
319   if (hiShiftAmt != 0) {
320     // Create a high mask with zeros above hiBit.
321     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
322     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
323     // set the bits in hiWord.
324     if (hiWord == loWord)
325       loMask &= hiMask;
326     else
327       U.pVal[hiWord] |= hiMask;
328   }
329   // Apply the mask to the low word.
330   U.pVal[loWord] |= loMask;
331 
332   // Fill any words between loWord and hiWord with all ones.
333   for (unsigned word = loWord + 1; word < hiWord; ++word)
334     U.pVal[word] = WORDTYPE_MAX;
335 }
336 
337 // Complement a bignum in-place.
338 static void tcComplement(APInt::WordType *dst, unsigned parts) {
339   for (unsigned i = 0; i < parts; i++)
340     dst[i] = ~dst[i];
341 }
342 
343 /// Toggle every bit to its opposite value.
344 void APInt::flipAllBitsSlowCase() {
345   tcComplement(U.pVal, getNumWords());
346   clearUnusedBits();
347 }
348 
349 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
350 /// equivalent to:
351 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
352 /// In the slow case, we know the result is large.
353 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
354   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
355   APInt Result = NewLSB.zext(NewWidth);
356   Result.insertBits(*this, NewLSB.getBitWidth());
357   return Result;
358 }
359 
360 /// Toggle a given bit to its opposite value whose position is given
361 /// as "bitPosition".
362 /// Toggles a given bit to its opposite value.
363 void APInt::flipBit(unsigned bitPosition) {
364   assert(bitPosition < BitWidth && "Out of the bit-width range!");
365   setBitVal(bitPosition, !(*this)[bitPosition]);
366 }
367 
368 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
369   unsigned subBitWidth = subBits.getBitWidth();
370   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
371 
372   // inserting no bits is a noop.
373   if (subBitWidth == 0)
374     return;
375 
376   // Insertion is a direct copy.
377   if (subBitWidth == BitWidth) {
378     *this = subBits;
379     return;
380   }
381 
382   // Single word result can be done as a direct bitmask.
383   if (isSingleWord()) {
384     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
385     U.VAL &= ~(mask << bitPosition);
386     U.VAL |= (subBits.U.VAL << bitPosition);
387     return;
388   }
389 
390   unsigned loBit = whichBit(bitPosition);
391   unsigned loWord = whichWord(bitPosition);
392   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
393 
394   // Insertion within a single word can be done as a direct bitmask.
395   if (loWord == hi1Word) {
396     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
397     U.pVal[loWord] &= ~(mask << loBit);
398     U.pVal[loWord] |= (subBits.U.VAL << loBit);
399     return;
400   }
401 
402   // Insert on word boundaries.
403   if (loBit == 0) {
404     // Direct copy whole words.
405     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
406     memcpy(U.pVal + loWord, subBits.getRawData(),
407            numWholeSubWords * APINT_WORD_SIZE);
408 
409     // Mask+insert remaining bits.
410     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
411     if (remainingBits != 0) {
412       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
413       U.pVal[hi1Word] &= ~mask;
414       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
415     }
416     return;
417   }
418 
419   // General case - set/clear individual bits in dst based on src.
420   // TODO - there is scope for optimization here, but at the moment this code
421   // path is barely used so prefer readability over performance.
422   for (unsigned i = 0; i != subBitWidth; ++i)
423     setBitVal(bitPosition + i, subBits[i]);
424 }
425 
426 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
427   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
428   subBits &= maskBits;
429   if (isSingleWord()) {
430     U.VAL &= ~(maskBits << bitPosition);
431     U.VAL |= subBits << bitPosition;
432     return;
433   }
434 
435   unsigned loBit = whichBit(bitPosition);
436   unsigned loWord = whichWord(bitPosition);
437   unsigned hiWord = whichWord(bitPosition + numBits - 1);
438   if (loWord == hiWord) {
439     U.pVal[loWord] &= ~(maskBits << loBit);
440     U.pVal[loWord] |= subBits << loBit;
441     return;
442   }
443 
444   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
445   unsigned wordBits = 8 * sizeof(WordType);
446   U.pVal[loWord] &= ~(maskBits << loBit);
447   U.pVal[loWord] |= subBits << loBit;
448 
449   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
450   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
451 }
452 
453 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
454   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
455          "Illegal bit extraction");
456 
457   if (isSingleWord())
458     return APInt(numBits, U.VAL >> bitPosition);
459 
460   unsigned loBit = whichBit(bitPosition);
461   unsigned loWord = whichWord(bitPosition);
462   unsigned hiWord = whichWord(bitPosition + numBits - 1);
463 
464   // Single word result extracting bits from a single word source.
465   if (loWord == hiWord)
466     return APInt(numBits, U.pVal[loWord] >> loBit);
467 
468   // Extracting bits that start on a source word boundary can be done
469   // as a fast memory copy.
470   if (loBit == 0)
471     return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
472 
473   // General case - shift + copy source words directly into place.
474   APInt Result(numBits, 0);
475   unsigned NumSrcWords = getNumWords();
476   unsigned NumDstWords = Result.getNumWords();
477 
478   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
479   for (unsigned word = 0; word < NumDstWords; ++word) {
480     uint64_t w0 = U.pVal[loWord + word];
481     uint64_t w1 =
482         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
483     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
484   }
485 
486   return Result.clearUnusedBits();
487 }
488 
489 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
490                                        unsigned bitPosition) const {
491   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
492          "Illegal bit extraction");
493   assert(numBits <= 64 && "Illegal bit extraction");
494 
495   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
496   if (isSingleWord())
497     return (U.VAL >> bitPosition) & maskBits;
498 
499   unsigned loBit = whichBit(bitPosition);
500   unsigned loWord = whichWord(bitPosition);
501   unsigned hiWord = whichWord(bitPosition + numBits - 1);
502   if (loWord == hiWord)
503     return (U.pVal[loWord] >> loBit) & maskBits;
504 
505   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
506   unsigned wordBits = 8 * sizeof(WordType);
507   uint64_t retBits = U.pVal[loWord] >> loBit;
508   retBits |= U.pVal[hiWord] << (wordBits - loBit);
509   retBits &= maskBits;
510   return retBits;
511 }
512 
513 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
514   assert(!Str.empty() && "Invalid string length");
515   size_t StrLen = Str.size();
516 
517   // Each computation below needs to know if it's negative.
518   unsigned IsNegative = false;
519   if (Str[0] == '-' || Str[0] == '+') {
520     IsNegative = Str[0] == '-';
521     StrLen--;
522     assert(StrLen && "String is only a sign, needs a value.");
523   }
524 
525   // For radixes of power-of-two values, the bits required is accurately and
526   // easily computed.
527   if (Radix == 2)
528     return StrLen + IsNegative;
529   if (Radix == 8)
530     return StrLen * 3 + IsNegative;
531   if (Radix == 16)
532     return StrLen * 4 + IsNegative;
533 
534   // Compute a sufficient number of bits that is always large enough but might
535   // be too large. This avoids the assertion in the constructor. This
536   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
537   // bits in that case.
538   if (Radix == 10)
539     return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
540 
541   assert(Radix == 36);
542   return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
543 }
544 
545 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
546   // Compute a sufficient number of bits that is always large enough but might
547   // be too large.
548   unsigned sufficient = getSufficientBitsNeeded(str, radix);
549 
550   // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
551   // return the value directly. For bases 10 and 36, we need to do extra work.
552   if (radix == 2 || radix == 8 || radix == 16)
553     return sufficient;
554 
555   // This is grossly inefficient but accurate. We could probably do something
556   // with a computation of roughly slen*64/20 and then adjust by the value of
557   // the first few digits. But, I'm not sure how accurate that could be.
558   size_t slen = str.size();
559 
560   // Each computation below needs to know if it's negative.
561   StringRef::iterator p = str.begin();
562   unsigned isNegative = *p == '-';
563   if (*p == '-' || *p == '+') {
564     p++;
565     slen--;
566     assert(slen && "String is only a sign, needs a value.");
567   }
568 
569 
570   // Convert to the actual binary value.
571   APInt tmp(sufficient, StringRef(p, slen), radix);
572 
573   // Compute how many bits are required. If the log is infinite, assume we need
574   // just bit. If the log is exact and value is negative, then the value is
575   // MinSignedValue with (log + 1) bits.
576   unsigned log = tmp.logBase2();
577   if (log == (unsigned)-1) {
578     return isNegative + 1;
579   } else if (isNegative && tmp.isPowerOf2()) {
580     return isNegative + log;
581   } else {
582     return isNegative + log + 1;
583   }
584 }
585 
586 hash_code llvm::hash_value(const APInt &Arg) {
587   if (Arg.isSingleWord())
588     return hash_combine(Arg.BitWidth, Arg.U.VAL);
589 
590   return hash_combine(
591       Arg.BitWidth,
592       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
593 }
594 
595 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
596   return static_cast<unsigned>(hash_value(Key));
597 }
598 
599 bool APInt::isSplat(unsigned SplatSizeInBits) const {
600   assert(getBitWidth() % SplatSizeInBits == 0 &&
601          "SplatSizeInBits must divide width!");
602   // We can check that all parts of an integer are equal by making use of a
603   // little trick: rotate and check if it's still the same value.
604   return *this == rotl(SplatSizeInBits);
605 }
606 
607 /// This function returns the high "numBits" bits of this APInt.
608 APInt APInt::getHiBits(unsigned numBits) const {
609   return this->lshr(BitWidth - numBits);
610 }
611 
612 /// This function returns the low "numBits" bits of this APInt.
613 APInt APInt::getLoBits(unsigned numBits) const {
614   APInt Result(getLowBitsSet(BitWidth, numBits));
615   Result &= *this;
616   return Result;
617 }
618 
619 /// Return a value containing V broadcasted over NewLen bits.
620 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
621   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
622 
623   APInt Val = V.zext(NewLen);
624   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
625     Val |= Val << I;
626 
627   return Val;
628 }
629 
630 unsigned APInt::countLeadingZerosSlowCase() const {
631   unsigned Count = 0;
632   for (int i = getNumWords()-1; i >= 0; --i) {
633     uint64_t V = U.pVal[i];
634     if (V == 0)
635       Count += APINT_BITS_PER_WORD;
636     else {
637       Count += llvm::countl_zero(V);
638       break;
639     }
640   }
641   // Adjust for unused bits in the most significant word (they are zero).
642   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
643   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
644   return Count;
645 }
646 
647 unsigned APInt::countLeadingOnesSlowCase() const {
648   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
649   unsigned shift;
650   if (!highWordBits) {
651     highWordBits = APINT_BITS_PER_WORD;
652     shift = 0;
653   } else {
654     shift = APINT_BITS_PER_WORD - highWordBits;
655   }
656   int i = getNumWords() - 1;
657   unsigned Count = llvm::countl_one(U.pVal[i] << shift);
658   if (Count == highWordBits) {
659     for (i--; i >= 0; --i) {
660       if (U.pVal[i] == WORDTYPE_MAX)
661         Count += APINT_BITS_PER_WORD;
662       else {
663         Count += llvm::countl_one(U.pVal[i]);
664         break;
665       }
666     }
667   }
668   return Count;
669 }
670 
671 unsigned APInt::countTrailingZerosSlowCase() const {
672   unsigned Count = 0;
673   unsigned i = 0;
674   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
675     Count += APINT_BITS_PER_WORD;
676   if (i < getNumWords())
677     Count += llvm::countr_zero(U.pVal[i]);
678   return std::min(Count, BitWidth);
679 }
680 
681 unsigned APInt::countTrailingOnesSlowCase() const {
682   unsigned Count = 0;
683   unsigned i = 0;
684   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
685     Count += APINT_BITS_PER_WORD;
686   if (i < getNumWords())
687     Count += llvm::countr_one(U.pVal[i]);
688   assert(Count <= BitWidth);
689   return Count;
690 }
691 
692 unsigned APInt::countPopulationSlowCase() const {
693   unsigned Count = 0;
694   for (unsigned i = 0; i < getNumWords(); ++i)
695     Count += llvm::popcount(U.pVal[i]);
696   return Count;
697 }
698 
699 bool APInt::intersectsSlowCase(const APInt &RHS) const {
700   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
702       return true;
703 
704   return false;
705 }
706 
707 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
708   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
709     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
710       return false;
711 
712   return true;
713 }
714 
715 APInt APInt::byteSwap() const {
716   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
717   if (BitWidth == 16)
718     return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
719   if (BitWidth == 32)
720     return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
721   if (BitWidth <= 64) {
722     uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
723     Tmp1 >>= (64 - BitWidth);
724     return APInt(BitWidth, Tmp1);
725   }
726 
727   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
728   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
729     Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
730   if (Result.BitWidth != BitWidth) {
731     Result.lshrInPlace(Result.BitWidth - BitWidth);
732     Result.BitWidth = BitWidth;
733   }
734   return Result;
735 }
736 
737 APInt APInt::reverseBits() const {
738   switch (BitWidth) {
739   case 64:
740     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
741   case 32:
742     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
743   case 16:
744     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
745   case 8:
746     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
747   case 0:
748     return *this;
749   default:
750     break;
751   }
752 
753   APInt Val(*this);
754   APInt Reversed(BitWidth, 0);
755   unsigned S = BitWidth;
756 
757   for (; Val != 0; Val.lshrInPlace(1)) {
758     Reversed <<= 1;
759     Reversed |= Val[0];
760     --S;
761   }
762 
763   Reversed <<= S;
764   return Reversed;
765 }
766 
767 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
768   // Fast-path a common case.
769   if (A == B) return A;
770 
771   // Corner cases: if either operand is zero, the other is the gcd.
772   if (!A) return B;
773   if (!B) return A;
774 
775   // Count common powers of 2 and remove all other powers of 2.
776   unsigned Pow2;
777   {
778     unsigned Pow2_A = A.countr_zero();
779     unsigned Pow2_B = B.countr_zero();
780     if (Pow2_A > Pow2_B) {
781       A.lshrInPlace(Pow2_A - Pow2_B);
782       Pow2 = Pow2_B;
783     } else if (Pow2_B > Pow2_A) {
784       B.lshrInPlace(Pow2_B - Pow2_A);
785       Pow2 = Pow2_A;
786     } else {
787       Pow2 = Pow2_A;
788     }
789   }
790 
791   // Both operands are odd multiples of 2^Pow_2:
792   //
793   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
794   //
795   // This is a modified version of Stein's algorithm, taking advantage of
796   // efficient countTrailingZeros().
797   while (A != B) {
798     if (A.ugt(B)) {
799       A -= B;
800       A.lshrInPlace(A.countr_zero() - Pow2);
801     } else {
802       B -= A;
803       B.lshrInPlace(B.countr_zero() - Pow2);
804     }
805   }
806 
807   return A;
808 }
809 
810 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
811   uint64_t I = bit_cast<uint64_t>(Double);
812 
813   // Get the sign bit from the highest order bit
814   bool isNeg = I >> 63;
815 
816   // Get the 11-bit exponent and adjust for the 1023 bit bias
817   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
818 
819   // If the exponent is negative, the value is < 0 so just return 0.
820   if (exp < 0)
821     return APInt(width, 0u);
822 
823   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
824   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
825 
826   // If the exponent doesn't shift all bits out of the mantissa
827   if (exp < 52)
828     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
829                     APInt(width, mantissa >> (52 - exp));
830 
831   // If the client didn't provide enough bits for us to shift the mantissa into
832   // then the result is undefined, just return 0
833   if (width <= exp - 52)
834     return APInt(width, 0);
835 
836   // Otherwise, we have to shift the mantissa bits up to the right location
837   APInt Tmp(width, mantissa);
838   Tmp <<= (unsigned)exp - 52;
839   return isNeg ? -Tmp : Tmp;
840 }
841 
842 /// This function converts this APInt to a double.
843 /// The layout for double is as following (IEEE Standard 754):
844 ///  --------------------------------------
845 /// |  Sign    Exponent    Fraction    Bias |
846 /// |-------------------------------------- |
847 /// |  1[63]   11[62-52]   52[51-00]   1023 |
848 ///  --------------------------------------
849 double APInt::roundToDouble(bool isSigned) const {
850 
851   // Handle the simple case where the value is contained in one uint64_t.
852   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
853   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
854     if (isSigned) {
855       int64_t sext = SignExtend64(getWord(0), BitWidth);
856       return double(sext);
857     } else
858       return double(getWord(0));
859   }
860 
861   // Determine if the value is negative.
862   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
863 
864   // Construct the absolute value if we're negative.
865   APInt Tmp(isNeg ? -(*this) : (*this));
866 
867   // Figure out how many bits we're using.
868   unsigned n = Tmp.getActiveBits();
869 
870   // The exponent (without bias normalization) is just the number of bits
871   // we are using. Note that the sign bit is gone since we constructed the
872   // absolute value.
873   uint64_t exp = n;
874 
875   // Return infinity for exponent overflow
876   if (exp > 1023) {
877     if (!isSigned || !isNeg)
878       return std::numeric_limits<double>::infinity();
879     else
880       return -std::numeric_limits<double>::infinity();
881   }
882   exp += 1023; // Increment for 1023 bias
883 
884   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
885   // extract the high 52 bits from the correct words in pVal.
886   uint64_t mantissa;
887   unsigned hiWord = whichWord(n-1);
888   if (hiWord == 0) {
889     mantissa = Tmp.U.pVal[0];
890     if (n > 52)
891       mantissa >>= n - 52; // shift down, we want the top 52 bits.
892   } else {
893     assert(hiWord > 0 && "huh?");
894     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
895     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
896     mantissa = hibits | lobits;
897   }
898 
899   // The leading bit of mantissa is implicit, so get rid of it.
900   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
901   uint64_t I = sign | (exp << 52) | mantissa;
902   return bit_cast<double>(I);
903 }
904 
905 // Truncate to new width.
906 APInt APInt::trunc(unsigned width) const {
907   assert(width <= BitWidth && "Invalid APInt Truncate request");
908 
909   if (width <= APINT_BITS_PER_WORD)
910     return APInt(width, getRawData()[0]);
911 
912   if (width == BitWidth)
913     return *this;
914 
915   APInt Result(getMemory(getNumWords(width)), width);
916 
917   // Copy full words.
918   unsigned i;
919   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
920     Result.U.pVal[i] = U.pVal[i];
921 
922   // Truncate and copy any partial word.
923   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
924   if (bits != 0)
925     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
926 
927   return Result;
928 }
929 
930 // Truncate to new width with unsigned saturation.
931 APInt APInt::truncUSat(unsigned width) const {
932   assert(width <= BitWidth && "Invalid APInt Truncate request");
933 
934   // Can we just losslessly truncate it?
935   if (isIntN(width))
936     return trunc(width);
937   // If not, then just return the new limit.
938   return APInt::getMaxValue(width);
939 }
940 
941 // Truncate to new width with signed saturation.
942 APInt APInt::truncSSat(unsigned width) const {
943   assert(width <= BitWidth && "Invalid APInt Truncate request");
944 
945   // Can we just losslessly truncate it?
946   if (isSignedIntN(width))
947     return trunc(width);
948   // If not, then just return the new limits.
949   return isNegative() ? APInt::getSignedMinValue(width)
950                       : APInt::getSignedMaxValue(width);
951 }
952 
953 // Sign extend to a new width.
954 APInt APInt::sext(unsigned Width) const {
955   assert(Width >= BitWidth && "Invalid APInt SignExtend request");
956 
957   if (Width <= APINT_BITS_PER_WORD)
958     return APInt(Width, SignExtend64(U.VAL, BitWidth));
959 
960   if (Width == BitWidth)
961     return *this;
962 
963   APInt Result(getMemory(getNumWords(Width)), Width);
964 
965   // Copy words.
966   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
967 
968   // Sign extend the last word since there may be unused bits in the input.
969   Result.U.pVal[getNumWords() - 1] =
970       SignExtend64(Result.U.pVal[getNumWords() - 1],
971                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
972 
973   // Fill with sign bits.
974   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
975               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
976   Result.clearUnusedBits();
977   return Result;
978 }
979 
980 //  Zero extend to a new width.
981 APInt APInt::zext(unsigned width) const {
982   assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
983 
984   if (width <= APINT_BITS_PER_WORD)
985     return APInt(width, U.VAL);
986 
987   if (width == BitWidth)
988     return *this;
989 
990   APInt Result(getMemory(getNumWords(width)), width);
991 
992   // Copy words.
993   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
994 
995   // Zero remaining words.
996   std::memset(Result.U.pVal + getNumWords(), 0,
997               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
998 
999   return Result;
1000 }
1001 
1002 APInt APInt::zextOrTrunc(unsigned width) const {
1003   if (BitWidth < width)
1004     return zext(width);
1005   if (BitWidth > width)
1006     return trunc(width);
1007   return *this;
1008 }
1009 
1010 APInt APInt::sextOrTrunc(unsigned width) const {
1011   if (BitWidth < width)
1012     return sext(width);
1013   if (BitWidth > width)
1014     return trunc(width);
1015   return *this;
1016 }
1017 
1018 /// Arithmetic right-shift this APInt by shiftAmt.
1019 /// Arithmetic right-shift function.
1020 void APInt::ashrInPlace(const APInt &shiftAmt) {
1021   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1022 }
1023 
1024 /// Arithmetic right-shift this APInt by shiftAmt.
1025 /// Arithmetic right-shift function.
1026 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1027   // Don't bother performing a no-op shift.
1028   if (!ShiftAmt)
1029     return;
1030 
1031   // Save the original sign bit for later.
1032   bool Negative = isNegative();
1033 
1034   // WordShift is the inter-part shift; BitShift is intra-part shift.
1035   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1036   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1037 
1038   unsigned WordsToMove = getNumWords() - WordShift;
1039   if (WordsToMove != 0) {
1040     // Sign extend the last word to fill in the unused bits.
1041     U.pVal[getNumWords() - 1] = SignExtend64(
1042         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1043 
1044     // Fastpath for moving by whole words.
1045     if (BitShift == 0) {
1046       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1047     } else {
1048       // Move the words containing significant bits.
1049       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1050         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1051                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1052 
1053       // Handle the last word which has no high bits to copy.
1054       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1055       // Sign extend one more time.
1056       U.pVal[WordsToMove - 1] =
1057           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1058     }
1059   }
1060 
1061   // Fill in the remainder based on the original sign.
1062   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1063               WordShift * APINT_WORD_SIZE);
1064   clearUnusedBits();
1065 }
1066 
1067 /// Logical right-shift this APInt by shiftAmt.
1068 /// Logical right-shift function.
1069 void APInt::lshrInPlace(const APInt &shiftAmt) {
1070   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1071 }
1072 
1073 /// Logical right-shift this APInt by shiftAmt.
1074 /// Logical right-shift function.
1075 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1076   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1077 }
1078 
1079 /// Left-shift this APInt by shiftAmt.
1080 /// Left-shift function.
1081 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1082   // It's undefined behavior in C to shift by BitWidth or greater.
1083   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1084   return *this;
1085 }
1086 
1087 void APInt::shlSlowCase(unsigned ShiftAmt) {
1088   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1089   clearUnusedBits();
1090 }
1091 
1092 // Calculate the rotate amount modulo the bit width.
1093 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1094   if (LLVM_UNLIKELY(BitWidth == 0))
1095     return 0;
1096   unsigned rotBitWidth = rotateAmt.getBitWidth();
1097   APInt rot = rotateAmt;
1098   if (rotBitWidth < BitWidth) {
1099     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1100     // e.g. APInt(1, 32) would give APInt(1, 0).
1101     rot = rotateAmt.zext(BitWidth);
1102   }
1103   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1104   return rot.getLimitedValue(BitWidth);
1105 }
1106 
1107 APInt APInt::rotl(const APInt &rotateAmt) const {
1108   return rotl(rotateModulo(BitWidth, rotateAmt));
1109 }
1110 
1111 APInt APInt::rotl(unsigned rotateAmt) const {
1112   if (LLVM_UNLIKELY(BitWidth == 0))
1113     return *this;
1114   rotateAmt %= BitWidth;
1115   if (rotateAmt == 0)
1116     return *this;
1117   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1118 }
1119 
1120 APInt APInt::rotr(const APInt &rotateAmt) const {
1121   return rotr(rotateModulo(BitWidth, rotateAmt));
1122 }
1123 
1124 APInt APInt::rotr(unsigned rotateAmt) const {
1125   if (BitWidth == 0)
1126     return *this;
1127   rotateAmt %= BitWidth;
1128   if (rotateAmt == 0)
1129     return *this;
1130   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1131 }
1132 
1133 /// \returns the nearest log base 2 of this APInt. Ties round up.
1134 ///
1135 /// NOTE: When we have a BitWidth of 1, we define:
1136 ///
1137 ///   log2(0) = UINT32_MAX
1138 ///   log2(1) = 0
1139 ///
1140 /// to get around any mathematical concerns resulting from
1141 /// referencing 2 in a space where 2 does no exist.
1142 unsigned APInt::nearestLogBase2() const {
1143   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1144   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1145   // UINT32_MAX.
1146   if (BitWidth == 1)
1147     return U.VAL - 1;
1148 
1149   // Handle the zero case.
1150   if (isZero())
1151     return UINT32_MAX;
1152 
1153   // The non-zero case is handled by computing:
1154   //
1155   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1156   //
1157   // where x[i] is referring to the value of the ith bit of x.
1158   unsigned lg = logBase2();
1159   return lg + unsigned((*this)[lg - 1]);
1160 }
1161 
1162 // Square Root - this method computes and returns the square root of "this".
1163 // Three mechanisms are used for computation. For small values (<= 5 bits),
1164 // a table lookup is done. This gets some performance for common cases. For
1165 // values using less than 52 bits, the value is converted to double and then
1166 // the libc sqrt function is called. The result is rounded and then converted
1167 // back to a uint64_t which is then used to construct the result. Finally,
1168 // the Babylonian method for computing square roots is used.
1169 APInt APInt::sqrt() const {
1170 
1171   // Determine the magnitude of the value.
1172   unsigned magnitude = getActiveBits();
1173 
1174   // Use a fast table for some small values. This also gets rid of some
1175   // rounding errors in libc sqrt for small values.
1176   if (magnitude <= 5) {
1177     static const uint8_t results[32] = {
1178       /*     0 */ 0,
1179       /*  1- 2 */ 1, 1,
1180       /*  3- 6 */ 2, 2, 2, 2,
1181       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1182       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1183       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184       /*    31 */ 6
1185     };
1186     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1187   }
1188 
1189   // If the magnitude of the value fits in less than 52 bits (the precision of
1190   // an IEEE double precision floating point value), then we can use the
1191   // libc sqrt function which will probably use a hardware sqrt computation.
1192   // This should be faster than the algorithm below.
1193   if (magnitude < 52) {
1194     return APInt(BitWidth,
1195                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1196                                                                : U.pVal[0])))));
1197   }
1198 
1199   // Okay, all the short cuts are exhausted. We must compute it. The following
1200   // is a classical Babylonian method for computing the square root. This code
1201   // was adapted to APInt from a wikipedia article on such computations.
1202   // See http://www.wikipedia.org/ and go to the page named
1203   // Calculate_an_integer_square_root.
1204   unsigned nbits = BitWidth, i = 4;
1205   APInt testy(BitWidth, 16);
1206   APInt x_old(BitWidth, 1);
1207   APInt x_new(BitWidth, 0);
1208   APInt two(BitWidth, 2);
1209 
1210   // Select a good starting value using binary logarithms.
1211   for (;; i += 2, testy = testy.shl(2))
1212     if (i >= nbits || this->ule(testy)) {
1213       x_old = x_old.shl(i / 2);
1214       break;
1215     }
1216 
1217   // Use the Babylonian method to arrive at the integer square root:
1218   for (;;) {
1219     x_new = (this->udiv(x_old) + x_old).udiv(two);
1220     if (x_old.ule(x_new))
1221       break;
1222     x_old = x_new;
1223   }
1224 
1225   // Make sure we return the closest approximation
1226   // NOTE: The rounding calculation below is correct. It will produce an
1227   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1228   // determined to be a rounding issue with pari/gp as it begins to use a
1229   // floating point representation after 192 bits. There are no discrepancies
1230   // between this algorithm and pari/gp for bit widths < 192 bits.
1231   APInt square(x_old * x_old);
1232   APInt nextSquare((x_old + 1) * (x_old +1));
1233   if (this->ult(square))
1234     return x_old;
1235   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1236   APInt midpoint((nextSquare - square).udiv(two));
1237   APInt offset(*this - square);
1238   if (offset.ult(midpoint))
1239     return x_old;
1240   return x_old + 1;
1241 }
1242 
1243 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1244 APInt APInt::multiplicativeInverse() const {
1245   assert((*this)[0] &&
1246          "multiplicative inverse is only defined for odd numbers!");
1247 
1248   // Use Newton's method.
1249   APInt Factor = *this;
1250   APInt T;
1251   while (!(T = *this * Factor).isOne())
1252     Factor *= 2 - std::move(T);
1253   return Factor;
1254 }
1255 
1256 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1257 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1258 /// variables here have the same names as in the algorithm. Comments explain
1259 /// the algorithm and any deviation from it.
1260 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1261                      unsigned m, unsigned n) {
1262   assert(u && "Must provide dividend");
1263   assert(v && "Must provide divisor");
1264   assert(q && "Must provide quotient");
1265   assert(u != v && u != q && v != q && "Must use different memory");
1266   assert(n>1 && "n must be > 1");
1267 
1268   // b denotes the base of the number system. In our case b is 2^32.
1269   const uint64_t b = uint64_t(1) << 32;
1270 
1271 // The DEBUG macros here tend to be spam in the debug output if you're not
1272 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1273 #ifdef KNUTH_DEBUG
1274 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1275 #else
1276 #define DEBUG_KNUTH(X) do {} while(false)
1277 #endif
1278 
1279   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1280   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1281   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1282   DEBUG_KNUTH(dbgs() << " by");
1283   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1284   DEBUG_KNUTH(dbgs() << '\n');
1285   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1286   // u and v by d. Note that we have taken Knuth's advice here to use a power
1287   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1288   // 2 allows us to shift instead of multiply and it is easy to determine the
1289   // shift amount from the leading zeros.  We are basically normalizing the u
1290   // and v so that its high bits are shifted to the top of v's range without
1291   // overflow. Note that this can require an extra word in u so that u must
1292   // be of length m+n+1.
1293   unsigned shift = llvm::countl_zero(v[n - 1]);
1294   uint32_t v_carry = 0;
1295   uint32_t u_carry = 0;
1296   if (shift) {
1297     for (unsigned i = 0; i < m+n; ++i) {
1298       uint32_t u_tmp = u[i] >> (32 - shift);
1299       u[i] = (u[i] << shift) | u_carry;
1300       u_carry = u_tmp;
1301     }
1302     for (unsigned i = 0; i < n; ++i) {
1303       uint32_t v_tmp = v[i] >> (32 - shift);
1304       v[i] = (v[i] << shift) | v_carry;
1305       v_carry = v_tmp;
1306     }
1307   }
1308   u[m+n] = u_carry;
1309 
1310   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1311   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1312   DEBUG_KNUTH(dbgs() << " by");
1313   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1314   DEBUG_KNUTH(dbgs() << '\n');
1315 
1316   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1317   int j = m;
1318   do {
1319     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1320     // D3. [Calculate q'.].
1321     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1322     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1323     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1324     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1325     // on v[n-2] determines at high speed most of the cases in which the trial
1326     // value qp is one too large, and it eliminates all cases where qp is two
1327     // too large.
1328     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1329     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1330     uint64_t qp = dividend / v[n-1];
1331     uint64_t rp = dividend % v[n-1];
1332     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1333       qp--;
1334       rp += v[n-1];
1335       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1336         qp--;
1337     }
1338     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1339 
1340     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1341     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1342     // consists of a simple multiplication by a one-place number, combined with
1343     // a subtraction.
1344     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1345     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1346     // true value plus b**(n+1), namely as the b's complement of
1347     // the true value, and a "borrow" to the left should be remembered.
1348     int64_t borrow = 0;
1349     for (unsigned i = 0; i < n; ++i) {
1350       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1351       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1352       u[j+i] = Lo_32(subres);
1353       borrow = Hi_32(p) - Hi_32(subres);
1354       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1355                         << ", borrow = " << borrow << '\n');
1356     }
1357     bool isNeg = u[j+n] < borrow;
1358     u[j+n] -= Lo_32(borrow);
1359 
1360     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1361     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1362     DEBUG_KNUTH(dbgs() << '\n');
1363 
1364     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1365     // negative, go to step D6; otherwise go on to step D7.
1366     q[j] = Lo_32(qp);
1367     if (isNeg) {
1368       // D6. [Add back]. The probability that this step is necessary is very
1369       // small, on the order of only 2/b. Make sure that test data accounts for
1370       // this possibility. Decrease q[j] by 1
1371       q[j]--;
1372       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1373       // A carry will occur to the left of u[j+n], and it should be ignored
1374       // since it cancels with the borrow that occurred in D4.
1375       bool carry = false;
1376       for (unsigned i = 0; i < n; i++) {
1377         uint32_t limit = std::min(u[j+i],v[i]);
1378         u[j+i] += v[i] + carry;
1379         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1380       }
1381       u[j+n] += carry;
1382     }
1383     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1384     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1385     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1386 
1387     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1388   } while (--j >= 0);
1389 
1390   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1391   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1392   DEBUG_KNUTH(dbgs() << '\n');
1393 
1394   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1395   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1396   // compute the remainder (urem uses this).
1397   if (r) {
1398     // The value d is expressed by the "shift" value above since we avoided
1399     // multiplication by d by using a shift left. So, all we have to do is
1400     // shift right here.
1401     if (shift) {
1402       uint32_t carry = 0;
1403       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1404       for (int i = n-1; i >= 0; i--) {
1405         r[i] = (u[i] >> shift) | carry;
1406         carry = u[i] << (32 - shift);
1407         DEBUG_KNUTH(dbgs() << " " << r[i]);
1408       }
1409     } else {
1410       for (int i = n-1; i >= 0; i--) {
1411         r[i] = u[i];
1412         DEBUG_KNUTH(dbgs() << " " << r[i]);
1413       }
1414     }
1415     DEBUG_KNUTH(dbgs() << '\n');
1416   }
1417   DEBUG_KNUTH(dbgs() << '\n');
1418 }
1419 
1420 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1421                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1422   assert(lhsWords >= rhsWords && "Fractional result");
1423 
1424   // First, compose the values into an array of 32-bit words instead of
1425   // 64-bit words. This is a necessity of both the "short division" algorithm
1426   // and the Knuth "classical algorithm" which requires there to be native
1427   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1428   // can't use 64-bit operands here because we don't have native results of
1429   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1430   // work on large-endian machines.
1431   unsigned n = rhsWords * 2;
1432   unsigned m = (lhsWords * 2) - n;
1433 
1434   // Allocate space for the temporary values we need either on the stack, if
1435   // it will fit, or on the heap if it won't.
1436   uint32_t SPACE[128];
1437   uint32_t *U = nullptr;
1438   uint32_t *V = nullptr;
1439   uint32_t *Q = nullptr;
1440   uint32_t *R = nullptr;
1441   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1442     U = &SPACE[0];
1443     V = &SPACE[m+n+1];
1444     Q = &SPACE[(m+n+1) + n];
1445     if (Remainder)
1446       R = &SPACE[(m+n+1) + n + (m+n)];
1447   } else {
1448     U = new uint32_t[m + n + 1];
1449     V = new uint32_t[n];
1450     Q = new uint32_t[m+n];
1451     if (Remainder)
1452       R = new uint32_t[n];
1453   }
1454 
1455   // Initialize the dividend
1456   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1457   for (unsigned i = 0; i < lhsWords; ++i) {
1458     uint64_t tmp = LHS[i];
1459     U[i * 2] = Lo_32(tmp);
1460     U[i * 2 + 1] = Hi_32(tmp);
1461   }
1462   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1463 
1464   // Initialize the divisor
1465   memset(V, 0, (n)*sizeof(uint32_t));
1466   for (unsigned i = 0; i < rhsWords; ++i) {
1467     uint64_t tmp = RHS[i];
1468     V[i * 2] = Lo_32(tmp);
1469     V[i * 2 + 1] = Hi_32(tmp);
1470   }
1471 
1472   // initialize the quotient and remainder
1473   memset(Q, 0, (m+n) * sizeof(uint32_t));
1474   if (Remainder)
1475     memset(R, 0, n * sizeof(uint32_t));
1476 
1477   // Now, adjust m and n for the Knuth division. n is the number of words in
1478   // the divisor. m is the number of words by which the dividend exceeds the
1479   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1480   // contain any zero words or the Knuth algorithm fails.
1481   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1482     n--;
1483     m++;
1484   }
1485   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1486     m--;
1487 
1488   // If we're left with only a single word for the divisor, Knuth doesn't work
1489   // so we implement the short division algorithm here. This is much simpler
1490   // and faster because we are certain that we can divide a 64-bit quantity
1491   // by a 32-bit quantity at hardware speed and short division is simply a
1492   // series of such operations. This is just like doing short division but we
1493   // are using base 2^32 instead of base 10.
1494   assert(n != 0 && "Divide by zero?");
1495   if (n == 1) {
1496     uint32_t divisor = V[0];
1497     uint32_t remainder = 0;
1498     for (int i = m; i >= 0; i--) {
1499       uint64_t partial_dividend = Make_64(remainder, U[i]);
1500       if (partial_dividend == 0) {
1501         Q[i] = 0;
1502         remainder = 0;
1503       } else if (partial_dividend < divisor) {
1504         Q[i] = 0;
1505         remainder = Lo_32(partial_dividend);
1506       } else if (partial_dividend == divisor) {
1507         Q[i] = 1;
1508         remainder = 0;
1509       } else {
1510         Q[i] = Lo_32(partial_dividend / divisor);
1511         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1512       }
1513     }
1514     if (R)
1515       R[0] = remainder;
1516   } else {
1517     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1518     // case n > 1.
1519     KnuthDiv(U, V, Q, R, m, n);
1520   }
1521 
1522   // If the caller wants the quotient
1523   if (Quotient) {
1524     for (unsigned i = 0; i < lhsWords; ++i)
1525       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1526   }
1527 
1528   // If the caller wants the remainder
1529   if (Remainder) {
1530     for (unsigned i = 0; i < rhsWords; ++i)
1531       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1532   }
1533 
1534   // Clean up the memory we allocated.
1535   if (U != &SPACE[0]) {
1536     delete [] U;
1537     delete [] V;
1538     delete [] Q;
1539     delete [] R;
1540   }
1541 }
1542 
1543 APInt APInt::udiv(const APInt &RHS) const {
1544   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1545 
1546   // First, deal with the easy case
1547   if (isSingleWord()) {
1548     assert(RHS.U.VAL != 0 && "Divide by zero?");
1549     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1550   }
1551 
1552   // Get some facts about the LHS and RHS number of bits and words
1553   unsigned lhsWords = getNumWords(getActiveBits());
1554   unsigned rhsBits  = RHS.getActiveBits();
1555   unsigned rhsWords = getNumWords(rhsBits);
1556   assert(rhsWords && "Divided by zero???");
1557 
1558   // Deal with some degenerate cases
1559   if (!lhsWords)
1560     // 0 / X ===> 0
1561     return APInt(BitWidth, 0);
1562   if (rhsBits == 1)
1563     // X / 1 ===> X
1564     return *this;
1565   if (lhsWords < rhsWords || this->ult(RHS))
1566     // X / Y ===> 0, iff X < Y
1567     return APInt(BitWidth, 0);
1568   if (*this == RHS)
1569     // X / X ===> 1
1570     return APInt(BitWidth, 1);
1571   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1572     // All high words are zero, just use native divide
1573     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1574 
1575   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1576   APInt Quotient(BitWidth, 0); // to hold result.
1577   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1578   return Quotient;
1579 }
1580 
1581 APInt APInt::udiv(uint64_t RHS) const {
1582   assert(RHS != 0 && "Divide by zero?");
1583 
1584   // First, deal with the easy case
1585   if (isSingleWord())
1586     return APInt(BitWidth, U.VAL / RHS);
1587 
1588   // Get some facts about the LHS words.
1589   unsigned lhsWords = getNumWords(getActiveBits());
1590 
1591   // Deal with some degenerate cases
1592   if (!lhsWords)
1593     // 0 / X ===> 0
1594     return APInt(BitWidth, 0);
1595   if (RHS == 1)
1596     // X / 1 ===> X
1597     return *this;
1598   if (this->ult(RHS))
1599     // X / Y ===> 0, iff X < Y
1600     return APInt(BitWidth, 0);
1601   if (*this == RHS)
1602     // X / X ===> 1
1603     return APInt(BitWidth, 1);
1604   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1605     // All high words are zero, just use native divide
1606     return APInt(BitWidth, this->U.pVal[0] / RHS);
1607 
1608   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1609   APInt Quotient(BitWidth, 0); // to hold result.
1610   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1611   return Quotient;
1612 }
1613 
1614 APInt APInt::sdiv(const APInt &RHS) const {
1615   if (isNegative()) {
1616     if (RHS.isNegative())
1617       return (-(*this)).udiv(-RHS);
1618     return -((-(*this)).udiv(RHS));
1619   }
1620   if (RHS.isNegative())
1621     return -(this->udiv(-RHS));
1622   return this->udiv(RHS);
1623 }
1624 
1625 APInt APInt::sdiv(int64_t RHS) const {
1626   if (isNegative()) {
1627     if (RHS < 0)
1628       return (-(*this)).udiv(-RHS);
1629     return -((-(*this)).udiv(RHS));
1630   }
1631   if (RHS < 0)
1632     return -(this->udiv(-RHS));
1633   return this->udiv(RHS);
1634 }
1635 
1636 APInt APInt::urem(const APInt &RHS) const {
1637   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1638   if (isSingleWord()) {
1639     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1640     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1641   }
1642 
1643   // Get some facts about the LHS
1644   unsigned lhsWords = getNumWords(getActiveBits());
1645 
1646   // Get some facts about the RHS
1647   unsigned rhsBits = RHS.getActiveBits();
1648   unsigned rhsWords = getNumWords(rhsBits);
1649   assert(rhsWords && "Performing remainder operation by zero ???");
1650 
1651   // Check the degenerate cases
1652   if (lhsWords == 0)
1653     // 0 % Y ===> 0
1654     return APInt(BitWidth, 0);
1655   if (rhsBits == 1)
1656     // X % 1 ===> 0
1657     return APInt(BitWidth, 0);
1658   if (lhsWords < rhsWords || this->ult(RHS))
1659     // X % Y ===> X, iff X < Y
1660     return *this;
1661   if (*this == RHS)
1662     // X % X == 0;
1663     return APInt(BitWidth, 0);
1664   if (lhsWords == 1)
1665     // All high words are zero, just use native remainder
1666     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1667 
1668   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1669   APInt Remainder(BitWidth, 0);
1670   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1671   return Remainder;
1672 }
1673 
1674 uint64_t APInt::urem(uint64_t RHS) const {
1675   assert(RHS != 0 && "Remainder by zero?");
1676 
1677   if (isSingleWord())
1678     return U.VAL % RHS;
1679 
1680   // Get some facts about the LHS
1681   unsigned lhsWords = getNumWords(getActiveBits());
1682 
1683   // Check the degenerate cases
1684   if (lhsWords == 0)
1685     // 0 % Y ===> 0
1686     return 0;
1687   if (RHS == 1)
1688     // X % 1 ===> 0
1689     return 0;
1690   if (this->ult(RHS))
1691     // X % Y ===> X, iff X < Y
1692     return getZExtValue();
1693   if (*this == RHS)
1694     // X % X == 0;
1695     return 0;
1696   if (lhsWords == 1)
1697     // All high words are zero, just use native remainder
1698     return U.pVal[0] % RHS;
1699 
1700   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1701   uint64_t Remainder;
1702   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1703   return Remainder;
1704 }
1705 
1706 APInt APInt::srem(const APInt &RHS) const {
1707   if (isNegative()) {
1708     if (RHS.isNegative())
1709       return -((-(*this)).urem(-RHS));
1710     return -((-(*this)).urem(RHS));
1711   }
1712   if (RHS.isNegative())
1713     return this->urem(-RHS);
1714   return this->urem(RHS);
1715 }
1716 
1717 int64_t APInt::srem(int64_t RHS) const {
1718   if (isNegative()) {
1719     if (RHS < 0)
1720       return -((-(*this)).urem(-RHS));
1721     return -((-(*this)).urem(RHS));
1722   }
1723   if (RHS < 0)
1724     return this->urem(-RHS);
1725   return this->urem(RHS);
1726 }
1727 
1728 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1729                     APInt &Quotient, APInt &Remainder) {
1730   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1731   unsigned BitWidth = LHS.BitWidth;
1732 
1733   // First, deal with the easy case
1734   if (LHS.isSingleWord()) {
1735     assert(RHS.U.VAL != 0 && "Divide by zero?");
1736     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1737     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1738     Quotient = APInt(BitWidth, QuotVal);
1739     Remainder = APInt(BitWidth, RemVal);
1740     return;
1741   }
1742 
1743   // Get some size facts about the dividend and divisor
1744   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1745   unsigned rhsBits  = RHS.getActiveBits();
1746   unsigned rhsWords = getNumWords(rhsBits);
1747   assert(rhsWords && "Performing divrem operation by zero ???");
1748 
1749   // Check the degenerate cases
1750   if (lhsWords == 0) {
1751     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1752     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1753     return;
1754   }
1755 
1756   if (rhsBits == 1) {
1757     Quotient = LHS;                   // X / 1 ===> X
1758     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1759   }
1760 
1761   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1762     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1763     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1764     return;
1765   }
1766 
1767   if (LHS == RHS) {
1768     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1769     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1770     return;
1771   }
1772 
1773   // Make sure there is enough space to hold the results.
1774   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1775   // change the size. This is necessary if Quotient or Remainder is aliased
1776   // with LHS or RHS.
1777   Quotient.reallocate(BitWidth);
1778   Remainder.reallocate(BitWidth);
1779 
1780   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1781     // There is only one word to consider so use the native versions.
1782     uint64_t lhsValue = LHS.U.pVal[0];
1783     uint64_t rhsValue = RHS.U.pVal[0];
1784     Quotient = lhsValue / rhsValue;
1785     Remainder = lhsValue % rhsValue;
1786     return;
1787   }
1788 
1789   // Okay, lets do it the long way
1790   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1791          Remainder.U.pVal);
1792   // Clear the rest of the Quotient and Remainder.
1793   std::memset(Quotient.U.pVal + lhsWords, 0,
1794               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1795   std::memset(Remainder.U.pVal + rhsWords, 0,
1796               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1797 }
1798 
1799 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1800                     uint64_t &Remainder) {
1801   assert(RHS != 0 && "Divide by zero?");
1802   unsigned BitWidth = LHS.BitWidth;
1803 
1804   // First, deal with the easy case
1805   if (LHS.isSingleWord()) {
1806     uint64_t QuotVal = LHS.U.VAL / RHS;
1807     Remainder = LHS.U.VAL % RHS;
1808     Quotient = APInt(BitWidth, QuotVal);
1809     return;
1810   }
1811 
1812   // Get some size facts about the dividend and divisor
1813   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1814 
1815   // Check the degenerate cases
1816   if (lhsWords == 0) {
1817     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1818     Remainder = 0;                    // 0 % Y ===> 0
1819     return;
1820   }
1821 
1822   if (RHS == 1) {
1823     Quotient = LHS;                   // X / 1 ===> X
1824     Remainder = 0;                    // X % 1 ===> 0
1825     return;
1826   }
1827 
1828   if (LHS.ult(RHS)) {
1829     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1830     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1831     return;
1832   }
1833 
1834   if (LHS == RHS) {
1835     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1836     Remainder = 0;                    // X % X ===> 0;
1837     return;
1838   }
1839 
1840   // Make sure there is enough space to hold the results.
1841   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1842   // change the size. This is necessary if Quotient is aliased with LHS.
1843   Quotient.reallocate(BitWidth);
1844 
1845   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1846     // There is only one word to consider so use the native versions.
1847     uint64_t lhsValue = LHS.U.pVal[0];
1848     Quotient = lhsValue / RHS;
1849     Remainder = lhsValue % RHS;
1850     return;
1851   }
1852 
1853   // Okay, lets do it the long way
1854   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1855   // Clear the rest of the Quotient.
1856   std::memset(Quotient.U.pVal + lhsWords, 0,
1857               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1858 }
1859 
1860 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1861                     APInt &Quotient, APInt &Remainder) {
1862   if (LHS.isNegative()) {
1863     if (RHS.isNegative())
1864       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1865     else {
1866       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1867       Quotient.negate();
1868     }
1869     Remainder.negate();
1870   } else if (RHS.isNegative()) {
1871     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1872     Quotient.negate();
1873   } else {
1874     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1875   }
1876 }
1877 
1878 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1879                     APInt &Quotient, int64_t &Remainder) {
1880   uint64_t R = Remainder;
1881   if (LHS.isNegative()) {
1882     if (RHS < 0)
1883       APInt::udivrem(-LHS, -RHS, Quotient, R);
1884     else {
1885       APInt::udivrem(-LHS, RHS, Quotient, R);
1886       Quotient.negate();
1887     }
1888     R = -R;
1889   } else if (RHS < 0) {
1890     APInt::udivrem(LHS, -RHS, Quotient, R);
1891     Quotient.negate();
1892   } else {
1893     APInt::udivrem(LHS, RHS, Quotient, R);
1894   }
1895   Remainder = R;
1896 }
1897 
1898 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1899   APInt Res = *this+RHS;
1900   Overflow = isNonNegative() == RHS.isNonNegative() &&
1901              Res.isNonNegative() != isNonNegative();
1902   return Res;
1903 }
1904 
1905 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1906   APInt Res = *this+RHS;
1907   Overflow = Res.ult(RHS);
1908   return Res;
1909 }
1910 
1911 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1912   APInt Res = *this - RHS;
1913   Overflow = isNonNegative() != RHS.isNonNegative() &&
1914              Res.isNonNegative() != isNonNegative();
1915   return Res;
1916 }
1917 
1918 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1919   APInt Res = *this-RHS;
1920   Overflow = Res.ugt(*this);
1921   return Res;
1922 }
1923 
1924 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1925   // MININT/-1  -->  overflow.
1926   Overflow = isMinSignedValue() && RHS.isAllOnes();
1927   return sdiv(RHS);
1928 }
1929 
1930 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1931   APInt Res = *this * RHS;
1932 
1933   if (RHS != 0)
1934     Overflow = Res.sdiv(RHS) != *this ||
1935                (isMinSignedValue() && RHS.isAllOnes());
1936   else
1937     Overflow = false;
1938   return Res;
1939 }
1940 
1941 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1942   if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1943     Overflow = true;
1944     return *this * RHS;
1945   }
1946 
1947   APInt Res = lshr(1) * RHS;
1948   Overflow = Res.isNegative();
1949   Res <<= 1;
1950   if ((*this)[0]) {
1951     Res += RHS;
1952     if (Res.ult(RHS))
1953       Overflow = true;
1954   }
1955   return Res;
1956 }
1957 
1958 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1959   return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1960 }
1961 
1962 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1963   Overflow = ShAmt >= getBitWidth();
1964   if (Overflow)
1965     return APInt(BitWidth, 0);
1966 
1967   if (isNonNegative()) // Don't allow sign change.
1968     Overflow = ShAmt >= countl_zero();
1969   else
1970     Overflow = ShAmt >= countl_one();
1971 
1972   return *this << ShAmt;
1973 }
1974 
1975 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1976   return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1977 }
1978 
1979 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
1980   Overflow = ShAmt >= getBitWidth();
1981   if (Overflow)
1982     return APInt(BitWidth, 0);
1983 
1984   Overflow = ShAmt > countl_zero();
1985 
1986   return *this << ShAmt;
1987 }
1988 
1989 APInt APInt::sfloordiv_ov(const APInt &RHS, bool &Overflow) const {
1990   APInt quotient = sdiv_ov(RHS, Overflow);
1991   if ((quotient * RHS != *this) && (isNegative() != RHS.isNegative()))
1992     return quotient - 1;
1993   return quotient;
1994 }
1995 
1996 APInt APInt::sadd_sat(const APInt &RHS) const {
1997   bool Overflow;
1998   APInt Res = sadd_ov(RHS, Overflow);
1999   if (!Overflow)
2000     return Res;
2001 
2002   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2003                       : APInt::getSignedMaxValue(BitWidth);
2004 }
2005 
2006 APInt APInt::uadd_sat(const APInt &RHS) const {
2007   bool Overflow;
2008   APInt Res = uadd_ov(RHS, Overflow);
2009   if (!Overflow)
2010     return Res;
2011 
2012   return APInt::getMaxValue(BitWidth);
2013 }
2014 
2015 APInt APInt::ssub_sat(const APInt &RHS) const {
2016   bool Overflow;
2017   APInt Res = ssub_ov(RHS, Overflow);
2018   if (!Overflow)
2019     return Res;
2020 
2021   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2022                       : APInt::getSignedMaxValue(BitWidth);
2023 }
2024 
2025 APInt APInt::usub_sat(const APInt &RHS) const {
2026   bool Overflow;
2027   APInt Res = usub_ov(RHS, Overflow);
2028   if (!Overflow)
2029     return Res;
2030 
2031   return APInt(BitWidth, 0);
2032 }
2033 
2034 APInt APInt::smul_sat(const APInt &RHS) const {
2035   bool Overflow;
2036   APInt Res = smul_ov(RHS, Overflow);
2037   if (!Overflow)
2038     return Res;
2039 
2040   // The result is negative if one and only one of inputs is negative.
2041   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2042 
2043   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2044                        : APInt::getSignedMaxValue(BitWidth);
2045 }
2046 
2047 APInt APInt::umul_sat(const APInt &RHS) const {
2048   bool Overflow;
2049   APInt Res = umul_ov(RHS, Overflow);
2050   if (!Overflow)
2051     return Res;
2052 
2053   return APInt::getMaxValue(BitWidth);
2054 }
2055 
2056 APInt APInt::sshl_sat(const APInt &RHS) const {
2057   return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2058 }
2059 
2060 APInt APInt::sshl_sat(unsigned RHS) const {
2061   bool Overflow;
2062   APInt Res = sshl_ov(RHS, Overflow);
2063   if (!Overflow)
2064     return Res;
2065 
2066   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2067                       : APInt::getSignedMaxValue(BitWidth);
2068 }
2069 
2070 APInt APInt::ushl_sat(const APInt &RHS) const {
2071   return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2072 }
2073 
2074 APInt APInt::ushl_sat(unsigned RHS) const {
2075   bool Overflow;
2076   APInt Res = ushl_ov(RHS, Overflow);
2077   if (!Overflow)
2078     return Res;
2079 
2080   return APInt::getMaxValue(BitWidth);
2081 }
2082 
2083 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2084   // Check our assumptions here
2085   assert(!str.empty() && "Invalid string length");
2086   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2087           radix == 36) &&
2088          "Radix should be 2, 8, 10, 16, or 36!");
2089 
2090   StringRef::iterator p = str.begin();
2091   size_t slen = str.size();
2092   bool isNeg = *p == '-';
2093   if (*p == '-' || *p == '+') {
2094     p++;
2095     slen--;
2096     assert(slen && "String is only a sign, needs a value.");
2097   }
2098   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2099   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2100   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2101   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2102          "Insufficient bit width");
2103 
2104   // Allocate memory if needed
2105   if (isSingleWord())
2106     U.VAL = 0;
2107   else
2108     U.pVal = getClearedMemory(getNumWords());
2109 
2110   // Figure out if we can shift instead of multiply
2111   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2112 
2113   // Enter digit traversal loop
2114   for (StringRef::iterator e = str.end(); p != e; ++p) {
2115     unsigned digit = getDigit(*p, radix);
2116     assert(digit < radix && "Invalid character in digit string");
2117 
2118     // Shift or multiply the value by the radix
2119     if (slen > 1) {
2120       if (shift)
2121         *this <<= shift;
2122       else
2123         *this *= radix;
2124     }
2125 
2126     // Add in the digit we just interpreted
2127     *this += digit;
2128   }
2129   // If its negative, put it in two's complement form
2130   if (isNeg)
2131     this->negate();
2132 }
2133 
2134 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2135                      bool formatAsCLiteral, bool UpperCase,
2136                      bool InsertSeparators) const {
2137   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2138           Radix == 36) &&
2139          "Radix should be 2, 8, 10, 16, or 36!");
2140 
2141   const char *Prefix = "";
2142   if (formatAsCLiteral) {
2143     switch (Radix) {
2144       case 2:
2145         // Binary literals are a non-standard extension added in gcc 4.3:
2146         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2147         Prefix = "0b";
2148         break;
2149       case 8:
2150         Prefix = "0";
2151         break;
2152       case 10:
2153         break; // No prefix
2154       case 16:
2155         Prefix = "0x";
2156         break;
2157       default:
2158         llvm_unreachable("Invalid radix!");
2159     }
2160   }
2161 
2162   // Number of digits in a group between separators.
2163   unsigned Grouping = (Radix == 8 || Radix == 10) ? 3 : 4;
2164 
2165   // First, check for a zero value and just short circuit the logic below.
2166   if (isZero()) {
2167     while (*Prefix) {
2168       Str.push_back(*Prefix);
2169       ++Prefix;
2170     };
2171     Str.push_back('0');
2172     return;
2173   }
2174 
2175   static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2176                                    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2177   const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2178 
2179   if (isSingleWord()) {
2180     char Buffer[65];
2181     char *BufPtr = std::end(Buffer);
2182 
2183     uint64_t N;
2184     if (!Signed) {
2185       N = getZExtValue();
2186     } else {
2187       int64_t I = getSExtValue();
2188       if (I >= 0) {
2189         N = I;
2190       } else {
2191         Str.push_back('-');
2192         N = -(uint64_t)I;
2193       }
2194     }
2195 
2196     while (*Prefix) {
2197       Str.push_back(*Prefix);
2198       ++Prefix;
2199     };
2200 
2201     int Pos = 0;
2202     while (N) {
2203       if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2204         *--BufPtr = '\'';
2205       *--BufPtr = Digits[N % Radix];
2206       N /= Radix;
2207       Pos++;
2208     }
2209     Str.append(BufPtr, std::end(Buffer));
2210     return;
2211   }
2212 
2213   APInt Tmp(*this);
2214 
2215   if (Signed && isNegative()) {
2216     // They want to print the signed version and it is a negative value
2217     // Flip the bits and add one to turn it into the equivalent positive
2218     // value and put a '-' in the result.
2219     Tmp.negate();
2220     Str.push_back('-');
2221   }
2222 
2223   while (*Prefix) {
2224     Str.push_back(*Prefix);
2225     ++Prefix;
2226   };
2227 
2228   // We insert the digits backward, then reverse them to get the right order.
2229   unsigned StartDig = Str.size();
2230 
2231   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2232   // because the number of bits per digit (1, 3 and 4 respectively) divides
2233   // equally.  We just shift until the value is zero.
2234   if (Radix == 2 || Radix == 8 || Radix == 16) {
2235     // Just shift tmp right for each digit width until it becomes zero
2236     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2237     unsigned MaskAmt = Radix - 1;
2238 
2239     int Pos = 0;
2240     while (Tmp.getBoolValue()) {
2241       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2242       if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2243         Str.push_back('\'');
2244 
2245       Str.push_back(Digits[Digit]);
2246       Tmp.lshrInPlace(ShiftAmt);
2247       Pos++;
2248     }
2249   } else {
2250     int Pos = 0;
2251     while (Tmp.getBoolValue()) {
2252       uint64_t Digit;
2253       udivrem(Tmp, Radix, Tmp, Digit);
2254       assert(Digit < Radix && "divide failed");
2255       if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2256         Str.push_back('\'');
2257 
2258       Str.push_back(Digits[Digit]);
2259       Pos++;
2260     }
2261   }
2262 
2263   // Reverse the digits before returning.
2264   std::reverse(Str.begin()+StartDig, Str.end());
2265 }
2266 
2267 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2268 LLVM_DUMP_METHOD void APInt::dump() const {
2269   SmallString<40> S, U;
2270   this->toStringUnsigned(U);
2271   this->toStringSigned(S);
2272   dbgs() << "APInt(" << BitWidth << "b, "
2273          << U << "u " << S << "s)\n";
2274 }
2275 #endif
2276 
2277 void APInt::print(raw_ostream &OS, bool isSigned) const {
2278   SmallString<40> S;
2279   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2280   OS << S;
2281 }
2282 
2283 // This implements a variety of operations on a representation of
2284 // arbitrary precision, two's-complement, bignum integer values.
2285 
2286 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2287 // and unrestricting assumption.
2288 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2289               "Part width must be divisible by 2!");
2290 
2291 // Returns the integer part with the least significant BITS set.
2292 // BITS cannot be zero.
2293 static inline APInt::WordType lowBitMask(unsigned bits) {
2294   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2295   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2296 }
2297 
2298 /// Returns the value of the lower half of PART.
2299 static inline APInt::WordType lowHalf(APInt::WordType part) {
2300   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2301 }
2302 
2303 /// Returns the value of the upper half of PART.
2304 static inline APInt::WordType highHalf(APInt::WordType part) {
2305   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2306 }
2307 
2308 /// Sets the least significant part of a bignum to the input value, and zeroes
2309 /// out higher parts.
2310 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2311   assert(parts > 0);
2312   dst[0] = part;
2313   for (unsigned i = 1; i < parts; i++)
2314     dst[i] = 0;
2315 }
2316 
2317 /// Assign one bignum to another.
2318 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2319   for (unsigned i = 0; i < parts; i++)
2320     dst[i] = src[i];
2321 }
2322 
2323 /// Returns true if a bignum is zero, false otherwise.
2324 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2325   for (unsigned i = 0; i < parts; i++)
2326     if (src[i])
2327       return false;
2328 
2329   return true;
2330 }
2331 
2332 /// Extract the given bit of a bignum; returns 0 or 1.
2333 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2334   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2335 }
2336 
2337 /// Set the given bit of a bignum.
2338 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2339   parts[whichWord(bit)] |= maskBit(bit);
2340 }
2341 
2342 /// Clears the given bit of a bignum.
2343 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2344   parts[whichWord(bit)] &= ~maskBit(bit);
2345 }
2346 
2347 /// Returns the bit number of the least significant set bit of a number.  If the
2348 /// input number has no bits set UINT_MAX is returned.
2349 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2350   for (unsigned i = 0; i < n; i++) {
2351     if (parts[i] != 0) {
2352       unsigned lsb = llvm::countr_zero(parts[i]);
2353       return lsb + i * APINT_BITS_PER_WORD;
2354     }
2355   }
2356 
2357   return UINT_MAX;
2358 }
2359 
2360 /// Returns the bit number of the most significant set bit of a number.
2361 /// If the input number has no bits set UINT_MAX is returned.
2362 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2363   do {
2364     --n;
2365 
2366     if (parts[n] != 0) {
2367       static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2368       unsigned msb = llvm::Log2_64(parts[n]);
2369 
2370       return msb + n * APINT_BITS_PER_WORD;
2371     }
2372   } while (n);
2373 
2374   return UINT_MAX;
2375 }
2376 
2377 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2378 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2379 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2380 /// */
2381 void
2382 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2383                  unsigned srcBits, unsigned srcLSB) {
2384   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2385   assert(dstParts <= dstCount);
2386 
2387   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2388   tcAssign(dst, src + firstSrcPart, dstParts);
2389 
2390   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2391   tcShiftRight(dst, dstParts, shift);
2392 
2393   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2394   // in DST.  If this is less that srcBits, append the rest, else
2395   // clear the high bits.
2396   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2397   if (n < srcBits) {
2398     WordType mask = lowBitMask (srcBits - n);
2399     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2400                           << n % APINT_BITS_PER_WORD);
2401   } else if (n > srcBits) {
2402     if (srcBits % APINT_BITS_PER_WORD)
2403       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2404   }
2405 
2406   // Clear high parts.
2407   while (dstParts < dstCount)
2408     dst[dstParts++] = 0;
2409 }
2410 
2411 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2412 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2413                              WordType c, unsigned parts) {
2414   assert(c <= 1);
2415 
2416   for (unsigned i = 0; i < parts; i++) {
2417     WordType l = dst[i];
2418     if (c) {
2419       dst[i] += rhs[i] + 1;
2420       c = (dst[i] <= l);
2421     } else {
2422       dst[i] += rhs[i];
2423       c = (dst[i] < l);
2424     }
2425   }
2426 
2427   return c;
2428 }
2429 
2430 /// This function adds a single "word" integer, src, to the multiple
2431 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2432 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2433 /// @returns the carry of the addition.
2434 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2435                                  unsigned parts) {
2436   for (unsigned i = 0; i < parts; ++i) {
2437     dst[i] += src;
2438     if (dst[i] >= src)
2439       return 0; // No need to carry so exit early.
2440     src = 1; // Carry one to next digit.
2441   }
2442 
2443   return 1;
2444 }
2445 
2446 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2447 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2448                                   WordType c, unsigned parts) {
2449   assert(c <= 1);
2450 
2451   for (unsigned i = 0; i < parts; i++) {
2452     WordType l = dst[i];
2453     if (c) {
2454       dst[i] -= rhs[i] + 1;
2455       c = (dst[i] >= l);
2456     } else {
2457       dst[i] -= rhs[i];
2458       c = (dst[i] > l);
2459     }
2460   }
2461 
2462   return c;
2463 }
2464 
2465 /// This function subtracts a single "word" (64-bit word), src, from
2466 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2467 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2468 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2469 /// exhausted. In other words, if src > dst then this function returns 1,
2470 /// otherwise 0.
2471 /// @returns the borrow out of the subtraction
2472 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2473                                       unsigned parts) {
2474   for (unsigned i = 0; i < parts; ++i) {
2475     WordType Dst = dst[i];
2476     dst[i] -= src;
2477     if (src <= Dst)
2478       return 0; // No need to borrow so exit early.
2479     src = 1; // We have to "borrow 1" from next "word"
2480   }
2481 
2482   return 1;
2483 }
2484 
2485 /// Negate a bignum in-place.
2486 void APInt::tcNegate(WordType *dst, unsigned parts) {
2487   tcComplement(dst, parts);
2488   tcIncrement(dst, parts);
2489 }
2490 
2491 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2492 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2493 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2494 /// they must start at the same point, i.e. DST == SRC.
2495 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2496 /// returned.  Otherwise DST is filled with the least significant
2497 /// DSTPARTS parts of the result, and if all of the omitted higher
2498 /// parts were zero return zero, otherwise overflow occurred and
2499 /// return one.
2500 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2501                           WordType multiplier, WordType carry,
2502                           unsigned srcParts, unsigned dstParts,
2503                           bool add) {
2504   // Otherwise our writes of DST kill our later reads of SRC.
2505   assert(dst <= src || dst >= src + srcParts);
2506   assert(dstParts <= srcParts + 1);
2507 
2508   // N loops; minimum of dstParts and srcParts.
2509   unsigned n = std::min(dstParts, srcParts);
2510 
2511   for (unsigned i = 0; i < n; i++) {
2512     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2513     // This cannot overflow, because:
2514     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2515     // which is less than n^2.
2516     WordType srcPart = src[i];
2517     WordType low, mid, high;
2518     if (multiplier == 0 || srcPart == 0) {
2519       low = carry;
2520       high = 0;
2521     } else {
2522       low = lowHalf(srcPart) * lowHalf(multiplier);
2523       high = highHalf(srcPart) * highHalf(multiplier);
2524 
2525       mid = lowHalf(srcPart) * highHalf(multiplier);
2526       high += highHalf(mid);
2527       mid <<= APINT_BITS_PER_WORD / 2;
2528       if (low + mid < low)
2529         high++;
2530       low += mid;
2531 
2532       mid = highHalf(srcPart) * lowHalf(multiplier);
2533       high += highHalf(mid);
2534       mid <<= APINT_BITS_PER_WORD / 2;
2535       if (low + mid < low)
2536         high++;
2537       low += mid;
2538 
2539       // Now add carry.
2540       if (low + carry < low)
2541         high++;
2542       low += carry;
2543     }
2544 
2545     if (add) {
2546       // And now DST[i], and store the new low part there.
2547       if (low + dst[i] < low)
2548         high++;
2549       dst[i] += low;
2550     } else
2551       dst[i] = low;
2552 
2553     carry = high;
2554   }
2555 
2556   if (srcParts < dstParts) {
2557     // Full multiplication, there is no overflow.
2558     assert(srcParts + 1 == dstParts);
2559     dst[srcParts] = carry;
2560     return 0;
2561   }
2562 
2563   // We overflowed if there is carry.
2564   if (carry)
2565     return 1;
2566 
2567   // We would overflow if any significant unwritten parts would be
2568   // non-zero.  This is true if any remaining src parts are non-zero
2569   // and the multiplier is non-zero.
2570   if (multiplier)
2571     for (unsigned i = dstParts; i < srcParts; i++)
2572       if (src[i])
2573         return 1;
2574 
2575   // We fitted in the narrow destination.
2576   return 0;
2577 }
2578 
2579 /// DST = LHS * RHS, where DST has the same width as the operands and
2580 /// is filled with the least significant parts of the result.  Returns
2581 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2582 /// from both operands.
2583 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2584                       const WordType *rhs, unsigned parts) {
2585   assert(dst != lhs && dst != rhs);
2586 
2587   int overflow = 0;
2588 
2589   for (unsigned i = 0; i < parts; i++) {
2590     // Don't accumulate on the first iteration so we don't need to initalize
2591     // dst to 0.
2592     overflow |=
2593         tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, parts - i, i != 0);
2594   }
2595 
2596   return overflow;
2597 }
2598 
2599 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2600 /// operands. No overflow occurs. DST must be disjoint from both operands.
2601 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2602                            const WordType *rhs, unsigned lhsParts,
2603                            unsigned rhsParts) {
2604   // Put the narrower number on the LHS for less loops below.
2605   if (lhsParts > rhsParts)
2606     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2607 
2608   assert(dst != lhs && dst != rhs);
2609 
2610   for (unsigned i = 0; i < lhsParts; i++) {
2611     // Don't accumulate on the first iteration so we don't need to initalize
2612     // dst to 0.
2613     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, i != 0);
2614   }
2615 }
2616 
2617 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2618 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2619 // set REMAINDER to the remainder, return zero.  i.e.
2620 //
2621 //   OLD_LHS = RHS * LHS + REMAINDER
2622 //
2623 // SCRATCH is a bignum of the same size as the operands and result for
2624 // use by the routine; its contents need not be initialized and are
2625 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2626 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2627                     WordType *remainder, WordType *srhs,
2628                     unsigned parts) {
2629   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2630 
2631   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2632   if (shiftCount == 0)
2633     return true;
2634 
2635   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2636   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2637   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2638 
2639   tcAssign(srhs, rhs, parts);
2640   tcShiftLeft(srhs, parts, shiftCount);
2641   tcAssign(remainder, lhs, parts);
2642   tcSet(lhs, 0, parts);
2643 
2644   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2645   // total.
2646   for (;;) {
2647     int compare = tcCompare(remainder, srhs, parts);
2648     if (compare >= 0) {
2649       tcSubtract(remainder, srhs, 0, parts);
2650       lhs[n] |= mask;
2651     }
2652 
2653     if (shiftCount == 0)
2654       break;
2655     shiftCount--;
2656     tcShiftRight(srhs, parts, 1);
2657     if ((mask >>= 1) == 0) {
2658       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2659       n--;
2660     }
2661   }
2662 
2663   return false;
2664 }
2665 
2666 /// Shift a bignum left Count bits in-place. Shifted in bits are zero. There are
2667 /// no restrictions on Count.
2668 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2669   // Don't bother performing a no-op shift.
2670   if (!Count)
2671     return;
2672 
2673   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2674   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2675   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2676 
2677   // Fastpath for moving by whole words.
2678   if (BitShift == 0) {
2679     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2680   } else {
2681     while (Words-- > WordShift) {
2682       Dst[Words] = Dst[Words - WordShift] << BitShift;
2683       if (Words > WordShift)
2684         Dst[Words] |=
2685           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2686     }
2687   }
2688 
2689   // Fill in the remainder with 0s.
2690   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2691 }
2692 
2693 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2694 /// are no restrictions on Count.
2695 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2696   // Don't bother performing a no-op shift.
2697   if (!Count)
2698     return;
2699 
2700   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2701   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2702   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2703 
2704   unsigned WordsToMove = Words - WordShift;
2705   // Fastpath for moving by whole words.
2706   if (BitShift == 0) {
2707     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2708   } else {
2709     for (unsigned i = 0; i != WordsToMove; ++i) {
2710       Dst[i] = Dst[i + WordShift] >> BitShift;
2711       if (i + 1 != WordsToMove)
2712         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2713     }
2714   }
2715 
2716   // Fill in the remainder with 0s.
2717   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2718 }
2719 
2720 // Comparison (unsigned) of two bignums.
2721 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2722                      unsigned parts) {
2723   while (parts) {
2724     parts--;
2725     if (lhs[parts] != rhs[parts])
2726       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2727   }
2728 
2729   return 0;
2730 }
2731 
2732 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2733                                    APInt::Rounding RM) {
2734   // Currently udivrem always rounds down.
2735   switch (RM) {
2736   case APInt::Rounding::DOWN:
2737   case APInt::Rounding::TOWARD_ZERO:
2738     return A.udiv(B);
2739   case APInt::Rounding::UP: {
2740     APInt Quo, Rem;
2741     APInt::udivrem(A, B, Quo, Rem);
2742     if (Rem.isZero())
2743       return Quo;
2744     return Quo + 1;
2745   }
2746   }
2747   llvm_unreachable("Unknown APInt::Rounding enum");
2748 }
2749 
2750 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2751                                    APInt::Rounding RM) {
2752   switch (RM) {
2753   case APInt::Rounding::DOWN:
2754   case APInt::Rounding::UP: {
2755     APInt Quo, Rem;
2756     APInt::sdivrem(A, B, Quo, Rem);
2757     if (Rem.isZero())
2758       return Quo;
2759     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2760     // We want to check whether the non-integer part of the mathematical value
2761     // is negative or not. If the non-integer part is negative, we need to round
2762     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2763     // already rounded down.
2764     if (RM == APInt::Rounding::DOWN) {
2765       if (Rem.isNegative() != B.isNegative())
2766         return Quo - 1;
2767       return Quo;
2768     }
2769     if (Rem.isNegative() != B.isNegative())
2770       return Quo;
2771     return Quo + 1;
2772   }
2773   // Currently sdiv rounds towards zero.
2774   case APInt::Rounding::TOWARD_ZERO:
2775     return A.sdiv(B);
2776   }
2777   llvm_unreachable("Unknown APInt::Rounding enum");
2778 }
2779 
2780 std::optional<APInt>
2781 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2782                                            unsigned RangeWidth) {
2783   unsigned CoeffWidth = A.getBitWidth();
2784   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2785   assert(RangeWidth <= CoeffWidth &&
2786          "Value range width should be less than coefficient width");
2787   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2788 
2789   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2790                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2791 
2792   // Identify 0 as a (non)solution immediately.
2793   if (C.sextOrTrunc(RangeWidth).isZero()) {
2794     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2795     return APInt(CoeffWidth, 0);
2796   }
2797 
2798   // The result of APInt arithmetic has the same bit width as the operands,
2799   // so it can actually lose high bits. A product of two n-bit integers needs
2800   // 2n-1 bits to represent the full value.
2801   // The operation done below (on quadratic coefficients) that can produce
2802   // the largest value is the evaluation of the equation during bisection,
2803   // which needs 3 times the bitwidth of the coefficient, so the total number
2804   // of required bits is 3n.
2805   //
2806   // The purpose of this extension is to simulate the set Z of all integers,
2807   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2808   // and negative numbers (not so much in a modulo arithmetic). The method
2809   // used to solve the equation is based on the standard formula for real
2810   // numbers, and uses the concepts of "positive" and "negative" with their
2811   // usual meanings.
2812   CoeffWidth *= 3;
2813   A = A.sext(CoeffWidth);
2814   B = B.sext(CoeffWidth);
2815   C = C.sext(CoeffWidth);
2816 
2817   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2818   // the bit width has increased.
2819   if (A.isNegative()) {
2820     A.negate();
2821     B.negate();
2822     C.negate();
2823   }
2824 
2825   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2826   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2827   // and R = 2^BitWidth.
2828   // Since we're trying not only to find exact solutions, but also values
2829   // that "wrap around", such a set will always have a solution, i.e. an x
2830   // that satisfies at least one of the equations, or such that |q(x)|
2831   // exceeds kR, while |q(x-1)| for the same k does not.
2832   //
2833   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2834   // positive solution n (in the above sense), and also such that the n
2835   // will be the least among all solutions corresponding to k = 0, 1, ...
2836   // (more precisely, the least element in the set
2837   //   { n(k) | k is such that a solution n(k) exists }).
2838   //
2839   // Consider the parabola (over real numbers) that corresponds to the
2840   // quadratic equation. Since A > 0, the arms of the parabola will point
2841   // up. Picking different values of k will shift it up and down by R.
2842   //
2843   // We want to shift the parabola in such a way as to reduce the problem
2844   // of solving q(x) = kR to solving shifted_q(x) = 0.
2845   // (The interesting solutions are the ceilings of the real number
2846   // solutions.)
2847   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2848   APInt TwoA = 2 * A;
2849   APInt SqrB = B * B;
2850   bool PickLow;
2851 
2852   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2853     assert(A.isStrictlyPositive());
2854     APInt T = V.abs().urem(A);
2855     if (T.isZero())
2856       return V;
2857     return V.isNegative() ? V+T : V+(A-T);
2858   };
2859 
2860   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2861   // iff B is positive.
2862   if (B.isNonNegative()) {
2863     // If B >= 0, the vertex it at a negative location (or at 0), so in
2864     // order to have a non-negative solution we need to pick k that makes
2865     // C-kR negative. To satisfy all the requirements for the solution
2866     // that we are looking for, it needs to be closest to 0 of all k.
2867     C = C.srem(R);
2868     if (C.isStrictlyPositive())
2869       C -= R;
2870     // Pick the greater solution.
2871     PickLow = false;
2872   } else {
2873     // If B < 0, the vertex is at a positive location. For any solution
2874     // to exist, the discriminant must be non-negative. This means that
2875     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2876     // lower bound on values of k: kR >= C - B^2/4A.
2877     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2878     // Round LowkR up (towards +inf) to the nearest kR.
2879     LowkR = RoundUp(LowkR, R);
2880 
2881     // If there exists k meeting the condition above, and such that
2882     // C-kR > 0, there will be two positive real number solutions of
2883     // q(x) = kR. Out of all such values of k, pick the one that makes
2884     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2885     // In other words, find maximum k such that LowkR <= kR < C.
2886     if (C.sgt(LowkR)) {
2887       // If LowkR < C, then such a k is guaranteed to exist because
2888       // LowkR itself is a multiple of R.
2889       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2890       // Pick the smaller solution.
2891       PickLow = true;
2892     } else {
2893       // If C-kR < 0 for all potential k's, it means that one solution
2894       // will be negative, while the other will be positive. The positive
2895       // solution will shift towards 0 if the parabola is moved up.
2896       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2897       // to 0, or in other words, out of all parabolas that have solutions,
2898       // pick the one that is the farthest "up").
2899       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2900       C -= LowkR;
2901       // Pick the greater solution.
2902       PickLow = false;
2903     }
2904   }
2905 
2906   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2907                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2908 
2909   APInt D = SqrB - 4*A*C;
2910   assert(D.isNonNegative() && "Negative discriminant");
2911   APInt SQ = D.sqrt();
2912 
2913   APInt Q = SQ * SQ;
2914   bool InexactSQ = Q != D;
2915   // The calculated SQ may actually be greater than the exact (non-integer)
2916   // value. If that's the case, decrement SQ to get a value that is lower.
2917   if (Q.sgt(D))
2918     SQ -= 1;
2919 
2920   APInt X;
2921   APInt Rem;
2922 
2923   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2924   // When using the quadratic formula directly, the calculated low root
2925   // may be greater than the exact one, since we would be subtracting SQ.
2926   // To make sure that the calculated root is not greater than the exact
2927   // one, subtract SQ+1 when calculating the low root (for inexact value
2928   // of SQ).
2929   if (PickLow)
2930     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2931   else
2932     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2933 
2934   // The updated coefficients should be such that the (exact) solution is
2935   // positive. Since APInt division rounds towards 0, the calculated one
2936   // can be 0, but cannot be negative.
2937   assert(X.isNonNegative() && "Solution should be non-negative");
2938 
2939   if (!InexactSQ && Rem.isZero()) {
2940     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2941     return X;
2942   }
2943 
2944   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2945   // The exact value of the square root of D should be between SQ and SQ+1.
2946   // This implies that the solution should be between that corresponding to
2947   // SQ (i.e. X) and that corresponding to SQ+1.
2948   //
2949   // The calculated X cannot be greater than the exact (real) solution.
2950   // Actually it must be strictly less than the exact solution, while
2951   // X+1 will be greater than or equal to it.
2952 
2953   APInt VX = (A*X + B)*X + C;
2954   APInt VY = VX + TwoA*X + A + B;
2955   bool SignChange =
2956       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2957   // If the sign did not change between X and X+1, X is not a valid solution.
2958   // This could happen when the actual (exact) roots don't have an integer
2959   // between them, so they would both be contained between X and X+1.
2960   if (!SignChange) {
2961     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2962     return std::nullopt;
2963   }
2964 
2965   X += 1;
2966   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2967   return X;
2968 }
2969 
2970 std::optional<unsigned>
2971 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2972   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2973   if (A == B)
2974     return std::nullopt;
2975   return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2976 }
2977 
2978 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2979                                    bool MatchAllBits) {
2980   unsigned OldBitWidth = A.getBitWidth();
2981   assert((((OldBitWidth % NewBitWidth) == 0) ||
2982           ((NewBitWidth % OldBitWidth) == 0)) &&
2983          "One size should be a multiple of the other one. "
2984          "Can't do fractional scaling.");
2985 
2986   // Check for matching bitwidths.
2987   if (OldBitWidth == NewBitWidth)
2988     return A;
2989 
2990   APInt NewA = APInt::getZero(NewBitWidth);
2991 
2992   // Check for null input.
2993   if (A.isZero())
2994     return NewA;
2995 
2996   if (NewBitWidth > OldBitWidth) {
2997     // Repeat bits.
2998     unsigned Scale = NewBitWidth / OldBitWidth;
2999     for (unsigned i = 0; i != OldBitWidth; ++i)
3000       if (A[i])
3001         NewA.setBits(i * Scale, (i + 1) * Scale);
3002   } else {
3003     unsigned Scale = OldBitWidth / NewBitWidth;
3004     for (unsigned i = 0; i != NewBitWidth; ++i) {
3005       if (MatchAllBits) {
3006         if (A.extractBits(Scale, i * Scale).isAllOnes())
3007           NewA.setBit(i);
3008       } else {
3009         if (!A.extractBits(Scale, i * Scale).isZero())
3010           NewA.setBit(i);
3011       }
3012     }
3013   }
3014 
3015   return NewA;
3016 }
3017 
3018 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3019 /// with the integer held in IntVal.
3020 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3021                             unsigned StoreBytes) {
3022   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3023   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3024 
3025   if (sys::IsLittleEndianHost) {
3026     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3027     // destination from LSB to MSB: Do a straight copy.
3028     memcpy(Dst, Src, StoreBytes);
3029   } else {
3030     // Big-endian host - the source is an array of 64 bit words ordered from
3031     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3032     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3033     while (StoreBytes > sizeof(uint64_t)) {
3034       StoreBytes -= sizeof(uint64_t);
3035       // May not be aligned so use memcpy.
3036       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3037       Src += sizeof(uint64_t);
3038     }
3039 
3040     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3041   }
3042 }
3043 
3044 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3045 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3046 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3047                              unsigned LoadBytes) {
3048   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3049   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3050                    const_cast<uint64_t *>(IntVal.getRawData()));
3051 
3052   if (sys::IsLittleEndianHost)
3053     // Little-endian host - the destination must be ordered from LSB to MSB.
3054     // The source is ordered from LSB to MSB: Do a straight copy.
3055     memcpy(Dst, Src, LoadBytes);
3056   else {
3057     // Big-endian - the destination is an array of 64 bit words ordered from
3058     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3059     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3060     // a word.
3061     while (LoadBytes > sizeof(uint64_t)) {
3062       LoadBytes -= sizeof(uint64_t);
3063       // May not be aligned so use memcpy.
3064       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3065       Dst += sizeof(uint64_t);
3066     }
3067 
3068     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3069   }
3070 }
3071 
3072 APInt APIntOps::avgFloorS(const APInt &C1, const APInt &C2) {
3073   // Return floor((C1 + C2) / 2)
3074   return (C1 & C2) + (C1 ^ C2).ashr(1);
3075 }
3076 
3077 APInt APIntOps::avgFloorU(const APInt &C1, const APInt &C2) {
3078   // Return floor((C1 + C2) / 2)
3079   return (C1 & C2) + (C1 ^ C2).lshr(1);
3080 }
3081 
3082 APInt APIntOps::avgCeilS(const APInt &C1, const APInt &C2) {
3083   // Return ceil((C1 + C2) / 2)
3084   return (C1 | C2) - (C1 ^ C2).ashr(1);
3085 }
3086 
3087 APInt APIntOps::avgCeilU(const APInt &C1, const APInt &C2) {
3088   // Return ceil((C1 + C2) / 2)
3089   return (C1 | C2) - (C1 ^ C2).lshr(1);
3090 }
3091 
3092 APInt APIntOps::mulhs(const APInt &C1, const APInt &C2) {
3093   assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths");
3094   unsigned FullWidth = C1.getBitWidth() * 2;
3095   APInt C1Ext = C1.sext(FullWidth);
3096   APInt C2Ext = C2.sext(FullWidth);
3097   return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
3098 }
3099 
3100 APInt APIntOps::mulhu(const APInt &C1, const APInt &C2) {
3101   assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths");
3102   unsigned FullWidth = C1.getBitWidth() * 2;
3103   APInt C1Ext = C1.zext(FullWidth);
3104   APInt C2Ext = C2.zext(FullWidth);
3105   return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
3106 }
3107