xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APInt.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <climits>
28 #include <cmath>
29 #include <cstdlib>
30 #include <cstring>
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "apint"
34 
35 /// A utility function for allocating memory, checking for allocation failures,
36 /// and ensuring the contents are zeroed.
37 inline static uint64_t* getClearedMemory(unsigned numWords) {
38   uint64_t *result = new uint64_t[numWords];
39   memset(result, 0, numWords * sizeof(uint64_t));
40   return result;
41 }
42 
43 /// A utility function for allocating memory and checking for allocation
44 /// failure.  The content is not zeroed.
45 inline static uint64_t* getMemory(unsigned numWords) {
46   return new uint64_t[numWords];
47 }
48 
49 /// A utility function that converts a character to a digit.
50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51   unsigned r;
52 
53   if (radix == 16 || radix == 36) {
54     r = cdigit - '0';
55     if (r <= 9)
56       return r;
57 
58     r = cdigit - 'A';
59     if (r <= radix - 11U)
60       return r + 10;
61 
62     r = cdigit - 'a';
63     if (r <= radix - 11U)
64       return r + 10;
65 
66     radix = 10;
67   }
68 
69   r = cdigit - '0';
70   if (r < radix)
71     return r;
72 
73   return -1U;
74 }
75 
76 
77 void APInt::initSlowCase(uint64_t val, bool isSigned) {
78   U.pVal = getClearedMemory(getNumWords());
79   U.pVal[0] = val;
80   if (isSigned && int64_t(val) < 0)
81     for (unsigned i = 1; i < getNumWords(); ++i)
82       U.pVal[i] = WORDTYPE_MAX;
83   clearUnusedBits();
84 }
85 
86 void APInt::initSlowCase(const APInt& that) {
87   U.pVal = getMemory(getNumWords());
88   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
89 }
90 
91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92   assert(bigVal.data() && "Null pointer detected!");
93   if (isSingleWord())
94     U.VAL = bigVal[0];
95   else {
96     // Get memory, cleared to 0
97     U.pVal = getClearedMemory(getNumWords());
98     // Calculate the number of words to copy
99     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
100     // Copy the words from bigVal to pVal
101     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
102   }
103   // Make sure unused high bits are cleared
104   clearUnusedBits();
105 }
106 
107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
108   initFromArray(bigVal);
109 }
110 
111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
112     : BitWidth(numBits) {
113   initFromArray(makeArrayRef(bigVal, numWords));
114 }
115 
116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
117     : BitWidth(numbits) {
118   fromString(numbits, Str, radix);
119 }
120 
121 void APInt::reallocate(unsigned NewBitWidth) {
122   // If the number of words is the same we can just change the width and stop.
123   if (getNumWords() == getNumWords(NewBitWidth)) {
124     BitWidth = NewBitWidth;
125     return;
126   }
127 
128   // If we have an allocation, delete it.
129   if (!isSingleWord())
130     delete [] U.pVal;
131 
132   // Update BitWidth.
133   BitWidth = NewBitWidth;
134 
135   // If we are supposed to have an allocation, create it.
136   if (!isSingleWord())
137     U.pVal = getMemory(getNumWords());
138 }
139 
140 void APInt::assignSlowCase(const APInt &RHS) {
141   // Don't do anything for X = X
142   if (this == &RHS)
143     return;
144 
145   // Adjust the bit width and handle allocations as necessary.
146   reallocate(RHS.getBitWidth());
147 
148   // Copy the data.
149   if (isSingleWord())
150     U.VAL = RHS.U.VAL;
151   else
152     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
153 }
154 
155 /// This method 'profiles' an APInt for use with FoldingSet.
156 void APInt::Profile(FoldingSetNodeID& ID) const {
157   ID.AddInteger(BitWidth);
158 
159   if (isSingleWord()) {
160     ID.AddInteger(U.VAL);
161     return;
162   }
163 
164   unsigned NumWords = getNumWords();
165   for (unsigned i = 0; i < NumWords; ++i)
166     ID.AddInteger(U.pVal[i]);
167 }
168 
169 /// Prefix increment operator. Increments the APInt by one.
170 APInt& APInt::operator++() {
171   if (isSingleWord())
172     ++U.VAL;
173   else
174     tcIncrement(U.pVal, getNumWords());
175   return clearUnusedBits();
176 }
177 
178 /// Prefix decrement operator. Decrements the APInt by one.
179 APInt& APInt::operator--() {
180   if (isSingleWord())
181     --U.VAL;
182   else
183     tcDecrement(U.pVal, getNumWords());
184   return clearUnusedBits();
185 }
186 
187 /// Adds the RHS APInt to this APInt.
188 /// @returns this, after addition of RHS.
189 /// Addition assignment operator.
190 APInt& APInt::operator+=(const APInt& RHS) {
191   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
192   if (isSingleWord())
193     U.VAL += RHS.U.VAL;
194   else
195     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
196   return clearUnusedBits();
197 }
198 
199 APInt& APInt::operator+=(uint64_t RHS) {
200   if (isSingleWord())
201     U.VAL += RHS;
202   else
203     tcAddPart(U.pVal, RHS, getNumWords());
204   return clearUnusedBits();
205 }
206 
207 /// Subtracts the RHS APInt from this APInt
208 /// @returns this, after subtraction
209 /// Subtraction assignment operator.
210 APInt& APInt::operator-=(const APInt& RHS) {
211   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
212   if (isSingleWord())
213     U.VAL -= RHS.U.VAL;
214   else
215     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
216   return clearUnusedBits();
217 }
218 
219 APInt& APInt::operator-=(uint64_t RHS) {
220   if (isSingleWord())
221     U.VAL -= RHS;
222   else
223     tcSubtractPart(U.pVal, RHS, getNumWords());
224   return clearUnusedBits();
225 }
226 
227 APInt APInt::operator*(const APInt& RHS) const {
228   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
229   if (isSingleWord())
230     return APInt(BitWidth, U.VAL * RHS.U.VAL);
231 
232   APInt Result(getMemory(getNumWords()), getBitWidth());
233   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
234   Result.clearUnusedBits();
235   return Result;
236 }
237 
238 void APInt::andAssignSlowCase(const APInt &RHS) {
239   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
240   for (size_t i = 0, e = getNumWords(); i != e; ++i)
241     dst[i] &= rhs[i];
242 }
243 
244 void APInt::orAssignSlowCase(const APInt &RHS) {
245   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
246   for (size_t i = 0, e = getNumWords(); i != e; ++i)
247     dst[i] |= rhs[i];
248 }
249 
250 void APInt::xorAssignSlowCase(const APInt &RHS) {
251   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
252   for (size_t i = 0, e = getNumWords(); i != e; ++i)
253     dst[i] ^= rhs[i];
254 }
255 
256 APInt &APInt::operator*=(const APInt &RHS) {
257   *this = *this * RHS;
258   return *this;
259 }
260 
261 APInt& APInt::operator*=(uint64_t RHS) {
262   if (isSingleWord()) {
263     U.VAL *= RHS;
264   } else {
265     unsigned NumWords = getNumWords();
266     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267   }
268   return clearUnusedBits();
269 }
270 
271 bool APInt::equalSlowCase(const APInt &RHS) const {
272   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
273 }
274 
275 int APInt::compare(const APInt& RHS) const {
276   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277   if (isSingleWord())
278     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
279 
280   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
281 }
282 
283 int APInt::compareSigned(const APInt& RHS) const {
284   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285   if (isSingleWord()) {
286     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
289   }
290 
291   bool lhsNeg = isNegative();
292   bool rhsNeg = RHS.isNegative();
293 
294   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295   if (lhsNeg != rhsNeg)
296     return lhsNeg ? -1 : 1;
297 
298   // Otherwise we can just use an unsigned comparison, because even negative
299   // numbers compare correctly this way if both have the same signed-ness.
300   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
301 }
302 
303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304   unsigned loWord = whichWord(loBit);
305   unsigned hiWord = whichWord(hiBit);
306 
307   // Create an initial mask for the low word with zeros below loBit.
308   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
309 
310   // If hiBit is not aligned, we need a high mask.
311   unsigned hiShiftAmt = whichBit(hiBit);
312   if (hiShiftAmt != 0) {
313     // Create a high mask with zeros above hiBit.
314     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316     // set the bits in hiWord.
317     if (hiWord == loWord)
318       loMask &= hiMask;
319     else
320       U.pVal[hiWord] |= hiMask;
321   }
322   // Apply the mask to the low word.
323   U.pVal[loWord] |= loMask;
324 
325   // Fill any words between loWord and hiWord with all ones.
326   for (unsigned word = loWord + 1; word < hiWord; ++word)
327     U.pVal[word] = WORDTYPE_MAX;
328 }
329 
330 // Complement a bignum in-place.
331 static void tcComplement(APInt::WordType *dst, unsigned parts) {
332   for (unsigned i = 0; i < parts; i++)
333     dst[i] = ~dst[i];
334 }
335 
336 /// Toggle every bit to its opposite value.
337 void APInt::flipAllBitsSlowCase() {
338   tcComplement(U.pVal, getNumWords());
339   clearUnusedBits();
340 }
341 
342 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
343 /// equivalent to:
344 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
345 /// In the slow case, we know the result is large.
346 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
347   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
348   APInt Result = NewLSB.zextOrSelf(NewWidth);
349   Result.insertBits(*this, NewLSB.getBitWidth());
350   return Result;
351 }
352 
353 /// Toggle a given bit to its opposite value whose position is given
354 /// as "bitPosition".
355 /// Toggles a given bit to its opposite value.
356 void APInt::flipBit(unsigned bitPosition) {
357   assert(bitPosition < BitWidth && "Out of the bit-width range!");
358   setBitVal(bitPosition, !(*this)[bitPosition]);
359 }
360 
361 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
362   unsigned subBitWidth = subBits.getBitWidth();
363   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
364 
365   // inserting no bits is a noop.
366   if (subBitWidth == 0)
367     return;
368 
369   // Insertion is a direct copy.
370   if (subBitWidth == BitWidth) {
371     *this = subBits;
372     return;
373   }
374 
375   // Single word result can be done as a direct bitmask.
376   if (isSingleWord()) {
377     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
378     U.VAL &= ~(mask << bitPosition);
379     U.VAL |= (subBits.U.VAL << bitPosition);
380     return;
381   }
382 
383   unsigned loBit = whichBit(bitPosition);
384   unsigned loWord = whichWord(bitPosition);
385   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
386 
387   // Insertion within a single word can be done as a direct bitmask.
388   if (loWord == hi1Word) {
389     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
390     U.pVal[loWord] &= ~(mask << loBit);
391     U.pVal[loWord] |= (subBits.U.VAL << loBit);
392     return;
393   }
394 
395   // Insert on word boundaries.
396   if (loBit == 0) {
397     // Direct copy whole words.
398     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
399     memcpy(U.pVal + loWord, subBits.getRawData(),
400            numWholeSubWords * APINT_WORD_SIZE);
401 
402     // Mask+insert remaining bits.
403     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
404     if (remainingBits != 0) {
405       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
406       U.pVal[hi1Word] &= ~mask;
407       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
408     }
409     return;
410   }
411 
412   // General case - set/clear individual bits in dst based on src.
413   // TODO - there is scope for optimization here, but at the moment this code
414   // path is barely used so prefer readability over performance.
415   for (unsigned i = 0; i != subBitWidth; ++i)
416     setBitVal(bitPosition + i, subBits[i]);
417 }
418 
419 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
420   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
421   subBits &= maskBits;
422   if (isSingleWord()) {
423     U.VAL &= ~(maskBits << bitPosition);
424     U.VAL |= subBits << bitPosition;
425     return;
426   }
427 
428   unsigned loBit = whichBit(bitPosition);
429   unsigned loWord = whichWord(bitPosition);
430   unsigned hiWord = whichWord(bitPosition + numBits - 1);
431   if (loWord == hiWord) {
432     U.pVal[loWord] &= ~(maskBits << loBit);
433     U.pVal[loWord] |= subBits << loBit;
434     return;
435   }
436 
437   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
438   unsigned wordBits = 8 * sizeof(WordType);
439   U.pVal[loWord] &= ~(maskBits << loBit);
440   U.pVal[loWord] |= subBits << loBit;
441 
442   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
443   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
444 }
445 
446 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
447   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
448          "Illegal bit extraction");
449 
450   if (isSingleWord())
451     return APInt(numBits, U.VAL >> bitPosition);
452 
453   unsigned loBit = whichBit(bitPosition);
454   unsigned loWord = whichWord(bitPosition);
455   unsigned hiWord = whichWord(bitPosition + numBits - 1);
456 
457   // Single word result extracting bits from a single word source.
458   if (loWord == hiWord)
459     return APInt(numBits, U.pVal[loWord] >> loBit);
460 
461   // Extracting bits that start on a source word boundary can be done
462   // as a fast memory copy.
463   if (loBit == 0)
464     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
465 
466   // General case - shift + copy source words directly into place.
467   APInt Result(numBits, 0);
468   unsigned NumSrcWords = getNumWords();
469   unsigned NumDstWords = Result.getNumWords();
470 
471   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
472   for (unsigned word = 0; word < NumDstWords; ++word) {
473     uint64_t w0 = U.pVal[loWord + word];
474     uint64_t w1 =
475         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
476     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
477   }
478 
479   return Result.clearUnusedBits();
480 }
481 
482 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
483                                        unsigned bitPosition) const {
484   assert(numBits > 0 && "Can't extract zero bits");
485   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
486          "Illegal bit extraction");
487   assert(numBits <= 64 && "Illegal bit extraction");
488 
489   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
490   if (isSingleWord())
491     return (U.VAL >> bitPosition) & maskBits;
492 
493   unsigned loBit = whichBit(bitPosition);
494   unsigned loWord = whichWord(bitPosition);
495   unsigned hiWord = whichWord(bitPosition + numBits - 1);
496   if (loWord == hiWord)
497     return (U.pVal[loWord] >> loBit) & maskBits;
498 
499   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
500   unsigned wordBits = 8 * sizeof(WordType);
501   uint64_t retBits = U.pVal[loWord] >> loBit;
502   retBits |= U.pVal[hiWord] << (wordBits - loBit);
503   retBits &= maskBits;
504   return retBits;
505 }
506 
507 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
508   assert(!str.empty() && "Invalid string length");
509   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
510           radix == 36) &&
511          "Radix should be 2, 8, 10, 16, or 36!");
512 
513   size_t slen = str.size();
514 
515   // Each computation below needs to know if it's negative.
516   StringRef::iterator p = str.begin();
517   unsigned isNegative = *p == '-';
518   if (*p == '-' || *p == '+') {
519     p++;
520     slen--;
521     assert(slen && "String is only a sign, needs a value.");
522   }
523 
524   // For radixes of power-of-two values, the bits required is accurately and
525   // easily computed
526   if (radix == 2)
527     return slen + isNegative;
528   if (radix == 8)
529     return slen * 3 + isNegative;
530   if (radix == 16)
531     return slen * 4 + isNegative;
532 
533   // FIXME: base 36
534 
535   // This is grossly inefficient but accurate. We could probably do something
536   // with a computation of roughly slen*64/20 and then adjust by the value of
537   // the first few digits. But, I'm not sure how accurate that could be.
538 
539   // Compute a sufficient number of bits that is always large enough but might
540   // be too large. This avoids the assertion in the constructor. This
541   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
542   // bits in that case.
543   unsigned sufficient
544     = radix == 10? (slen == 1 ? 4 : slen * 64/18)
545                  : (slen == 1 ? 7 : slen * 16/3);
546 
547   // Convert to the actual binary value.
548   APInt tmp(sufficient, StringRef(p, slen), radix);
549 
550   // Compute how many bits are required. If the log is infinite, assume we need
551   // just bit. If the log is exact and value is negative, then the value is
552   // MinSignedValue with (log + 1) bits.
553   unsigned log = tmp.logBase2();
554   if (log == (unsigned)-1) {
555     return isNegative + 1;
556   } else if (isNegative && tmp.isPowerOf2()) {
557     return isNegative + log;
558   } else {
559     return isNegative + log + 1;
560   }
561 }
562 
563 hash_code llvm::hash_value(const APInt &Arg) {
564   if (Arg.isSingleWord())
565     return hash_combine(Arg.BitWidth, Arg.U.VAL);
566 
567   return hash_combine(
568       Arg.BitWidth,
569       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
570 }
571 
572 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
573   return static_cast<unsigned>(hash_value(Key));
574 }
575 
576 bool APInt::isSplat(unsigned SplatSizeInBits) const {
577   assert(getBitWidth() % SplatSizeInBits == 0 &&
578          "SplatSizeInBits must divide width!");
579   // We can check that all parts of an integer are equal by making use of a
580   // little trick: rotate and check if it's still the same value.
581   return *this == rotl(SplatSizeInBits);
582 }
583 
584 /// This function returns the high "numBits" bits of this APInt.
585 APInt APInt::getHiBits(unsigned numBits) const {
586   return this->lshr(BitWidth - numBits);
587 }
588 
589 /// This function returns the low "numBits" bits of this APInt.
590 APInt APInt::getLoBits(unsigned numBits) const {
591   APInt Result(getLowBitsSet(BitWidth, numBits));
592   Result &= *this;
593   return Result;
594 }
595 
596 /// Return a value containing V broadcasted over NewLen bits.
597 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
598   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
599 
600   APInt Val = V.zextOrSelf(NewLen);
601   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
602     Val |= Val << I;
603 
604   return Val;
605 }
606 
607 unsigned APInt::countLeadingZerosSlowCase() const {
608   unsigned Count = 0;
609   for (int i = getNumWords()-1; i >= 0; --i) {
610     uint64_t V = U.pVal[i];
611     if (V == 0)
612       Count += APINT_BITS_PER_WORD;
613     else {
614       Count += llvm::countLeadingZeros(V);
615       break;
616     }
617   }
618   // Adjust for unused bits in the most significant word (they are zero).
619   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
620   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
621   return Count;
622 }
623 
624 unsigned APInt::countLeadingOnesSlowCase() const {
625   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
626   unsigned shift;
627   if (!highWordBits) {
628     highWordBits = APINT_BITS_PER_WORD;
629     shift = 0;
630   } else {
631     shift = APINT_BITS_PER_WORD - highWordBits;
632   }
633   int i = getNumWords() - 1;
634   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
635   if (Count == highWordBits) {
636     for (i--; i >= 0; --i) {
637       if (U.pVal[i] == WORDTYPE_MAX)
638         Count += APINT_BITS_PER_WORD;
639       else {
640         Count += llvm::countLeadingOnes(U.pVal[i]);
641         break;
642       }
643     }
644   }
645   return Count;
646 }
647 
648 unsigned APInt::countTrailingZerosSlowCase() const {
649   unsigned Count = 0;
650   unsigned i = 0;
651   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
652     Count += APINT_BITS_PER_WORD;
653   if (i < getNumWords())
654     Count += llvm::countTrailingZeros(U.pVal[i]);
655   return std::min(Count, BitWidth);
656 }
657 
658 unsigned APInt::countTrailingOnesSlowCase() const {
659   unsigned Count = 0;
660   unsigned i = 0;
661   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
662     Count += APINT_BITS_PER_WORD;
663   if (i < getNumWords())
664     Count += llvm::countTrailingOnes(U.pVal[i]);
665   assert(Count <= BitWidth);
666   return Count;
667 }
668 
669 unsigned APInt::countPopulationSlowCase() const {
670   unsigned Count = 0;
671   for (unsigned i = 0; i < getNumWords(); ++i)
672     Count += llvm::countPopulation(U.pVal[i]);
673   return Count;
674 }
675 
676 bool APInt::intersectsSlowCase(const APInt &RHS) const {
677   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
678     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
679       return true;
680 
681   return false;
682 }
683 
684 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
685   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
686     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
687       return false;
688 
689   return true;
690 }
691 
692 APInt APInt::byteSwap() const {
693   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
694   if (BitWidth == 16)
695     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
696   if (BitWidth == 32)
697     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
698   if (BitWidth <= 64) {
699     uint64_t Tmp1 = ByteSwap_64(U.VAL);
700     Tmp1 >>= (64 - BitWidth);
701     return APInt(BitWidth, Tmp1);
702   }
703 
704   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
705   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
706     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
707   if (Result.BitWidth != BitWidth) {
708     Result.lshrInPlace(Result.BitWidth - BitWidth);
709     Result.BitWidth = BitWidth;
710   }
711   return Result;
712 }
713 
714 APInt APInt::reverseBits() const {
715   switch (BitWidth) {
716   case 64:
717     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
718   case 32:
719     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
720   case 16:
721     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
722   case 8:
723     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
724   case 0:
725     return *this;
726   default:
727     break;
728   }
729 
730   APInt Val(*this);
731   APInt Reversed(BitWidth, 0);
732   unsigned S = BitWidth;
733 
734   for (; Val != 0; Val.lshrInPlace(1)) {
735     Reversed <<= 1;
736     Reversed |= Val[0];
737     --S;
738   }
739 
740   Reversed <<= S;
741   return Reversed;
742 }
743 
744 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
745   // Fast-path a common case.
746   if (A == B) return A;
747 
748   // Corner cases: if either operand is zero, the other is the gcd.
749   if (!A) return B;
750   if (!B) return A;
751 
752   // Count common powers of 2 and remove all other powers of 2.
753   unsigned Pow2;
754   {
755     unsigned Pow2_A = A.countTrailingZeros();
756     unsigned Pow2_B = B.countTrailingZeros();
757     if (Pow2_A > Pow2_B) {
758       A.lshrInPlace(Pow2_A - Pow2_B);
759       Pow2 = Pow2_B;
760     } else if (Pow2_B > Pow2_A) {
761       B.lshrInPlace(Pow2_B - Pow2_A);
762       Pow2 = Pow2_A;
763     } else {
764       Pow2 = Pow2_A;
765     }
766   }
767 
768   // Both operands are odd multiples of 2^Pow_2:
769   //
770   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
771   //
772   // This is a modified version of Stein's algorithm, taking advantage of
773   // efficient countTrailingZeros().
774   while (A != B) {
775     if (A.ugt(B)) {
776       A -= B;
777       A.lshrInPlace(A.countTrailingZeros() - Pow2);
778     } else {
779       B -= A;
780       B.lshrInPlace(B.countTrailingZeros() - Pow2);
781     }
782   }
783 
784   return A;
785 }
786 
787 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
788   uint64_t I = bit_cast<uint64_t>(Double);
789 
790   // Get the sign bit from the highest order bit
791   bool isNeg = I >> 63;
792 
793   // Get the 11-bit exponent and adjust for the 1023 bit bias
794   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
795 
796   // If the exponent is negative, the value is < 0 so just return 0.
797   if (exp < 0)
798     return APInt(width, 0u);
799 
800   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
801   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
802 
803   // If the exponent doesn't shift all bits out of the mantissa
804   if (exp < 52)
805     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
806                     APInt(width, mantissa >> (52 - exp));
807 
808   // If the client didn't provide enough bits for us to shift the mantissa into
809   // then the result is undefined, just return 0
810   if (width <= exp - 52)
811     return APInt(width, 0);
812 
813   // Otherwise, we have to shift the mantissa bits up to the right location
814   APInt Tmp(width, mantissa);
815   Tmp <<= (unsigned)exp - 52;
816   return isNeg ? -Tmp : Tmp;
817 }
818 
819 /// This function converts this APInt to a double.
820 /// The layout for double is as following (IEEE Standard 754):
821 ///  --------------------------------------
822 /// |  Sign    Exponent    Fraction    Bias |
823 /// |-------------------------------------- |
824 /// |  1[63]   11[62-52]   52[51-00]   1023 |
825 ///  --------------------------------------
826 double APInt::roundToDouble(bool isSigned) const {
827 
828   // Handle the simple case where the value is contained in one uint64_t.
829   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
830   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
831     if (isSigned) {
832       int64_t sext = SignExtend64(getWord(0), BitWidth);
833       return double(sext);
834     } else
835       return double(getWord(0));
836   }
837 
838   // Determine if the value is negative.
839   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
840 
841   // Construct the absolute value if we're negative.
842   APInt Tmp(isNeg ? -(*this) : (*this));
843 
844   // Figure out how many bits we're using.
845   unsigned n = Tmp.getActiveBits();
846 
847   // The exponent (without bias normalization) is just the number of bits
848   // we are using. Note that the sign bit is gone since we constructed the
849   // absolute value.
850   uint64_t exp = n;
851 
852   // Return infinity for exponent overflow
853   if (exp > 1023) {
854     if (!isSigned || !isNeg)
855       return std::numeric_limits<double>::infinity();
856     else
857       return -std::numeric_limits<double>::infinity();
858   }
859   exp += 1023; // Increment for 1023 bias
860 
861   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
862   // extract the high 52 bits from the correct words in pVal.
863   uint64_t mantissa;
864   unsigned hiWord = whichWord(n-1);
865   if (hiWord == 0) {
866     mantissa = Tmp.U.pVal[0];
867     if (n > 52)
868       mantissa >>= n - 52; // shift down, we want the top 52 bits.
869   } else {
870     assert(hiWord > 0 && "huh?");
871     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
872     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
873     mantissa = hibits | lobits;
874   }
875 
876   // The leading bit of mantissa is implicit, so get rid of it.
877   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
878   uint64_t I = sign | (exp << 52) | mantissa;
879   return bit_cast<double>(I);
880 }
881 
882 // Truncate to new width.
883 APInt APInt::trunc(unsigned width) const {
884   assert(width < BitWidth && "Invalid APInt Truncate request");
885 
886   if (width <= APINT_BITS_PER_WORD)
887     return APInt(width, getRawData()[0]);
888 
889   APInt Result(getMemory(getNumWords(width)), width);
890 
891   // Copy full words.
892   unsigned i;
893   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
894     Result.U.pVal[i] = U.pVal[i];
895 
896   // Truncate and copy any partial word.
897   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
898   if (bits != 0)
899     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
900 
901   return Result;
902 }
903 
904 // Truncate to new width with unsigned saturation.
905 APInt APInt::truncUSat(unsigned width) const {
906   assert(width < BitWidth && "Invalid APInt Truncate request");
907 
908   // Can we just losslessly truncate it?
909   if (isIntN(width))
910     return trunc(width);
911   // If not, then just return the new limit.
912   return APInt::getMaxValue(width);
913 }
914 
915 // Truncate to new width with signed saturation.
916 APInt APInt::truncSSat(unsigned width) const {
917   assert(width < BitWidth && "Invalid APInt Truncate request");
918 
919   // Can we just losslessly truncate it?
920   if (isSignedIntN(width))
921     return trunc(width);
922   // If not, then just return the new limits.
923   return isNegative() ? APInt::getSignedMinValue(width)
924                       : APInt::getSignedMaxValue(width);
925 }
926 
927 // Sign extend to a new width.
928 APInt APInt::sext(unsigned Width) const {
929   assert(Width > BitWidth && "Invalid APInt SignExtend request");
930 
931   if (Width <= APINT_BITS_PER_WORD)
932     return APInt(Width, SignExtend64(U.VAL, BitWidth));
933 
934   APInt Result(getMemory(getNumWords(Width)), Width);
935 
936   // Copy words.
937   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
938 
939   // Sign extend the last word since there may be unused bits in the input.
940   Result.U.pVal[getNumWords() - 1] =
941       SignExtend64(Result.U.pVal[getNumWords() - 1],
942                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
943 
944   // Fill with sign bits.
945   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
946               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
947   Result.clearUnusedBits();
948   return Result;
949 }
950 
951 //  Zero extend to a new width.
952 APInt APInt::zext(unsigned width) const {
953   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
954 
955   if (width <= APINT_BITS_PER_WORD)
956     return APInt(width, U.VAL);
957 
958   APInt Result(getMemory(getNumWords(width)), width);
959 
960   // Copy words.
961   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
962 
963   // Zero remaining words.
964   std::memset(Result.U.pVal + getNumWords(), 0,
965               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
966 
967   return Result;
968 }
969 
970 APInt APInt::zextOrTrunc(unsigned width) const {
971   if (BitWidth < width)
972     return zext(width);
973   if (BitWidth > width)
974     return trunc(width);
975   return *this;
976 }
977 
978 APInt APInt::sextOrTrunc(unsigned width) const {
979   if (BitWidth < width)
980     return sext(width);
981   if (BitWidth > width)
982     return trunc(width);
983   return *this;
984 }
985 
986 APInt APInt::truncOrSelf(unsigned width) const {
987   if (BitWidth > width)
988     return trunc(width);
989   return *this;
990 }
991 
992 APInt APInt::zextOrSelf(unsigned width) const {
993   if (BitWidth < width)
994     return zext(width);
995   return *this;
996 }
997 
998 APInt APInt::sextOrSelf(unsigned width) const {
999   if (BitWidth < width)
1000     return sext(width);
1001   return *this;
1002 }
1003 
1004 /// Arithmetic right-shift this APInt by shiftAmt.
1005 /// Arithmetic right-shift function.
1006 void APInt::ashrInPlace(const APInt &shiftAmt) {
1007   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1008 }
1009 
1010 /// Arithmetic right-shift this APInt by shiftAmt.
1011 /// Arithmetic right-shift function.
1012 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1013   // Don't bother performing a no-op shift.
1014   if (!ShiftAmt)
1015     return;
1016 
1017   // Save the original sign bit for later.
1018   bool Negative = isNegative();
1019 
1020   // WordShift is the inter-part shift; BitShift is intra-part shift.
1021   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1022   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1023 
1024   unsigned WordsToMove = getNumWords() - WordShift;
1025   if (WordsToMove != 0) {
1026     // Sign extend the last word to fill in the unused bits.
1027     U.pVal[getNumWords() - 1] = SignExtend64(
1028         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1029 
1030     // Fastpath for moving by whole words.
1031     if (BitShift == 0) {
1032       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1033     } else {
1034       // Move the words containing significant bits.
1035       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1036         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1037                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1038 
1039       // Handle the last word which has no high bits to copy.
1040       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1041       // Sign extend one more time.
1042       U.pVal[WordsToMove - 1] =
1043           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1044     }
1045   }
1046 
1047   // Fill in the remainder based on the original sign.
1048   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1049               WordShift * APINT_WORD_SIZE);
1050   clearUnusedBits();
1051 }
1052 
1053 /// Logical right-shift this APInt by shiftAmt.
1054 /// Logical right-shift function.
1055 void APInt::lshrInPlace(const APInt &shiftAmt) {
1056   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1057 }
1058 
1059 /// Logical right-shift this APInt by shiftAmt.
1060 /// Logical right-shift function.
1061 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1062   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1063 }
1064 
1065 /// Left-shift this APInt by shiftAmt.
1066 /// Left-shift function.
1067 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1068   // It's undefined behavior in C to shift by BitWidth or greater.
1069   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1070   return *this;
1071 }
1072 
1073 void APInt::shlSlowCase(unsigned ShiftAmt) {
1074   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1075   clearUnusedBits();
1076 }
1077 
1078 // Calculate the rotate amount modulo the bit width.
1079 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1080   if (LLVM_UNLIKELY(BitWidth == 0))
1081     return 0;
1082   unsigned rotBitWidth = rotateAmt.getBitWidth();
1083   APInt rot = rotateAmt;
1084   if (rotBitWidth < BitWidth) {
1085     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1086     // e.g. APInt(1, 32) would give APInt(1, 0).
1087     rot = rotateAmt.zext(BitWidth);
1088   }
1089   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1090   return rot.getLimitedValue(BitWidth);
1091 }
1092 
1093 APInt APInt::rotl(const APInt &rotateAmt) const {
1094   return rotl(rotateModulo(BitWidth, rotateAmt));
1095 }
1096 
1097 APInt APInt::rotl(unsigned rotateAmt) const {
1098   if (LLVM_UNLIKELY(BitWidth == 0))
1099     return *this;
1100   rotateAmt %= BitWidth;
1101   if (rotateAmt == 0)
1102     return *this;
1103   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1104 }
1105 
1106 APInt APInt::rotr(const APInt &rotateAmt) const {
1107   return rotr(rotateModulo(BitWidth, rotateAmt));
1108 }
1109 
1110 APInt APInt::rotr(unsigned rotateAmt) const {
1111   if (BitWidth == 0)
1112     return *this;
1113   rotateAmt %= BitWidth;
1114   if (rotateAmt == 0)
1115     return *this;
1116   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1117 }
1118 
1119 /// \returns the nearest log base 2 of this APInt. Ties round up.
1120 ///
1121 /// NOTE: When we have a BitWidth of 1, we define:
1122 ///
1123 ///   log2(0) = UINT32_MAX
1124 ///   log2(1) = 0
1125 ///
1126 /// to get around any mathematical concerns resulting from
1127 /// referencing 2 in a space where 2 does no exist.
1128 unsigned APInt::nearestLogBase2() const {
1129   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1130   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1131   // UINT32_MAX.
1132   if (BitWidth == 1)
1133     return U.VAL - 1;
1134 
1135   // Handle the zero case.
1136   if (isZero())
1137     return UINT32_MAX;
1138 
1139   // The non-zero case is handled by computing:
1140   //
1141   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1142   //
1143   // where x[i] is referring to the value of the ith bit of x.
1144   unsigned lg = logBase2();
1145   return lg + unsigned((*this)[lg - 1]);
1146 }
1147 
1148 // Square Root - this method computes and returns the square root of "this".
1149 // Three mechanisms are used for computation. For small values (<= 5 bits),
1150 // a table lookup is done. This gets some performance for common cases. For
1151 // values using less than 52 bits, the value is converted to double and then
1152 // the libc sqrt function is called. The result is rounded and then converted
1153 // back to a uint64_t which is then used to construct the result. Finally,
1154 // the Babylonian method for computing square roots is used.
1155 APInt APInt::sqrt() const {
1156 
1157   // Determine the magnitude of the value.
1158   unsigned magnitude = getActiveBits();
1159 
1160   // Use a fast table for some small values. This also gets rid of some
1161   // rounding errors in libc sqrt for small values.
1162   if (magnitude <= 5) {
1163     static const uint8_t results[32] = {
1164       /*     0 */ 0,
1165       /*  1- 2 */ 1, 1,
1166       /*  3- 6 */ 2, 2, 2, 2,
1167       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1168       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1169       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1170       /*    31 */ 6
1171     };
1172     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1173   }
1174 
1175   // If the magnitude of the value fits in less than 52 bits (the precision of
1176   // an IEEE double precision floating point value), then we can use the
1177   // libc sqrt function which will probably use a hardware sqrt computation.
1178   // This should be faster than the algorithm below.
1179   if (magnitude < 52) {
1180     return APInt(BitWidth,
1181                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1182                                                                : U.pVal[0])))));
1183   }
1184 
1185   // Okay, all the short cuts are exhausted. We must compute it. The following
1186   // is a classical Babylonian method for computing the square root. This code
1187   // was adapted to APInt from a wikipedia article on such computations.
1188   // See http://www.wikipedia.org/ and go to the page named
1189   // Calculate_an_integer_square_root.
1190   unsigned nbits = BitWidth, i = 4;
1191   APInt testy(BitWidth, 16);
1192   APInt x_old(BitWidth, 1);
1193   APInt x_new(BitWidth, 0);
1194   APInt two(BitWidth, 2);
1195 
1196   // Select a good starting value using binary logarithms.
1197   for (;; i += 2, testy = testy.shl(2))
1198     if (i >= nbits || this->ule(testy)) {
1199       x_old = x_old.shl(i / 2);
1200       break;
1201     }
1202 
1203   // Use the Babylonian method to arrive at the integer square root:
1204   for (;;) {
1205     x_new = (this->udiv(x_old) + x_old).udiv(two);
1206     if (x_old.ule(x_new))
1207       break;
1208     x_old = x_new;
1209   }
1210 
1211   // Make sure we return the closest approximation
1212   // NOTE: The rounding calculation below is correct. It will produce an
1213   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1214   // determined to be a rounding issue with pari/gp as it begins to use a
1215   // floating point representation after 192 bits. There are no discrepancies
1216   // between this algorithm and pari/gp for bit widths < 192 bits.
1217   APInt square(x_old * x_old);
1218   APInt nextSquare((x_old + 1) * (x_old +1));
1219   if (this->ult(square))
1220     return x_old;
1221   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1222   APInt midpoint((nextSquare - square).udiv(two));
1223   APInt offset(*this - square);
1224   if (offset.ult(midpoint))
1225     return x_old;
1226   return x_old + 1;
1227 }
1228 
1229 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1230 /// iterative extended Euclidean algorithm is used to solve for this value,
1231 /// however we simplify it to speed up calculating only the inverse, and take
1232 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1233 /// (potentially large) APInts around.
1234 /// WARNING: a value of '0' may be returned,
1235 ///          signifying that no multiplicative inverse exists!
1236 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1237   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1238 
1239   // Using the properties listed at the following web page (accessed 06/21/08):
1240   //   http://www.numbertheory.org/php/euclid.html
1241   // (especially the properties numbered 3, 4 and 9) it can be proved that
1242   // BitWidth bits suffice for all the computations in the algorithm implemented
1243   // below. More precisely, this number of bits suffice if the multiplicative
1244   // inverse exists, but may not suffice for the general extended Euclidean
1245   // algorithm.
1246 
1247   APInt r[2] = { modulo, *this };
1248   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1249   APInt q(BitWidth, 0);
1250 
1251   unsigned i;
1252   for (i = 0; r[i^1] != 0; i ^= 1) {
1253     // An overview of the math without the confusing bit-flipping:
1254     // q = r[i-2] / r[i-1]
1255     // r[i] = r[i-2] % r[i-1]
1256     // t[i] = t[i-2] - t[i-1] * q
1257     udivrem(r[i], r[i^1], q, r[i]);
1258     t[i] -= t[i^1] * q;
1259   }
1260 
1261   // If this APInt and the modulo are not coprime, there is no multiplicative
1262   // inverse, so return 0. We check this by looking at the next-to-last
1263   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1264   // algorithm.
1265   if (r[i] != 1)
1266     return APInt(BitWidth, 0);
1267 
1268   // The next-to-last t is the multiplicative inverse.  However, we are
1269   // interested in a positive inverse. Calculate a positive one from a negative
1270   // one if necessary. A simple addition of the modulo suffices because
1271   // abs(t[i]) is known to be less than *this/2 (see the link above).
1272   if (t[i].isNegative())
1273     t[i] += modulo;
1274 
1275   return std::move(t[i]);
1276 }
1277 
1278 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1279 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1280 /// variables here have the same names as in the algorithm. Comments explain
1281 /// the algorithm and any deviation from it.
1282 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1283                      unsigned m, unsigned n) {
1284   assert(u && "Must provide dividend");
1285   assert(v && "Must provide divisor");
1286   assert(q && "Must provide quotient");
1287   assert(u != v && u != q && v != q && "Must use different memory");
1288   assert(n>1 && "n must be > 1");
1289 
1290   // b denotes the base of the number system. In our case b is 2^32.
1291   const uint64_t b = uint64_t(1) << 32;
1292 
1293 // The DEBUG macros here tend to be spam in the debug output if you're not
1294 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1295 #ifdef KNUTH_DEBUG
1296 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1297 #else
1298 #define DEBUG_KNUTH(X) do {} while(false)
1299 #endif
1300 
1301   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1302   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1303   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1304   DEBUG_KNUTH(dbgs() << " by");
1305   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1306   DEBUG_KNUTH(dbgs() << '\n');
1307   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1308   // u and v by d. Note that we have taken Knuth's advice here to use a power
1309   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1310   // 2 allows us to shift instead of multiply and it is easy to determine the
1311   // shift amount from the leading zeros.  We are basically normalizing the u
1312   // and v so that its high bits are shifted to the top of v's range without
1313   // overflow. Note that this can require an extra word in u so that u must
1314   // be of length m+n+1.
1315   unsigned shift = countLeadingZeros(v[n-1]);
1316   uint32_t v_carry = 0;
1317   uint32_t u_carry = 0;
1318   if (shift) {
1319     for (unsigned i = 0; i < m+n; ++i) {
1320       uint32_t u_tmp = u[i] >> (32 - shift);
1321       u[i] = (u[i] << shift) | u_carry;
1322       u_carry = u_tmp;
1323     }
1324     for (unsigned i = 0; i < n; ++i) {
1325       uint32_t v_tmp = v[i] >> (32 - shift);
1326       v[i] = (v[i] << shift) | v_carry;
1327       v_carry = v_tmp;
1328     }
1329   }
1330   u[m+n] = u_carry;
1331 
1332   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1333   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1334   DEBUG_KNUTH(dbgs() << " by");
1335   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1336   DEBUG_KNUTH(dbgs() << '\n');
1337 
1338   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1339   int j = m;
1340   do {
1341     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1342     // D3. [Calculate q'.].
1343     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1344     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1345     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1346     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1347     // on v[n-2] determines at high speed most of the cases in which the trial
1348     // value qp is one too large, and it eliminates all cases where qp is two
1349     // too large.
1350     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1351     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1352     uint64_t qp = dividend / v[n-1];
1353     uint64_t rp = dividend % v[n-1];
1354     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1355       qp--;
1356       rp += v[n-1];
1357       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1358         qp--;
1359     }
1360     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1361 
1362     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1363     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1364     // consists of a simple multiplication by a one-place number, combined with
1365     // a subtraction.
1366     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1367     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1368     // true value plus b**(n+1), namely as the b's complement of
1369     // the true value, and a "borrow" to the left should be remembered.
1370     int64_t borrow = 0;
1371     for (unsigned i = 0; i < n; ++i) {
1372       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1373       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1374       u[j+i] = Lo_32(subres);
1375       borrow = Hi_32(p) - Hi_32(subres);
1376       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1377                         << ", borrow = " << borrow << '\n');
1378     }
1379     bool isNeg = u[j+n] < borrow;
1380     u[j+n] -= Lo_32(borrow);
1381 
1382     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1383     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1384     DEBUG_KNUTH(dbgs() << '\n');
1385 
1386     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1387     // negative, go to step D6; otherwise go on to step D7.
1388     q[j] = Lo_32(qp);
1389     if (isNeg) {
1390       // D6. [Add back]. The probability that this step is necessary is very
1391       // small, on the order of only 2/b. Make sure that test data accounts for
1392       // this possibility. Decrease q[j] by 1
1393       q[j]--;
1394       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1395       // A carry will occur to the left of u[j+n], and it should be ignored
1396       // since it cancels with the borrow that occurred in D4.
1397       bool carry = false;
1398       for (unsigned i = 0; i < n; i++) {
1399         uint32_t limit = std::min(u[j+i],v[i]);
1400         u[j+i] += v[i] + carry;
1401         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1402       }
1403       u[j+n] += carry;
1404     }
1405     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1406     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1407     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1408 
1409     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1410   } while (--j >= 0);
1411 
1412   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1413   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1414   DEBUG_KNUTH(dbgs() << '\n');
1415 
1416   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1417   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1418   // compute the remainder (urem uses this).
1419   if (r) {
1420     // The value d is expressed by the "shift" value above since we avoided
1421     // multiplication by d by using a shift left. So, all we have to do is
1422     // shift right here.
1423     if (shift) {
1424       uint32_t carry = 0;
1425       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1426       for (int i = n-1; i >= 0; i--) {
1427         r[i] = (u[i] >> shift) | carry;
1428         carry = u[i] << (32 - shift);
1429         DEBUG_KNUTH(dbgs() << " " << r[i]);
1430       }
1431     } else {
1432       for (int i = n-1; i >= 0; i--) {
1433         r[i] = u[i];
1434         DEBUG_KNUTH(dbgs() << " " << r[i]);
1435       }
1436     }
1437     DEBUG_KNUTH(dbgs() << '\n');
1438   }
1439   DEBUG_KNUTH(dbgs() << '\n');
1440 }
1441 
1442 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1443                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1444   assert(lhsWords >= rhsWords && "Fractional result");
1445 
1446   // First, compose the values into an array of 32-bit words instead of
1447   // 64-bit words. This is a necessity of both the "short division" algorithm
1448   // and the Knuth "classical algorithm" which requires there to be native
1449   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1450   // can't use 64-bit operands here because we don't have native results of
1451   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1452   // work on large-endian machines.
1453   unsigned n = rhsWords * 2;
1454   unsigned m = (lhsWords * 2) - n;
1455 
1456   // Allocate space for the temporary values we need either on the stack, if
1457   // it will fit, or on the heap if it won't.
1458   uint32_t SPACE[128];
1459   uint32_t *U = nullptr;
1460   uint32_t *V = nullptr;
1461   uint32_t *Q = nullptr;
1462   uint32_t *R = nullptr;
1463   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1464     U = &SPACE[0];
1465     V = &SPACE[m+n+1];
1466     Q = &SPACE[(m+n+1) + n];
1467     if (Remainder)
1468       R = &SPACE[(m+n+1) + n + (m+n)];
1469   } else {
1470     U = new uint32_t[m + n + 1];
1471     V = new uint32_t[n];
1472     Q = new uint32_t[m+n];
1473     if (Remainder)
1474       R = new uint32_t[n];
1475   }
1476 
1477   // Initialize the dividend
1478   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1479   for (unsigned i = 0; i < lhsWords; ++i) {
1480     uint64_t tmp = LHS[i];
1481     U[i * 2] = Lo_32(tmp);
1482     U[i * 2 + 1] = Hi_32(tmp);
1483   }
1484   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1485 
1486   // Initialize the divisor
1487   memset(V, 0, (n)*sizeof(uint32_t));
1488   for (unsigned i = 0; i < rhsWords; ++i) {
1489     uint64_t tmp = RHS[i];
1490     V[i * 2] = Lo_32(tmp);
1491     V[i * 2 + 1] = Hi_32(tmp);
1492   }
1493 
1494   // initialize the quotient and remainder
1495   memset(Q, 0, (m+n) * sizeof(uint32_t));
1496   if (Remainder)
1497     memset(R, 0, n * sizeof(uint32_t));
1498 
1499   // Now, adjust m and n for the Knuth division. n is the number of words in
1500   // the divisor. m is the number of words by which the dividend exceeds the
1501   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1502   // contain any zero words or the Knuth algorithm fails.
1503   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1504     n--;
1505     m++;
1506   }
1507   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1508     m--;
1509 
1510   // If we're left with only a single word for the divisor, Knuth doesn't work
1511   // so we implement the short division algorithm here. This is much simpler
1512   // and faster because we are certain that we can divide a 64-bit quantity
1513   // by a 32-bit quantity at hardware speed and short division is simply a
1514   // series of such operations. This is just like doing short division but we
1515   // are using base 2^32 instead of base 10.
1516   assert(n != 0 && "Divide by zero?");
1517   if (n == 1) {
1518     uint32_t divisor = V[0];
1519     uint32_t remainder = 0;
1520     for (int i = m; i >= 0; i--) {
1521       uint64_t partial_dividend = Make_64(remainder, U[i]);
1522       if (partial_dividend == 0) {
1523         Q[i] = 0;
1524         remainder = 0;
1525       } else if (partial_dividend < divisor) {
1526         Q[i] = 0;
1527         remainder = Lo_32(partial_dividend);
1528       } else if (partial_dividend == divisor) {
1529         Q[i] = 1;
1530         remainder = 0;
1531       } else {
1532         Q[i] = Lo_32(partial_dividend / divisor);
1533         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1534       }
1535     }
1536     if (R)
1537       R[0] = remainder;
1538   } else {
1539     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1540     // case n > 1.
1541     KnuthDiv(U, V, Q, R, m, n);
1542   }
1543 
1544   // If the caller wants the quotient
1545   if (Quotient) {
1546     for (unsigned i = 0; i < lhsWords; ++i)
1547       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1548   }
1549 
1550   // If the caller wants the remainder
1551   if (Remainder) {
1552     for (unsigned i = 0; i < rhsWords; ++i)
1553       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1554   }
1555 
1556   // Clean up the memory we allocated.
1557   if (U != &SPACE[0]) {
1558     delete [] U;
1559     delete [] V;
1560     delete [] Q;
1561     delete [] R;
1562   }
1563 }
1564 
1565 APInt APInt::udiv(const APInt &RHS) const {
1566   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1567 
1568   // First, deal with the easy case
1569   if (isSingleWord()) {
1570     assert(RHS.U.VAL != 0 && "Divide by zero?");
1571     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1572   }
1573 
1574   // Get some facts about the LHS and RHS number of bits and words
1575   unsigned lhsWords = getNumWords(getActiveBits());
1576   unsigned rhsBits  = RHS.getActiveBits();
1577   unsigned rhsWords = getNumWords(rhsBits);
1578   assert(rhsWords && "Divided by zero???");
1579 
1580   // Deal with some degenerate cases
1581   if (!lhsWords)
1582     // 0 / X ===> 0
1583     return APInt(BitWidth, 0);
1584   if (rhsBits == 1)
1585     // X / 1 ===> X
1586     return *this;
1587   if (lhsWords < rhsWords || this->ult(RHS))
1588     // X / Y ===> 0, iff X < Y
1589     return APInt(BitWidth, 0);
1590   if (*this == RHS)
1591     // X / X ===> 1
1592     return APInt(BitWidth, 1);
1593   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1594     // All high words are zero, just use native divide
1595     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1596 
1597   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1598   APInt Quotient(BitWidth, 0); // to hold result.
1599   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1600   return Quotient;
1601 }
1602 
1603 APInt APInt::udiv(uint64_t RHS) const {
1604   assert(RHS != 0 && "Divide by zero?");
1605 
1606   // First, deal with the easy case
1607   if (isSingleWord())
1608     return APInt(BitWidth, U.VAL / RHS);
1609 
1610   // Get some facts about the LHS words.
1611   unsigned lhsWords = getNumWords(getActiveBits());
1612 
1613   // Deal with some degenerate cases
1614   if (!lhsWords)
1615     // 0 / X ===> 0
1616     return APInt(BitWidth, 0);
1617   if (RHS == 1)
1618     // X / 1 ===> X
1619     return *this;
1620   if (this->ult(RHS))
1621     // X / Y ===> 0, iff X < Y
1622     return APInt(BitWidth, 0);
1623   if (*this == RHS)
1624     // X / X ===> 1
1625     return APInt(BitWidth, 1);
1626   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1627     // All high words are zero, just use native divide
1628     return APInt(BitWidth, this->U.pVal[0] / RHS);
1629 
1630   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1631   APInt Quotient(BitWidth, 0); // to hold result.
1632   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1633   return Quotient;
1634 }
1635 
1636 APInt APInt::sdiv(const APInt &RHS) const {
1637   if (isNegative()) {
1638     if (RHS.isNegative())
1639       return (-(*this)).udiv(-RHS);
1640     return -((-(*this)).udiv(RHS));
1641   }
1642   if (RHS.isNegative())
1643     return -(this->udiv(-RHS));
1644   return this->udiv(RHS);
1645 }
1646 
1647 APInt APInt::sdiv(int64_t RHS) const {
1648   if (isNegative()) {
1649     if (RHS < 0)
1650       return (-(*this)).udiv(-RHS);
1651     return -((-(*this)).udiv(RHS));
1652   }
1653   if (RHS < 0)
1654     return -(this->udiv(-RHS));
1655   return this->udiv(RHS);
1656 }
1657 
1658 APInt APInt::urem(const APInt &RHS) const {
1659   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1660   if (isSingleWord()) {
1661     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1662     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1663   }
1664 
1665   // Get some facts about the LHS
1666   unsigned lhsWords = getNumWords(getActiveBits());
1667 
1668   // Get some facts about the RHS
1669   unsigned rhsBits = RHS.getActiveBits();
1670   unsigned rhsWords = getNumWords(rhsBits);
1671   assert(rhsWords && "Performing remainder operation by zero ???");
1672 
1673   // Check the degenerate cases
1674   if (lhsWords == 0)
1675     // 0 % Y ===> 0
1676     return APInt(BitWidth, 0);
1677   if (rhsBits == 1)
1678     // X % 1 ===> 0
1679     return APInt(BitWidth, 0);
1680   if (lhsWords < rhsWords || this->ult(RHS))
1681     // X % Y ===> X, iff X < Y
1682     return *this;
1683   if (*this == RHS)
1684     // X % X == 0;
1685     return APInt(BitWidth, 0);
1686   if (lhsWords == 1)
1687     // All high words are zero, just use native remainder
1688     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1689 
1690   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1691   APInt Remainder(BitWidth, 0);
1692   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1693   return Remainder;
1694 }
1695 
1696 uint64_t APInt::urem(uint64_t RHS) const {
1697   assert(RHS != 0 && "Remainder by zero?");
1698 
1699   if (isSingleWord())
1700     return U.VAL % RHS;
1701 
1702   // Get some facts about the LHS
1703   unsigned lhsWords = getNumWords(getActiveBits());
1704 
1705   // Check the degenerate cases
1706   if (lhsWords == 0)
1707     // 0 % Y ===> 0
1708     return 0;
1709   if (RHS == 1)
1710     // X % 1 ===> 0
1711     return 0;
1712   if (this->ult(RHS))
1713     // X % Y ===> X, iff X < Y
1714     return getZExtValue();
1715   if (*this == RHS)
1716     // X % X == 0;
1717     return 0;
1718   if (lhsWords == 1)
1719     // All high words are zero, just use native remainder
1720     return U.pVal[0] % RHS;
1721 
1722   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1723   uint64_t Remainder;
1724   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1725   return Remainder;
1726 }
1727 
1728 APInt APInt::srem(const APInt &RHS) const {
1729   if (isNegative()) {
1730     if (RHS.isNegative())
1731       return -((-(*this)).urem(-RHS));
1732     return -((-(*this)).urem(RHS));
1733   }
1734   if (RHS.isNegative())
1735     return this->urem(-RHS);
1736   return this->urem(RHS);
1737 }
1738 
1739 int64_t APInt::srem(int64_t RHS) const {
1740   if (isNegative()) {
1741     if (RHS < 0)
1742       return -((-(*this)).urem(-RHS));
1743     return -((-(*this)).urem(RHS));
1744   }
1745   if (RHS < 0)
1746     return this->urem(-RHS);
1747   return this->urem(RHS);
1748 }
1749 
1750 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1751                     APInt &Quotient, APInt &Remainder) {
1752   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1753   unsigned BitWidth = LHS.BitWidth;
1754 
1755   // First, deal with the easy case
1756   if (LHS.isSingleWord()) {
1757     assert(RHS.U.VAL != 0 && "Divide by zero?");
1758     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1759     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1760     Quotient = APInt(BitWidth, QuotVal);
1761     Remainder = APInt(BitWidth, RemVal);
1762     return;
1763   }
1764 
1765   // Get some size facts about the dividend and divisor
1766   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1767   unsigned rhsBits  = RHS.getActiveBits();
1768   unsigned rhsWords = getNumWords(rhsBits);
1769   assert(rhsWords && "Performing divrem operation by zero ???");
1770 
1771   // Check the degenerate cases
1772   if (lhsWords == 0) {
1773     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1774     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1775     return;
1776   }
1777 
1778   if (rhsBits == 1) {
1779     Quotient = LHS;                   // X / 1 ===> X
1780     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1781   }
1782 
1783   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1784     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1785     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1786     return;
1787   }
1788 
1789   if (LHS == RHS) {
1790     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1791     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1792     return;
1793   }
1794 
1795   // Make sure there is enough space to hold the results.
1796   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1797   // change the size. This is necessary if Quotient or Remainder is aliased
1798   // with LHS or RHS.
1799   Quotient.reallocate(BitWidth);
1800   Remainder.reallocate(BitWidth);
1801 
1802   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1803     // There is only one word to consider so use the native versions.
1804     uint64_t lhsValue = LHS.U.pVal[0];
1805     uint64_t rhsValue = RHS.U.pVal[0];
1806     Quotient = lhsValue / rhsValue;
1807     Remainder = lhsValue % rhsValue;
1808     return;
1809   }
1810 
1811   // Okay, lets do it the long way
1812   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1813          Remainder.U.pVal);
1814   // Clear the rest of the Quotient and Remainder.
1815   std::memset(Quotient.U.pVal + lhsWords, 0,
1816               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1817   std::memset(Remainder.U.pVal + rhsWords, 0,
1818               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1819 }
1820 
1821 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1822                     uint64_t &Remainder) {
1823   assert(RHS != 0 && "Divide by zero?");
1824   unsigned BitWidth = LHS.BitWidth;
1825 
1826   // First, deal with the easy case
1827   if (LHS.isSingleWord()) {
1828     uint64_t QuotVal = LHS.U.VAL / RHS;
1829     Remainder = LHS.U.VAL % RHS;
1830     Quotient = APInt(BitWidth, QuotVal);
1831     return;
1832   }
1833 
1834   // Get some size facts about the dividend and divisor
1835   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1836 
1837   // Check the degenerate cases
1838   if (lhsWords == 0) {
1839     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1840     Remainder = 0;                    // 0 % Y ===> 0
1841     return;
1842   }
1843 
1844   if (RHS == 1) {
1845     Quotient = LHS;                   // X / 1 ===> X
1846     Remainder = 0;                    // X % 1 ===> 0
1847     return;
1848   }
1849 
1850   if (LHS.ult(RHS)) {
1851     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1852     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1853     return;
1854   }
1855 
1856   if (LHS == RHS) {
1857     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1858     Remainder = 0;                    // X % X ===> 0;
1859     return;
1860   }
1861 
1862   // Make sure there is enough space to hold the results.
1863   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1864   // change the size. This is necessary if Quotient is aliased with LHS.
1865   Quotient.reallocate(BitWidth);
1866 
1867   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1868     // There is only one word to consider so use the native versions.
1869     uint64_t lhsValue = LHS.U.pVal[0];
1870     Quotient = lhsValue / RHS;
1871     Remainder = lhsValue % RHS;
1872     return;
1873   }
1874 
1875   // Okay, lets do it the long way
1876   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1877   // Clear the rest of the Quotient.
1878   std::memset(Quotient.U.pVal + lhsWords, 0,
1879               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1880 }
1881 
1882 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1883                     APInt &Quotient, APInt &Remainder) {
1884   if (LHS.isNegative()) {
1885     if (RHS.isNegative())
1886       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1887     else {
1888       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1889       Quotient.negate();
1890     }
1891     Remainder.negate();
1892   } else if (RHS.isNegative()) {
1893     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1894     Quotient.negate();
1895   } else {
1896     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1897   }
1898 }
1899 
1900 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1901                     APInt &Quotient, int64_t &Remainder) {
1902   uint64_t R = Remainder;
1903   if (LHS.isNegative()) {
1904     if (RHS < 0)
1905       APInt::udivrem(-LHS, -RHS, Quotient, R);
1906     else {
1907       APInt::udivrem(-LHS, RHS, Quotient, R);
1908       Quotient.negate();
1909     }
1910     R = -R;
1911   } else if (RHS < 0) {
1912     APInt::udivrem(LHS, -RHS, Quotient, R);
1913     Quotient.negate();
1914   } else {
1915     APInt::udivrem(LHS, RHS, Quotient, R);
1916   }
1917   Remainder = R;
1918 }
1919 
1920 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1921   APInt Res = *this+RHS;
1922   Overflow = isNonNegative() == RHS.isNonNegative() &&
1923              Res.isNonNegative() != isNonNegative();
1924   return Res;
1925 }
1926 
1927 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1928   APInt Res = *this+RHS;
1929   Overflow = Res.ult(RHS);
1930   return Res;
1931 }
1932 
1933 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1934   APInt Res = *this - RHS;
1935   Overflow = isNonNegative() != RHS.isNonNegative() &&
1936              Res.isNonNegative() != isNonNegative();
1937   return Res;
1938 }
1939 
1940 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1941   APInt Res = *this-RHS;
1942   Overflow = Res.ugt(*this);
1943   return Res;
1944 }
1945 
1946 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1947   // MININT/-1  -->  overflow.
1948   Overflow = isMinSignedValue() && RHS.isAllOnes();
1949   return sdiv(RHS);
1950 }
1951 
1952 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1953   APInt Res = *this * RHS;
1954 
1955   if (RHS != 0)
1956     Overflow = Res.sdiv(RHS) != *this ||
1957                (isMinSignedValue() && RHS.isAllOnes());
1958   else
1959     Overflow = false;
1960   return Res;
1961 }
1962 
1963 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1964   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1965     Overflow = true;
1966     return *this * RHS;
1967   }
1968 
1969   APInt Res = lshr(1) * RHS;
1970   Overflow = Res.isNegative();
1971   Res <<= 1;
1972   if ((*this)[0]) {
1973     Res += RHS;
1974     if (Res.ult(RHS))
1975       Overflow = true;
1976   }
1977   return Res;
1978 }
1979 
1980 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1981   Overflow = ShAmt.uge(getBitWidth());
1982   if (Overflow)
1983     return APInt(BitWidth, 0);
1984 
1985   if (isNonNegative()) // Don't allow sign change.
1986     Overflow = ShAmt.uge(countLeadingZeros());
1987   else
1988     Overflow = ShAmt.uge(countLeadingOnes());
1989 
1990   return *this << ShAmt;
1991 }
1992 
1993 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1994   Overflow = ShAmt.uge(getBitWidth());
1995   if (Overflow)
1996     return APInt(BitWidth, 0);
1997 
1998   Overflow = ShAmt.ugt(countLeadingZeros());
1999 
2000   return *this << ShAmt;
2001 }
2002 
2003 APInt APInt::sadd_sat(const APInt &RHS) const {
2004   bool Overflow;
2005   APInt Res = sadd_ov(RHS, Overflow);
2006   if (!Overflow)
2007     return Res;
2008 
2009   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2010                       : APInt::getSignedMaxValue(BitWidth);
2011 }
2012 
2013 APInt APInt::uadd_sat(const APInt &RHS) const {
2014   bool Overflow;
2015   APInt Res = uadd_ov(RHS, Overflow);
2016   if (!Overflow)
2017     return Res;
2018 
2019   return APInt::getMaxValue(BitWidth);
2020 }
2021 
2022 APInt APInt::ssub_sat(const APInt &RHS) const {
2023   bool Overflow;
2024   APInt Res = ssub_ov(RHS, Overflow);
2025   if (!Overflow)
2026     return Res;
2027 
2028   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2029                       : APInt::getSignedMaxValue(BitWidth);
2030 }
2031 
2032 APInt APInt::usub_sat(const APInt &RHS) const {
2033   bool Overflow;
2034   APInt Res = usub_ov(RHS, Overflow);
2035   if (!Overflow)
2036     return Res;
2037 
2038   return APInt(BitWidth, 0);
2039 }
2040 
2041 APInt APInt::smul_sat(const APInt &RHS) const {
2042   bool Overflow;
2043   APInt Res = smul_ov(RHS, Overflow);
2044   if (!Overflow)
2045     return Res;
2046 
2047   // The result is negative if one and only one of inputs is negative.
2048   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2049 
2050   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2051                        : APInt::getSignedMaxValue(BitWidth);
2052 }
2053 
2054 APInt APInt::umul_sat(const APInt &RHS) const {
2055   bool Overflow;
2056   APInt Res = umul_ov(RHS, Overflow);
2057   if (!Overflow)
2058     return Res;
2059 
2060   return APInt::getMaxValue(BitWidth);
2061 }
2062 
2063 APInt APInt::sshl_sat(const APInt &RHS) const {
2064   bool Overflow;
2065   APInt Res = sshl_ov(RHS, Overflow);
2066   if (!Overflow)
2067     return Res;
2068 
2069   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2070                       : APInt::getSignedMaxValue(BitWidth);
2071 }
2072 
2073 APInt APInt::ushl_sat(const APInt &RHS) const {
2074   bool Overflow;
2075   APInt Res = ushl_ov(RHS, Overflow);
2076   if (!Overflow)
2077     return Res;
2078 
2079   return APInt::getMaxValue(BitWidth);
2080 }
2081 
2082 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2083   // Check our assumptions here
2084   assert(!str.empty() && "Invalid string length");
2085   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2086           radix == 36) &&
2087          "Radix should be 2, 8, 10, 16, or 36!");
2088 
2089   StringRef::iterator p = str.begin();
2090   size_t slen = str.size();
2091   bool isNeg = *p == '-';
2092   if (*p == '-' || *p == '+') {
2093     p++;
2094     slen--;
2095     assert(slen && "String is only a sign, needs a value.");
2096   }
2097   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2098   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2099   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2100   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2101          "Insufficient bit width");
2102 
2103   // Allocate memory if needed
2104   if (isSingleWord())
2105     U.VAL = 0;
2106   else
2107     U.pVal = getClearedMemory(getNumWords());
2108 
2109   // Figure out if we can shift instead of multiply
2110   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2111 
2112   // Enter digit traversal loop
2113   for (StringRef::iterator e = str.end(); p != e; ++p) {
2114     unsigned digit = getDigit(*p, radix);
2115     assert(digit < radix && "Invalid character in digit string");
2116 
2117     // Shift or multiply the value by the radix
2118     if (slen > 1) {
2119       if (shift)
2120         *this <<= shift;
2121       else
2122         *this *= radix;
2123     }
2124 
2125     // Add in the digit we just interpreted
2126     *this += digit;
2127   }
2128   // If its negative, put it in two's complement form
2129   if (isNeg)
2130     this->negate();
2131 }
2132 
2133 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2134                      bool Signed, bool formatAsCLiteral) const {
2135   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2136           Radix == 36) &&
2137          "Radix should be 2, 8, 10, 16, or 36!");
2138 
2139   const char *Prefix = "";
2140   if (formatAsCLiteral) {
2141     switch (Radix) {
2142       case 2:
2143         // Binary literals are a non-standard extension added in gcc 4.3:
2144         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2145         Prefix = "0b";
2146         break;
2147       case 8:
2148         Prefix = "0";
2149         break;
2150       case 10:
2151         break; // No prefix
2152       case 16:
2153         Prefix = "0x";
2154         break;
2155       default:
2156         llvm_unreachable("Invalid radix!");
2157     }
2158   }
2159 
2160   // First, check for a zero value and just short circuit the logic below.
2161   if (isZero()) {
2162     while (*Prefix) {
2163       Str.push_back(*Prefix);
2164       ++Prefix;
2165     };
2166     Str.push_back('0');
2167     return;
2168   }
2169 
2170   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2171 
2172   if (isSingleWord()) {
2173     char Buffer[65];
2174     char *BufPtr = std::end(Buffer);
2175 
2176     uint64_t N;
2177     if (!Signed) {
2178       N = getZExtValue();
2179     } else {
2180       int64_t I = getSExtValue();
2181       if (I >= 0) {
2182         N = I;
2183       } else {
2184         Str.push_back('-');
2185         N = -(uint64_t)I;
2186       }
2187     }
2188 
2189     while (*Prefix) {
2190       Str.push_back(*Prefix);
2191       ++Prefix;
2192     };
2193 
2194     while (N) {
2195       *--BufPtr = Digits[N % Radix];
2196       N /= Radix;
2197     }
2198     Str.append(BufPtr, std::end(Buffer));
2199     return;
2200   }
2201 
2202   APInt Tmp(*this);
2203 
2204   if (Signed && isNegative()) {
2205     // They want to print the signed version and it is a negative value
2206     // Flip the bits and add one to turn it into the equivalent positive
2207     // value and put a '-' in the result.
2208     Tmp.negate();
2209     Str.push_back('-');
2210   }
2211 
2212   while (*Prefix) {
2213     Str.push_back(*Prefix);
2214     ++Prefix;
2215   };
2216 
2217   // We insert the digits backward, then reverse them to get the right order.
2218   unsigned StartDig = Str.size();
2219 
2220   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2221   // because the number of bits per digit (1, 3 and 4 respectively) divides
2222   // equally.  We just shift until the value is zero.
2223   if (Radix == 2 || Radix == 8 || Radix == 16) {
2224     // Just shift tmp right for each digit width until it becomes zero
2225     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2226     unsigned MaskAmt = Radix - 1;
2227 
2228     while (Tmp.getBoolValue()) {
2229       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2230       Str.push_back(Digits[Digit]);
2231       Tmp.lshrInPlace(ShiftAmt);
2232     }
2233   } else {
2234     while (Tmp.getBoolValue()) {
2235       uint64_t Digit;
2236       udivrem(Tmp, Radix, Tmp, Digit);
2237       assert(Digit < Radix && "divide failed");
2238       Str.push_back(Digits[Digit]);
2239     }
2240   }
2241 
2242   // Reverse the digits before returning.
2243   std::reverse(Str.begin()+StartDig, Str.end());
2244 }
2245 
2246 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2247 LLVM_DUMP_METHOD void APInt::dump() const {
2248   SmallString<40> S, U;
2249   this->toStringUnsigned(U);
2250   this->toStringSigned(S);
2251   dbgs() << "APInt(" << BitWidth << "b, "
2252          << U << "u " << S << "s)\n";
2253 }
2254 #endif
2255 
2256 void APInt::print(raw_ostream &OS, bool isSigned) const {
2257   SmallString<40> S;
2258   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2259   OS << S;
2260 }
2261 
2262 // This implements a variety of operations on a representation of
2263 // arbitrary precision, two's-complement, bignum integer values.
2264 
2265 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2266 // and unrestricting assumption.
2267 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2268               "Part width must be divisible by 2!");
2269 
2270 // Returns the integer part with the least significant BITS set.
2271 // BITS cannot be zero.
2272 static inline APInt::WordType lowBitMask(unsigned bits) {
2273   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2274   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2275 }
2276 
2277 /// Returns the value of the lower half of PART.
2278 static inline APInt::WordType lowHalf(APInt::WordType part) {
2279   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2280 }
2281 
2282 /// Returns the value of the upper half of PART.
2283 static inline APInt::WordType highHalf(APInt::WordType part) {
2284   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2285 }
2286 
2287 /// Returns the bit number of the most significant set bit of a part.
2288 /// If the input number has no bits set -1U is returned.
2289 static unsigned partMSB(APInt::WordType value) {
2290   return findLastSet(value, ZB_Max);
2291 }
2292 
2293 /// Returns the bit number of the least significant set bit of a part.  If the
2294 /// input number has no bits set -1U is returned.
2295 static unsigned partLSB(APInt::WordType value) {
2296   return findFirstSet(value, ZB_Max);
2297 }
2298 
2299 /// Sets the least significant part of a bignum to the input value, and zeroes
2300 /// out higher parts.
2301 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2302   assert(parts > 0);
2303   dst[0] = part;
2304   for (unsigned i = 1; i < parts; i++)
2305     dst[i] = 0;
2306 }
2307 
2308 /// Assign one bignum to another.
2309 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2310   for (unsigned i = 0; i < parts; i++)
2311     dst[i] = src[i];
2312 }
2313 
2314 /// Returns true if a bignum is zero, false otherwise.
2315 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2316   for (unsigned i = 0; i < parts; i++)
2317     if (src[i])
2318       return false;
2319 
2320   return true;
2321 }
2322 
2323 /// Extract the given bit of a bignum; returns 0 or 1.
2324 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2325   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2326 }
2327 
2328 /// Set the given bit of a bignum.
2329 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2330   parts[whichWord(bit)] |= maskBit(bit);
2331 }
2332 
2333 /// Clears the given bit of a bignum.
2334 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2335   parts[whichWord(bit)] &= ~maskBit(bit);
2336 }
2337 
2338 /// Returns the bit number of the least significant set bit of a number.  If the
2339 /// input number has no bits set -1U is returned.
2340 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2341   for (unsigned i = 0; i < n; i++) {
2342     if (parts[i] != 0) {
2343       unsigned lsb = partLSB(parts[i]);
2344       return lsb + i * APINT_BITS_PER_WORD;
2345     }
2346   }
2347 
2348   return -1U;
2349 }
2350 
2351 /// Returns the bit number of the most significant set bit of a number.
2352 /// If the input number has no bits set -1U is returned.
2353 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2354   do {
2355     --n;
2356 
2357     if (parts[n] != 0) {
2358       unsigned msb = partMSB(parts[n]);
2359 
2360       return msb + n * APINT_BITS_PER_WORD;
2361     }
2362   } while (n);
2363 
2364   return -1U;
2365 }
2366 
2367 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2368 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2369 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2370 /// */
2371 void
2372 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2373                  unsigned srcBits, unsigned srcLSB) {
2374   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2375   assert(dstParts <= dstCount);
2376 
2377   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2378   tcAssign(dst, src + firstSrcPart, dstParts);
2379 
2380   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2381   tcShiftRight(dst, dstParts, shift);
2382 
2383   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2384   // in DST.  If this is less that srcBits, append the rest, else
2385   // clear the high bits.
2386   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2387   if (n < srcBits) {
2388     WordType mask = lowBitMask (srcBits - n);
2389     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2390                           << n % APINT_BITS_PER_WORD);
2391   } else if (n > srcBits) {
2392     if (srcBits % APINT_BITS_PER_WORD)
2393       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2394   }
2395 
2396   // Clear high parts.
2397   while (dstParts < dstCount)
2398     dst[dstParts++] = 0;
2399 }
2400 
2401 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2402 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2403                              WordType c, unsigned parts) {
2404   assert(c <= 1);
2405 
2406   for (unsigned i = 0; i < parts; i++) {
2407     WordType l = dst[i];
2408     if (c) {
2409       dst[i] += rhs[i] + 1;
2410       c = (dst[i] <= l);
2411     } else {
2412       dst[i] += rhs[i];
2413       c = (dst[i] < l);
2414     }
2415   }
2416 
2417   return c;
2418 }
2419 
2420 /// This function adds a single "word" integer, src, to the multiple
2421 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2422 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2423 /// @returns the carry of the addition.
2424 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2425                                  unsigned parts) {
2426   for (unsigned i = 0; i < parts; ++i) {
2427     dst[i] += src;
2428     if (dst[i] >= src)
2429       return 0; // No need to carry so exit early.
2430     src = 1; // Carry one to next digit.
2431   }
2432 
2433   return 1;
2434 }
2435 
2436 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2437 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2438                                   WordType c, unsigned parts) {
2439   assert(c <= 1);
2440 
2441   for (unsigned i = 0; i < parts; i++) {
2442     WordType l = dst[i];
2443     if (c) {
2444       dst[i] -= rhs[i] + 1;
2445       c = (dst[i] >= l);
2446     } else {
2447       dst[i] -= rhs[i];
2448       c = (dst[i] > l);
2449     }
2450   }
2451 
2452   return c;
2453 }
2454 
2455 /// This function subtracts a single "word" (64-bit word), src, from
2456 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2457 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2458 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2459 /// exhausted. In other words, if src > dst then this function returns 1,
2460 /// otherwise 0.
2461 /// @returns the borrow out of the subtraction
2462 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2463                                       unsigned parts) {
2464   for (unsigned i = 0; i < parts; ++i) {
2465     WordType Dst = dst[i];
2466     dst[i] -= src;
2467     if (src <= Dst)
2468       return 0; // No need to borrow so exit early.
2469     src = 1; // We have to "borrow 1" from next "word"
2470   }
2471 
2472   return 1;
2473 }
2474 
2475 /// Negate a bignum in-place.
2476 void APInt::tcNegate(WordType *dst, unsigned parts) {
2477   tcComplement(dst, parts);
2478   tcIncrement(dst, parts);
2479 }
2480 
2481 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2482 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2483 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2484 /// they must start at the same point, i.e. DST == SRC.
2485 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2486 /// returned.  Otherwise DST is filled with the least significant
2487 /// DSTPARTS parts of the result, and if all of the omitted higher
2488 /// parts were zero return zero, otherwise overflow occurred and
2489 /// return one.
2490 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2491                           WordType multiplier, WordType carry,
2492                           unsigned srcParts, unsigned dstParts,
2493                           bool add) {
2494   // Otherwise our writes of DST kill our later reads of SRC.
2495   assert(dst <= src || dst >= src + srcParts);
2496   assert(dstParts <= srcParts + 1);
2497 
2498   // N loops; minimum of dstParts and srcParts.
2499   unsigned n = std::min(dstParts, srcParts);
2500 
2501   for (unsigned i = 0; i < n; i++) {
2502     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2503     // This cannot overflow, because:
2504     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2505     // which is less than n^2.
2506     WordType srcPart = src[i];
2507     WordType low, mid, high;
2508     if (multiplier == 0 || srcPart == 0) {
2509       low = carry;
2510       high = 0;
2511     } else {
2512       low = lowHalf(srcPart) * lowHalf(multiplier);
2513       high = highHalf(srcPart) * highHalf(multiplier);
2514 
2515       mid = lowHalf(srcPart) * highHalf(multiplier);
2516       high += highHalf(mid);
2517       mid <<= APINT_BITS_PER_WORD / 2;
2518       if (low + mid < low)
2519         high++;
2520       low += mid;
2521 
2522       mid = highHalf(srcPart) * lowHalf(multiplier);
2523       high += highHalf(mid);
2524       mid <<= APINT_BITS_PER_WORD / 2;
2525       if (low + mid < low)
2526         high++;
2527       low += mid;
2528 
2529       // Now add carry.
2530       if (low + carry < low)
2531         high++;
2532       low += carry;
2533     }
2534 
2535     if (add) {
2536       // And now DST[i], and store the new low part there.
2537       if (low + dst[i] < low)
2538         high++;
2539       dst[i] += low;
2540     } else
2541       dst[i] = low;
2542 
2543     carry = high;
2544   }
2545 
2546   if (srcParts < dstParts) {
2547     // Full multiplication, there is no overflow.
2548     assert(srcParts + 1 == dstParts);
2549     dst[srcParts] = carry;
2550     return 0;
2551   }
2552 
2553   // We overflowed if there is carry.
2554   if (carry)
2555     return 1;
2556 
2557   // We would overflow if any significant unwritten parts would be
2558   // non-zero.  This is true if any remaining src parts are non-zero
2559   // and the multiplier is non-zero.
2560   if (multiplier)
2561     for (unsigned i = dstParts; i < srcParts; i++)
2562       if (src[i])
2563         return 1;
2564 
2565   // We fitted in the narrow destination.
2566   return 0;
2567 }
2568 
2569 /// DST = LHS * RHS, where DST has the same width as the operands and
2570 /// is filled with the least significant parts of the result.  Returns
2571 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2572 /// from both operands.
2573 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2574                       const WordType *rhs, unsigned parts) {
2575   assert(dst != lhs && dst != rhs);
2576 
2577   int overflow = 0;
2578   tcSet(dst, 0, parts);
2579 
2580   for (unsigned i = 0; i < parts; i++)
2581     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2582                                parts - i, true);
2583 
2584   return overflow;
2585 }
2586 
2587 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2588 /// operands. No overflow occurs. DST must be disjoint from both operands.
2589 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2590                            const WordType *rhs, unsigned lhsParts,
2591                            unsigned rhsParts) {
2592   // Put the narrower number on the LHS for less loops below.
2593   if (lhsParts > rhsParts)
2594     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2595 
2596   assert(dst != lhs && dst != rhs);
2597 
2598   tcSet(dst, 0, rhsParts);
2599 
2600   for (unsigned i = 0; i < lhsParts; i++)
2601     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2602 }
2603 
2604 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2605 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2606 // set REMAINDER to the remainder, return zero.  i.e.
2607 //
2608 //   OLD_LHS = RHS * LHS + REMAINDER
2609 //
2610 // SCRATCH is a bignum of the same size as the operands and result for
2611 // use by the routine; its contents need not be initialized and are
2612 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2613 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2614                     WordType *remainder, WordType *srhs,
2615                     unsigned parts) {
2616   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2617 
2618   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2619   if (shiftCount == 0)
2620     return true;
2621 
2622   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2623   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2624   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2625 
2626   tcAssign(srhs, rhs, parts);
2627   tcShiftLeft(srhs, parts, shiftCount);
2628   tcAssign(remainder, lhs, parts);
2629   tcSet(lhs, 0, parts);
2630 
2631   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2632   // total.
2633   for (;;) {
2634     int compare = tcCompare(remainder, srhs, parts);
2635     if (compare >= 0) {
2636       tcSubtract(remainder, srhs, 0, parts);
2637       lhs[n] |= mask;
2638     }
2639 
2640     if (shiftCount == 0)
2641       break;
2642     shiftCount--;
2643     tcShiftRight(srhs, parts, 1);
2644     if ((mask >>= 1) == 0) {
2645       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2646       n--;
2647     }
2648   }
2649 
2650   return false;
2651 }
2652 
2653 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2654 /// no restrictions on Count.
2655 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2656   // Don't bother performing a no-op shift.
2657   if (!Count)
2658     return;
2659 
2660   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2661   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2662   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2663 
2664   // Fastpath for moving by whole words.
2665   if (BitShift == 0) {
2666     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2667   } else {
2668     while (Words-- > WordShift) {
2669       Dst[Words] = Dst[Words - WordShift] << BitShift;
2670       if (Words > WordShift)
2671         Dst[Words] |=
2672           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2673     }
2674   }
2675 
2676   // Fill in the remainder with 0s.
2677   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2678 }
2679 
2680 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2681 /// are no restrictions on Count.
2682 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2683   // Don't bother performing a no-op shift.
2684   if (!Count)
2685     return;
2686 
2687   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2688   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2689   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2690 
2691   unsigned WordsToMove = Words - WordShift;
2692   // Fastpath for moving by whole words.
2693   if (BitShift == 0) {
2694     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2695   } else {
2696     for (unsigned i = 0; i != WordsToMove; ++i) {
2697       Dst[i] = Dst[i + WordShift] >> BitShift;
2698       if (i + 1 != WordsToMove)
2699         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2700     }
2701   }
2702 
2703   // Fill in the remainder with 0s.
2704   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2705 }
2706 
2707 // Comparison (unsigned) of two bignums.
2708 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2709                      unsigned parts) {
2710   while (parts) {
2711     parts--;
2712     if (lhs[parts] != rhs[parts])
2713       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2714   }
2715 
2716   return 0;
2717 }
2718 
2719 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2720                                    APInt::Rounding RM) {
2721   // Currently udivrem always rounds down.
2722   switch (RM) {
2723   case APInt::Rounding::DOWN:
2724   case APInt::Rounding::TOWARD_ZERO:
2725     return A.udiv(B);
2726   case APInt::Rounding::UP: {
2727     APInt Quo, Rem;
2728     APInt::udivrem(A, B, Quo, Rem);
2729     if (Rem.isZero())
2730       return Quo;
2731     return Quo + 1;
2732   }
2733   }
2734   llvm_unreachable("Unknown APInt::Rounding enum");
2735 }
2736 
2737 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2738                                    APInt::Rounding RM) {
2739   switch (RM) {
2740   case APInt::Rounding::DOWN:
2741   case APInt::Rounding::UP: {
2742     APInt Quo, Rem;
2743     APInt::sdivrem(A, B, Quo, Rem);
2744     if (Rem.isZero())
2745       return Quo;
2746     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2747     // We want to check whether the non-integer part of the mathematical value
2748     // is negative or not. If the non-integer part is negative, we need to round
2749     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2750     // already rounded down.
2751     if (RM == APInt::Rounding::DOWN) {
2752       if (Rem.isNegative() != B.isNegative())
2753         return Quo - 1;
2754       return Quo;
2755     }
2756     if (Rem.isNegative() != B.isNegative())
2757       return Quo;
2758     return Quo + 1;
2759   }
2760   // Currently sdiv rounds towards zero.
2761   case APInt::Rounding::TOWARD_ZERO:
2762     return A.sdiv(B);
2763   }
2764   llvm_unreachable("Unknown APInt::Rounding enum");
2765 }
2766 
2767 Optional<APInt>
2768 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2769                                            unsigned RangeWidth) {
2770   unsigned CoeffWidth = A.getBitWidth();
2771   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2772   assert(RangeWidth <= CoeffWidth &&
2773          "Value range width should be less than coefficient width");
2774   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2775 
2776   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2777                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2778 
2779   // Identify 0 as a (non)solution immediately.
2780   if (C.sextOrTrunc(RangeWidth).isZero()) {
2781     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2782     return APInt(CoeffWidth, 0);
2783   }
2784 
2785   // The result of APInt arithmetic has the same bit width as the operands,
2786   // so it can actually lose high bits. A product of two n-bit integers needs
2787   // 2n-1 bits to represent the full value.
2788   // The operation done below (on quadratic coefficients) that can produce
2789   // the largest value is the evaluation of the equation during bisection,
2790   // which needs 3 times the bitwidth of the coefficient, so the total number
2791   // of required bits is 3n.
2792   //
2793   // The purpose of this extension is to simulate the set Z of all integers,
2794   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2795   // and negative numbers (not so much in a modulo arithmetic). The method
2796   // used to solve the equation is based on the standard formula for real
2797   // numbers, and uses the concepts of "positive" and "negative" with their
2798   // usual meanings.
2799   CoeffWidth *= 3;
2800   A = A.sext(CoeffWidth);
2801   B = B.sext(CoeffWidth);
2802   C = C.sext(CoeffWidth);
2803 
2804   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2805   // the bit width has increased.
2806   if (A.isNegative()) {
2807     A.negate();
2808     B.negate();
2809     C.negate();
2810   }
2811 
2812   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2813   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2814   // and R = 2^BitWidth.
2815   // Since we're trying not only to find exact solutions, but also values
2816   // that "wrap around", such a set will always have a solution, i.e. an x
2817   // that satisfies at least one of the equations, or such that |q(x)|
2818   // exceeds kR, while |q(x-1)| for the same k does not.
2819   //
2820   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2821   // positive solution n (in the above sense), and also such that the n
2822   // will be the least among all solutions corresponding to k = 0, 1, ...
2823   // (more precisely, the least element in the set
2824   //   { n(k) | k is such that a solution n(k) exists }).
2825   //
2826   // Consider the parabola (over real numbers) that corresponds to the
2827   // quadratic equation. Since A > 0, the arms of the parabola will point
2828   // up. Picking different values of k will shift it up and down by R.
2829   //
2830   // We want to shift the parabola in such a way as to reduce the problem
2831   // of solving q(x) = kR to solving shifted_q(x) = 0.
2832   // (The interesting solutions are the ceilings of the real number
2833   // solutions.)
2834   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2835   APInt TwoA = 2 * A;
2836   APInt SqrB = B * B;
2837   bool PickLow;
2838 
2839   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2840     assert(A.isStrictlyPositive());
2841     APInt T = V.abs().urem(A);
2842     if (T.isZero())
2843       return V;
2844     return V.isNegative() ? V+T : V+(A-T);
2845   };
2846 
2847   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2848   // iff B is positive.
2849   if (B.isNonNegative()) {
2850     // If B >= 0, the vertex it at a negative location (or at 0), so in
2851     // order to have a non-negative solution we need to pick k that makes
2852     // C-kR negative. To satisfy all the requirements for the solution
2853     // that we are looking for, it needs to be closest to 0 of all k.
2854     C = C.srem(R);
2855     if (C.isStrictlyPositive())
2856       C -= R;
2857     // Pick the greater solution.
2858     PickLow = false;
2859   } else {
2860     // If B < 0, the vertex is at a positive location. For any solution
2861     // to exist, the discriminant must be non-negative. This means that
2862     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2863     // lower bound on values of k: kR >= C - B^2/4A.
2864     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2865     // Round LowkR up (towards +inf) to the nearest kR.
2866     LowkR = RoundUp(LowkR, R);
2867 
2868     // If there exists k meeting the condition above, and such that
2869     // C-kR > 0, there will be two positive real number solutions of
2870     // q(x) = kR. Out of all such values of k, pick the one that makes
2871     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2872     // In other words, find maximum k such that LowkR <= kR < C.
2873     if (C.sgt(LowkR)) {
2874       // If LowkR < C, then such a k is guaranteed to exist because
2875       // LowkR itself is a multiple of R.
2876       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2877       // Pick the smaller solution.
2878       PickLow = true;
2879     } else {
2880       // If C-kR < 0 for all potential k's, it means that one solution
2881       // will be negative, while the other will be positive. The positive
2882       // solution will shift towards 0 if the parabola is moved up.
2883       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2884       // to 0, or in other words, out of all parabolas that have solutions,
2885       // pick the one that is the farthest "up").
2886       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2887       C -= LowkR;
2888       // Pick the greater solution.
2889       PickLow = false;
2890     }
2891   }
2892 
2893   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2894                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2895 
2896   APInt D = SqrB - 4*A*C;
2897   assert(D.isNonNegative() && "Negative discriminant");
2898   APInt SQ = D.sqrt();
2899 
2900   APInt Q = SQ * SQ;
2901   bool InexactSQ = Q != D;
2902   // The calculated SQ may actually be greater than the exact (non-integer)
2903   // value. If that's the case, decrement SQ to get a value that is lower.
2904   if (Q.sgt(D))
2905     SQ -= 1;
2906 
2907   APInt X;
2908   APInt Rem;
2909 
2910   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2911   // When using the quadratic formula directly, the calculated low root
2912   // may be greater than the exact one, since we would be subtracting SQ.
2913   // To make sure that the calculated root is not greater than the exact
2914   // one, subtract SQ+1 when calculating the low root (for inexact value
2915   // of SQ).
2916   if (PickLow)
2917     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2918   else
2919     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2920 
2921   // The updated coefficients should be such that the (exact) solution is
2922   // positive. Since APInt division rounds towards 0, the calculated one
2923   // can be 0, but cannot be negative.
2924   assert(X.isNonNegative() && "Solution should be non-negative");
2925 
2926   if (!InexactSQ && Rem.isZero()) {
2927     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2928     return X;
2929   }
2930 
2931   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2932   // The exact value of the square root of D should be between SQ and SQ+1.
2933   // This implies that the solution should be between that corresponding to
2934   // SQ (i.e. X) and that corresponding to SQ+1.
2935   //
2936   // The calculated X cannot be greater than the exact (real) solution.
2937   // Actually it must be strictly less than the exact solution, while
2938   // X+1 will be greater than or equal to it.
2939 
2940   APInt VX = (A*X + B)*X + C;
2941   APInt VY = VX + TwoA*X + A + B;
2942   bool SignChange =
2943       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2944   // If the sign did not change between X and X+1, X is not a valid solution.
2945   // This could happen when the actual (exact) roots don't have an integer
2946   // between them, so they would both be contained between X and X+1.
2947   if (!SignChange) {
2948     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2949     return None;
2950   }
2951 
2952   X += 1;
2953   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2954   return X;
2955 }
2956 
2957 Optional<unsigned>
2958 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2959   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2960   if (A == B)
2961     return llvm::None;
2962   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
2963 }
2964 
2965 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) {
2966   unsigned OldBitWidth = A.getBitWidth();
2967   assert((((OldBitWidth % NewBitWidth) == 0) ||
2968           ((NewBitWidth % OldBitWidth) == 0)) &&
2969          "One size should be a multiple of the other one. "
2970          "Can't do fractional scaling.");
2971 
2972   // Check for matching bitwidths.
2973   if (OldBitWidth == NewBitWidth)
2974     return A;
2975 
2976   APInt NewA = APInt::getZero(NewBitWidth);
2977 
2978   // Check for null input.
2979   if (A.isZero())
2980     return NewA;
2981 
2982   if (NewBitWidth > OldBitWidth) {
2983     // Repeat bits.
2984     unsigned Scale = NewBitWidth / OldBitWidth;
2985     for (unsigned i = 0; i != OldBitWidth; ++i)
2986       if (A[i])
2987         NewA.setBits(i * Scale, (i + 1) * Scale);
2988   } else {
2989     // Merge bits - if any old bit is set, then set scale equivalent new bit.
2990     unsigned Scale = OldBitWidth / NewBitWidth;
2991     for (unsigned i = 0; i != NewBitWidth; ++i)
2992       if (!A.extractBits(Scale, i * Scale).isZero())
2993         NewA.setBit(i);
2994   }
2995 
2996   return NewA;
2997 }
2998 
2999 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3000 /// with the integer held in IntVal.
3001 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3002                             unsigned StoreBytes) {
3003   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3004   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3005 
3006   if (sys::IsLittleEndianHost) {
3007     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3008     // destination from LSB to MSB: Do a straight copy.
3009     memcpy(Dst, Src, StoreBytes);
3010   } else {
3011     // Big-endian host - the source is an array of 64 bit words ordered from
3012     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3013     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3014     while (StoreBytes > sizeof(uint64_t)) {
3015       StoreBytes -= sizeof(uint64_t);
3016       // May not be aligned so use memcpy.
3017       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3018       Src += sizeof(uint64_t);
3019     }
3020 
3021     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3022   }
3023 }
3024 
3025 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3026 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3027 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3028                              unsigned LoadBytes) {
3029   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3030   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3031                    const_cast<uint64_t *>(IntVal.getRawData()));
3032 
3033   if (sys::IsLittleEndianHost)
3034     // Little-endian host - the destination must be ordered from LSB to MSB.
3035     // The source is ordered from LSB to MSB: Do a straight copy.
3036     memcpy(Dst, Src, LoadBytes);
3037   else {
3038     // Big-endian - the destination is an array of 64 bit words ordered from
3039     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3040     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3041     // a word.
3042     while (LoadBytes > sizeof(uint64_t)) {
3043       LoadBytes -= sizeof(uint64_t);
3044       // May not be aligned so use memcpy.
3045       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3046       Dst += sizeof(uint64_t);
3047     }
3048 
3049     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3050   }
3051 }
3052