xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APInt.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/bit.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Alignment.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <optional>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "apint"
33 
34 /// A utility function for allocating memory, checking for allocation failures,
35 /// and ensuring the contents are zeroed.
36 inline static uint64_t* getClearedMemory(unsigned numWords) {
37   uint64_t *result = new uint64_t[numWords];
38   memset(result, 0, numWords * sizeof(uint64_t));
39   return result;
40 }
41 
42 /// A utility function for allocating memory and checking for allocation
43 /// failure.  The content is not zeroed.
44 inline static uint64_t* getMemory(unsigned numWords) {
45   return new uint64_t[numWords];
46 }
47 
48 /// A utility function that converts a character to a digit.
49 inline static unsigned getDigit(char cdigit, uint8_t radix) {
50   unsigned r;
51 
52   if (radix == 16 || radix == 36) {
53     r = cdigit - '0';
54     if (r <= 9)
55       return r;
56 
57     r = cdigit - 'A';
58     if (r <= radix - 11U)
59       return r + 10;
60 
61     r = cdigit - 'a';
62     if (r <= radix - 11U)
63       return r + 10;
64 
65     radix = 10;
66   }
67 
68   r = cdigit - '0';
69   if (r < radix)
70     return r;
71 
72   return UINT_MAX;
73 }
74 
75 
76 void APInt::initSlowCase(uint64_t val, bool isSigned) {
77   U.pVal = getClearedMemory(getNumWords());
78   U.pVal[0] = val;
79   if (isSigned && int64_t(val) < 0)
80     for (unsigned i = 1; i < getNumWords(); ++i)
81       U.pVal[i] = WORDTYPE_MAX;
82   clearUnusedBits();
83 }
84 
85 void APInt::initSlowCase(const APInt& that) {
86   U.pVal = getMemory(getNumWords());
87   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
88 }
89 
90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91   assert(bigVal.data() && "Null pointer detected!");
92   if (isSingleWord())
93     U.VAL = bigVal[0];
94   else {
95     // Get memory, cleared to 0
96     U.pVal = getClearedMemory(getNumWords());
97     // Calculate the number of words to copy
98     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99     // Copy the words from bigVal to pVal
100     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
101   }
102   // Make sure unused high bits are cleared
103   clearUnusedBits();
104 }
105 
106 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
107   initFromArray(bigVal);
108 }
109 
110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111     : BitWidth(numBits) {
112   initFromArray(ArrayRef(bigVal, numWords));
113 }
114 
115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
116     : BitWidth(numbits) {
117   fromString(numbits, Str, radix);
118 }
119 
120 void APInt::reallocate(unsigned NewBitWidth) {
121   // If the number of words is the same we can just change the width and stop.
122   if (getNumWords() == getNumWords(NewBitWidth)) {
123     BitWidth = NewBitWidth;
124     return;
125   }
126 
127   // If we have an allocation, delete it.
128   if (!isSingleWord())
129     delete [] U.pVal;
130 
131   // Update BitWidth.
132   BitWidth = NewBitWidth;
133 
134   // If we are supposed to have an allocation, create it.
135   if (!isSingleWord())
136     U.pVal = getMemory(getNumWords());
137 }
138 
139 void APInt::assignSlowCase(const APInt &RHS) {
140   // Don't do anything for X = X
141   if (this == &RHS)
142     return;
143 
144   // Adjust the bit width and handle allocations as necessary.
145   reallocate(RHS.getBitWidth());
146 
147   // Copy the data.
148   if (isSingleWord())
149     U.VAL = RHS.U.VAL;
150   else
151     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
152 }
153 
154 /// This method 'profiles' an APInt for use with FoldingSet.
155 void APInt::Profile(FoldingSetNodeID& ID) const {
156   ID.AddInteger(BitWidth);
157 
158   if (isSingleWord()) {
159     ID.AddInteger(U.VAL);
160     return;
161   }
162 
163   unsigned NumWords = getNumWords();
164   for (unsigned i = 0; i < NumWords; ++i)
165     ID.AddInteger(U.pVal[i]);
166 }
167 
168 bool APInt::isAligned(Align A) const {
169   if (isZero())
170     return true;
171   const unsigned TrailingZeroes = countr_zero();
172   const unsigned MinimumTrailingZeroes = Log2(A);
173   return TrailingZeroes >= MinimumTrailingZeroes;
174 }
175 
176 /// Prefix increment operator. Increments the APInt by one.
177 APInt& APInt::operator++() {
178   if (isSingleWord())
179     ++U.VAL;
180   else
181     tcIncrement(U.pVal, getNumWords());
182   return clearUnusedBits();
183 }
184 
185 /// Prefix decrement operator. Decrements the APInt by one.
186 APInt& APInt::operator--() {
187   if (isSingleWord())
188     --U.VAL;
189   else
190     tcDecrement(U.pVal, getNumWords());
191   return clearUnusedBits();
192 }
193 
194 /// Adds the RHS APInt to this APInt.
195 /// @returns this, after addition of RHS.
196 /// Addition assignment operator.
197 APInt& APInt::operator+=(const APInt& RHS) {
198   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
199   if (isSingleWord())
200     U.VAL += RHS.U.VAL;
201   else
202     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
203   return clearUnusedBits();
204 }
205 
206 APInt& APInt::operator+=(uint64_t RHS) {
207   if (isSingleWord())
208     U.VAL += RHS;
209   else
210     tcAddPart(U.pVal, RHS, getNumWords());
211   return clearUnusedBits();
212 }
213 
214 /// Subtracts the RHS APInt from this APInt
215 /// @returns this, after subtraction
216 /// Subtraction assignment operator.
217 APInt& APInt::operator-=(const APInt& RHS) {
218   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
219   if (isSingleWord())
220     U.VAL -= RHS.U.VAL;
221   else
222     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
223   return clearUnusedBits();
224 }
225 
226 APInt& APInt::operator-=(uint64_t RHS) {
227   if (isSingleWord())
228     U.VAL -= RHS;
229   else
230     tcSubtractPart(U.pVal, RHS, getNumWords());
231   return clearUnusedBits();
232 }
233 
234 APInt APInt::operator*(const APInt& RHS) const {
235   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236   if (isSingleWord())
237     return APInt(BitWidth, U.VAL * RHS.U.VAL);
238 
239   APInt Result(getMemory(getNumWords()), getBitWidth());
240   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
241   Result.clearUnusedBits();
242   return Result;
243 }
244 
245 void APInt::andAssignSlowCase(const APInt &RHS) {
246   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
247   for (size_t i = 0, e = getNumWords(); i != e; ++i)
248     dst[i] &= rhs[i];
249 }
250 
251 void APInt::orAssignSlowCase(const APInt &RHS) {
252   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
253   for (size_t i = 0, e = getNumWords(); i != e; ++i)
254     dst[i] |= rhs[i];
255 }
256 
257 void APInt::xorAssignSlowCase(const APInt &RHS) {
258   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
259   for (size_t i = 0, e = getNumWords(); i != e; ++i)
260     dst[i] ^= rhs[i];
261 }
262 
263 APInt &APInt::operator*=(const APInt &RHS) {
264   *this = *this * RHS;
265   return *this;
266 }
267 
268 APInt& APInt::operator*=(uint64_t RHS) {
269   if (isSingleWord()) {
270     U.VAL *= RHS;
271   } else {
272     unsigned NumWords = getNumWords();
273     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
274   }
275   return clearUnusedBits();
276 }
277 
278 bool APInt::equalSlowCase(const APInt &RHS) const {
279   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
280 }
281 
282 int APInt::compare(const APInt& RHS) const {
283   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
284   if (isSingleWord())
285     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
286 
287   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
288 }
289 
290 int APInt::compareSigned(const APInt& RHS) const {
291   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
292   if (isSingleWord()) {
293     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
294     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
295     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
296   }
297 
298   bool lhsNeg = isNegative();
299   bool rhsNeg = RHS.isNegative();
300 
301   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
302   if (lhsNeg != rhsNeg)
303     return lhsNeg ? -1 : 1;
304 
305   // Otherwise we can just use an unsigned comparison, because even negative
306   // numbers compare correctly this way if both have the same signed-ness.
307   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
308 }
309 
310 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
311   unsigned loWord = whichWord(loBit);
312   unsigned hiWord = whichWord(hiBit);
313 
314   // Create an initial mask for the low word with zeros below loBit.
315   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
316 
317   // If hiBit is not aligned, we need a high mask.
318   unsigned hiShiftAmt = whichBit(hiBit);
319   if (hiShiftAmt != 0) {
320     // Create a high mask with zeros above hiBit.
321     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
322     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
323     // set the bits in hiWord.
324     if (hiWord == loWord)
325       loMask &= hiMask;
326     else
327       U.pVal[hiWord] |= hiMask;
328   }
329   // Apply the mask to the low word.
330   U.pVal[loWord] |= loMask;
331 
332   // Fill any words between loWord and hiWord with all ones.
333   for (unsigned word = loWord + 1; word < hiWord; ++word)
334     U.pVal[word] = WORDTYPE_MAX;
335 }
336 
337 // Complement a bignum in-place.
338 static void tcComplement(APInt::WordType *dst, unsigned parts) {
339   for (unsigned i = 0; i < parts; i++)
340     dst[i] = ~dst[i];
341 }
342 
343 /// Toggle every bit to its opposite value.
344 void APInt::flipAllBitsSlowCase() {
345   tcComplement(U.pVal, getNumWords());
346   clearUnusedBits();
347 }
348 
349 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
350 /// equivalent to:
351 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
352 /// In the slow case, we know the result is large.
353 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
354   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
355   APInt Result = NewLSB.zext(NewWidth);
356   Result.insertBits(*this, NewLSB.getBitWidth());
357   return Result;
358 }
359 
360 /// Toggle a given bit to its opposite value whose position is given
361 /// as "bitPosition".
362 /// Toggles a given bit to its opposite value.
363 void APInt::flipBit(unsigned bitPosition) {
364   assert(bitPosition < BitWidth && "Out of the bit-width range!");
365   setBitVal(bitPosition, !(*this)[bitPosition]);
366 }
367 
368 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
369   unsigned subBitWidth = subBits.getBitWidth();
370   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
371 
372   // inserting no bits is a noop.
373   if (subBitWidth == 0)
374     return;
375 
376   // Insertion is a direct copy.
377   if (subBitWidth == BitWidth) {
378     *this = subBits;
379     return;
380   }
381 
382   // Single word result can be done as a direct bitmask.
383   if (isSingleWord()) {
384     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
385     U.VAL &= ~(mask << bitPosition);
386     U.VAL |= (subBits.U.VAL << bitPosition);
387     return;
388   }
389 
390   unsigned loBit = whichBit(bitPosition);
391   unsigned loWord = whichWord(bitPosition);
392   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
393 
394   // Insertion within a single word can be done as a direct bitmask.
395   if (loWord == hi1Word) {
396     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
397     U.pVal[loWord] &= ~(mask << loBit);
398     U.pVal[loWord] |= (subBits.U.VAL << loBit);
399     return;
400   }
401 
402   // Insert on word boundaries.
403   if (loBit == 0) {
404     // Direct copy whole words.
405     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
406     memcpy(U.pVal + loWord, subBits.getRawData(),
407            numWholeSubWords * APINT_WORD_SIZE);
408 
409     // Mask+insert remaining bits.
410     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
411     if (remainingBits != 0) {
412       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
413       U.pVal[hi1Word] &= ~mask;
414       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
415     }
416     return;
417   }
418 
419   // General case - set/clear individual bits in dst based on src.
420   // TODO - there is scope for optimization here, but at the moment this code
421   // path is barely used so prefer readability over performance.
422   for (unsigned i = 0; i != subBitWidth; ++i)
423     setBitVal(bitPosition + i, subBits[i]);
424 }
425 
426 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
427   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
428   subBits &= maskBits;
429   if (isSingleWord()) {
430     U.VAL &= ~(maskBits << bitPosition);
431     U.VAL |= subBits << bitPosition;
432     return;
433   }
434 
435   unsigned loBit = whichBit(bitPosition);
436   unsigned loWord = whichWord(bitPosition);
437   unsigned hiWord = whichWord(bitPosition + numBits - 1);
438   if (loWord == hiWord) {
439     U.pVal[loWord] &= ~(maskBits << loBit);
440     U.pVal[loWord] |= subBits << loBit;
441     return;
442   }
443 
444   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
445   unsigned wordBits = 8 * sizeof(WordType);
446   U.pVal[loWord] &= ~(maskBits << loBit);
447   U.pVal[loWord] |= subBits << loBit;
448 
449   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
450   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
451 }
452 
453 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
454   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
455          "Illegal bit extraction");
456 
457   if (isSingleWord())
458     return APInt(numBits, U.VAL >> bitPosition);
459 
460   unsigned loBit = whichBit(bitPosition);
461   unsigned loWord = whichWord(bitPosition);
462   unsigned hiWord = whichWord(bitPosition + numBits - 1);
463 
464   // Single word result extracting bits from a single word source.
465   if (loWord == hiWord)
466     return APInt(numBits, U.pVal[loWord] >> loBit);
467 
468   // Extracting bits that start on a source word boundary can be done
469   // as a fast memory copy.
470   if (loBit == 0)
471     return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
472 
473   // General case - shift + copy source words directly into place.
474   APInt Result(numBits, 0);
475   unsigned NumSrcWords = getNumWords();
476   unsigned NumDstWords = Result.getNumWords();
477 
478   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
479   for (unsigned word = 0; word < NumDstWords; ++word) {
480     uint64_t w0 = U.pVal[loWord + word];
481     uint64_t w1 =
482         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
483     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
484   }
485 
486   return Result.clearUnusedBits();
487 }
488 
489 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
490                                        unsigned bitPosition) const {
491   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
492          "Illegal bit extraction");
493   assert(numBits <= 64 && "Illegal bit extraction");
494 
495   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
496   if (isSingleWord())
497     return (U.VAL >> bitPosition) & maskBits;
498 
499   unsigned loBit = whichBit(bitPosition);
500   unsigned loWord = whichWord(bitPosition);
501   unsigned hiWord = whichWord(bitPosition + numBits - 1);
502   if (loWord == hiWord)
503     return (U.pVal[loWord] >> loBit) & maskBits;
504 
505   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
506   unsigned wordBits = 8 * sizeof(WordType);
507   uint64_t retBits = U.pVal[loWord] >> loBit;
508   retBits |= U.pVal[hiWord] << (wordBits - loBit);
509   retBits &= maskBits;
510   return retBits;
511 }
512 
513 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
514   assert(!Str.empty() && "Invalid string length");
515   size_t StrLen = Str.size();
516 
517   // Each computation below needs to know if it's negative.
518   unsigned IsNegative = false;
519   if (Str[0] == '-' || Str[0] == '+') {
520     IsNegative = Str[0] == '-';
521     StrLen--;
522     assert(StrLen && "String is only a sign, needs a value.");
523   }
524 
525   // For radixes of power-of-two values, the bits required is accurately and
526   // easily computed.
527   if (Radix == 2)
528     return StrLen + IsNegative;
529   if (Radix == 8)
530     return StrLen * 3 + IsNegative;
531   if (Radix == 16)
532     return StrLen * 4 + IsNegative;
533 
534   // Compute a sufficient number of bits that is always large enough but might
535   // be too large. This avoids the assertion in the constructor. This
536   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
537   // bits in that case.
538   if (Radix == 10)
539     return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
540 
541   assert(Radix == 36);
542   return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
543 }
544 
545 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
546   // Compute a sufficient number of bits that is always large enough but might
547   // be too large.
548   unsigned sufficient = getSufficientBitsNeeded(str, radix);
549 
550   // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
551   // return the value directly. For bases 10 and 36, we need to do extra work.
552   if (radix == 2 || radix == 8 || radix == 16)
553     return sufficient;
554 
555   // This is grossly inefficient but accurate. We could probably do something
556   // with a computation of roughly slen*64/20 and then adjust by the value of
557   // the first few digits. But, I'm not sure how accurate that could be.
558   size_t slen = str.size();
559 
560   // Each computation below needs to know if it's negative.
561   StringRef::iterator p = str.begin();
562   unsigned isNegative = *p == '-';
563   if (*p == '-' || *p == '+') {
564     p++;
565     slen--;
566     assert(slen && "String is only a sign, needs a value.");
567   }
568 
569 
570   // Convert to the actual binary value.
571   APInt tmp(sufficient, StringRef(p, slen), radix);
572 
573   // Compute how many bits are required. If the log is infinite, assume we need
574   // just bit. If the log is exact and value is negative, then the value is
575   // MinSignedValue with (log + 1) bits.
576   unsigned log = tmp.logBase2();
577   if (log == (unsigned)-1) {
578     return isNegative + 1;
579   } else if (isNegative && tmp.isPowerOf2()) {
580     return isNegative + log;
581   } else {
582     return isNegative + log + 1;
583   }
584 }
585 
586 hash_code llvm::hash_value(const APInt &Arg) {
587   if (Arg.isSingleWord())
588     return hash_combine(Arg.BitWidth, Arg.U.VAL);
589 
590   return hash_combine(
591       Arg.BitWidth,
592       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
593 }
594 
595 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
596   return static_cast<unsigned>(hash_value(Key));
597 }
598 
599 bool APInt::isSplat(unsigned SplatSizeInBits) const {
600   assert(getBitWidth() % SplatSizeInBits == 0 &&
601          "SplatSizeInBits must divide width!");
602   // We can check that all parts of an integer are equal by making use of a
603   // little trick: rotate and check if it's still the same value.
604   return *this == rotl(SplatSizeInBits);
605 }
606 
607 /// This function returns the high "numBits" bits of this APInt.
608 APInt APInt::getHiBits(unsigned numBits) const {
609   return this->lshr(BitWidth - numBits);
610 }
611 
612 /// This function returns the low "numBits" bits of this APInt.
613 APInt APInt::getLoBits(unsigned numBits) const {
614   APInt Result(getLowBitsSet(BitWidth, numBits));
615   Result &= *this;
616   return Result;
617 }
618 
619 /// Return a value containing V broadcasted over NewLen bits.
620 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
621   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
622 
623   APInt Val = V.zext(NewLen);
624   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
625     Val |= Val << I;
626 
627   return Val;
628 }
629 
630 unsigned APInt::countLeadingZerosSlowCase() const {
631   unsigned Count = 0;
632   for (int i = getNumWords()-1; i >= 0; --i) {
633     uint64_t V = U.pVal[i];
634     if (V == 0)
635       Count += APINT_BITS_PER_WORD;
636     else {
637       Count += llvm::countl_zero(V);
638       break;
639     }
640   }
641   // Adjust for unused bits in the most significant word (they are zero).
642   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
643   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
644   return Count;
645 }
646 
647 unsigned APInt::countLeadingOnesSlowCase() const {
648   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
649   unsigned shift;
650   if (!highWordBits) {
651     highWordBits = APINT_BITS_PER_WORD;
652     shift = 0;
653   } else {
654     shift = APINT_BITS_PER_WORD - highWordBits;
655   }
656   int i = getNumWords() - 1;
657   unsigned Count = llvm::countl_one(U.pVal[i] << shift);
658   if (Count == highWordBits) {
659     for (i--; i >= 0; --i) {
660       if (U.pVal[i] == WORDTYPE_MAX)
661         Count += APINT_BITS_PER_WORD;
662       else {
663         Count += llvm::countl_one(U.pVal[i]);
664         break;
665       }
666     }
667   }
668   return Count;
669 }
670 
671 unsigned APInt::countTrailingZerosSlowCase() const {
672   unsigned Count = 0;
673   unsigned i = 0;
674   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
675     Count += APINT_BITS_PER_WORD;
676   if (i < getNumWords())
677     Count += llvm::countr_zero(U.pVal[i]);
678   return std::min(Count, BitWidth);
679 }
680 
681 unsigned APInt::countTrailingOnesSlowCase() const {
682   unsigned Count = 0;
683   unsigned i = 0;
684   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
685     Count += APINT_BITS_PER_WORD;
686   if (i < getNumWords())
687     Count += llvm::countr_one(U.pVal[i]);
688   assert(Count <= BitWidth);
689   return Count;
690 }
691 
692 unsigned APInt::countPopulationSlowCase() const {
693   unsigned Count = 0;
694   for (unsigned i = 0; i < getNumWords(); ++i)
695     Count += llvm::popcount(U.pVal[i]);
696   return Count;
697 }
698 
699 bool APInt::intersectsSlowCase(const APInt &RHS) const {
700   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
702       return true;
703 
704   return false;
705 }
706 
707 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
708   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
709     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
710       return false;
711 
712   return true;
713 }
714 
715 APInt APInt::byteSwap() const {
716   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
717   if (BitWidth == 16)
718     return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
719   if (BitWidth == 32)
720     return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
721   if (BitWidth <= 64) {
722     uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
723     Tmp1 >>= (64 - BitWidth);
724     return APInt(BitWidth, Tmp1);
725   }
726 
727   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
728   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
729     Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
730   if (Result.BitWidth != BitWidth) {
731     Result.lshrInPlace(Result.BitWidth - BitWidth);
732     Result.BitWidth = BitWidth;
733   }
734   return Result;
735 }
736 
737 APInt APInt::reverseBits() const {
738   switch (BitWidth) {
739   case 64:
740     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
741   case 32:
742     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
743   case 16:
744     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
745   case 8:
746     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
747   case 0:
748     return *this;
749   default:
750     break;
751   }
752 
753   APInt Val(*this);
754   APInt Reversed(BitWidth, 0);
755   unsigned S = BitWidth;
756 
757   for (; Val != 0; Val.lshrInPlace(1)) {
758     Reversed <<= 1;
759     Reversed |= Val[0];
760     --S;
761   }
762 
763   Reversed <<= S;
764   return Reversed;
765 }
766 
767 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
768   // Fast-path a common case.
769   if (A == B) return A;
770 
771   // Corner cases: if either operand is zero, the other is the gcd.
772   if (!A) return B;
773   if (!B) return A;
774 
775   // Count common powers of 2 and remove all other powers of 2.
776   unsigned Pow2;
777   {
778     unsigned Pow2_A = A.countr_zero();
779     unsigned Pow2_B = B.countr_zero();
780     if (Pow2_A > Pow2_B) {
781       A.lshrInPlace(Pow2_A - Pow2_B);
782       Pow2 = Pow2_B;
783     } else if (Pow2_B > Pow2_A) {
784       B.lshrInPlace(Pow2_B - Pow2_A);
785       Pow2 = Pow2_A;
786     } else {
787       Pow2 = Pow2_A;
788     }
789   }
790 
791   // Both operands are odd multiples of 2^Pow_2:
792   //
793   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
794   //
795   // This is a modified version of Stein's algorithm, taking advantage of
796   // efficient countTrailingZeros().
797   while (A != B) {
798     if (A.ugt(B)) {
799       A -= B;
800       A.lshrInPlace(A.countr_zero() - Pow2);
801     } else {
802       B -= A;
803       B.lshrInPlace(B.countr_zero() - Pow2);
804     }
805   }
806 
807   return A;
808 }
809 
810 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
811   uint64_t I = bit_cast<uint64_t>(Double);
812 
813   // Get the sign bit from the highest order bit
814   bool isNeg = I >> 63;
815 
816   // Get the 11-bit exponent and adjust for the 1023 bit bias
817   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
818 
819   // If the exponent is negative, the value is < 0 so just return 0.
820   if (exp < 0)
821     return APInt(width, 0u);
822 
823   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
824   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
825 
826   // If the exponent doesn't shift all bits out of the mantissa
827   if (exp < 52)
828     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
829                     APInt(width, mantissa >> (52 - exp));
830 
831   // If the client didn't provide enough bits for us to shift the mantissa into
832   // then the result is undefined, just return 0
833   if (width <= exp - 52)
834     return APInt(width, 0);
835 
836   // Otherwise, we have to shift the mantissa bits up to the right location
837   APInt Tmp(width, mantissa);
838   Tmp <<= (unsigned)exp - 52;
839   return isNeg ? -Tmp : Tmp;
840 }
841 
842 /// This function converts this APInt to a double.
843 /// The layout for double is as following (IEEE Standard 754):
844 ///  --------------------------------------
845 /// |  Sign    Exponent    Fraction    Bias |
846 /// |-------------------------------------- |
847 /// |  1[63]   11[62-52]   52[51-00]   1023 |
848 ///  --------------------------------------
849 double APInt::roundToDouble(bool isSigned) const {
850 
851   // Handle the simple case where the value is contained in one uint64_t.
852   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
853   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
854     if (isSigned) {
855       int64_t sext = SignExtend64(getWord(0), BitWidth);
856       return double(sext);
857     } else
858       return double(getWord(0));
859   }
860 
861   // Determine if the value is negative.
862   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
863 
864   // Construct the absolute value if we're negative.
865   APInt Tmp(isNeg ? -(*this) : (*this));
866 
867   // Figure out how many bits we're using.
868   unsigned n = Tmp.getActiveBits();
869 
870   // The exponent (without bias normalization) is just the number of bits
871   // we are using. Note that the sign bit is gone since we constructed the
872   // absolute value.
873   uint64_t exp = n;
874 
875   // Return infinity for exponent overflow
876   if (exp > 1023) {
877     if (!isSigned || !isNeg)
878       return std::numeric_limits<double>::infinity();
879     else
880       return -std::numeric_limits<double>::infinity();
881   }
882   exp += 1023; // Increment for 1023 bias
883 
884   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
885   // extract the high 52 bits from the correct words in pVal.
886   uint64_t mantissa;
887   unsigned hiWord = whichWord(n-1);
888   if (hiWord == 0) {
889     mantissa = Tmp.U.pVal[0];
890     if (n > 52)
891       mantissa >>= n - 52; // shift down, we want the top 52 bits.
892   } else {
893     assert(hiWord > 0 && "huh?");
894     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
895     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
896     mantissa = hibits | lobits;
897   }
898 
899   // The leading bit of mantissa is implicit, so get rid of it.
900   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
901   uint64_t I = sign | (exp << 52) | mantissa;
902   return bit_cast<double>(I);
903 }
904 
905 // Truncate to new width.
906 APInt APInt::trunc(unsigned width) const {
907   assert(width <= BitWidth && "Invalid APInt Truncate request");
908 
909   if (width <= APINT_BITS_PER_WORD)
910     return APInt(width, getRawData()[0]);
911 
912   if (width == BitWidth)
913     return *this;
914 
915   APInt Result(getMemory(getNumWords(width)), width);
916 
917   // Copy full words.
918   unsigned i;
919   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
920     Result.U.pVal[i] = U.pVal[i];
921 
922   // Truncate and copy any partial word.
923   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
924   if (bits != 0)
925     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
926 
927   return Result;
928 }
929 
930 // Truncate to new width with unsigned saturation.
931 APInt APInt::truncUSat(unsigned width) const {
932   assert(width <= BitWidth && "Invalid APInt Truncate request");
933 
934   // Can we just losslessly truncate it?
935   if (isIntN(width))
936     return trunc(width);
937   // If not, then just return the new limit.
938   return APInt::getMaxValue(width);
939 }
940 
941 // Truncate to new width with signed saturation.
942 APInt APInt::truncSSat(unsigned width) const {
943   assert(width <= BitWidth && "Invalid APInt Truncate request");
944 
945   // Can we just losslessly truncate it?
946   if (isSignedIntN(width))
947     return trunc(width);
948   // If not, then just return the new limits.
949   return isNegative() ? APInt::getSignedMinValue(width)
950                       : APInt::getSignedMaxValue(width);
951 }
952 
953 // Sign extend to a new width.
954 APInt APInt::sext(unsigned Width) const {
955   assert(Width >= BitWidth && "Invalid APInt SignExtend request");
956 
957   if (Width <= APINT_BITS_PER_WORD)
958     return APInt(Width, SignExtend64(U.VAL, BitWidth));
959 
960   if (Width == BitWidth)
961     return *this;
962 
963   APInt Result(getMemory(getNumWords(Width)), Width);
964 
965   // Copy words.
966   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
967 
968   // Sign extend the last word since there may be unused bits in the input.
969   Result.U.pVal[getNumWords() - 1] =
970       SignExtend64(Result.U.pVal[getNumWords() - 1],
971                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
972 
973   // Fill with sign bits.
974   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
975               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
976   Result.clearUnusedBits();
977   return Result;
978 }
979 
980 //  Zero extend to a new width.
981 APInt APInt::zext(unsigned width) const {
982   assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
983 
984   if (width <= APINT_BITS_PER_WORD)
985     return APInt(width, U.VAL);
986 
987   if (width == BitWidth)
988     return *this;
989 
990   APInt Result(getMemory(getNumWords(width)), width);
991 
992   // Copy words.
993   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
994 
995   // Zero remaining words.
996   std::memset(Result.U.pVal + getNumWords(), 0,
997               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
998 
999   return Result;
1000 }
1001 
1002 APInt APInt::zextOrTrunc(unsigned width) const {
1003   if (BitWidth < width)
1004     return zext(width);
1005   if (BitWidth > width)
1006     return trunc(width);
1007   return *this;
1008 }
1009 
1010 APInt APInt::sextOrTrunc(unsigned width) const {
1011   if (BitWidth < width)
1012     return sext(width);
1013   if (BitWidth > width)
1014     return trunc(width);
1015   return *this;
1016 }
1017 
1018 /// Arithmetic right-shift this APInt by shiftAmt.
1019 /// Arithmetic right-shift function.
1020 void APInt::ashrInPlace(const APInt &shiftAmt) {
1021   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1022 }
1023 
1024 /// Arithmetic right-shift this APInt by shiftAmt.
1025 /// Arithmetic right-shift function.
1026 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1027   // Don't bother performing a no-op shift.
1028   if (!ShiftAmt)
1029     return;
1030 
1031   // Save the original sign bit for later.
1032   bool Negative = isNegative();
1033 
1034   // WordShift is the inter-part shift; BitShift is intra-part shift.
1035   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1036   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1037 
1038   unsigned WordsToMove = getNumWords() - WordShift;
1039   if (WordsToMove != 0) {
1040     // Sign extend the last word to fill in the unused bits.
1041     U.pVal[getNumWords() - 1] = SignExtend64(
1042         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1043 
1044     // Fastpath for moving by whole words.
1045     if (BitShift == 0) {
1046       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1047     } else {
1048       // Move the words containing significant bits.
1049       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1050         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1051                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1052 
1053       // Handle the last word which has no high bits to copy.
1054       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1055       // Sign extend one more time.
1056       U.pVal[WordsToMove - 1] =
1057           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1058     }
1059   }
1060 
1061   // Fill in the remainder based on the original sign.
1062   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1063               WordShift * APINT_WORD_SIZE);
1064   clearUnusedBits();
1065 }
1066 
1067 /// Logical right-shift this APInt by shiftAmt.
1068 /// Logical right-shift function.
1069 void APInt::lshrInPlace(const APInt &shiftAmt) {
1070   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1071 }
1072 
1073 /// Logical right-shift this APInt by shiftAmt.
1074 /// Logical right-shift function.
1075 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1076   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1077 }
1078 
1079 /// Left-shift this APInt by shiftAmt.
1080 /// Left-shift function.
1081 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1082   // It's undefined behavior in C to shift by BitWidth or greater.
1083   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1084   return *this;
1085 }
1086 
1087 void APInt::shlSlowCase(unsigned ShiftAmt) {
1088   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1089   clearUnusedBits();
1090 }
1091 
1092 // Calculate the rotate amount modulo the bit width.
1093 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1094   if (LLVM_UNLIKELY(BitWidth == 0))
1095     return 0;
1096   unsigned rotBitWidth = rotateAmt.getBitWidth();
1097   APInt rot = rotateAmt;
1098   if (rotBitWidth < BitWidth) {
1099     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1100     // e.g. APInt(1, 32) would give APInt(1, 0).
1101     rot = rotateAmt.zext(BitWidth);
1102   }
1103   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1104   return rot.getLimitedValue(BitWidth);
1105 }
1106 
1107 APInt APInt::rotl(const APInt &rotateAmt) const {
1108   return rotl(rotateModulo(BitWidth, rotateAmt));
1109 }
1110 
1111 APInt APInt::rotl(unsigned rotateAmt) const {
1112   if (LLVM_UNLIKELY(BitWidth == 0))
1113     return *this;
1114   rotateAmt %= BitWidth;
1115   if (rotateAmt == 0)
1116     return *this;
1117   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1118 }
1119 
1120 APInt APInt::rotr(const APInt &rotateAmt) const {
1121   return rotr(rotateModulo(BitWidth, rotateAmt));
1122 }
1123 
1124 APInt APInt::rotr(unsigned rotateAmt) const {
1125   if (BitWidth == 0)
1126     return *this;
1127   rotateAmt %= BitWidth;
1128   if (rotateAmt == 0)
1129     return *this;
1130   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1131 }
1132 
1133 /// \returns the nearest log base 2 of this APInt. Ties round up.
1134 ///
1135 /// NOTE: When we have a BitWidth of 1, we define:
1136 ///
1137 ///   log2(0) = UINT32_MAX
1138 ///   log2(1) = 0
1139 ///
1140 /// to get around any mathematical concerns resulting from
1141 /// referencing 2 in a space where 2 does no exist.
1142 unsigned APInt::nearestLogBase2() const {
1143   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1144   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1145   // UINT32_MAX.
1146   if (BitWidth == 1)
1147     return U.VAL - 1;
1148 
1149   // Handle the zero case.
1150   if (isZero())
1151     return UINT32_MAX;
1152 
1153   // The non-zero case is handled by computing:
1154   //
1155   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1156   //
1157   // where x[i] is referring to the value of the ith bit of x.
1158   unsigned lg = logBase2();
1159   return lg + unsigned((*this)[lg - 1]);
1160 }
1161 
1162 // Square Root - this method computes and returns the square root of "this".
1163 // Three mechanisms are used for computation. For small values (<= 5 bits),
1164 // a table lookup is done. This gets some performance for common cases. For
1165 // values using less than 52 bits, the value is converted to double and then
1166 // the libc sqrt function is called. The result is rounded and then converted
1167 // back to a uint64_t which is then used to construct the result. Finally,
1168 // the Babylonian method for computing square roots is used.
1169 APInt APInt::sqrt() const {
1170 
1171   // Determine the magnitude of the value.
1172   unsigned magnitude = getActiveBits();
1173 
1174   // Use a fast table for some small values. This also gets rid of some
1175   // rounding errors in libc sqrt for small values.
1176   if (magnitude <= 5) {
1177     static const uint8_t results[32] = {
1178       /*     0 */ 0,
1179       /*  1- 2 */ 1, 1,
1180       /*  3- 6 */ 2, 2, 2, 2,
1181       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1182       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1183       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184       /*    31 */ 6
1185     };
1186     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1187   }
1188 
1189   // If the magnitude of the value fits in less than 52 bits (the precision of
1190   // an IEEE double precision floating point value), then we can use the
1191   // libc sqrt function which will probably use a hardware sqrt computation.
1192   // This should be faster than the algorithm below.
1193   if (magnitude < 52) {
1194     return APInt(BitWidth,
1195                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1196                                                                : U.pVal[0])))));
1197   }
1198 
1199   // Okay, all the short cuts are exhausted. We must compute it. The following
1200   // is a classical Babylonian method for computing the square root. This code
1201   // was adapted to APInt from a wikipedia article on such computations.
1202   // See http://www.wikipedia.org/ and go to the page named
1203   // Calculate_an_integer_square_root.
1204   unsigned nbits = BitWidth, i = 4;
1205   APInt testy(BitWidth, 16);
1206   APInt x_old(BitWidth, 1);
1207   APInt x_new(BitWidth, 0);
1208   APInt two(BitWidth, 2);
1209 
1210   // Select a good starting value using binary logarithms.
1211   for (;; i += 2, testy = testy.shl(2))
1212     if (i >= nbits || this->ule(testy)) {
1213       x_old = x_old.shl(i / 2);
1214       break;
1215     }
1216 
1217   // Use the Babylonian method to arrive at the integer square root:
1218   for (;;) {
1219     x_new = (this->udiv(x_old) + x_old).udiv(two);
1220     if (x_old.ule(x_new))
1221       break;
1222     x_old = x_new;
1223   }
1224 
1225   // Make sure we return the closest approximation
1226   // NOTE: The rounding calculation below is correct. It will produce an
1227   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1228   // determined to be a rounding issue with pari/gp as it begins to use a
1229   // floating point representation after 192 bits. There are no discrepancies
1230   // between this algorithm and pari/gp for bit widths < 192 bits.
1231   APInt square(x_old * x_old);
1232   APInt nextSquare((x_old + 1) * (x_old +1));
1233   if (this->ult(square))
1234     return x_old;
1235   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1236   APInt midpoint((nextSquare - square).udiv(two));
1237   APInt offset(*this - square);
1238   if (offset.ult(midpoint))
1239     return x_old;
1240   return x_old + 1;
1241 }
1242 
1243 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1244 /// iterative extended Euclidean algorithm is used to solve for this value,
1245 /// however we simplify it to speed up calculating only the inverse, and take
1246 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1247 /// (potentially large) APInts around.
1248 /// WARNING: a value of '0' may be returned,
1249 ///          signifying that no multiplicative inverse exists!
1250 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1251   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1252 
1253   // Using the properties listed at the following web page (accessed 06/21/08):
1254   //   http://www.numbertheory.org/php/euclid.html
1255   // (especially the properties numbered 3, 4 and 9) it can be proved that
1256   // BitWidth bits suffice for all the computations in the algorithm implemented
1257   // below. More precisely, this number of bits suffice if the multiplicative
1258   // inverse exists, but may not suffice for the general extended Euclidean
1259   // algorithm.
1260 
1261   APInt r[2] = { modulo, *this };
1262   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1263   APInt q(BitWidth, 0);
1264 
1265   unsigned i;
1266   for (i = 0; r[i^1] != 0; i ^= 1) {
1267     // An overview of the math without the confusing bit-flipping:
1268     // q = r[i-2] / r[i-1]
1269     // r[i] = r[i-2] % r[i-1]
1270     // t[i] = t[i-2] - t[i-1] * q
1271     udivrem(r[i], r[i^1], q, r[i]);
1272     t[i] -= t[i^1] * q;
1273   }
1274 
1275   // If this APInt and the modulo are not coprime, there is no multiplicative
1276   // inverse, so return 0. We check this by looking at the next-to-last
1277   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1278   // algorithm.
1279   if (r[i] != 1)
1280     return APInt(BitWidth, 0);
1281 
1282   // The next-to-last t is the multiplicative inverse.  However, we are
1283   // interested in a positive inverse. Calculate a positive one from a negative
1284   // one if necessary. A simple addition of the modulo suffices because
1285   // abs(t[i]) is known to be less than *this/2 (see the link above).
1286   if (t[i].isNegative())
1287     t[i] += modulo;
1288 
1289   return std::move(t[i]);
1290 }
1291 
1292 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1293 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1294 /// variables here have the same names as in the algorithm. Comments explain
1295 /// the algorithm and any deviation from it.
1296 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1297                      unsigned m, unsigned n) {
1298   assert(u && "Must provide dividend");
1299   assert(v && "Must provide divisor");
1300   assert(q && "Must provide quotient");
1301   assert(u != v && u != q && v != q && "Must use different memory");
1302   assert(n>1 && "n must be > 1");
1303 
1304   // b denotes the base of the number system. In our case b is 2^32.
1305   const uint64_t b = uint64_t(1) << 32;
1306 
1307 // The DEBUG macros here tend to be spam in the debug output if you're not
1308 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1309 #ifdef KNUTH_DEBUG
1310 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1311 #else
1312 #define DEBUG_KNUTH(X) do {} while(false)
1313 #endif
1314 
1315   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1316   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1317   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1318   DEBUG_KNUTH(dbgs() << " by");
1319   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1320   DEBUG_KNUTH(dbgs() << '\n');
1321   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1322   // u and v by d. Note that we have taken Knuth's advice here to use a power
1323   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1324   // 2 allows us to shift instead of multiply and it is easy to determine the
1325   // shift amount from the leading zeros.  We are basically normalizing the u
1326   // and v so that its high bits are shifted to the top of v's range without
1327   // overflow. Note that this can require an extra word in u so that u must
1328   // be of length m+n+1.
1329   unsigned shift = llvm::countl_zero(v[n - 1]);
1330   uint32_t v_carry = 0;
1331   uint32_t u_carry = 0;
1332   if (shift) {
1333     for (unsigned i = 0; i < m+n; ++i) {
1334       uint32_t u_tmp = u[i] >> (32 - shift);
1335       u[i] = (u[i] << shift) | u_carry;
1336       u_carry = u_tmp;
1337     }
1338     for (unsigned i = 0; i < n; ++i) {
1339       uint32_t v_tmp = v[i] >> (32 - shift);
1340       v[i] = (v[i] << shift) | v_carry;
1341       v_carry = v_tmp;
1342     }
1343   }
1344   u[m+n] = u_carry;
1345 
1346   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1347   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1348   DEBUG_KNUTH(dbgs() << " by");
1349   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1350   DEBUG_KNUTH(dbgs() << '\n');
1351 
1352   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1353   int j = m;
1354   do {
1355     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1356     // D3. [Calculate q'.].
1357     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1358     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1359     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1360     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1361     // on v[n-2] determines at high speed most of the cases in which the trial
1362     // value qp is one too large, and it eliminates all cases where qp is two
1363     // too large.
1364     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1365     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1366     uint64_t qp = dividend / v[n-1];
1367     uint64_t rp = dividend % v[n-1];
1368     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1369       qp--;
1370       rp += v[n-1];
1371       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1372         qp--;
1373     }
1374     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1375 
1376     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1377     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1378     // consists of a simple multiplication by a one-place number, combined with
1379     // a subtraction.
1380     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1381     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1382     // true value plus b**(n+1), namely as the b's complement of
1383     // the true value, and a "borrow" to the left should be remembered.
1384     int64_t borrow = 0;
1385     for (unsigned i = 0; i < n; ++i) {
1386       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1387       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1388       u[j+i] = Lo_32(subres);
1389       borrow = Hi_32(p) - Hi_32(subres);
1390       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1391                         << ", borrow = " << borrow << '\n');
1392     }
1393     bool isNeg = u[j+n] < borrow;
1394     u[j+n] -= Lo_32(borrow);
1395 
1396     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1397     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1398     DEBUG_KNUTH(dbgs() << '\n');
1399 
1400     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1401     // negative, go to step D6; otherwise go on to step D7.
1402     q[j] = Lo_32(qp);
1403     if (isNeg) {
1404       // D6. [Add back]. The probability that this step is necessary is very
1405       // small, on the order of only 2/b. Make sure that test data accounts for
1406       // this possibility. Decrease q[j] by 1
1407       q[j]--;
1408       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1409       // A carry will occur to the left of u[j+n], and it should be ignored
1410       // since it cancels with the borrow that occurred in D4.
1411       bool carry = false;
1412       for (unsigned i = 0; i < n; i++) {
1413         uint32_t limit = std::min(u[j+i],v[i]);
1414         u[j+i] += v[i] + carry;
1415         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1416       }
1417       u[j+n] += carry;
1418     }
1419     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1420     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1421     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1422 
1423     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1424   } while (--j >= 0);
1425 
1426   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1427   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1428   DEBUG_KNUTH(dbgs() << '\n');
1429 
1430   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1431   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1432   // compute the remainder (urem uses this).
1433   if (r) {
1434     // The value d is expressed by the "shift" value above since we avoided
1435     // multiplication by d by using a shift left. So, all we have to do is
1436     // shift right here.
1437     if (shift) {
1438       uint32_t carry = 0;
1439       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1440       for (int i = n-1; i >= 0; i--) {
1441         r[i] = (u[i] >> shift) | carry;
1442         carry = u[i] << (32 - shift);
1443         DEBUG_KNUTH(dbgs() << " " << r[i]);
1444       }
1445     } else {
1446       for (int i = n-1; i >= 0; i--) {
1447         r[i] = u[i];
1448         DEBUG_KNUTH(dbgs() << " " << r[i]);
1449       }
1450     }
1451     DEBUG_KNUTH(dbgs() << '\n');
1452   }
1453   DEBUG_KNUTH(dbgs() << '\n');
1454 }
1455 
1456 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1457                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1458   assert(lhsWords >= rhsWords && "Fractional result");
1459 
1460   // First, compose the values into an array of 32-bit words instead of
1461   // 64-bit words. This is a necessity of both the "short division" algorithm
1462   // and the Knuth "classical algorithm" which requires there to be native
1463   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1464   // can't use 64-bit operands here because we don't have native results of
1465   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1466   // work on large-endian machines.
1467   unsigned n = rhsWords * 2;
1468   unsigned m = (lhsWords * 2) - n;
1469 
1470   // Allocate space for the temporary values we need either on the stack, if
1471   // it will fit, or on the heap if it won't.
1472   uint32_t SPACE[128];
1473   uint32_t *U = nullptr;
1474   uint32_t *V = nullptr;
1475   uint32_t *Q = nullptr;
1476   uint32_t *R = nullptr;
1477   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1478     U = &SPACE[0];
1479     V = &SPACE[m+n+1];
1480     Q = &SPACE[(m+n+1) + n];
1481     if (Remainder)
1482       R = &SPACE[(m+n+1) + n + (m+n)];
1483   } else {
1484     U = new uint32_t[m + n + 1];
1485     V = new uint32_t[n];
1486     Q = new uint32_t[m+n];
1487     if (Remainder)
1488       R = new uint32_t[n];
1489   }
1490 
1491   // Initialize the dividend
1492   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1493   for (unsigned i = 0; i < lhsWords; ++i) {
1494     uint64_t tmp = LHS[i];
1495     U[i * 2] = Lo_32(tmp);
1496     U[i * 2 + 1] = Hi_32(tmp);
1497   }
1498   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1499 
1500   // Initialize the divisor
1501   memset(V, 0, (n)*sizeof(uint32_t));
1502   for (unsigned i = 0; i < rhsWords; ++i) {
1503     uint64_t tmp = RHS[i];
1504     V[i * 2] = Lo_32(tmp);
1505     V[i * 2 + 1] = Hi_32(tmp);
1506   }
1507 
1508   // initialize the quotient and remainder
1509   memset(Q, 0, (m+n) * sizeof(uint32_t));
1510   if (Remainder)
1511     memset(R, 0, n * sizeof(uint32_t));
1512 
1513   // Now, adjust m and n for the Knuth division. n is the number of words in
1514   // the divisor. m is the number of words by which the dividend exceeds the
1515   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1516   // contain any zero words or the Knuth algorithm fails.
1517   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1518     n--;
1519     m++;
1520   }
1521   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1522     m--;
1523 
1524   // If we're left with only a single word for the divisor, Knuth doesn't work
1525   // so we implement the short division algorithm here. This is much simpler
1526   // and faster because we are certain that we can divide a 64-bit quantity
1527   // by a 32-bit quantity at hardware speed and short division is simply a
1528   // series of such operations. This is just like doing short division but we
1529   // are using base 2^32 instead of base 10.
1530   assert(n != 0 && "Divide by zero?");
1531   if (n == 1) {
1532     uint32_t divisor = V[0];
1533     uint32_t remainder = 0;
1534     for (int i = m; i >= 0; i--) {
1535       uint64_t partial_dividend = Make_64(remainder, U[i]);
1536       if (partial_dividend == 0) {
1537         Q[i] = 0;
1538         remainder = 0;
1539       } else if (partial_dividend < divisor) {
1540         Q[i] = 0;
1541         remainder = Lo_32(partial_dividend);
1542       } else if (partial_dividend == divisor) {
1543         Q[i] = 1;
1544         remainder = 0;
1545       } else {
1546         Q[i] = Lo_32(partial_dividend / divisor);
1547         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1548       }
1549     }
1550     if (R)
1551       R[0] = remainder;
1552   } else {
1553     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1554     // case n > 1.
1555     KnuthDiv(U, V, Q, R, m, n);
1556   }
1557 
1558   // If the caller wants the quotient
1559   if (Quotient) {
1560     for (unsigned i = 0; i < lhsWords; ++i)
1561       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1562   }
1563 
1564   // If the caller wants the remainder
1565   if (Remainder) {
1566     for (unsigned i = 0; i < rhsWords; ++i)
1567       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1568   }
1569 
1570   // Clean up the memory we allocated.
1571   if (U != &SPACE[0]) {
1572     delete [] U;
1573     delete [] V;
1574     delete [] Q;
1575     delete [] R;
1576   }
1577 }
1578 
1579 APInt APInt::udiv(const APInt &RHS) const {
1580   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1581 
1582   // First, deal with the easy case
1583   if (isSingleWord()) {
1584     assert(RHS.U.VAL != 0 && "Divide by zero?");
1585     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1586   }
1587 
1588   // Get some facts about the LHS and RHS number of bits and words
1589   unsigned lhsWords = getNumWords(getActiveBits());
1590   unsigned rhsBits  = RHS.getActiveBits();
1591   unsigned rhsWords = getNumWords(rhsBits);
1592   assert(rhsWords && "Divided by zero???");
1593 
1594   // Deal with some degenerate cases
1595   if (!lhsWords)
1596     // 0 / X ===> 0
1597     return APInt(BitWidth, 0);
1598   if (rhsBits == 1)
1599     // X / 1 ===> X
1600     return *this;
1601   if (lhsWords < rhsWords || this->ult(RHS))
1602     // X / Y ===> 0, iff X < Y
1603     return APInt(BitWidth, 0);
1604   if (*this == RHS)
1605     // X / X ===> 1
1606     return APInt(BitWidth, 1);
1607   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1608     // All high words are zero, just use native divide
1609     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1610 
1611   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1612   APInt Quotient(BitWidth, 0); // to hold result.
1613   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1614   return Quotient;
1615 }
1616 
1617 APInt APInt::udiv(uint64_t RHS) const {
1618   assert(RHS != 0 && "Divide by zero?");
1619 
1620   // First, deal with the easy case
1621   if (isSingleWord())
1622     return APInt(BitWidth, U.VAL / RHS);
1623 
1624   // Get some facts about the LHS words.
1625   unsigned lhsWords = getNumWords(getActiveBits());
1626 
1627   // Deal with some degenerate cases
1628   if (!lhsWords)
1629     // 0 / X ===> 0
1630     return APInt(BitWidth, 0);
1631   if (RHS == 1)
1632     // X / 1 ===> X
1633     return *this;
1634   if (this->ult(RHS))
1635     // X / Y ===> 0, iff X < Y
1636     return APInt(BitWidth, 0);
1637   if (*this == RHS)
1638     // X / X ===> 1
1639     return APInt(BitWidth, 1);
1640   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1641     // All high words are zero, just use native divide
1642     return APInt(BitWidth, this->U.pVal[0] / RHS);
1643 
1644   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1645   APInt Quotient(BitWidth, 0); // to hold result.
1646   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1647   return Quotient;
1648 }
1649 
1650 APInt APInt::sdiv(const APInt &RHS) const {
1651   if (isNegative()) {
1652     if (RHS.isNegative())
1653       return (-(*this)).udiv(-RHS);
1654     return -((-(*this)).udiv(RHS));
1655   }
1656   if (RHS.isNegative())
1657     return -(this->udiv(-RHS));
1658   return this->udiv(RHS);
1659 }
1660 
1661 APInt APInt::sdiv(int64_t RHS) const {
1662   if (isNegative()) {
1663     if (RHS < 0)
1664       return (-(*this)).udiv(-RHS);
1665     return -((-(*this)).udiv(RHS));
1666   }
1667   if (RHS < 0)
1668     return -(this->udiv(-RHS));
1669   return this->udiv(RHS);
1670 }
1671 
1672 APInt APInt::urem(const APInt &RHS) const {
1673   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1674   if (isSingleWord()) {
1675     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1676     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1677   }
1678 
1679   // Get some facts about the LHS
1680   unsigned lhsWords = getNumWords(getActiveBits());
1681 
1682   // Get some facts about the RHS
1683   unsigned rhsBits = RHS.getActiveBits();
1684   unsigned rhsWords = getNumWords(rhsBits);
1685   assert(rhsWords && "Performing remainder operation by zero ???");
1686 
1687   // Check the degenerate cases
1688   if (lhsWords == 0)
1689     // 0 % Y ===> 0
1690     return APInt(BitWidth, 0);
1691   if (rhsBits == 1)
1692     // X % 1 ===> 0
1693     return APInt(BitWidth, 0);
1694   if (lhsWords < rhsWords || this->ult(RHS))
1695     // X % Y ===> X, iff X < Y
1696     return *this;
1697   if (*this == RHS)
1698     // X % X == 0;
1699     return APInt(BitWidth, 0);
1700   if (lhsWords == 1)
1701     // All high words are zero, just use native remainder
1702     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1703 
1704   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1705   APInt Remainder(BitWidth, 0);
1706   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1707   return Remainder;
1708 }
1709 
1710 uint64_t APInt::urem(uint64_t RHS) const {
1711   assert(RHS != 0 && "Remainder by zero?");
1712 
1713   if (isSingleWord())
1714     return U.VAL % RHS;
1715 
1716   // Get some facts about the LHS
1717   unsigned lhsWords = getNumWords(getActiveBits());
1718 
1719   // Check the degenerate cases
1720   if (lhsWords == 0)
1721     // 0 % Y ===> 0
1722     return 0;
1723   if (RHS == 1)
1724     // X % 1 ===> 0
1725     return 0;
1726   if (this->ult(RHS))
1727     // X % Y ===> X, iff X < Y
1728     return getZExtValue();
1729   if (*this == RHS)
1730     // X % X == 0;
1731     return 0;
1732   if (lhsWords == 1)
1733     // All high words are zero, just use native remainder
1734     return U.pVal[0] % RHS;
1735 
1736   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1737   uint64_t Remainder;
1738   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1739   return Remainder;
1740 }
1741 
1742 APInt APInt::srem(const APInt &RHS) const {
1743   if (isNegative()) {
1744     if (RHS.isNegative())
1745       return -((-(*this)).urem(-RHS));
1746     return -((-(*this)).urem(RHS));
1747   }
1748   if (RHS.isNegative())
1749     return this->urem(-RHS);
1750   return this->urem(RHS);
1751 }
1752 
1753 int64_t APInt::srem(int64_t RHS) const {
1754   if (isNegative()) {
1755     if (RHS < 0)
1756       return -((-(*this)).urem(-RHS));
1757     return -((-(*this)).urem(RHS));
1758   }
1759   if (RHS < 0)
1760     return this->urem(-RHS);
1761   return this->urem(RHS);
1762 }
1763 
1764 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1765                     APInt &Quotient, APInt &Remainder) {
1766   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1767   unsigned BitWidth = LHS.BitWidth;
1768 
1769   // First, deal with the easy case
1770   if (LHS.isSingleWord()) {
1771     assert(RHS.U.VAL != 0 && "Divide by zero?");
1772     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1773     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1774     Quotient = APInt(BitWidth, QuotVal);
1775     Remainder = APInt(BitWidth, RemVal);
1776     return;
1777   }
1778 
1779   // Get some size facts about the dividend and divisor
1780   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1781   unsigned rhsBits  = RHS.getActiveBits();
1782   unsigned rhsWords = getNumWords(rhsBits);
1783   assert(rhsWords && "Performing divrem operation by zero ???");
1784 
1785   // Check the degenerate cases
1786   if (lhsWords == 0) {
1787     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1788     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1789     return;
1790   }
1791 
1792   if (rhsBits == 1) {
1793     Quotient = LHS;                   // X / 1 ===> X
1794     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1795   }
1796 
1797   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1798     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1799     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1800     return;
1801   }
1802 
1803   if (LHS == RHS) {
1804     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1805     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1806     return;
1807   }
1808 
1809   // Make sure there is enough space to hold the results.
1810   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1811   // change the size. This is necessary if Quotient or Remainder is aliased
1812   // with LHS or RHS.
1813   Quotient.reallocate(BitWidth);
1814   Remainder.reallocate(BitWidth);
1815 
1816   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1817     // There is only one word to consider so use the native versions.
1818     uint64_t lhsValue = LHS.U.pVal[0];
1819     uint64_t rhsValue = RHS.U.pVal[0];
1820     Quotient = lhsValue / rhsValue;
1821     Remainder = lhsValue % rhsValue;
1822     return;
1823   }
1824 
1825   // Okay, lets do it the long way
1826   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1827          Remainder.U.pVal);
1828   // Clear the rest of the Quotient and Remainder.
1829   std::memset(Quotient.U.pVal + lhsWords, 0,
1830               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1831   std::memset(Remainder.U.pVal + rhsWords, 0,
1832               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1833 }
1834 
1835 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1836                     uint64_t &Remainder) {
1837   assert(RHS != 0 && "Divide by zero?");
1838   unsigned BitWidth = LHS.BitWidth;
1839 
1840   // First, deal with the easy case
1841   if (LHS.isSingleWord()) {
1842     uint64_t QuotVal = LHS.U.VAL / RHS;
1843     Remainder = LHS.U.VAL % RHS;
1844     Quotient = APInt(BitWidth, QuotVal);
1845     return;
1846   }
1847 
1848   // Get some size facts about the dividend and divisor
1849   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1850 
1851   // Check the degenerate cases
1852   if (lhsWords == 0) {
1853     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1854     Remainder = 0;                    // 0 % Y ===> 0
1855     return;
1856   }
1857 
1858   if (RHS == 1) {
1859     Quotient = LHS;                   // X / 1 ===> X
1860     Remainder = 0;                    // X % 1 ===> 0
1861     return;
1862   }
1863 
1864   if (LHS.ult(RHS)) {
1865     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1866     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1867     return;
1868   }
1869 
1870   if (LHS == RHS) {
1871     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1872     Remainder = 0;                    // X % X ===> 0;
1873     return;
1874   }
1875 
1876   // Make sure there is enough space to hold the results.
1877   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1878   // change the size. This is necessary if Quotient is aliased with LHS.
1879   Quotient.reallocate(BitWidth);
1880 
1881   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1882     // There is only one word to consider so use the native versions.
1883     uint64_t lhsValue = LHS.U.pVal[0];
1884     Quotient = lhsValue / RHS;
1885     Remainder = lhsValue % RHS;
1886     return;
1887   }
1888 
1889   // Okay, lets do it the long way
1890   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1891   // Clear the rest of the Quotient.
1892   std::memset(Quotient.U.pVal + lhsWords, 0,
1893               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1894 }
1895 
1896 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1897                     APInt &Quotient, APInt &Remainder) {
1898   if (LHS.isNegative()) {
1899     if (RHS.isNegative())
1900       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1901     else {
1902       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1903       Quotient.negate();
1904     }
1905     Remainder.negate();
1906   } else if (RHS.isNegative()) {
1907     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1908     Quotient.negate();
1909   } else {
1910     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1911   }
1912 }
1913 
1914 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1915                     APInt &Quotient, int64_t &Remainder) {
1916   uint64_t R = Remainder;
1917   if (LHS.isNegative()) {
1918     if (RHS < 0)
1919       APInt::udivrem(-LHS, -RHS, Quotient, R);
1920     else {
1921       APInt::udivrem(-LHS, RHS, Quotient, R);
1922       Quotient.negate();
1923     }
1924     R = -R;
1925   } else if (RHS < 0) {
1926     APInt::udivrem(LHS, -RHS, Quotient, R);
1927     Quotient.negate();
1928   } else {
1929     APInt::udivrem(LHS, RHS, Quotient, R);
1930   }
1931   Remainder = R;
1932 }
1933 
1934 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1935   APInt Res = *this+RHS;
1936   Overflow = isNonNegative() == RHS.isNonNegative() &&
1937              Res.isNonNegative() != isNonNegative();
1938   return Res;
1939 }
1940 
1941 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1942   APInt Res = *this+RHS;
1943   Overflow = Res.ult(RHS);
1944   return Res;
1945 }
1946 
1947 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1948   APInt Res = *this - RHS;
1949   Overflow = isNonNegative() != RHS.isNonNegative() &&
1950              Res.isNonNegative() != isNonNegative();
1951   return Res;
1952 }
1953 
1954 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1955   APInt Res = *this-RHS;
1956   Overflow = Res.ugt(*this);
1957   return Res;
1958 }
1959 
1960 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1961   // MININT/-1  -->  overflow.
1962   Overflow = isMinSignedValue() && RHS.isAllOnes();
1963   return sdiv(RHS);
1964 }
1965 
1966 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1967   APInt Res = *this * RHS;
1968 
1969   if (RHS != 0)
1970     Overflow = Res.sdiv(RHS) != *this ||
1971                (isMinSignedValue() && RHS.isAllOnes());
1972   else
1973     Overflow = false;
1974   return Res;
1975 }
1976 
1977 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1978   if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1979     Overflow = true;
1980     return *this * RHS;
1981   }
1982 
1983   APInt Res = lshr(1) * RHS;
1984   Overflow = Res.isNegative();
1985   Res <<= 1;
1986   if ((*this)[0]) {
1987     Res += RHS;
1988     if (Res.ult(RHS))
1989       Overflow = true;
1990   }
1991   return Res;
1992 }
1993 
1994 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1995   return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1996 }
1997 
1998 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1999   Overflow = ShAmt >= getBitWidth();
2000   if (Overflow)
2001     return APInt(BitWidth, 0);
2002 
2003   if (isNonNegative()) // Don't allow sign change.
2004     Overflow = ShAmt >= countl_zero();
2005   else
2006     Overflow = ShAmt >= countl_one();
2007 
2008   return *this << ShAmt;
2009 }
2010 
2011 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2012   return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2013 }
2014 
2015 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
2016   Overflow = ShAmt >= getBitWidth();
2017   if (Overflow)
2018     return APInt(BitWidth, 0);
2019 
2020   Overflow = ShAmt > countl_zero();
2021 
2022   return *this << ShAmt;
2023 }
2024 
2025 APInt APInt::sadd_sat(const APInt &RHS) const {
2026   bool Overflow;
2027   APInt Res = sadd_ov(RHS, Overflow);
2028   if (!Overflow)
2029     return Res;
2030 
2031   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2032                       : APInt::getSignedMaxValue(BitWidth);
2033 }
2034 
2035 APInt APInt::uadd_sat(const APInt &RHS) const {
2036   bool Overflow;
2037   APInt Res = uadd_ov(RHS, Overflow);
2038   if (!Overflow)
2039     return Res;
2040 
2041   return APInt::getMaxValue(BitWidth);
2042 }
2043 
2044 APInt APInt::ssub_sat(const APInt &RHS) const {
2045   bool Overflow;
2046   APInt Res = ssub_ov(RHS, Overflow);
2047   if (!Overflow)
2048     return Res;
2049 
2050   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2051                       : APInt::getSignedMaxValue(BitWidth);
2052 }
2053 
2054 APInt APInt::usub_sat(const APInt &RHS) const {
2055   bool Overflow;
2056   APInt Res = usub_ov(RHS, Overflow);
2057   if (!Overflow)
2058     return Res;
2059 
2060   return APInt(BitWidth, 0);
2061 }
2062 
2063 APInt APInt::smul_sat(const APInt &RHS) const {
2064   bool Overflow;
2065   APInt Res = smul_ov(RHS, Overflow);
2066   if (!Overflow)
2067     return Res;
2068 
2069   // The result is negative if one and only one of inputs is negative.
2070   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2071 
2072   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2073                        : APInt::getSignedMaxValue(BitWidth);
2074 }
2075 
2076 APInt APInt::umul_sat(const APInt &RHS) const {
2077   bool Overflow;
2078   APInt Res = umul_ov(RHS, Overflow);
2079   if (!Overflow)
2080     return Res;
2081 
2082   return APInt::getMaxValue(BitWidth);
2083 }
2084 
2085 APInt APInt::sshl_sat(const APInt &RHS) const {
2086   return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2087 }
2088 
2089 APInt APInt::sshl_sat(unsigned RHS) const {
2090   bool Overflow;
2091   APInt Res = sshl_ov(RHS, Overflow);
2092   if (!Overflow)
2093     return Res;
2094 
2095   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2096                       : APInt::getSignedMaxValue(BitWidth);
2097 }
2098 
2099 APInt APInt::ushl_sat(const APInt &RHS) const {
2100   return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2101 }
2102 
2103 APInt APInt::ushl_sat(unsigned RHS) const {
2104   bool Overflow;
2105   APInt Res = ushl_ov(RHS, Overflow);
2106   if (!Overflow)
2107     return Res;
2108 
2109   return APInt::getMaxValue(BitWidth);
2110 }
2111 
2112 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2113   // Check our assumptions here
2114   assert(!str.empty() && "Invalid string length");
2115   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2116           radix == 36) &&
2117          "Radix should be 2, 8, 10, 16, or 36!");
2118 
2119   StringRef::iterator p = str.begin();
2120   size_t slen = str.size();
2121   bool isNeg = *p == '-';
2122   if (*p == '-' || *p == '+') {
2123     p++;
2124     slen--;
2125     assert(slen && "String is only a sign, needs a value.");
2126   }
2127   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2128   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2129   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2130   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2131          "Insufficient bit width");
2132 
2133   // Allocate memory if needed
2134   if (isSingleWord())
2135     U.VAL = 0;
2136   else
2137     U.pVal = getClearedMemory(getNumWords());
2138 
2139   // Figure out if we can shift instead of multiply
2140   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2141 
2142   // Enter digit traversal loop
2143   for (StringRef::iterator e = str.end(); p != e; ++p) {
2144     unsigned digit = getDigit(*p, radix);
2145     assert(digit < radix && "Invalid character in digit string");
2146 
2147     // Shift or multiply the value by the radix
2148     if (slen > 1) {
2149       if (shift)
2150         *this <<= shift;
2151       else
2152         *this *= radix;
2153     }
2154 
2155     // Add in the digit we just interpreted
2156     *this += digit;
2157   }
2158   // If its negative, put it in two's complement form
2159   if (isNeg)
2160     this->negate();
2161 }
2162 
2163 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2164                      bool formatAsCLiteral, bool UpperCase) const {
2165   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2166           Radix == 36) &&
2167          "Radix should be 2, 8, 10, 16, or 36!");
2168 
2169   const char *Prefix = "";
2170   if (formatAsCLiteral) {
2171     switch (Radix) {
2172       case 2:
2173         // Binary literals are a non-standard extension added in gcc 4.3:
2174         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2175         Prefix = "0b";
2176         break;
2177       case 8:
2178         Prefix = "0";
2179         break;
2180       case 10:
2181         break; // No prefix
2182       case 16:
2183         Prefix = "0x";
2184         break;
2185       default:
2186         llvm_unreachable("Invalid radix!");
2187     }
2188   }
2189 
2190   // First, check for a zero value and just short circuit the logic below.
2191   if (isZero()) {
2192     while (*Prefix) {
2193       Str.push_back(*Prefix);
2194       ++Prefix;
2195     };
2196     Str.push_back('0');
2197     return;
2198   }
2199 
2200   static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2201                                    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2202   const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2203 
2204   if (isSingleWord()) {
2205     char Buffer[65];
2206     char *BufPtr = std::end(Buffer);
2207 
2208     uint64_t N;
2209     if (!Signed) {
2210       N = getZExtValue();
2211     } else {
2212       int64_t I = getSExtValue();
2213       if (I >= 0) {
2214         N = I;
2215       } else {
2216         Str.push_back('-');
2217         N = -(uint64_t)I;
2218       }
2219     }
2220 
2221     while (*Prefix) {
2222       Str.push_back(*Prefix);
2223       ++Prefix;
2224     };
2225 
2226     while (N) {
2227       *--BufPtr = Digits[N % Radix];
2228       N /= Radix;
2229     }
2230     Str.append(BufPtr, std::end(Buffer));
2231     return;
2232   }
2233 
2234   APInt Tmp(*this);
2235 
2236   if (Signed && isNegative()) {
2237     // They want to print the signed version and it is a negative value
2238     // Flip the bits and add one to turn it into the equivalent positive
2239     // value and put a '-' in the result.
2240     Tmp.negate();
2241     Str.push_back('-');
2242   }
2243 
2244   while (*Prefix) {
2245     Str.push_back(*Prefix);
2246     ++Prefix;
2247   };
2248 
2249   // We insert the digits backward, then reverse them to get the right order.
2250   unsigned StartDig = Str.size();
2251 
2252   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2253   // because the number of bits per digit (1, 3 and 4 respectively) divides
2254   // equally.  We just shift until the value is zero.
2255   if (Radix == 2 || Radix == 8 || Radix == 16) {
2256     // Just shift tmp right for each digit width until it becomes zero
2257     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2258     unsigned MaskAmt = Radix - 1;
2259 
2260     while (Tmp.getBoolValue()) {
2261       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2262       Str.push_back(Digits[Digit]);
2263       Tmp.lshrInPlace(ShiftAmt);
2264     }
2265   } else {
2266     while (Tmp.getBoolValue()) {
2267       uint64_t Digit;
2268       udivrem(Tmp, Radix, Tmp, Digit);
2269       assert(Digit < Radix && "divide failed");
2270       Str.push_back(Digits[Digit]);
2271     }
2272   }
2273 
2274   // Reverse the digits before returning.
2275   std::reverse(Str.begin()+StartDig, Str.end());
2276 }
2277 
2278 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2279 LLVM_DUMP_METHOD void APInt::dump() const {
2280   SmallString<40> S, U;
2281   this->toStringUnsigned(U);
2282   this->toStringSigned(S);
2283   dbgs() << "APInt(" << BitWidth << "b, "
2284          << U << "u " << S << "s)\n";
2285 }
2286 #endif
2287 
2288 void APInt::print(raw_ostream &OS, bool isSigned) const {
2289   SmallString<40> S;
2290   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2291   OS << S;
2292 }
2293 
2294 // This implements a variety of operations on a representation of
2295 // arbitrary precision, two's-complement, bignum integer values.
2296 
2297 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2298 // and unrestricting assumption.
2299 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2300               "Part width must be divisible by 2!");
2301 
2302 // Returns the integer part with the least significant BITS set.
2303 // BITS cannot be zero.
2304 static inline APInt::WordType lowBitMask(unsigned bits) {
2305   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2306   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2307 }
2308 
2309 /// Returns the value of the lower half of PART.
2310 static inline APInt::WordType lowHalf(APInt::WordType part) {
2311   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2312 }
2313 
2314 /// Returns the value of the upper half of PART.
2315 static inline APInt::WordType highHalf(APInt::WordType part) {
2316   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2317 }
2318 
2319 /// Sets the least significant part of a bignum to the input value, and zeroes
2320 /// out higher parts.
2321 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2322   assert(parts > 0);
2323   dst[0] = part;
2324   for (unsigned i = 1; i < parts; i++)
2325     dst[i] = 0;
2326 }
2327 
2328 /// Assign one bignum to another.
2329 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2330   for (unsigned i = 0; i < parts; i++)
2331     dst[i] = src[i];
2332 }
2333 
2334 /// Returns true if a bignum is zero, false otherwise.
2335 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2336   for (unsigned i = 0; i < parts; i++)
2337     if (src[i])
2338       return false;
2339 
2340   return true;
2341 }
2342 
2343 /// Extract the given bit of a bignum; returns 0 or 1.
2344 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2345   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2346 }
2347 
2348 /// Set the given bit of a bignum.
2349 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2350   parts[whichWord(bit)] |= maskBit(bit);
2351 }
2352 
2353 /// Clears the given bit of a bignum.
2354 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2355   parts[whichWord(bit)] &= ~maskBit(bit);
2356 }
2357 
2358 /// Returns the bit number of the least significant set bit of a number.  If the
2359 /// input number has no bits set UINT_MAX is returned.
2360 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2361   for (unsigned i = 0; i < n; i++) {
2362     if (parts[i] != 0) {
2363       unsigned lsb = llvm::countr_zero(parts[i]);
2364       return lsb + i * APINT_BITS_PER_WORD;
2365     }
2366   }
2367 
2368   return UINT_MAX;
2369 }
2370 
2371 /// Returns the bit number of the most significant set bit of a number.
2372 /// If the input number has no bits set UINT_MAX is returned.
2373 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2374   do {
2375     --n;
2376 
2377     if (parts[n] != 0) {
2378       static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2379       unsigned msb = llvm::Log2_64(parts[n]);
2380 
2381       return msb + n * APINT_BITS_PER_WORD;
2382     }
2383   } while (n);
2384 
2385   return UINT_MAX;
2386 }
2387 
2388 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2389 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2390 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2391 /// */
2392 void
2393 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2394                  unsigned srcBits, unsigned srcLSB) {
2395   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2396   assert(dstParts <= dstCount);
2397 
2398   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2399   tcAssign(dst, src + firstSrcPart, dstParts);
2400 
2401   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2402   tcShiftRight(dst, dstParts, shift);
2403 
2404   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2405   // in DST.  If this is less that srcBits, append the rest, else
2406   // clear the high bits.
2407   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2408   if (n < srcBits) {
2409     WordType mask = lowBitMask (srcBits - n);
2410     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2411                           << n % APINT_BITS_PER_WORD);
2412   } else if (n > srcBits) {
2413     if (srcBits % APINT_BITS_PER_WORD)
2414       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2415   }
2416 
2417   // Clear high parts.
2418   while (dstParts < dstCount)
2419     dst[dstParts++] = 0;
2420 }
2421 
2422 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2423 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2424                              WordType c, unsigned parts) {
2425   assert(c <= 1);
2426 
2427   for (unsigned i = 0; i < parts; i++) {
2428     WordType l = dst[i];
2429     if (c) {
2430       dst[i] += rhs[i] + 1;
2431       c = (dst[i] <= l);
2432     } else {
2433       dst[i] += rhs[i];
2434       c = (dst[i] < l);
2435     }
2436   }
2437 
2438   return c;
2439 }
2440 
2441 /// This function adds a single "word" integer, src, to the multiple
2442 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2443 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2444 /// @returns the carry of the addition.
2445 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2446                                  unsigned parts) {
2447   for (unsigned i = 0; i < parts; ++i) {
2448     dst[i] += src;
2449     if (dst[i] >= src)
2450       return 0; // No need to carry so exit early.
2451     src = 1; // Carry one to next digit.
2452   }
2453 
2454   return 1;
2455 }
2456 
2457 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2458 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2459                                   WordType c, unsigned parts) {
2460   assert(c <= 1);
2461 
2462   for (unsigned i = 0; i < parts; i++) {
2463     WordType l = dst[i];
2464     if (c) {
2465       dst[i] -= rhs[i] + 1;
2466       c = (dst[i] >= l);
2467     } else {
2468       dst[i] -= rhs[i];
2469       c = (dst[i] > l);
2470     }
2471   }
2472 
2473   return c;
2474 }
2475 
2476 /// This function subtracts a single "word" (64-bit word), src, from
2477 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2478 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2479 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2480 /// exhausted. In other words, if src > dst then this function returns 1,
2481 /// otherwise 0.
2482 /// @returns the borrow out of the subtraction
2483 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2484                                       unsigned parts) {
2485   for (unsigned i = 0; i < parts; ++i) {
2486     WordType Dst = dst[i];
2487     dst[i] -= src;
2488     if (src <= Dst)
2489       return 0; // No need to borrow so exit early.
2490     src = 1; // We have to "borrow 1" from next "word"
2491   }
2492 
2493   return 1;
2494 }
2495 
2496 /// Negate a bignum in-place.
2497 void APInt::tcNegate(WordType *dst, unsigned parts) {
2498   tcComplement(dst, parts);
2499   tcIncrement(dst, parts);
2500 }
2501 
2502 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2503 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2504 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2505 /// they must start at the same point, i.e. DST == SRC.
2506 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2507 /// returned.  Otherwise DST is filled with the least significant
2508 /// DSTPARTS parts of the result, and if all of the omitted higher
2509 /// parts were zero return zero, otherwise overflow occurred and
2510 /// return one.
2511 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2512                           WordType multiplier, WordType carry,
2513                           unsigned srcParts, unsigned dstParts,
2514                           bool add) {
2515   // Otherwise our writes of DST kill our later reads of SRC.
2516   assert(dst <= src || dst >= src + srcParts);
2517   assert(dstParts <= srcParts + 1);
2518 
2519   // N loops; minimum of dstParts and srcParts.
2520   unsigned n = std::min(dstParts, srcParts);
2521 
2522   for (unsigned i = 0; i < n; i++) {
2523     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2524     // This cannot overflow, because:
2525     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2526     // which is less than n^2.
2527     WordType srcPart = src[i];
2528     WordType low, mid, high;
2529     if (multiplier == 0 || srcPart == 0) {
2530       low = carry;
2531       high = 0;
2532     } else {
2533       low = lowHalf(srcPart) * lowHalf(multiplier);
2534       high = highHalf(srcPart) * highHalf(multiplier);
2535 
2536       mid = lowHalf(srcPart) * highHalf(multiplier);
2537       high += highHalf(mid);
2538       mid <<= APINT_BITS_PER_WORD / 2;
2539       if (low + mid < low)
2540         high++;
2541       low += mid;
2542 
2543       mid = highHalf(srcPart) * lowHalf(multiplier);
2544       high += highHalf(mid);
2545       mid <<= APINT_BITS_PER_WORD / 2;
2546       if (low + mid < low)
2547         high++;
2548       low += mid;
2549 
2550       // Now add carry.
2551       if (low + carry < low)
2552         high++;
2553       low += carry;
2554     }
2555 
2556     if (add) {
2557       // And now DST[i], and store the new low part there.
2558       if (low + dst[i] < low)
2559         high++;
2560       dst[i] += low;
2561     } else
2562       dst[i] = low;
2563 
2564     carry = high;
2565   }
2566 
2567   if (srcParts < dstParts) {
2568     // Full multiplication, there is no overflow.
2569     assert(srcParts + 1 == dstParts);
2570     dst[srcParts] = carry;
2571     return 0;
2572   }
2573 
2574   // We overflowed if there is carry.
2575   if (carry)
2576     return 1;
2577 
2578   // We would overflow if any significant unwritten parts would be
2579   // non-zero.  This is true if any remaining src parts are non-zero
2580   // and the multiplier is non-zero.
2581   if (multiplier)
2582     for (unsigned i = dstParts; i < srcParts; i++)
2583       if (src[i])
2584         return 1;
2585 
2586   // We fitted in the narrow destination.
2587   return 0;
2588 }
2589 
2590 /// DST = LHS * RHS, where DST has the same width as the operands and
2591 /// is filled with the least significant parts of the result.  Returns
2592 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2593 /// from both operands.
2594 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2595                       const WordType *rhs, unsigned parts) {
2596   assert(dst != lhs && dst != rhs);
2597 
2598   int overflow = 0;
2599   tcSet(dst, 0, parts);
2600 
2601   for (unsigned i = 0; i < parts; i++)
2602     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2603                                parts - i, true);
2604 
2605   return overflow;
2606 }
2607 
2608 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2609 /// operands. No overflow occurs. DST must be disjoint from both operands.
2610 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2611                            const WordType *rhs, unsigned lhsParts,
2612                            unsigned rhsParts) {
2613   // Put the narrower number on the LHS for less loops below.
2614   if (lhsParts > rhsParts)
2615     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2616 
2617   assert(dst != lhs && dst != rhs);
2618 
2619   tcSet(dst, 0, rhsParts);
2620 
2621   for (unsigned i = 0; i < lhsParts; i++)
2622     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2623 }
2624 
2625 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2626 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2627 // set REMAINDER to the remainder, return zero.  i.e.
2628 //
2629 //   OLD_LHS = RHS * LHS + REMAINDER
2630 //
2631 // SCRATCH is a bignum of the same size as the operands and result for
2632 // use by the routine; its contents need not be initialized and are
2633 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2634 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2635                     WordType *remainder, WordType *srhs,
2636                     unsigned parts) {
2637   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2638 
2639   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2640   if (shiftCount == 0)
2641     return true;
2642 
2643   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2644   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2645   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2646 
2647   tcAssign(srhs, rhs, parts);
2648   tcShiftLeft(srhs, parts, shiftCount);
2649   tcAssign(remainder, lhs, parts);
2650   tcSet(lhs, 0, parts);
2651 
2652   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2653   // total.
2654   for (;;) {
2655     int compare = tcCompare(remainder, srhs, parts);
2656     if (compare >= 0) {
2657       tcSubtract(remainder, srhs, 0, parts);
2658       lhs[n] |= mask;
2659     }
2660 
2661     if (shiftCount == 0)
2662       break;
2663     shiftCount--;
2664     tcShiftRight(srhs, parts, 1);
2665     if ((mask >>= 1) == 0) {
2666       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2667       n--;
2668     }
2669   }
2670 
2671   return false;
2672 }
2673 
2674 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2675 /// no restrictions on Count.
2676 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2677   // Don't bother performing a no-op shift.
2678   if (!Count)
2679     return;
2680 
2681   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2682   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2683   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2684 
2685   // Fastpath for moving by whole words.
2686   if (BitShift == 0) {
2687     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2688   } else {
2689     while (Words-- > WordShift) {
2690       Dst[Words] = Dst[Words - WordShift] << BitShift;
2691       if (Words > WordShift)
2692         Dst[Words] |=
2693           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2694     }
2695   }
2696 
2697   // Fill in the remainder with 0s.
2698   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2699 }
2700 
2701 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2702 /// are no restrictions on Count.
2703 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2704   // Don't bother performing a no-op shift.
2705   if (!Count)
2706     return;
2707 
2708   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2709   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2710   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2711 
2712   unsigned WordsToMove = Words - WordShift;
2713   // Fastpath for moving by whole words.
2714   if (BitShift == 0) {
2715     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2716   } else {
2717     for (unsigned i = 0; i != WordsToMove; ++i) {
2718       Dst[i] = Dst[i + WordShift] >> BitShift;
2719       if (i + 1 != WordsToMove)
2720         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2721     }
2722   }
2723 
2724   // Fill in the remainder with 0s.
2725   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2726 }
2727 
2728 // Comparison (unsigned) of two bignums.
2729 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2730                      unsigned parts) {
2731   while (parts) {
2732     parts--;
2733     if (lhs[parts] != rhs[parts])
2734       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2735   }
2736 
2737   return 0;
2738 }
2739 
2740 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2741                                    APInt::Rounding RM) {
2742   // Currently udivrem always rounds down.
2743   switch (RM) {
2744   case APInt::Rounding::DOWN:
2745   case APInt::Rounding::TOWARD_ZERO:
2746     return A.udiv(B);
2747   case APInt::Rounding::UP: {
2748     APInt Quo, Rem;
2749     APInt::udivrem(A, B, Quo, Rem);
2750     if (Rem.isZero())
2751       return Quo;
2752     return Quo + 1;
2753   }
2754   }
2755   llvm_unreachable("Unknown APInt::Rounding enum");
2756 }
2757 
2758 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2759                                    APInt::Rounding RM) {
2760   switch (RM) {
2761   case APInt::Rounding::DOWN:
2762   case APInt::Rounding::UP: {
2763     APInt Quo, Rem;
2764     APInt::sdivrem(A, B, Quo, Rem);
2765     if (Rem.isZero())
2766       return Quo;
2767     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2768     // We want to check whether the non-integer part of the mathematical value
2769     // is negative or not. If the non-integer part is negative, we need to round
2770     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2771     // already rounded down.
2772     if (RM == APInt::Rounding::DOWN) {
2773       if (Rem.isNegative() != B.isNegative())
2774         return Quo - 1;
2775       return Quo;
2776     }
2777     if (Rem.isNegative() != B.isNegative())
2778       return Quo;
2779     return Quo + 1;
2780   }
2781   // Currently sdiv rounds towards zero.
2782   case APInt::Rounding::TOWARD_ZERO:
2783     return A.sdiv(B);
2784   }
2785   llvm_unreachable("Unknown APInt::Rounding enum");
2786 }
2787 
2788 std::optional<APInt>
2789 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2790                                            unsigned RangeWidth) {
2791   unsigned CoeffWidth = A.getBitWidth();
2792   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2793   assert(RangeWidth <= CoeffWidth &&
2794          "Value range width should be less than coefficient width");
2795   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2796 
2797   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2798                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2799 
2800   // Identify 0 as a (non)solution immediately.
2801   if (C.sextOrTrunc(RangeWidth).isZero()) {
2802     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2803     return APInt(CoeffWidth, 0);
2804   }
2805 
2806   // The result of APInt arithmetic has the same bit width as the operands,
2807   // so it can actually lose high bits. A product of two n-bit integers needs
2808   // 2n-1 bits to represent the full value.
2809   // The operation done below (on quadratic coefficients) that can produce
2810   // the largest value is the evaluation of the equation during bisection,
2811   // which needs 3 times the bitwidth of the coefficient, so the total number
2812   // of required bits is 3n.
2813   //
2814   // The purpose of this extension is to simulate the set Z of all integers,
2815   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2816   // and negative numbers (not so much in a modulo arithmetic). The method
2817   // used to solve the equation is based on the standard formula for real
2818   // numbers, and uses the concepts of "positive" and "negative" with their
2819   // usual meanings.
2820   CoeffWidth *= 3;
2821   A = A.sext(CoeffWidth);
2822   B = B.sext(CoeffWidth);
2823   C = C.sext(CoeffWidth);
2824 
2825   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2826   // the bit width has increased.
2827   if (A.isNegative()) {
2828     A.negate();
2829     B.negate();
2830     C.negate();
2831   }
2832 
2833   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2834   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2835   // and R = 2^BitWidth.
2836   // Since we're trying not only to find exact solutions, but also values
2837   // that "wrap around", such a set will always have a solution, i.e. an x
2838   // that satisfies at least one of the equations, or such that |q(x)|
2839   // exceeds kR, while |q(x-1)| for the same k does not.
2840   //
2841   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2842   // positive solution n (in the above sense), and also such that the n
2843   // will be the least among all solutions corresponding to k = 0, 1, ...
2844   // (more precisely, the least element in the set
2845   //   { n(k) | k is such that a solution n(k) exists }).
2846   //
2847   // Consider the parabola (over real numbers) that corresponds to the
2848   // quadratic equation. Since A > 0, the arms of the parabola will point
2849   // up. Picking different values of k will shift it up and down by R.
2850   //
2851   // We want to shift the parabola in such a way as to reduce the problem
2852   // of solving q(x) = kR to solving shifted_q(x) = 0.
2853   // (The interesting solutions are the ceilings of the real number
2854   // solutions.)
2855   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2856   APInt TwoA = 2 * A;
2857   APInt SqrB = B * B;
2858   bool PickLow;
2859 
2860   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2861     assert(A.isStrictlyPositive());
2862     APInt T = V.abs().urem(A);
2863     if (T.isZero())
2864       return V;
2865     return V.isNegative() ? V+T : V+(A-T);
2866   };
2867 
2868   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2869   // iff B is positive.
2870   if (B.isNonNegative()) {
2871     // If B >= 0, the vertex it at a negative location (or at 0), so in
2872     // order to have a non-negative solution we need to pick k that makes
2873     // C-kR negative. To satisfy all the requirements for the solution
2874     // that we are looking for, it needs to be closest to 0 of all k.
2875     C = C.srem(R);
2876     if (C.isStrictlyPositive())
2877       C -= R;
2878     // Pick the greater solution.
2879     PickLow = false;
2880   } else {
2881     // If B < 0, the vertex is at a positive location. For any solution
2882     // to exist, the discriminant must be non-negative. This means that
2883     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2884     // lower bound on values of k: kR >= C - B^2/4A.
2885     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2886     // Round LowkR up (towards +inf) to the nearest kR.
2887     LowkR = RoundUp(LowkR, R);
2888 
2889     // If there exists k meeting the condition above, and such that
2890     // C-kR > 0, there will be two positive real number solutions of
2891     // q(x) = kR. Out of all such values of k, pick the one that makes
2892     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2893     // In other words, find maximum k such that LowkR <= kR < C.
2894     if (C.sgt(LowkR)) {
2895       // If LowkR < C, then such a k is guaranteed to exist because
2896       // LowkR itself is a multiple of R.
2897       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2898       // Pick the smaller solution.
2899       PickLow = true;
2900     } else {
2901       // If C-kR < 0 for all potential k's, it means that one solution
2902       // will be negative, while the other will be positive. The positive
2903       // solution will shift towards 0 if the parabola is moved up.
2904       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2905       // to 0, or in other words, out of all parabolas that have solutions,
2906       // pick the one that is the farthest "up").
2907       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2908       C -= LowkR;
2909       // Pick the greater solution.
2910       PickLow = false;
2911     }
2912   }
2913 
2914   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2915                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2916 
2917   APInt D = SqrB - 4*A*C;
2918   assert(D.isNonNegative() && "Negative discriminant");
2919   APInt SQ = D.sqrt();
2920 
2921   APInt Q = SQ * SQ;
2922   bool InexactSQ = Q != D;
2923   // The calculated SQ may actually be greater than the exact (non-integer)
2924   // value. If that's the case, decrement SQ to get a value that is lower.
2925   if (Q.sgt(D))
2926     SQ -= 1;
2927 
2928   APInt X;
2929   APInt Rem;
2930 
2931   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2932   // When using the quadratic formula directly, the calculated low root
2933   // may be greater than the exact one, since we would be subtracting SQ.
2934   // To make sure that the calculated root is not greater than the exact
2935   // one, subtract SQ+1 when calculating the low root (for inexact value
2936   // of SQ).
2937   if (PickLow)
2938     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2939   else
2940     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2941 
2942   // The updated coefficients should be such that the (exact) solution is
2943   // positive. Since APInt division rounds towards 0, the calculated one
2944   // can be 0, but cannot be negative.
2945   assert(X.isNonNegative() && "Solution should be non-negative");
2946 
2947   if (!InexactSQ && Rem.isZero()) {
2948     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2949     return X;
2950   }
2951 
2952   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2953   // The exact value of the square root of D should be between SQ and SQ+1.
2954   // This implies that the solution should be between that corresponding to
2955   // SQ (i.e. X) and that corresponding to SQ+1.
2956   //
2957   // The calculated X cannot be greater than the exact (real) solution.
2958   // Actually it must be strictly less than the exact solution, while
2959   // X+1 will be greater than or equal to it.
2960 
2961   APInt VX = (A*X + B)*X + C;
2962   APInt VY = VX + TwoA*X + A + B;
2963   bool SignChange =
2964       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2965   // If the sign did not change between X and X+1, X is not a valid solution.
2966   // This could happen when the actual (exact) roots don't have an integer
2967   // between them, so they would both be contained between X and X+1.
2968   if (!SignChange) {
2969     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2970     return std::nullopt;
2971   }
2972 
2973   X += 1;
2974   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2975   return X;
2976 }
2977 
2978 std::optional<unsigned>
2979 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2980   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2981   if (A == B)
2982     return std::nullopt;
2983   return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2984 }
2985 
2986 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2987                                    bool MatchAllBits) {
2988   unsigned OldBitWidth = A.getBitWidth();
2989   assert((((OldBitWidth % NewBitWidth) == 0) ||
2990           ((NewBitWidth % OldBitWidth) == 0)) &&
2991          "One size should be a multiple of the other one. "
2992          "Can't do fractional scaling.");
2993 
2994   // Check for matching bitwidths.
2995   if (OldBitWidth == NewBitWidth)
2996     return A;
2997 
2998   APInt NewA = APInt::getZero(NewBitWidth);
2999 
3000   // Check for null input.
3001   if (A.isZero())
3002     return NewA;
3003 
3004   if (NewBitWidth > OldBitWidth) {
3005     // Repeat bits.
3006     unsigned Scale = NewBitWidth / OldBitWidth;
3007     for (unsigned i = 0; i != OldBitWidth; ++i)
3008       if (A[i])
3009         NewA.setBits(i * Scale, (i + 1) * Scale);
3010   } else {
3011     unsigned Scale = OldBitWidth / NewBitWidth;
3012     for (unsigned i = 0; i != NewBitWidth; ++i) {
3013       if (MatchAllBits) {
3014         if (A.extractBits(Scale, i * Scale).isAllOnes())
3015           NewA.setBit(i);
3016       } else {
3017         if (!A.extractBits(Scale, i * Scale).isZero())
3018           NewA.setBit(i);
3019       }
3020     }
3021   }
3022 
3023   return NewA;
3024 }
3025 
3026 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3027 /// with the integer held in IntVal.
3028 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3029                             unsigned StoreBytes) {
3030   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3031   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3032 
3033   if (sys::IsLittleEndianHost) {
3034     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3035     // destination from LSB to MSB: Do a straight copy.
3036     memcpy(Dst, Src, StoreBytes);
3037   } else {
3038     // Big-endian host - the source is an array of 64 bit words ordered from
3039     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3040     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3041     while (StoreBytes > sizeof(uint64_t)) {
3042       StoreBytes -= sizeof(uint64_t);
3043       // May not be aligned so use memcpy.
3044       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3045       Src += sizeof(uint64_t);
3046     }
3047 
3048     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3049   }
3050 }
3051 
3052 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3053 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3054 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3055                              unsigned LoadBytes) {
3056   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3057   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3058                    const_cast<uint64_t *>(IntVal.getRawData()));
3059 
3060   if (sys::IsLittleEndianHost)
3061     // Little-endian host - the destination must be ordered from LSB to MSB.
3062     // The source is ordered from LSB to MSB: Do a straight copy.
3063     memcpy(Dst, Src, LoadBytes);
3064   else {
3065     // Big-endian - the destination is an array of 64 bit words ordered from
3066     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3067     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3068     // a word.
3069     while (LoadBytes > sizeof(uint64_t)) {
3070       LoadBytes -= sizeof(uint64_t);
3071       // May not be aligned so use memcpy.
3072       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3073       Dst += sizeof(uint64_t);
3074     }
3075 
3076     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3077   }
3078 }
3079