1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/bit.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/Support/Alignment.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <cmath> 28 #include <optional> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "apint" 33 34 /// A utility function for allocating memory, checking for allocation failures, 35 /// and ensuring the contents are zeroed. 36 inline static uint64_t* getClearedMemory(unsigned numWords) { 37 uint64_t *result = new uint64_t[numWords]; 38 memset(result, 0, numWords * sizeof(uint64_t)); 39 return result; 40 } 41 42 /// A utility function for allocating memory and checking for allocation 43 /// failure. The content is not zeroed. 44 inline static uint64_t* getMemory(unsigned numWords) { 45 return new uint64_t[numWords]; 46 } 47 48 /// A utility function that converts a character to a digit. 49 inline static unsigned getDigit(char cdigit, uint8_t radix) { 50 unsigned r; 51 52 if (radix == 16 || radix == 36) { 53 r = cdigit - '0'; 54 if (r <= 9) 55 return r; 56 57 r = cdigit - 'A'; 58 if (r <= radix - 11U) 59 return r + 10; 60 61 r = cdigit - 'a'; 62 if (r <= radix - 11U) 63 return r + 10; 64 65 radix = 10; 66 } 67 68 r = cdigit - '0'; 69 if (r < radix) 70 return r; 71 72 return UINT_MAX; 73 } 74 75 76 void APInt::initSlowCase(uint64_t val, bool isSigned) { 77 U.pVal = getClearedMemory(getNumWords()); 78 U.pVal[0] = val; 79 if (isSigned && int64_t(val) < 0) 80 for (unsigned i = 1; i < getNumWords(); ++i) 81 U.pVal[i] = WORDTYPE_MAX; 82 clearUnusedBits(); 83 } 84 85 void APInt::initSlowCase(const APInt& that) { 86 U.pVal = getMemory(getNumWords()); 87 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 88 } 89 90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 91 assert(bigVal.data() && "Null pointer detected!"); 92 if (isSingleWord()) 93 U.VAL = bigVal[0]; 94 else { 95 // Get memory, cleared to 0 96 U.pVal = getClearedMemory(getNumWords()); 97 // Calculate the number of words to copy 98 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 99 // Copy the words from bigVal to pVal 100 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 101 } 102 // Make sure unused high bits are cleared 103 clearUnusedBits(); 104 } 105 106 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 107 initFromArray(bigVal); 108 } 109 110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 111 : BitWidth(numBits) { 112 initFromArray(ArrayRef(bigVal, numWords)); 113 } 114 115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 116 : BitWidth(numbits) { 117 fromString(numbits, Str, radix); 118 } 119 120 void APInt::reallocate(unsigned NewBitWidth) { 121 // If the number of words is the same we can just change the width and stop. 122 if (getNumWords() == getNumWords(NewBitWidth)) { 123 BitWidth = NewBitWidth; 124 return; 125 } 126 127 // If we have an allocation, delete it. 128 if (!isSingleWord()) 129 delete [] U.pVal; 130 131 // Update BitWidth. 132 BitWidth = NewBitWidth; 133 134 // If we are supposed to have an allocation, create it. 135 if (!isSingleWord()) 136 U.pVal = getMemory(getNumWords()); 137 } 138 139 void APInt::assignSlowCase(const APInt &RHS) { 140 // Don't do anything for X = X 141 if (this == &RHS) 142 return; 143 144 // Adjust the bit width and handle allocations as necessary. 145 reallocate(RHS.getBitWidth()); 146 147 // Copy the data. 148 if (isSingleWord()) 149 U.VAL = RHS.U.VAL; 150 else 151 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 152 } 153 154 /// This method 'profiles' an APInt for use with FoldingSet. 155 void APInt::Profile(FoldingSetNodeID& ID) const { 156 ID.AddInteger(BitWidth); 157 158 if (isSingleWord()) { 159 ID.AddInteger(U.VAL); 160 return; 161 } 162 163 unsigned NumWords = getNumWords(); 164 for (unsigned i = 0; i < NumWords; ++i) 165 ID.AddInteger(U.pVal[i]); 166 } 167 168 bool APInt::isAligned(Align A) const { 169 if (isZero()) 170 return true; 171 const unsigned TrailingZeroes = countr_zero(); 172 const unsigned MinimumTrailingZeroes = Log2(A); 173 return TrailingZeroes >= MinimumTrailingZeroes; 174 } 175 176 /// Prefix increment operator. Increments the APInt by one. 177 APInt& APInt::operator++() { 178 if (isSingleWord()) 179 ++U.VAL; 180 else 181 tcIncrement(U.pVal, getNumWords()); 182 return clearUnusedBits(); 183 } 184 185 /// Prefix decrement operator. Decrements the APInt by one. 186 APInt& APInt::operator--() { 187 if (isSingleWord()) 188 --U.VAL; 189 else 190 tcDecrement(U.pVal, getNumWords()); 191 return clearUnusedBits(); 192 } 193 194 /// Adds the RHS APInt to this APInt. 195 /// @returns this, after addition of RHS. 196 /// Addition assignment operator. 197 APInt& APInt::operator+=(const APInt& RHS) { 198 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 199 if (isSingleWord()) 200 U.VAL += RHS.U.VAL; 201 else 202 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 203 return clearUnusedBits(); 204 } 205 206 APInt& APInt::operator+=(uint64_t RHS) { 207 if (isSingleWord()) 208 U.VAL += RHS; 209 else 210 tcAddPart(U.pVal, RHS, getNumWords()); 211 return clearUnusedBits(); 212 } 213 214 /// Subtracts the RHS APInt from this APInt 215 /// @returns this, after subtraction 216 /// Subtraction assignment operator. 217 APInt& APInt::operator-=(const APInt& RHS) { 218 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 219 if (isSingleWord()) 220 U.VAL -= RHS.U.VAL; 221 else 222 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 223 return clearUnusedBits(); 224 } 225 226 APInt& APInt::operator-=(uint64_t RHS) { 227 if (isSingleWord()) 228 U.VAL -= RHS; 229 else 230 tcSubtractPart(U.pVal, RHS, getNumWords()); 231 return clearUnusedBits(); 232 } 233 234 APInt APInt::operator*(const APInt& RHS) const { 235 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 236 if (isSingleWord()) 237 return APInt(BitWidth, U.VAL * RHS.U.VAL); 238 239 APInt Result(getMemory(getNumWords()), getBitWidth()); 240 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 241 Result.clearUnusedBits(); 242 return Result; 243 } 244 245 void APInt::andAssignSlowCase(const APInt &RHS) { 246 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 247 for (size_t i = 0, e = getNumWords(); i != e; ++i) 248 dst[i] &= rhs[i]; 249 } 250 251 void APInt::orAssignSlowCase(const APInt &RHS) { 252 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 253 for (size_t i = 0, e = getNumWords(); i != e; ++i) 254 dst[i] |= rhs[i]; 255 } 256 257 void APInt::xorAssignSlowCase(const APInt &RHS) { 258 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 259 for (size_t i = 0, e = getNumWords(); i != e; ++i) 260 dst[i] ^= rhs[i]; 261 } 262 263 APInt &APInt::operator*=(const APInt &RHS) { 264 *this = *this * RHS; 265 return *this; 266 } 267 268 APInt& APInt::operator*=(uint64_t RHS) { 269 if (isSingleWord()) { 270 U.VAL *= RHS; 271 } else { 272 unsigned NumWords = getNumWords(); 273 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 274 } 275 return clearUnusedBits(); 276 } 277 278 bool APInt::equalSlowCase(const APInt &RHS) const { 279 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 280 } 281 282 int APInt::compare(const APInt& RHS) const { 283 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 284 if (isSingleWord()) 285 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 286 287 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 288 } 289 290 int APInt::compareSigned(const APInt& RHS) const { 291 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 292 if (isSingleWord()) { 293 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 294 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 295 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 296 } 297 298 bool lhsNeg = isNegative(); 299 bool rhsNeg = RHS.isNegative(); 300 301 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 302 if (lhsNeg != rhsNeg) 303 return lhsNeg ? -1 : 1; 304 305 // Otherwise we can just use an unsigned comparison, because even negative 306 // numbers compare correctly this way if both have the same signed-ness. 307 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 308 } 309 310 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 311 unsigned loWord = whichWord(loBit); 312 unsigned hiWord = whichWord(hiBit); 313 314 // Create an initial mask for the low word with zeros below loBit. 315 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 316 317 // If hiBit is not aligned, we need a high mask. 318 unsigned hiShiftAmt = whichBit(hiBit); 319 if (hiShiftAmt != 0) { 320 // Create a high mask with zeros above hiBit. 321 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 322 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 323 // set the bits in hiWord. 324 if (hiWord == loWord) 325 loMask &= hiMask; 326 else 327 U.pVal[hiWord] |= hiMask; 328 } 329 // Apply the mask to the low word. 330 U.pVal[loWord] |= loMask; 331 332 // Fill any words between loWord and hiWord with all ones. 333 for (unsigned word = loWord + 1; word < hiWord; ++word) 334 U.pVal[word] = WORDTYPE_MAX; 335 } 336 337 // Complement a bignum in-place. 338 static void tcComplement(APInt::WordType *dst, unsigned parts) { 339 for (unsigned i = 0; i < parts; i++) 340 dst[i] = ~dst[i]; 341 } 342 343 /// Toggle every bit to its opposite value. 344 void APInt::flipAllBitsSlowCase() { 345 tcComplement(U.pVal, getNumWords()); 346 clearUnusedBits(); 347 } 348 349 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 350 /// equivalent to: 351 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) 352 /// In the slow case, we know the result is large. 353 APInt APInt::concatSlowCase(const APInt &NewLSB) const { 354 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 355 APInt Result = NewLSB.zext(NewWidth); 356 Result.insertBits(*this, NewLSB.getBitWidth()); 357 return Result; 358 } 359 360 /// Toggle a given bit to its opposite value whose position is given 361 /// as "bitPosition". 362 /// Toggles a given bit to its opposite value. 363 void APInt::flipBit(unsigned bitPosition) { 364 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 365 setBitVal(bitPosition, !(*this)[bitPosition]); 366 } 367 368 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 369 unsigned subBitWidth = subBits.getBitWidth(); 370 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); 371 372 // inserting no bits is a noop. 373 if (subBitWidth == 0) 374 return; 375 376 // Insertion is a direct copy. 377 if (subBitWidth == BitWidth) { 378 *this = subBits; 379 return; 380 } 381 382 // Single word result can be done as a direct bitmask. 383 if (isSingleWord()) { 384 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 385 U.VAL &= ~(mask << bitPosition); 386 U.VAL |= (subBits.U.VAL << bitPosition); 387 return; 388 } 389 390 unsigned loBit = whichBit(bitPosition); 391 unsigned loWord = whichWord(bitPosition); 392 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 393 394 // Insertion within a single word can be done as a direct bitmask. 395 if (loWord == hi1Word) { 396 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 397 U.pVal[loWord] &= ~(mask << loBit); 398 U.pVal[loWord] |= (subBits.U.VAL << loBit); 399 return; 400 } 401 402 // Insert on word boundaries. 403 if (loBit == 0) { 404 // Direct copy whole words. 405 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 406 memcpy(U.pVal + loWord, subBits.getRawData(), 407 numWholeSubWords * APINT_WORD_SIZE); 408 409 // Mask+insert remaining bits. 410 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 411 if (remainingBits != 0) { 412 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 413 U.pVal[hi1Word] &= ~mask; 414 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 415 } 416 return; 417 } 418 419 // General case - set/clear individual bits in dst based on src. 420 // TODO - there is scope for optimization here, but at the moment this code 421 // path is barely used so prefer readability over performance. 422 for (unsigned i = 0; i != subBitWidth; ++i) 423 setBitVal(bitPosition + i, subBits[i]); 424 } 425 426 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 427 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 428 subBits &= maskBits; 429 if (isSingleWord()) { 430 U.VAL &= ~(maskBits << bitPosition); 431 U.VAL |= subBits << bitPosition; 432 return; 433 } 434 435 unsigned loBit = whichBit(bitPosition); 436 unsigned loWord = whichWord(bitPosition); 437 unsigned hiWord = whichWord(bitPosition + numBits - 1); 438 if (loWord == hiWord) { 439 U.pVal[loWord] &= ~(maskBits << loBit); 440 U.pVal[loWord] |= subBits << loBit; 441 return; 442 } 443 444 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 445 unsigned wordBits = 8 * sizeof(WordType); 446 U.pVal[loWord] &= ~(maskBits << loBit); 447 U.pVal[loWord] |= subBits << loBit; 448 449 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 450 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 451 } 452 453 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 454 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 455 "Illegal bit extraction"); 456 457 if (isSingleWord()) 458 return APInt(numBits, U.VAL >> bitPosition); 459 460 unsigned loBit = whichBit(bitPosition); 461 unsigned loWord = whichWord(bitPosition); 462 unsigned hiWord = whichWord(bitPosition + numBits - 1); 463 464 // Single word result extracting bits from a single word source. 465 if (loWord == hiWord) 466 return APInt(numBits, U.pVal[loWord] >> loBit); 467 468 // Extracting bits that start on a source word boundary can be done 469 // as a fast memory copy. 470 if (loBit == 0) 471 return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 472 473 // General case - shift + copy source words directly into place. 474 APInt Result(numBits, 0); 475 unsigned NumSrcWords = getNumWords(); 476 unsigned NumDstWords = Result.getNumWords(); 477 478 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 479 for (unsigned word = 0; word < NumDstWords; ++word) { 480 uint64_t w0 = U.pVal[loWord + word]; 481 uint64_t w1 = 482 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 483 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 484 } 485 486 return Result.clearUnusedBits(); 487 } 488 489 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 490 unsigned bitPosition) const { 491 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 492 "Illegal bit extraction"); 493 assert(numBits <= 64 && "Illegal bit extraction"); 494 495 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 496 if (isSingleWord()) 497 return (U.VAL >> bitPosition) & maskBits; 498 499 unsigned loBit = whichBit(bitPosition); 500 unsigned loWord = whichWord(bitPosition); 501 unsigned hiWord = whichWord(bitPosition + numBits - 1); 502 if (loWord == hiWord) 503 return (U.pVal[loWord] >> loBit) & maskBits; 504 505 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 506 unsigned wordBits = 8 * sizeof(WordType); 507 uint64_t retBits = U.pVal[loWord] >> loBit; 508 retBits |= U.pVal[hiWord] << (wordBits - loBit); 509 retBits &= maskBits; 510 return retBits; 511 } 512 513 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { 514 assert(!Str.empty() && "Invalid string length"); 515 size_t StrLen = Str.size(); 516 517 // Each computation below needs to know if it's negative. 518 unsigned IsNegative = false; 519 if (Str[0] == '-' || Str[0] == '+') { 520 IsNegative = Str[0] == '-'; 521 StrLen--; 522 assert(StrLen && "String is only a sign, needs a value."); 523 } 524 525 // For radixes of power-of-two values, the bits required is accurately and 526 // easily computed. 527 if (Radix == 2) 528 return StrLen + IsNegative; 529 if (Radix == 8) 530 return StrLen * 3 + IsNegative; 531 if (Radix == 16) 532 return StrLen * 4 + IsNegative; 533 534 // Compute a sufficient number of bits that is always large enough but might 535 // be too large. This avoids the assertion in the constructor. This 536 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 537 // bits in that case. 538 if (Radix == 10) 539 return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; 540 541 assert(Radix == 36); 542 return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; 543 } 544 545 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 546 // Compute a sufficient number of bits that is always large enough but might 547 // be too large. 548 unsigned sufficient = getSufficientBitsNeeded(str, radix); 549 550 // For bases 2, 8, and 16, the sufficient number of bits is exact and we can 551 // return the value directly. For bases 10 and 36, we need to do extra work. 552 if (radix == 2 || radix == 8 || radix == 16) 553 return sufficient; 554 555 // This is grossly inefficient but accurate. We could probably do something 556 // with a computation of roughly slen*64/20 and then adjust by the value of 557 // the first few digits. But, I'm not sure how accurate that could be. 558 size_t slen = str.size(); 559 560 // Each computation below needs to know if it's negative. 561 StringRef::iterator p = str.begin(); 562 unsigned isNegative = *p == '-'; 563 if (*p == '-' || *p == '+') { 564 p++; 565 slen--; 566 assert(slen && "String is only a sign, needs a value."); 567 } 568 569 570 // Convert to the actual binary value. 571 APInt tmp(sufficient, StringRef(p, slen), radix); 572 573 // Compute how many bits are required. If the log is infinite, assume we need 574 // just bit. If the log is exact and value is negative, then the value is 575 // MinSignedValue with (log + 1) bits. 576 unsigned log = tmp.logBase2(); 577 if (log == (unsigned)-1) { 578 return isNegative + 1; 579 } else if (isNegative && tmp.isPowerOf2()) { 580 return isNegative + log; 581 } else { 582 return isNegative + log + 1; 583 } 584 } 585 586 hash_code llvm::hash_value(const APInt &Arg) { 587 if (Arg.isSingleWord()) 588 return hash_combine(Arg.BitWidth, Arg.U.VAL); 589 590 return hash_combine( 591 Arg.BitWidth, 592 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 593 } 594 595 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) { 596 return static_cast<unsigned>(hash_value(Key)); 597 } 598 599 bool APInt::isSplat(unsigned SplatSizeInBits) const { 600 assert(getBitWidth() % SplatSizeInBits == 0 && 601 "SplatSizeInBits must divide width!"); 602 // We can check that all parts of an integer are equal by making use of a 603 // little trick: rotate and check if it's still the same value. 604 return *this == rotl(SplatSizeInBits); 605 } 606 607 /// This function returns the high "numBits" bits of this APInt. 608 APInt APInt::getHiBits(unsigned numBits) const { 609 return this->lshr(BitWidth - numBits); 610 } 611 612 /// This function returns the low "numBits" bits of this APInt. 613 APInt APInt::getLoBits(unsigned numBits) const { 614 APInt Result(getLowBitsSet(BitWidth, numBits)); 615 Result &= *this; 616 return Result; 617 } 618 619 /// Return a value containing V broadcasted over NewLen bits. 620 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 621 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 622 623 APInt Val = V.zext(NewLen); 624 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 625 Val |= Val << I; 626 627 return Val; 628 } 629 630 unsigned APInt::countLeadingZerosSlowCase() const { 631 unsigned Count = 0; 632 for (int i = getNumWords()-1; i >= 0; --i) { 633 uint64_t V = U.pVal[i]; 634 if (V == 0) 635 Count += APINT_BITS_PER_WORD; 636 else { 637 Count += llvm::countl_zero(V); 638 break; 639 } 640 } 641 // Adjust for unused bits in the most significant word (they are zero). 642 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 643 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 644 return Count; 645 } 646 647 unsigned APInt::countLeadingOnesSlowCase() const { 648 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 649 unsigned shift; 650 if (!highWordBits) { 651 highWordBits = APINT_BITS_PER_WORD; 652 shift = 0; 653 } else { 654 shift = APINT_BITS_PER_WORD - highWordBits; 655 } 656 int i = getNumWords() - 1; 657 unsigned Count = llvm::countl_one(U.pVal[i] << shift); 658 if (Count == highWordBits) { 659 for (i--; i >= 0; --i) { 660 if (U.pVal[i] == WORDTYPE_MAX) 661 Count += APINT_BITS_PER_WORD; 662 else { 663 Count += llvm::countl_one(U.pVal[i]); 664 break; 665 } 666 } 667 } 668 return Count; 669 } 670 671 unsigned APInt::countTrailingZerosSlowCase() const { 672 unsigned Count = 0; 673 unsigned i = 0; 674 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 675 Count += APINT_BITS_PER_WORD; 676 if (i < getNumWords()) 677 Count += llvm::countr_zero(U.pVal[i]); 678 return std::min(Count, BitWidth); 679 } 680 681 unsigned APInt::countTrailingOnesSlowCase() const { 682 unsigned Count = 0; 683 unsigned i = 0; 684 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 685 Count += APINT_BITS_PER_WORD; 686 if (i < getNumWords()) 687 Count += llvm::countr_one(U.pVal[i]); 688 assert(Count <= BitWidth); 689 return Count; 690 } 691 692 unsigned APInt::countPopulationSlowCase() const { 693 unsigned Count = 0; 694 for (unsigned i = 0; i < getNumWords(); ++i) 695 Count += llvm::popcount(U.pVal[i]); 696 return Count; 697 } 698 699 bool APInt::intersectsSlowCase(const APInt &RHS) const { 700 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 701 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 702 return true; 703 704 return false; 705 } 706 707 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 708 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 709 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 710 return false; 711 712 return true; 713 } 714 715 APInt APInt::byteSwap() const { 716 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 717 if (BitWidth == 16) 718 return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL)); 719 if (BitWidth == 32) 720 return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL)); 721 if (BitWidth <= 64) { 722 uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL); 723 Tmp1 >>= (64 - BitWidth); 724 return APInt(BitWidth, Tmp1); 725 } 726 727 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 728 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 729 Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]); 730 if (Result.BitWidth != BitWidth) { 731 Result.lshrInPlace(Result.BitWidth - BitWidth); 732 Result.BitWidth = BitWidth; 733 } 734 return Result; 735 } 736 737 APInt APInt::reverseBits() const { 738 switch (BitWidth) { 739 case 64: 740 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 741 case 32: 742 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 743 case 16: 744 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 745 case 8: 746 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 747 case 0: 748 return *this; 749 default: 750 break; 751 } 752 753 APInt Val(*this); 754 APInt Reversed(BitWidth, 0); 755 unsigned S = BitWidth; 756 757 for (; Val != 0; Val.lshrInPlace(1)) { 758 Reversed <<= 1; 759 Reversed |= Val[0]; 760 --S; 761 } 762 763 Reversed <<= S; 764 return Reversed; 765 } 766 767 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 768 // Fast-path a common case. 769 if (A == B) return A; 770 771 // Corner cases: if either operand is zero, the other is the gcd. 772 if (!A) return B; 773 if (!B) return A; 774 775 // Count common powers of 2 and remove all other powers of 2. 776 unsigned Pow2; 777 { 778 unsigned Pow2_A = A.countr_zero(); 779 unsigned Pow2_B = B.countr_zero(); 780 if (Pow2_A > Pow2_B) { 781 A.lshrInPlace(Pow2_A - Pow2_B); 782 Pow2 = Pow2_B; 783 } else if (Pow2_B > Pow2_A) { 784 B.lshrInPlace(Pow2_B - Pow2_A); 785 Pow2 = Pow2_A; 786 } else { 787 Pow2 = Pow2_A; 788 } 789 } 790 791 // Both operands are odd multiples of 2^Pow_2: 792 // 793 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 794 // 795 // This is a modified version of Stein's algorithm, taking advantage of 796 // efficient countTrailingZeros(). 797 while (A != B) { 798 if (A.ugt(B)) { 799 A -= B; 800 A.lshrInPlace(A.countr_zero() - Pow2); 801 } else { 802 B -= A; 803 B.lshrInPlace(B.countr_zero() - Pow2); 804 } 805 } 806 807 return A; 808 } 809 810 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 811 uint64_t I = bit_cast<uint64_t>(Double); 812 813 // Get the sign bit from the highest order bit 814 bool isNeg = I >> 63; 815 816 // Get the 11-bit exponent and adjust for the 1023 bit bias 817 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 818 819 // If the exponent is negative, the value is < 0 so just return 0. 820 if (exp < 0) 821 return APInt(width, 0u); 822 823 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 824 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 825 826 // If the exponent doesn't shift all bits out of the mantissa 827 if (exp < 52) 828 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 829 APInt(width, mantissa >> (52 - exp)); 830 831 // If the client didn't provide enough bits for us to shift the mantissa into 832 // then the result is undefined, just return 0 833 if (width <= exp - 52) 834 return APInt(width, 0); 835 836 // Otherwise, we have to shift the mantissa bits up to the right location 837 APInt Tmp(width, mantissa); 838 Tmp <<= (unsigned)exp - 52; 839 return isNeg ? -Tmp : Tmp; 840 } 841 842 /// This function converts this APInt to a double. 843 /// The layout for double is as following (IEEE Standard 754): 844 /// -------------------------------------- 845 /// | Sign Exponent Fraction Bias | 846 /// |-------------------------------------- | 847 /// | 1[63] 11[62-52] 52[51-00] 1023 | 848 /// -------------------------------------- 849 double APInt::roundToDouble(bool isSigned) const { 850 851 // Handle the simple case where the value is contained in one uint64_t. 852 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 853 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 854 if (isSigned) { 855 int64_t sext = SignExtend64(getWord(0), BitWidth); 856 return double(sext); 857 } else 858 return double(getWord(0)); 859 } 860 861 // Determine if the value is negative. 862 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 863 864 // Construct the absolute value if we're negative. 865 APInt Tmp(isNeg ? -(*this) : (*this)); 866 867 // Figure out how many bits we're using. 868 unsigned n = Tmp.getActiveBits(); 869 870 // The exponent (without bias normalization) is just the number of bits 871 // we are using. Note that the sign bit is gone since we constructed the 872 // absolute value. 873 uint64_t exp = n; 874 875 // Return infinity for exponent overflow 876 if (exp > 1023) { 877 if (!isSigned || !isNeg) 878 return std::numeric_limits<double>::infinity(); 879 else 880 return -std::numeric_limits<double>::infinity(); 881 } 882 exp += 1023; // Increment for 1023 bias 883 884 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 885 // extract the high 52 bits from the correct words in pVal. 886 uint64_t mantissa; 887 unsigned hiWord = whichWord(n-1); 888 if (hiWord == 0) { 889 mantissa = Tmp.U.pVal[0]; 890 if (n > 52) 891 mantissa >>= n - 52; // shift down, we want the top 52 bits. 892 } else { 893 assert(hiWord > 0 && "huh?"); 894 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 895 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 896 mantissa = hibits | lobits; 897 } 898 899 // The leading bit of mantissa is implicit, so get rid of it. 900 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 901 uint64_t I = sign | (exp << 52) | mantissa; 902 return bit_cast<double>(I); 903 } 904 905 // Truncate to new width. 906 APInt APInt::trunc(unsigned width) const { 907 assert(width <= BitWidth && "Invalid APInt Truncate request"); 908 909 if (width <= APINT_BITS_PER_WORD) 910 return APInt(width, getRawData()[0]); 911 912 if (width == BitWidth) 913 return *this; 914 915 APInt Result(getMemory(getNumWords(width)), width); 916 917 // Copy full words. 918 unsigned i; 919 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 920 Result.U.pVal[i] = U.pVal[i]; 921 922 // Truncate and copy any partial word. 923 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 924 if (bits != 0) 925 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 926 927 return Result; 928 } 929 930 // Truncate to new width with unsigned saturation. 931 APInt APInt::truncUSat(unsigned width) const { 932 assert(width <= BitWidth && "Invalid APInt Truncate request"); 933 934 // Can we just losslessly truncate it? 935 if (isIntN(width)) 936 return trunc(width); 937 // If not, then just return the new limit. 938 return APInt::getMaxValue(width); 939 } 940 941 // Truncate to new width with signed saturation. 942 APInt APInt::truncSSat(unsigned width) const { 943 assert(width <= BitWidth && "Invalid APInt Truncate request"); 944 945 // Can we just losslessly truncate it? 946 if (isSignedIntN(width)) 947 return trunc(width); 948 // If not, then just return the new limits. 949 return isNegative() ? APInt::getSignedMinValue(width) 950 : APInt::getSignedMaxValue(width); 951 } 952 953 // Sign extend to a new width. 954 APInt APInt::sext(unsigned Width) const { 955 assert(Width >= BitWidth && "Invalid APInt SignExtend request"); 956 957 if (Width <= APINT_BITS_PER_WORD) 958 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 959 960 if (Width == BitWidth) 961 return *this; 962 963 APInt Result(getMemory(getNumWords(Width)), Width); 964 965 // Copy words. 966 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 967 968 // Sign extend the last word since there may be unused bits in the input. 969 Result.U.pVal[getNumWords() - 1] = 970 SignExtend64(Result.U.pVal[getNumWords() - 1], 971 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 972 973 // Fill with sign bits. 974 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 975 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 976 Result.clearUnusedBits(); 977 return Result; 978 } 979 980 // Zero extend to a new width. 981 APInt APInt::zext(unsigned width) const { 982 assert(width >= BitWidth && "Invalid APInt ZeroExtend request"); 983 984 if (width <= APINT_BITS_PER_WORD) 985 return APInt(width, U.VAL); 986 987 if (width == BitWidth) 988 return *this; 989 990 APInt Result(getMemory(getNumWords(width)), width); 991 992 // Copy words. 993 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 994 995 // Zero remaining words. 996 std::memset(Result.U.pVal + getNumWords(), 0, 997 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 998 999 return Result; 1000 } 1001 1002 APInt APInt::zextOrTrunc(unsigned width) const { 1003 if (BitWidth < width) 1004 return zext(width); 1005 if (BitWidth > width) 1006 return trunc(width); 1007 return *this; 1008 } 1009 1010 APInt APInt::sextOrTrunc(unsigned width) const { 1011 if (BitWidth < width) 1012 return sext(width); 1013 if (BitWidth > width) 1014 return trunc(width); 1015 return *this; 1016 } 1017 1018 /// Arithmetic right-shift this APInt by shiftAmt. 1019 /// Arithmetic right-shift function. 1020 void APInt::ashrInPlace(const APInt &shiftAmt) { 1021 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1022 } 1023 1024 /// Arithmetic right-shift this APInt by shiftAmt. 1025 /// Arithmetic right-shift function. 1026 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1027 // Don't bother performing a no-op shift. 1028 if (!ShiftAmt) 1029 return; 1030 1031 // Save the original sign bit for later. 1032 bool Negative = isNegative(); 1033 1034 // WordShift is the inter-part shift; BitShift is intra-part shift. 1035 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1036 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1037 1038 unsigned WordsToMove = getNumWords() - WordShift; 1039 if (WordsToMove != 0) { 1040 // Sign extend the last word to fill in the unused bits. 1041 U.pVal[getNumWords() - 1] = SignExtend64( 1042 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1043 1044 // Fastpath for moving by whole words. 1045 if (BitShift == 0) { 1046 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1047 } else { 1048 // Move the words containing significant bits. 1049 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1050 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1051 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1052 1053 // Handle the last word which has no high bits to copy. 1054 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1055 // Sign extend one more time. 1056 U.pVal[WordsToMove - 1] = 1057 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1058 } 1059 } 1060 1061 // Fill in the remainder based on the original sign. 1062 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1063 WordShift * APINT_WORD_SIZE); 1064 clearUnusedBits(); 1065 } 1066 1067 /// Logical right-shift this APInt by shiftAmt. 1068 /// Logical right-shift function. 1069 void APInt::lshrInPlace(const APInt &shiftAmt) { 1070 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1071 } 1072 1073 /// Logical right-shift this APInt by shiftAmt. 1074 /// Logical right-shift function. 1075 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1076 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1077 } 1078 1079 /// Left-shift this APInt by shiftAmt. 1080 /// Left-shift function. 1081 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1082 // It's undefined behavior in C to shift by BitWidth or greater. 1083 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1084 return *this; 1085 } 1086 1087 void APInt::shlSlowCase(unsigned ShiftAmt) { 1088 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1089 clearUnusedBits(); 1090 } 1091 1092 // Calculate the rotate amount modulo the bit width. 1093 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1094 if (LLVM_UNLIKELY(BitWidth == 0)) 1095 return 0; 1096 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1097 APInt rot = rotateAmt; 1098 if (rotBitWidth < BitWidth) { 1099 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1100 // e.g. APInt(1, 32) would give APInt(1, 0). 1101 rot = rotateAmt.zext(BitWidth); 1102 } 1103 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1104 return rot.getLimitedValue(BitWidth); 1105 } 1106 1107 APInt APInt::rotl(const APInt &rotateAmt) const { 1108 return rotl(rotateModulo(BitWidth, rotateAmt)); 1109 } 1110 1111 APInt APInt::rotl(unsigned rotateAmt) const { 1112 if (LLVM_UNLIKELY(BitWidth == 0)) 1113 return *this; 1114 rotateAmt %= BitWidth; 1115 if (rotateAmt == 0) 1116 return *this; 1117 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1118 } 1119 1120 APInt APInt::rotr(const APInt &rotateAmt) const { 1121 return rotr(rotateModulo(BitWidth, rotateAmt)); 1122 } 1123 1124 APInt APInt::rotr(unsigned rotateAmt) const { 1125 if (BitWidth == 0) 1126 return *this; 1127 rotateAmt %= BitWidth; 1128 if (rotateAmt == 0) 1129 return *this; 1130 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1131 } 1132 1133 /// \returns the nearest log base 2 of this APInt. Ties round up. 1134 /// 1135 /// NOTE: When we have a BitWidth of 1, we define: 1136 /// 1137 /// log2(0) = UINT32_MAX 1138 /// log2(1) = 0 1139 /// 1140 /// to get around any mathematical concerns resulting from 1141 /// referencing 2 in a space where 2 does no exist. 1142 unsigned APInt::nearestLogBase2() const { 1143 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1144 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1145 // UINT32_MAX. 1146 if (BitWidth == 1) 1147 return U.VAL - 1; 1148 1149 // Handle the zero case. 1150 if (isZero()) 1151 return UINT32_MAX; 1152 1153 // The non-zero case is handled by computing: 1154 // 1155 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1156 // 1157 // where x[i] is referring to the value of the ith bit of x. 1158 unsigned lg = logBase2(); 1159 return lg + unsigned((*this)[lg - 1]); 1160 } 1161 1162 // Square Root - this method computes and returns the square root of "this". 1163 // Three mechanisms are used for computation. For small values (<= 5 bits), 1164 // a table lookup is done. This gets some performance for common cases. For 1165 // values using less than 52 bits, the value is converted to double and then 1166 // the libc sqrt function is called. The result is rounded and then converted 1167 // back to a uint64_t which is then used to construct the result. Finally, 1168 // the Babylonian method for computing square roots is used. 1169 APInt APInt::sqrt() const { 1170 1171 // Determine the magnitude of the value. 1172 unsigned magnitude = getActiveBits(); 1173 1174 // Use a fast table for some small values. This also gets rid of some 1175 // rounding errors in libc sqrt for small values. 1176 if (magnitude <= 5) { 1177 static const uint8_t results[32] = { 1178 /* 0 */ 0, 1179 /* 1- 2 */ 1, 1, 1180 /* 3- 6 */ 2, 2, 2, 2, 1181 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1182 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1183 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1184 /* 31 */ 6 1185 }; 1186 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1187 } 1188 1189 // If the magnitude of the value fits in less than 52 bits (the precision of 1190 // an IEEE double precision floating point value), then we can use the 1191 // libc sqrt function which will probably use a hardware sqrt computation. 1192 // This should be faster than the algorithm below. 1193 if (magnitude < 52) { 1194 return APInt(BitWidth, 1195 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1196 : U.pVal[0]))))); 1197 } 1198 1199 // Okay, all the short cuts are exhausted. We must compute it. The following 1200 // is a classical Babylonian method for computing the square root. This code 1201 // was adapted to APInt from a wikipedia article on such computations. 1202 // See http://www.wikipedia.org/ and go to the page named 1203 // Calculate_an_integer_square_root. 1204 unsigned nbits = BitWidth, i = 4; 1205 APInt testy(BitWidth, 16); 1206 APInt x_old(BitWidth, 1); 1207 APInt x_new(BitWidth, 0); 1208 APInt two(BitWidth, 2); 1209 1210 // Select a good starting value using binary logarithms. 1211 for (;; i += 2, testy = testy.shl(2)) 1212 if (i >= nbits || this->ule(testy)) { 1213 x_old = x_old.shl(i / 2); 1214 break; 1215 } 1216 1217 // Use the Babylonian method to arrive at the integer square root: 1218 for (;;) { 1219 x_new = (this->udiv(x_old) + x_old).udiv(two); 1220 if (x_old.ule(x_new)) 1221 break; 1222 x_old = x_new; 1223 } 1224 1225 // Make sure we return the closest approximation 1226 // NOTE: The rounding calculation below is correct. It will produce an 1227 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1228 // determined to be a rounding issue with pari/gp as it begins to use a 1229 // floating point representation after 192 bits. There are no discrepancies 1230 // between this algorithm and pari/gp for bit widths < 192 bits. 1231 APInt square(x_old * x_old); 1232 APInt nextSquare((x_old + 1) * (x_old +1)); 1233 if (this->ult(square)) 1234 return x_old; 1235 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1236 APInt midpoint((nextSquare - square).udiv(two)); 1237 APInt offset(*this - square); 1238 if (offset.ult(midpoint)) 1239 return x_old; 1240 return x_old + 1; 1241 } 1242 1243 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1244 /// iterative extended Euclidean algorithm is used to solve for this value, 1245 /// however we simplify it to speed up calculating only the inverse, and take 1246 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1247 /// (potentially large) APInts around. 1248 /// WARNING: a value of '0' may be returned, 1249 /// signifying that no multiplicative inverse exists! 1250 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1251 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1252 1253 // Using the properties listed at the following web page (accessed 06/21/08): 1254 // http://www.numbertheory.org/php/euclid.html 1255 // (especially the properties numbered 3, 4 and 9) it can be proved that 1256 // BitWidth bits suffice for all the computations in the algorithm implemented 1257 // below. More precisely, this number of bits suffice if the multiplicative 1258 // inverse exists, but may not suffice for the general extended Euclidean 1259 // algorithm. 1260 1261 APInt r[2] = { modulo, *this }; 1262 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1263 APInt q(BitWidth, 0); 1264 1265 unsigned i; 1266 for (i = 0; r[i^1] != 0; i ^= 1) { 1267 // An overview of the math without the confusing bit-flipping: 1268 // q = r[i-2] / r[i-1] 1269 // r[i] = r[i-2] % r[i-1] 1270 // t[i] = t[i-2] - t[i-1] * q 1271 udivrem(r[i], r[i^1], q, r[i]); 1272 t[i] -= t[i^1] * q; 1273 } 1274 1275 // If this APInt and the modulo are not coprime, there is no multiplicative 1276 // inverse, so return 0. We check this by looking at the next-to-last 1277 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1278 // algorithm. 1279 if (r[i] != 1) 1280 return APInt(BitWidth, 0); 1281 1282 // The next-to-last t is the multiplicative inverse. However, we are 1283 // interested in a positive inverse. Calculate a positive one from a negative 1284 // one if necessary. A simple addition of the modulo suffices because 1285 // abs(t[i]) is known to be less than *this/2 (see the link above). 1286 if (t[i].isNegative()) 1287 t[i] += modulo; 1288 1289 return std::move(t[i]); 1290 } 1291 1292 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1293 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1294 /// variables here have the same names as in the algorithm. Comments explain 1295 /// the algorithm and any deviation from it. 1296 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1297 unsigned m, unsigned n) { 1298 assert(u && "Must provide dividend"); 1299 assert(v && "Must provide divisor"); 1300 assert(q && "Must provide quotient"); 1301 assert(u != v && u != q && v != q && "Must use different memory"); 1302 assert(n>1 && "n must be > 1"); 1303 1304 // b denotes the base of the number system. In our case b is 2^32. 1305 const uint64_t b = uint64_t(1) << 32; 1306 1307 // The DEBUG macros here tend to be spam in the debug output if you're not 1308 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1309 #ifdef KNUTH_DEBUG 1310 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1311 #else 1312 #define DEBUG_KNUTH(X) do {} while(false) 1313 #endif 1314 1315 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1316 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1317 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1318 DEBUG_KNUTH(dbgs() << " by"); 1319 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1320 DEBUG_KNUTH(dbgs() << '\n'); 1321 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1322 // u and v by d. Note that we have taken Knuth's advice here to use a power 1323 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1324 // 2 allows us to shift instead of multiply and it is easy to determine the 1325 // shift amount from the leading zeros. We are basically normalizing the u 1326 // and v so that its high bits are shifted to the top of v's range without 1327 // overflow. Note that this can require an extra word in u so that u must 1328 // be of length m+n+1. 1329 unsigned shift = llvm::countl_zero(v[n - 1]); 1330 uint32_t v_carry = 0; 1331 uint32_t u_carry = 0; 1332 if (shift) { 1333 for (unsigned i = 0; i < m+n; ++i) { 1334 uint32_t u_tmp = u[i] >> (32 - shift); 1335 u[i] = (u[i] << shift) | u_carry; 1336 u_carry = u_tmp; 1337 } 1338 for (unsigned i = 0; i < n; ++i) { 1339 uint32_t v_tmp = v[i] >> (32 - shift); 1340 v[i] = (v[i] << shift) | v_carry; 1341 v_carry = v_tmp; 1342 } 1343 } 1344 u[m+n] = u_carry; 1345 1346 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1347 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1348 DEBUG_KNUTH(dbgs() << " by"); 1349 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1350 DEBUG_KNUTH(dbgs() << '\n'); 1351 1352 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1353 int j = m; 1354 do { 1355 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1356 // D3. [Calculate q'.]. 1357 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1358 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1359 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1360 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1361 // on v[n-2] determines at high speed most of the cases in which the trial 1362 // value qp is one too large, and it eliminates all cases where qp is two 1363 // too large. 1364 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1365 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1366 uint64_t qp = dividend / v[n-1]; 1367 uint64_t rp = dividend % v[n-1]; 1368 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1369 qp--; 1370 rp += v[n-1]; 1371 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1372 qp--; 1373 } 1374 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1375 1376 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1377 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1378 // consists of a simple multiplication by a one-place number, combined with 1379 // a subtraction. 1380 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1381 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1382 // true value plus b**(n+1), namely as the b's complement of 1383 // the true value, and a "borrow" to the left should be remembered. 1384 int64_t borrow = 0; 1385 for (unsigned i = 0; i < n; ++i) { 1386 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1387 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1388 u[j+i] = Lo_32(subres); 1389 borrow = Hi_32(p) - Hi_32(subres); 1390 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1391 << ", borrow = " << borrow << '\n'); 1392 } 1393 bool isNeg = u[j+n] < borrow; 1394 u[j+n] -= Lo_32(borrow); 1395 1396 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1397 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1398 DEBUG_KNUTH(dbgs() << '\n'); 1399 1400 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1401 // negative, go to step D6; otherwise go on to step D7. 1402 q[j] = Lo_32(qp); 1403 if (isNeg) { 1404 // D6. [Add back]. The probability that this step is necessary is very 1405 // small, on the order of only 2/b. Make sure that test data accounts for 1406 // this possibility. Decrease q[j] by 1 1407 q[j]--; 1408 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1409 // A carry will occur to the left of u[j+n], and it should be ignored 1410 // since it cancels with the borrow that occurred in D4. 1411 bool carry = false; 1412 for (unsigned i = 0; i < n; i++) { 1413 uint32_t limit = std::min(u[j+i],v[i]); 1414 u[j+i] += v[i] + carry; 1415 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1416 } 1417 u[j+n] += carry; 1418 } 1419 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1420 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1421 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1422 1423 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1424 } while (--j >= 0); 1425 1426 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1427 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1428 DEBUG_KNUTH(dbgs() << '\n'); 1429 1430 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1431 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1432 // compute the remainder (urem uses this). 1433 if (r) { 1434 // The value d is expressed by the "shift" value above since we avoided 1435 // multiplication by d by using a shift left. So, all we have to do is 1436 // shift right here. 1437 if (shift) { 1438 uint32_t carry = 0; 1439 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1440 for (int i = n-1; i >= 0; i--) { 1441 r[i] = (u[i] >> shift) | carry; 1442 carry = u[i] << (32 - shift); 1443 DEBUG_KNUTH(dbgs() << " " << r[i]); 1444 } 1445 } else { 1446 for (int i = n-1; i >= 0; i--) { 1447 r[i] = u[i]; 1448 DEBUG_KNUTH(dbgs() << " " << r[i]); 1449 } 1450 } 1451 DEBUG_KNUTH(dbgs() << '\n'); 1452 } 1453 DEBUG_KNUTH(dbgs() << '\n'); 1454 } 1455 1456 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1457 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1458 assert(lhsWords >= rhsWords && "Fractional result"); 1459 1460 // First, compose the values into an array of 32-bit words instead of 1461 // 64-bit words. This is a necessity of both the "short division" algorithm 1462 // and the Knuth "classical algorithm" which requires there to be native 1463 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1464 // can't use 64-bit operands here because we don't have native results of 1465 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1466 // work on large-endian machines. 1467 unsigned n = rhsWords * 2; 1468 unsigned m = (lhsWords * 2) - n; 1469 1470 // Allocate space for the temporary values we need either on the stack, if 1471 // it will fit, or on the heap if it won't. 1472 uint32_t SPACE[128]; 1473 uint32_t *U = nullptr; 1474 uint32_t *V = nullptr; 1475 uint32_t *Q = nullptr; 1476 uint32_t *R = nullptr; 1477 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1478 U = &SPACE[0]; 1479 V = &SPACE[m+n+1]; 1480 Q = &SPACE[(m+n+1) + n]; 1481 if (Remainder) 1482 R = &SPACE[(m+n+1) + n + (m+n)]; 1483 } else { 1484 U = new uint32_t[m + n + 1]; 1485 V = new uint32_t[n]; 1486 Q = new uint32_t[m+n]; 1487 if (Remainder) 1488 R = new uint32_t[n]; 1489 } 1490 1491 // Initialize the dividend 1492 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1493 for (unsigned i = 0; i < lhsWords; ++i) { 1494 uint64_t tmp = LHS[i]; 1495 U[i * 2] = Lo_32(tmp); 1496 U[i * 2 + 1] = Hi_32(tmp); 1497 } 1498 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1499 1500 // Initialize the divisor 1501 memset(V, 0, (n)*sizeof(uint32_t)); 1502 for (unsigned i = 0; i < rhsWords; ++i) { 1503 uint64_t tmp = RHS[i]; 1504 V[i * 2] = Lo_32(tmp); 1505 V[i * 2 + 1] = Hi_32(tmp); 1506 } 1507 1508 // initialize the quotient and remainder 1509 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1510 if (Remainder) 1511 memset(R, 0, n * sizeof(uint32_t)); 1512 1513 // Now, adjust m and n for the Knuth division. n is the number of words in 1514 // the divisor. m is the number of words by which the dividend exceeds the 1515 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1516 // contain any zero words or the Knuth algorithm fails. 1517 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1518 n--; 1519 m++; 1520 } 1521 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1522 m--; 1523 1524 // If we're left with only a single word for the divisor, Knuth doesn't work 1525 // so we implement the short division algorithm here. This is much simpler 1526 // and faster because we are certain that we can divide a 64-bit quantity 1527 // by a 32-bit quantity at hardware speed and short division is simply a 1528 // series of such operations. This is just like doing short division but we 1529 // are using base 2^32 instead of base 10. 1530 assert(n != 0 && "Divide by zero?"); 1531 if (n == 1) { 1532 uint32_t divisor = V[0]; 1533 uint32_t remainder = 0; 1534 for (int i = m; i >= 0; i--) { 1535 uint64_t partial_dividend = Make_64(remainder, U[i]); 1536 if (partial_dividend == 0) { 1537 Q[i] = 0; 1538 remainder = 0; 1539 } else if (partial_dividend < divisor) { 1540 Q[i] = 0; 1541 remainder = Lo_32(partial_dividend); 1542 } else if (partial_dividend == divisor) { 1543 Q[i] = 1; 1544 remainder = 0; 1545 } else { 1546 Q[i] = Lo_32(partial_dividend / divisor); 1547 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1548 } 1549 } 1550 if (R) 1551 R[0] = remainder; 1552 } else { 1553 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1554 // case n > 1. 1555 KnuthDiv(U, V, Q, R, m, n); 1556 } 1557 1558 // If the caller wants the quotient 1559 if (Quotient) { 1560 for (unsigned i = 0; i < lhsWords; ++i) 1561 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1562 } 1563 1564 // If the caller wants the remainder 1565 if (Remainder) { 1566 for (unsigned i = 0; i < rhsWords; ++i) 1567 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1568 } 1569 1570 // Clean up the memory we allocated. 1571 if (U != &SPACE[0]) { 1572 delete [] U; 1573 delete [] V; 1574 delete [] Q; 1575 delete [] R; 1576 } 1577 } 1578 1579 APInt APInt::udiv(const APInt &RHS) const { 1580 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1581 1582 // First, deal with the easy case 1583 if (isSingleWord()) { 1584 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1585 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1586 } 1587 1588 // Get some facts about the LHS and RHS number of bits and words 1589 unsigned lhsWords = getNumWords(getActiveBits()); 1590 unsigned rhsBits = RHS.getActiveBits(); 1591 unsigned rhsWords = getNumWords(rhsBits); 1592 assert(rhsWords && "Divided by zero???"); 1593 1594 // Deal with some degenerate cases 1595 if (!lhsWords) 1596 // 0 / X ===> 0 1597 return APInt(BitWidth, 0); 1598 if (rhsBits == 1) 1599 // X / 1 ===> X 1600 return *this; 1601 if (lhsWords < rhsWords || this->ult(RHS)) 1602 // X / Y ===> 0, iff X < Y 1603 return APInt(BitWidth, 0); 1604 if (*this == RHS) 1605 // X / X ===> 1 1606 return APInt(BitWidth, 1); 1607 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1608 // All high words are zero, just use native divide 1609 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1610 1611 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1612 APInt Quotient(BitWidth, 0); // to hold result. 1613 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1614 return Quotient; 1615 } 1616 1617 APInt APInt::udiv(uint64_t RHS) const { 1618 assert(RHS != 0 && "Divide by zero?"); 1619 1620 // First, deal with the easy case 1621 if (isSingleWord()) 1622 return APInt(BitWidth, U.VAL / RHS); 1623 1624 // Get some facts about the LHS words. 1625 unsigned lhsWords = getNumWords(getActiveBits()); 1626 1627 // Deal with some degenerate cases 1628 if (!lhsWords) 1629 // 0 / X ===> 0 1630 return APInt(BitWidth, 0); 1631 if (RHS == 1) 1632 // X / 1 ===> X 1633 return *this; 1634 if (this->ult(RHS)) 1635 // X / Y ===> 0, iff X < Y 1636 return APInt(BitWidth, 0); 1637 if (*this == RHS) 1638 // X / X ===> 1 1639 return APInt(BitWidth, 1); 1640 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1641 // All high words are zero, just use native divide 1642 return APInt(BitWidth, this->U.pVal[0] / RHS); 1643 1644 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1645 APInt Quotient(BitWidth, 0); // to hold result. 1646 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1647 return Quotient; 1648 } 1649 1650 APInt APInt::sdiv(const APInt &RHS) const { 1651 if (isNegative()) { 1652 if (RHS.isNegative()) 1653 return (-(*this)).udiv(-RHS); 1654 return -((-(*this)).udiv(RHS)); 1655 } 1656 if (RHS.isNegative()) 1657 return -(this->udiv(-RHS)); 1658 return this->udiv(RHS); 1659 } 1660 1661 APInt APInt::sdiv(int64_t RHS) const { 1662 if (isNegative()) { 1663 if (RHS < 0) 1664 return (-(*this)).udiv(-RHS); 1665 return -((-(*this)).udiv(RHS)); 1666 } 1667 if (RHS < 0) 1668 return -(this->udiv(-RHS)); 1669 return this->udiv(RHS); 1670 } 1671 1672 APInt APInt::urem(const APInt &RHS) const { 1673 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1674 if (isSingleWord()) { 1675 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1676 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1677 } 1678 1679 // Get some facts about the LHS 1680 unsigned lhsWords = getNumWords(getActiveBits()); 1681 1682 // Get some facts about the RHS 1683 unsigned rhsBits = RHS.getActiveBits(); 1684 unsigned rhsWords = getNumWords(rhsBits); 1685 assert(rhsWords && "Performing remainder operation by zero ???"); 1686 1687 // Check the degenerate cases 1688 if (lhsWords == 0) 1689 // 0 % Y ===> 0 1690 return APInt(BitWidth, 0); 1691 if (rhsBits == 1) 1692 // X % 1 ===> 0 1693 return APInt(BitWidth, 0); 1694 if (lhsWords < rhsWords || this->ult(RHS)) 1695 // X % Y ===> X, iff X < Y 1696 return *this; 1697 if (*this == RHS) 1698 // X % X == 0; 1699 return APInt(BitWidth, 0); 1700 if (lhsWords == 1) 1701 // All high words are zero, just use native remainder 1702 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1703 1704 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1705 APInt Remainder(BitWidth, 0); 1706 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1707 return Remainder; 1708 } 1709 1710 uint64_t APInt::urem(uint64_t RHS) const { 1711 assert(RHS != 0 && "Remainder by zero?"); 1712 1713 if (isSingleWord()) 1714 return U.VAL % RHS; 1715 1716 // Get some facts about the LHS 1717 unsigned lhsWords = getNumWords(getActiveBits()); 1718 1719 // Check the degenerate cases 1720 if (lhsWords == 0) 1721 // 0 % Y ===> 0 1722 return 0; 1723 if (RHS == 1) 1724 // X % 1 ===> 0 1725 return 0; 1726 if (this->ult(RHS)) 1727 // X % Y ===> X, iff X < Y 1728 return getZExtValue(); 1729 if (*this == RHS) 1730 // X % X == 0; 1731 return 0; 1732 if (lhsWords == 1) 1733 // All high words are zero, just use native remainder 1734 return U.pVal[0] % RHS; 1735 1736 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1737 uint64_t Remainder; 1738 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1739 return Remainder; 1740 } 1741 1742 APInt APInt::srem(const APInt &RHS) const { 1743 if (isNegative()) { 1744 if (RHS.isNegative()) 1745 return -((-(*this)).urem(-RHS)); 1746 return -((-(*this)).urem(RHS)); 1747 } 1748 if (RHS.isNegative()) 1749 return this->urem(-RHS); 1750 return this->urem(RHS); 1751 } 1752 1753 int64_t APInt::srem(int64_t RHS) const { 1754 if (isNegative()) { 1755 if (RHS < 0) 1756 return -((-(*this)).urem(-RHS)); 1757 return -((-(*this)).urem(RHS)); 1758 } 1759 if (RHS < 0) 1760 return this->urem(-RHS); 1761 return this->urem(RHS); 1762 } 1763 1764 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1765 APInt &Quotient, APInt &Remainder) { 1766 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1767 unsigned BitWidth = LHS.BitWidth; 1768 1769 // First, deal with the easy case 1770 if (LHS.isSingleWord()) { 1771 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1772 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1773 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1774 Quotient = APInt(BitWidth, QuotVal); 1775 Remainder = APInt(BitWidth, RemVal); 1776 return; 1777 } 1778 1779 // Get some size facts about the dividend and divisor 1780 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1781 unsigned rhsBits = RHS.getActiveBits(); 1782 unsigned rhsWords = getNumWords(rhsBits); 1783 assert(rhsWords && "Performing divrem operation by zero ???"); 1784 1785 // Check the degenerate cases 1786 if (lhsWords == 0) { 1787 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1788 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1789 return; 1790 } 1791 1792 if (rhsBits == 1) { 1793 Quotient = LHS; // X / 1 ===> X 1794 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1795 } 1796 1797 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1798 Remainder = LHS; // X % Y ===> X, iff X < Y 1799 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1800 return; 1801 } 1802 1803 if (LHS == RHS) { 1804 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1805 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1806 return; 1807 } 1808 1809 // Make sure there is enough space to hold the results. 1810 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1811 // change the size. This is necessary if Quotient or Remainder is aliased 1812 // with LHS or RHS. 1813 Quotient.reallocate(BitWidth); 1814 Remainder.reallocate(BitWidth); 1815 1816 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1817 // There is only one word to consider so use the native versions. 1818 uint64_t lhsValue = LHS.U.pVal[0]; 1819 uint64_t rhsValue = RHS.U.pVal[0]; 1820 Quotient = lhsValue / rhsValue; 1821 Remainder = lhsValue % rhsValue; 1822 return; 1823 } 1824 1825 // Okay, lets do it the long way 1826 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1827 Remainder.U.pVal); 1828 // Clear the rest of the Quotient and Remainder. 1829 std::memset(Quotient.U.pVal + lhsWords, 0, 1830 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1831 std::memset(Remainder.U.pVal + rhsWords, 0, 1832 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1833 } 1834 1835 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1836 uint64_t &Remainder) { 1837 assert(RHS != 0 && "Divide by zero?"); 1838 unsigned BitWidth = LHS.BitWidth; 1839 1840 // First, deal with the easy case 1841 if (LHS.isSingleWord()) { 1842 uint64_t QuotVal = LHS.U.VAL / RHS; 1843 Remainder = LHS.U.VAL % RHS; 1844 Quotient = APInt(BitWidth, QuotVal); 1845 return; 1846 } 1847 1848 // Get some size facts about the dividend and divisor 1849 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1850 1851 // Check the degenerate cases 1852 if (lhsWords == 0) { 1853 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1854 Remainder = 0; // 0 % Y ===> 0 1855 return; 1856 } 1857 1858 if (RHS == 1) { 1859 Quotient = LHS; // X / 1 ===> X 1860 Remainder = 0; // X % 1 ===> 0 1861 return; 1862 } 1863 1864 if (LHS.ult(RHS)) { 1865 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1866 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1867 return; 1868 } 1869 1870 if (LHS == RHS) { 1871 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1872 Remainder = 0; // X % X ===> 0; 1873 return; 1874 } 1875 1876 // Make sure there is enough space to hold the results. 1877 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1878 // change the size. This is necessary if Quotient is aliased with LHS. 1879 Quotient.reallocate(BitWidth); 1880 1881 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1882 // There is only one word to consider so use the native versions. 1883 uint64_t lhsValue = LHS.U.pVal[0]; 1884 Quotient = lhsValue / RHS; 1885 Remainder = lhsValue % RHS; 1886 return; 1887 } 1888 1889 // Okay, lets do it the long way 1890 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1891 // Clear the rest of the Quotient. 1892 std::memset(Quotient.U.pVal + lhsWords, 0, 1893 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1894 } 1895 1896 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1897 APInt &Quotient, APInt &Remainder) { 1898 if (LHS.isNegative()) { 1899 if (RHS.isNegative()) 1900 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1901 else { 1902 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1903 Quotient.negate(); 1904 } 1905 Remainder.negate(); 1906 } else if (RHS.isNegative()) { 1907 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1908 Quotient.negate(); 1909 } else { 1910 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1911 } 1912 } 1913 1914 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1915 APInt &Quotient, int64_t &Remainder) { 1916 uint64_t R = Remainder; 1917 if (LHS.isNegative()) { 1918 if (RHS < 0) 1919 APInt::udivrem(-LHS, -RHS, Quotient, R); 1920 else { 1921 APInt::udivrem(-LHS, RHS, Quotient, R); 1922 Quotient.negate(); 1923 } 1924 R = -R; 1925 } else if (RHS < 0) { 1926 APInt::udivrem(LHS, -RHS, Quotient, R); 1927 Quotient.negate(); 1928 } else { 1929 APInt::udivrem(LHS, RHS, Quotient, R); 1930 } 1931 Remainder = R; 1932 } 1933 1934 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1935 APInt Res = *this+RHS; 1936 Overflow = isNonNegative() == RHS.isNonNegative() && 1937 Res.isNonNegative() != isNonNegative(); 1938 return Res; 1939 } 1940 1941 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1942 APInt Res = *this+RHS; 1943 Overflow = Res.ult(RHS); 1944 return Res; 1945 } 1946 1947 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1948 APInt Res = *this - RHS; 1949 Overflow = isNonNegative() != RHS.isNonNegative() && 1950 Res.isNonNegative() != isNonNegative(); 1951 return Res; 1952 } 1953 1954 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1955 APInt Res = *this-RHS; 1956 Overflow = Res.ugt(*this); 1957 return Res; 1958 } 1959 1960 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1961 // MININT/-1 --> overflow. 1962 Overflow = isMinSignedValue() && RHS.isAllOnes(); 1963 return sdiv(RHS); 1964 } 1965 1966 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1967 APInt Res = *this * RHS; 1968 1969 if (RHS != 0) 1970 Overflow = Res.sdiv(RHS) != *this || 1971 (isMinSignedValue() && RHS.isAllOnes()); 1972 else 1973 Overflow = false; 1974 return Res; 1975 } 1976 1977 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1978 if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) { 1979 Overflow = true; 1980 return *this * RHS; 1981 } 1982 1983 APInt Res = lshr(1) * RHS; 1984 Overflow = Res.isNegative(); 1985 Res <<= 1; 1986 if ((*this)[0]) { 1987 Res += RHS; 1988 if (Res.ult(RHS)) 1989 Overflow = true; 1990 } 1991 return Res; 1992 } 1993 1994 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1995 return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow); 1996 } 1997 1998 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { 1999 Overflow = ShAmt >= getBitWidth(); 2000 if (Overflow) 2001 return APInt(BitWidth, 0); 2002 2003 if (isNonNegative()) // Don't allow sign change. 2004 Overflow = ShAmt >= countl_zero(); 2005 else 2006 Overflow = ShAmt >= countl_one(); 2007 2008 return *this << ShAmt; 2009 } 2010 2011 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2012 return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow); 2013 } 2014 2015 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const { 2016 Overflow = ShAmt >= getBitWidth(); 2017 if (Overflow) 2018 return APInt(BitWidth, 0); 2019 2020 Overflow = ShAmt > countl_zero(); 2021 2022 return *this << ShAmt; 2023 } 2024 2025 APInt APInt::sadd_sat(const APInt &RHS) const { 2026 bool Overflow; 2027 APInt Res = sadd_ov(RHS, Overflow); 2028 if (!Overflow) 2029 return Res; 2030 2031 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2032 : APInt::getSignedMaxValue(BitWidth); 2033 } 2034 2035 APInt APInt::uadd_sat(const APInt &RHS) const { 2036 bool Overflow; 2037 APInt Res = uadd_ov(RHS, Overflow); 2038 if (!Overflow) 2039 return Res; 2040 2041 return APInt::getMaxValue(BitWidth); 2042 } 2043 2044 APInt APInt::ssub_sat(const APInt &RHS) const { 2045 bool Overflow; 2046 APInt Res = ssub_ov(RHS, Overflow); 2047 if (!Overflow) 2048 return Res; 2049 2050 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2051 : APInt::getSignedMaxValue(BitWidth); 2052 } 2053 2054 APInt APInt::usub_sat(const APInt &RHS) const { 2055 bool Overflow; 2056 APInt Res = usub_ov(RHS, Overflow); 2057 if (!Overflow) 2058 return Res; 2059 2060 return APInt(BitWidth, 0); 2061 } 2062 2063 APInt APInt::smul_sat(const APInt &RHS) const { 2064 bool Overflow; 2065 APInt Res = smul_ov(RHS, Overflow); 2066 if (!Overflow) 2067 return Res; 2068 2069 // The result is negative if one and only one of inputs is negative. 2070 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2071 2072 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2073 : APInt::getSignedMaxValue(BitWidth); 2074 } 2075 2076 APInt APInt::umul_sat(const APInt &RHS) const { 2077 bool Overflow; 2078 APInt Res = umul_ov(RHS, Overflow); 2079 if (!Overflow) 2080 return Res; 2081 2082 return APInt::getMaxValue(BitWidth); 2083 } 2084 2085 APInt APInt::sshl_sat(const APInt &RHS) const { 2086 return sshl_sat(RHS.getLimitedValue(getBitWidth())); 2087 } 2088 2089 APInt APInt::sshl_sat(unsigned RHS) const { 2090 bool Overflow; 2091 APInt Res = sshl_ov(RHS, Overflow); 2092 if (!Overflow) 2093 return Res; 2094 2095 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2096 : APInt::getSignedMaxValue(BitWidth); 2097 } 2098 2099 APInt APInt::ushl_sat(const APInt &RHS) const { 2100 return ushl_sat(RHS.getLimitedValue(getBitWidth())); 2101 } 2102 2103 APInt APInt::ushl_sat(unsigned RHS) const { 2104 bool Overflow; 2105 APInt Res = ushl_ov(RHS, Overflow); 2106 if (!Overflow) 2107 return Res; 2108 2109 return APInt::getMaxValue(BitWidth); 2110 } 2111 2112 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2113 // Check our assumptions here 2114 assert(!str.empty() && "Invalid string length"); 2115 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2116 radix == 36) && 2117 "Radix should be 2, 8, 10, 16, or 36!"); 2118 2119 StringRef::iterator p = str.begin(); 2120 size_t slen = str.size(); 2121 bool isNeg = *p == '-'; 2122 if (*p == '-' || *p == '+') { 2123 p++; 2124 slen--; 2125 assert(slen && "String is only a sign, needs a value."); 2126 } 2127 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2128 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2129 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2130 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2131 "Insufficient bit width"); 2132 2133 // Allocate memory if needed 2134 if (isSingleWord()) 2135 U.VAL = 0; 2136 else 2137 U.pVal = getClearedMemory(getNumWords()); 2138 2139 // Figure out if we can shift instead of multiply 2140 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2141 2142 // Enter digit traversal loop 2143 for (StringRef::iterator e = str.end(); p != e; ++p) { 2144 unsigned digit = getDigit(*p, radix); 2145 assert(digit < radix && "Invalid character in digit string"); 2146 2147 // Shift or multiply the value by the radix 2148 if (slen > 1) { 2149 if (shift) 2150 *this <<= shift; 2151 else 2152 *this *= radix; 2153 } 2154 2155 // Add in the digit we just interpreted 2156 *this += digit; 2157 } 2158 // If its negative, put it in two's complement form 2159 if (isNeg) 2160 this->negate(); 2161 } 2162 2163 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 2164 bool formatAsCLiteral, bool UpperCase) const { 2165 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2166 Radix == 36) && 2167 "Radix should be 2, 8, 10, 16, or 36!"); 2168 2169 const char *Prefix = ""; 2170 if (formatAsCLiteral) { 2171 switch (Radix) { 2172 case 2: 2173 // Binary literals are a non-standard extension added in gcc 4.3: 2174 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2175 Prefix = "0b"; 2176 break; 2177 case 8: 2178 Prefix = "0"; 2179 break; 2180 case 10: 2181 break; // No prefix 2182 case 16: 2183 Prefix = "0x"; 2184 break; 2185 default: 2186 llvm_unreachable("Invalid radix!"); 2187 } 2188 } 2189 2190 // First, check for a zero value and just short circuit the logic below. 2191 if (isZero()) { 2192 while (*Prefix) { 2193 Str.push_back(*Prefix); 2194 ++Prefix; 2195 }; 2196 Str.push_back('0'); 2197 return; 2198 } 2199 2200 static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz" 2201 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2202 const char *Digits = BothDigits + (UpperCase ? 36 : 0); 2203 2204 if (isSingleWord()) { 2205 char Buffer[65]; 2206 char *BufPtr = std::end(Buffer); 2207 2208 uint64_t N; 2209 if (!Signed) { 2210 N = getZExtValue(); 2211 } else { 2212 int64_t I = getSExtValue(); 2213 if (I >= 0) { 2214 N = I; 2215 } else { 2216 Str.push_back('-'); 2217 N = -(uint64_t)I; 2218 } 2219 } 2220 2221 while (*Prefix) { 2222 Str.push_back(*Prefix); 2223 ++Prefix; 2224 }; 2225 2226 while (N) { 2227 *--BufPtr = Digits[N % Radix]; 2228 N /= Radix; 2229 } 2230 Str.append(BufPtr, std::end(Buffer)); 2231 return; 2232 } 2233 2234 APInt Tmp(*this); 2235 2236 if (Signed && isNegative()) { 2237 // They want to print the signed version and it is a negative value 2238 // Flip the bits and add one to turn it into the equivalent positive 2239 // value and put a '-' in the result. 2240 Tmp.negate(); 2241 Str.push_back('-'); 2242 } 2243 2244 while (*Prefix) { 2245 Str.push_back(*Prefix); 2246 ++Prefix; 2247 }; 2248 2249 // We insert the digits backward, then reverse them to get the right order. 2250 unsigned StartDig = Str.size(); 2251 2252 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2253 // because the number of bits per digit (1, 3 and 4 respectively) divides 2254 // equally. We just shift until the value is zero. 2255 if (Radix == 2 || Radix == 8 || Radix == 16) { 2256 // Just shift tmp right for each digit width until it becomes zero 2257 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2258 unsigned MaskAmt = Radix - 1; 2259 2260 while (Tmp.getBoolValue()) { 2261 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2262 Str.push_back(Digits[Digit]); 2263 Tmp.lshrInPlace(ShiftAmt); 2264 } 2265 } else { 2266 while (Tmp.getBoolValue()) { 2267 uint64_t Digit; 2268 udivrem(Tmp, Radix, Tmp, Digit); 2269 assert(Digit < Radix && "divide failed"); 2270 Str.push_back(Digits[Digit]); 2271 } 2272 } 2273 2274 // Reverse the digits before returning. 2275 std::reverse(Str.begin()+StartDig, Str.end()); 2276 } 2277 2278 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2279 LLVM_DUMP_METHOD void APInt::dump() const { 2280 SmallString<40> S, U; 2281 this->toStringUnsigned(U); 2282 this->toStringSigned(S); 2283 dbgs() << "APInt(" << BitWidth << "b, " 2284 << U << "u " << S << "s)\n"; 2285 } 2286 #endif 2287 2288 void APInt::print(raw_ostream &OS, bool isSigned) const { 2289 SmallString<40> S; 2290 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2291 OS << S; 2292 } 2293 2294 // This implements a variety of operations on a representation of 2295 // arbitrary precision, two's-complement, bignum integer values. 2296 2297 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2298 // and unrestricting assumption. 2299 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2300 "Part width must be divisible by 2!"); 2301 2302 // Returns the integer part with the least significant BITS set. 2303 // BITS cannot be zero. 2304 static inline APInt::WordType lowBitMask(unsigned bits) { 2305 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2306 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2307 } 2308 2309 /// Returns the value of the lower half of PART. 2310 static inline APInt::WordType lowHalf(APInt::WordType part) { 2311 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2312 } 2313 2314 /// Returns the value of the upper half of PART. 2315 static inline APInt::WordType highHalf(APInt::WordType part) { 2316 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2317 } 2318 2319 /// Sets the least significant part of a bignum to the input value, and zeroes 2320 /// out higher parts. 2321 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2322 assert(parts > 0); 2323 dst[0] = part; 2324 for (unsigned i = 1; i < parts; i++) 2325 dst[i] = 0; 2326 } 2327 2328 /// Assign one bignum to another. 2329 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2330 for (unsigned i = 0; i < parts; i++) 2331 dst[i] = src[i]; 2332 } 2333 2334 /// Returns true if a bignum is zero, false otherwise. 2335 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2336 for (unsigned i = 0; i < parts; i++) 2337 if (src[i]) 2338 return false; 2339 2340 return true; 2341 } 2342 2343 /// Extract the given bit of a bignum; returns 0 or 1. 2344 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2345 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2346 } 2347 2348 /// Set the given bit of a bignum. 2349 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2350 parts[whichWord(bit)] |= maskBit(bit); 2351 } 2352 2353 /// Clears the given bit of a bignum. 2354 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2355 parts[whichWord(bit)] &= ~maskBit(bit); 2356 } 2357 2358 /// Returns the bit number of the least significant set bit of a number. If the 2359 /// input number has no bits set UINT_MAX is returned. 2360 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2361 for (unsigned i = 0; i < n; i++) { 2362 if (parts[i] != 0) { 2363 unsigned lsb = llvm::countr_zero(parts[i]); 2364 return lsb + i * APINT_BITS_PER_WORD; 2365 } 2366 } 2367 2368 return UINT_MAX; 2369 } 2370 2371 /// Returns the bit number of the most significant set bit of a number. 2372 /// If the input number has no bits set UINT_MAX is returned. 2373 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2374 do { 2375 --n; 2376 2377 if (parts[n] != 0) { 2378 static_assert(sizeof(parts[n]) <= sizeof(uint64_t)); 2379 unsigned msb = llvm::Log2_64(parts[n]); 2380 2381 return msb + n * APINT_BITS_PER_WORD; 2382 } 2383 } while (n); 2384 2385 return UINT_MAX; 2386 } 2387 2388 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2389 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2390 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2391 /// */ 2392 void 2393 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2394 unsigned srcBits, unsigned srcLSB) { 2395 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2396 assert(dstParts <= dstCount); 2397 2398 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2399 tcAssign(dst, src + firstSrcPart, dstParts); 2400 2401 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2402 tcShiftRight(dst, dstParts, shift); 2403 2404 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2405 // in DST. If this is less that srcBits, append the rest, else 2406 // clear the high bits. 2407 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2408 if (n < srcBits) { 2409 WordType mask = lowBitMask (srcBits - n); 2410 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2411 << n % APINT_BITS_PER_WORD); 2412 } else if (n > srcBits) { 2413 if (srcBits % APINT_BITS_PER_WORD) 2414 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2415 } 2416 2417 // Clear high parts. 2418 while (dstParts < dstCount) 2419 dst[dstParts++] = 0; 2420 } 2421 2422 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2423 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2424 WordType c, unsigned parts) { 2425 assert(c <= 1); 2426 2427 for (unsigned i = 0; i < parts; i++) { 2428 WordType l = dst[i]; 2429 if (c) { 2430 dst[i] += rhs[i] + 1; 2431 c = (dst[i] <= l); 2432 } else { 2433 dst[i] += rhs[i]; 2434 c = (dst[i] < l); 2435 } 2436 } 2437 2438 return c; 2439 } 2440 2441 /// This function adds a single "word" integer, src, to the multiple 2442 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2443 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2444 /// @returns the carry of the addition. 2445 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2446 unsigned parts) { 2447 for (unsigned i = 0; i < parts; ++i) { 2448 dst[i] += src; 2449 if (dst[i] >= src) 2450 return 0; // No need to carry so exit early. 2451 src = 1; // Carry one to next digit. 2452 } 2453 2454 return 1; 2455 } 2456 2457 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2458 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2459 WordType c, unsigned parts) { 2460 assert(c <= 1); 2461 2462 for (unsigned i = 0; i < parts; i++) { 2463 WordType l = dst[i]; 2464 if (c) { 2465 dst[i] -= rhs[i] + 1; 2466 c = (dst[i] >= l); 2467 } else { 2468 dst[i] -= rhs[i]; 2469 c = (dst[i] > l); 2470 } 2471 } 2472 2473 return c; 2474 } 2475 2476 /// This function subtracts a single "word" (64-bit word), src, from 2477 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2478 /// no further borrowing is needed or it runs out of "words" in dst. The result 2479 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2480 /// exhausted. In other words, if src > dst then this function returns 1, 2481 /// otherwise 0. 2482 /// @returns the borrow out of the subtraction 2483 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2484 unsigned parts) { 2485 for (unsigned i = 0; i < parts; ++i) { 2486 WordType Dst = dst[i]; 2487 dst[i] -= src; 2488 if (src <= Dst) 2489 return 0; // No need to borrow so exit early. 2490 src = 1; // We have to "borrow 1" from next "word" 2491 } 2492 2493 return 1; 2494 } 2495 2496 /// Negate a bignum in-place. 2497 void APInt::tcNegate(WordType *dst, unsigned parts) { 2498 tcComplement(dst, parts); 2499 tcIncrement(dst, parts); 2500 } 2501 2502 /// DST += SRC * MULTIPLIER + CARRY if add is true 2503 /// DST = SRC * MULTIPLIER + CARRY if add is false 2504 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2505 /// they must start at the same point, i.e. DST == SRC. 2506 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2507 /// returned. Otherwise DST is filled with the least significant 2508 /// DSTPARTS parts of the result, and if all of the omitted higher 2509 /// parts were zero return zero, otherwise overflow occurred and 2510 /// return one. 2511 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2512 WordType multiplier, WordType carry, 2513 unsigned srcParts, unsigned dstParts, 2514 bool add) { 2515 // Otherwise our writes of DST kill our later reads of SRC. 2516 assert(dst <= src || dst >= src + srcParts); 2517 assert(dstParts <= srcParts + 1); 2518 2519 // N loops; minimum of dstParts and srcParts. 2520 unsigned n = std::min(dstParts, srcParts); 2521 2522 for (unsigned i = 0; i < n; i++) { 2523 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2524 // This cannot overflow, because: 2525 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2526 // which is less than n^2. 2527 WordType srcPart = src[i]; 2528 WordType low, mid, high; 2529 if (multiplier == 0 || srcPart == 0) { 2530 low = carry; 2531 high = 0; 2532 } else { 2533 low = lowHalf(srcPart) * lowHalf(multiplier); 2534 high = highHalf(srcPart) * highHalf(multiplier); 2535 2536 mid = lowHalf(srcPart) * highHalf(multiplier); 2537 high += highHalf(mid); 2538 mid <<= APINT_BITS_PER_WORD / 2; 2539 if (low + mid < low) 2540 high++; 2541 low += mid; 2542 2543 mid = highHalf(srcPart) * lowHalf(multiplier); 2544 high += highHalf(mid); 2545 mid <<= APINT_BITS_PER_WORD / 2; 2546 if (low + mid < low) 2547 high++; 2548 low += mid; 2549 2550 // Now add carry. 2551 if (low + carry < low) 2552 high++; 2553 low += carry; 2554 } 2555 2556 if (add) { 2557 // And now DST[i], and store the new low part there. 2558 if (low + dst[i] < low) 2559 high++; 2560 dst[i] += low; 2561 } else 2562 dst[i] = low; 2563 2564 carry = high; 2565 } 2566 2567 if (srcParts < dstParts) { 2568 // Full multiplication, there is no overflow. 2569 assert(srcParts + 1 == dstParts); 2570 dst[srcParts] = carry; 2571 return 0; 2572 } 2573 2574 // We overflowed if there is carry. 2575 if (carry) 2576 return 1; 2577 2578 // We would overflow if any significant unwritten parts would be 2579 // non-zero. This is true if any remaining src parts are non-zero 2580 // and the multiplier is non-zero. 2581 if (multiplier) 2582 for (unsigned i = dstParts; i < srcParts; i++) 2583 if (src[i]) 2584 return 1; 2585 2586 // We fitted in the narrow destination. 2587 return 0; 2588 } 2589 2590 /// DST = LHS * RHS, where DST has the same width as the operands and 2591 /// is filled with the least significant parts of the result. Returns 2592 /// one if overflow occurred, otherwise zero. DST must be disjoint 2593 /// from both operands. 2594 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2595 const WordType *rhs, unsigned parts) { 2596 assert(dst != lhs && dst != rhs); 2597 2598 int overflow = 0; 2599 tcSet(dst, 0, parts); 2600 2601 for (unsigned i = 0; i < parts; i++) 2602 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2603 parts - i, true); 2604 2605 return overflow; 2606 } 2607 2608 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2609 /// operands. No overflow occurs. DST must be disjoint from both operands. 2610 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2611 const WordType *rhs, unsigned lhsParts, 2612 unsigned rhsParts) { 2613 // Put the narrower number on the LHS for less loops below. 2614 if (lhsParts > rhsParts) 2615 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2616 2617 assert(dst != lhs && dst != rhs); 2618 2619 tcSet(dst, 0, rhsParts); 2620 2621 for (unsigned i = 0; i < lhsParts; i++) 2622 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2623 } 2624 2625 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2626 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2627 // set REMAINDER to the remainder, return zero. i.e. 2628 // 2629 // OLD_LHS = RHS * LHS + REMAINDER 2630 // 2631 // SCRATCH is a bignum of the same size as the operands and result for 2632 // use by the routine; its contents need not be initialized and are 2633 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2634 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2635 WordType *remainder, WordType *srhs, 2636 unsigned parts) { 2637 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2638 2639 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2640 if (shiftCount == 0) 2641 return true; 2642 2643 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2644 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2645 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2646 2647 tcAssign(srhs, rhs, parts); 2648 tcShiftLeft(srhs, parts, shiftCount); 2649 tcAssign(remainder, lhs, parts); 2650 tcSet(lhs, 0, parts); 2651 2652 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2653 // total. 2654 for (;;) { 2655 int compare = tcCompare(remainder, srhs, parts); 2656 if (compare >= 0) { 2657 tcSubtract(remainder, srhs, 0, parts); 2658 lhs[n] |= mask; 2659 } 2660 2661 if (shiftCount == 0) 2662 break; 2663 shiftCount--; 2664 tcShiftRight(srhs, parts, 1); 2665 if ((mask >>= 1) == 0) { 2666 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2667 n--; 2668 } 2669 } 2670 2671 return false; 2672 } 2673 2674 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2675 /// no restrictions on Count. 2676 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2677 // Don't bother performing a no-op shift. 2678 if (!Count) 2679 return; 2680 2681 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2682 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2683 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2684 2685 // Fastpath for moving by whole words. 2686 if (BitShift == 0) { 2687 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2688 } else { 2689 while (Words-- > WordShift) { 2690 Dst[Words] = Dst[Words - WordShift] << BitShift; 2691 if (Words > WordShift) 2692 Dst[Words] |= 2693 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2694 } 2695 } 2696 2697 // Fill in the remainder with 0s. 2698 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2699 } 2700 2701 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2702 /// are no restrictions on Count. 2703 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2704 // Don't bother performing a no-op shift. 2705 if (!Count) 2706 return; 2707 2708 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2709 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2710 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2711 2712 unsigned WordsToMove = Words - WordShift; 2713 // Fastpath for moving by whole words. 2714 if (BitShift == 0) { 2715 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2716 } else { 2717 for (unsigned i = 0; i != WordsToMove; ++i) { 2718 Dst[i] = Dst[i + WordShift] >> BitShift; 2719 if (i + 1 != WordsToMove) 2720 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2721 } 2722 } 2723 2724 // Fill in the remainder with 0s. 2725 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2726 } 2727 2728 // Comparison (unsigned) of two bignums. 2729 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2730 unsigned parts) { 2731 while (parts) { 2732 parts--; 2733 if (lhs[parts] != rhs[parts]) 2734 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2735 } 2736 2737 return 0; 2738 } 2739 2740 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2741 APInt::Rounding RM) { 2742 // Currently udivrem always rounds down. 2743 switch (RM) { 2744 case APInt::Rounding::DOWN: 2745 case APInt::Rounding::TOWARD_ZERO: 2746 return A.udiv(B); 2747 case APInt::Rounding::UP: { 2748 APInt Quo, Rem; 2749 APInt::udivrem(A, B, Quo, Rem); 2750 if (Rem.isZero()) 2751 return Quo; 2752 return Quo + 1; 2753 } 2754 } 2755 llvm_unreachable("Unknown APInt::Rounding enum"); 2756 } 2757 2758 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2759 APInt::Rounding RM) { 2760 switch (RM) { 2761 case APInt::Rounding::DOWN: 2762 case APInt::Rounding::UP: { 2763 APInt Quo, Rem; 2764 APInt::sdivrem(A, B, Quo, Rem); 2765 if (Rem.isZero()) 2766 return Quo; 2767 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2768 // We want to check whether the non-integer part of the mathematical value 2769 // is negative or not. If the non-integer part is negative, we need to round 2770 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2771 // already rounded down. 2772 if (RM == APInt::Rounding::DOWN) { 2773 if (Rem.isNegative() != B.isNegative()) 2774 return Quo - 1; 2775 return Quo; 2776 } 2777 if (Rem.isNegative() != B.isNegative()) 2778 return Quo; 2779 return Quo + 1; 2780 } 2781 // Currently sdiv rounds towards zero. 2782 case APInt::Rounding::TOWARD_ZERO: 2783 return A.sdiv(B); 2784 } 2785 llvm_unreachable("Unknown APInt::Rounding enum"); 2786 } 2787 2788 std::optional<APInt> 2789 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2790 unsigned RangeWidth) { 2791 unsigned CoeffWidth = A.getBitWidth(); 2792 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2793 assert(RangeWidth <= CoeffWidth && 2794 "Value range width should be less than coefficient width"); 2795 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2796 2797 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2798 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2799 2800 // Identify 0 as a (non)solution immediately. 2801 if (C.sextOrTrunc(RangeWidth).isZero()) { 2802 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2803 return APInt(CoeffWidth, 0); 2804 } 2805 2806 // The result of APInt arithmetic has the same bit width as the operands, 2807 // so it can actually lose high bits. A product of two n-bit integers needs 2808 // 2n-1 bits to represent the full value. 2809 // The operation done below (on quadratic coefficients) that can produce 2810 // the largest value is the evaluation of the equation during bisection, 2811 // which needs 3 times the bitwidth of the coefficient, so the total number 2812 // of required bits is 3n. 2813 // 2814 // The purpose of this extension is to simulate the set Z of all integers, 2815 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2816 // and negative numbers (not so much in a modulo arithmetic). The method 2817 // used to solve the equation is based on the standard formula for real 2818 // numbers, and uses the concepts of "positive" and "negative" with their 2819 // usual meanings. 2820 CoeffWidth *= 3; 2821 A = A.sext(CoeffWidth); 2822 B = B.sext(CoeffWidth); 2823 C = C.sext(CoeffWidth); 2824 2825 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2826 // the bit width has increased. 2827 if (A.isNegative()) { 2828 A.negate(); 2829 B.negate(); 2830 C.negate(); 2831 } 2832 2833 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2834 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2835 // and R = 2^BitWidth. 2836 // Since we're trying not only to find exact solutions, but also values 2837 // that "wrap around", such a set will always have a solution, i.e. an x 2838 // that satisfies at least one of the equations, or such that |q(x)| 2839 // exceeds kR, while |q(x-1)| for the same k does not. 2840 // 2841 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2842 // positive solution n (in the above sense), and also such that the n 2843 // will be the least among all solutions corresponding to k = 0, 1, ... 2844 // (more precisely, the least element in the set 2845 // { n(k) | k is such that a solution n(k) exists }). 2846 // 2847 // Consider the parabola (over real numbers) that corresponds to the 2848 // quadratic equation. Since A > 0, the arms of the parabola will point 2849 // up. Picking different values of k will shift it up and down by R. 2850 // 2851 // We want to shift the parabola in such a way as to reduce the problem 2852 // of solving q(x) = kR to solving shifted_q(x) = 0. 2853 // (The interesting solutions are the ceilings of the real number 2854 // solutions.) 2855 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2856 APInt TwoA = 2 * A; 2857 APInt SqrB = B * B; 2858 bool PickLow; 2859 2860 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2861 assert(A.isStrictlyPositive()); 2862 APInt T = V.abs().urem(A); 2863 if (T.isZero()) 2864 return V; 2865 return V.isNegative() ? V+T : V+(A-T); 2866 }; 2867 2868 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2869 // iff B is positive. 2870 if (B.isNonNegative()) { 2871 // If B >= 0, the vertex it at a negative location (or at 0), so in 2872 // order to have a non-negative solution we need to pick k that makes 2873 // C-kR negative. To satisfy all the requirements for the solution 2874 // that we are looking for, it needs to be closest to 0 of all k. 2875 C = C.srem(R); 2876 if (C.isStrictlyPositive()) 2877 C -= R; 2878 // Pick the greater solution. 2879 PickLow = false; 2880 } else { 2881 // If B < 0, the vertex is at a positive location. For any solution 2882 // to exist, the discriminant must be non-negative. This means that 2883 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2884 // lower bound on values of k: kR >= C - B^2/4A. 2885 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2886 // Round LowkR up (towards +inf) to the nearest kR. 2887 LowkR = RoundUp(LowkR, R); 2888 2889 // If there exists k meeting the condition above, and such that 2890 // C-kR > 0, there will be two positive real number solutions of 2891 // q(x) = kR. Out of all such values of k, pick the one that makes 2892 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2893 // In other words, find maximum k such that LowkR <= kR < C. 2894 if (C.sgt(LowkR)) { 2895 // If LowkR < C, then such a k is guaranteed to exist because 2896 // LowkR itself is a multiple of R. 2897 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2898 // Pick the smaller solution. 2899 PickLow = true; 2900 } else { 2901 // If C-kR < 0 for all potential k's, it means that one solution 2902 // will be negative, while the other will be positive. The positive 2903 // solution will shift towards 0 if the parabola is moved up. 2904 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2905 // to 0, or in other words, out of all parabolas that have solutions, 2906 // pick the one that is the farthest "up"). 2907 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2908 C -= LowkR; 2909 // Pick the greater solution. 2910 PickLow = false; 2911 } 2912 } 2913 2914 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2915 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2916 2917 APInt D = SqrB - 4*A*C; 2918 assert(D.isNonNegative() && "Negative discriminant"); 2919 APInt SQ = D.sqrt(); 2920 2921 APInt Q = SQ * SQ; 2922 bool InexactSQ = Q != D; 2923 // The calculated SQ may actually be greater than the exact (non-integer) 2924 // value. If that's the case, decrement SQ to get a value that is lower. 2925 if (Q.sgt(D)) 2926 SQ -= 1; 2927 2928 APInt X; 2929 APInt Rem; 2930 2931 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2932 // When using the quadratic formula directly, the calculated low root 2933 // may be greater than the exact one, since we would be subtracting SQ. 2934 // To make sure that the calculated root is not greater than the exact 2935 // one, subtract SQ+1 when calculating the low root (for inexact value 2936 // of SQ). 2937 if (PickLow) 2938 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2939 else 2940 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2941 2942 // The updated coefficients should be such that the (exact) solution is 2943 // positive. Since APInt division rounds towards 0, the calculated one 2944 // can be 0, but cannot be negative. 2945 assert(X.isNonNegative() && "Solution should be non-negative"); 2946 2947 if (!InexactSQ && Rem.isZero()) { 2948 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2949 return X; 2950 } 2951 2952 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2953 // The exact value of the square root of D should be between SQ and SQ+1. 2954 // This implies that the solution should be between that corresponding to 2955 // SQ (i.e. X) and that corresponding to SQ+1. 2956 // 2957 // The calculated X cannot be greater than the exact (real) solution. 2958 // Actually it must be strictly less than the exact solution, while 2959 // X+1 will be greater than or equal to it. 2960 2961 APInt VX = (A*X + B)*X + C; 2962 APInt VY = VX + TwoA*X + A + B; 2963 bool SignChange = 2964 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 2965 // If the sign did not change between X and X+1, X is not a valid solution. 2966 // This could happen when the actual (exact) roots don't have an integer 2967 // between them, so they would both be contained between X and X+1. 2968 if (!SignChange) { 2969 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2970 return std::nullopt; 2971 } 2972 2973 X += 1; 2974 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2975 return X; 2976 } 2977 2978 std::optional<unsigned> 2979 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2980 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2981 if (A == B) 2982 return std::nullopt; 2983 return A.getBitWidth() - ((A ^ B).countl_zero() + 1); 2984 } 2985 2986 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth, 2987 bool MatchAllBits) { 2988 unsigned OldBitWidth = A.getBitWidth(); 2989 assert((((OldBitWidth % NewBitWidth) == 0) || 2990 ((NewBitWidth % OldBitWidth) == 0)) && 2991 "One size should be a multiple of the other one. " 2992 "Can't do fractional scaling."); 2993 2994 // Check for matching bitwidths. 2995 if (OldBitWidth == NewBitWidth) 2996 return A; 2997 2998 APInt NewA = APInt::getZero(NewBitWidth); 2999 3000 // Check for null input. 3001 if (A.isZero()) 3002 return NewA; 3003 3004 if (NewBitWidth > OldBitWidth) { 3005 // Repeat bits. 3006 unsigned Scale = NewBitWidth / OldBitWidth; 3007 for (unsigned i = 0; i != OldBitWidth; ++i) 3008 if (A[i]) 3009 NewA.setBits(i * Scale, (i + 1) * Scale); 3010 } else { 3011 unsigned Scale = OldBitWidth / NewBitWidth; 3012 for (unsigned i = 0; i != NewBitWidth; ++i) { 3013 if (MatchAllBits) { 3014 if (A.extractBits(Scale, i * Scale).isAllOnes()) 3015 NewA.setBit(i); 3016 } else { 3017 if (!A.extractBits(Scale, i * Scale).isZero()) 3018 NewA.setBit(i); 3019 } 3020 } 3021 } 3022 3023 return NewA; 3024 } 3025 3026 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 3027 /// with the integer held in IntVal. 3028 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 3029 unsigned StoreBytes) { 3030 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 3031 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 3032 3033 if (sys::IsLittleEndianHost) { 3034 // Little-endian host - the source is ordered from LSB to MSB. Order the 3035 // destination from LSB to MSB: Do a straight copy. 3036 memcpy(Dst, Src, StoreBytes); 3037 } else { 3038 // Big-endian host - the source is an array of 64 bit words ordered from 3039 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 3040 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 3041 while (StoreBytes > sizeof(uint64_t)) { 3042 StoreBytes -= sizeof(uint64_t); 3043 // May not be aligned so use memcpy. 3044 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 3045 Src += sizeof(uint64_t); 3046 } 3047 3048 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 3049 } 3050 } 3051 3052 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 3053 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 3054 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 3055 unsigned LoadBytes) { 3056 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 3057 uint8_t *Dst = reinterpret_cast<uint8_t *>( 3058 const_cast<uint64_t *>(IntVal.getRawData())); 3059 3060 if (sys::IsLittleEndianHost) 3061 // Little-endian host - the destination must be ordered from LSB to MSB. 3062 // The source is ordered from LSB to MSB: Do a straight copy. 3063 memcpy(Dst, Src, LoadBytes); 3064 else { 3065 // Big-endian - the destination is an array of 64 bit words ordered from 3066 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 3067 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 3068 // a word. 3069 while (LoadBytes > sizeof(uint64_t)) { 3070 LoadBytes -= sizeof(uint64_t); 3071 // May not be aligned so use memcpy. 3072 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 3073 Dst += sizeof(uint64_t); 3074 } 3075 3076 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3077 } 3078 } 3079