xref: /freebsd/contrib/llvm-project/llvm/lib/Support/APFloat.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision floating
10 // point values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/Error.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cstring>
27 #include <limits.h>
28 
29 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
30   do {                                                                         \
31     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
32       return U.IEEE.METHOD_CALL;                                               \
33     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
34       return U.Double.METHOD_CALL;                                             \
35     llvm_unreachable("Unexpected semantics");                                  \
36   } while (false)
37 
38 using namespace llvm;
39 
40 /// A macro used to combine two fcCategory enums into one key which can be used
41 /// in a switch statement to classify how the interaction of two APFloat's
42 /// categories affects an operation.
43 ///
44 /// TODO: If clang source code is ever allowed to use constexpr in its own
45 /// codebase, change this into a static inline function.
46 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
47 
48 /* Assumed in hexadecimal significand parsing, and conversion to
49    hexadecimal strings.  */
50 static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
51 
52 namespace llvm {
53   /* Represents floating point arithmetic semantics.  */
54   struct fltSemantics {
55     /* The largest E such that 2^E is representable; this matches the
56        definition of IEEE 754.  */
57     APFloatBase::ExponentType maxExponent;
58 
59     /* The smallest E such that 2^E is a normalized number; this
60        matches the definition of IEEE 754.  */
61     APFloatBase::ExponentType minExponent;
62 
63     /* Number of bits in the significand.  This includes the integer
64        bit.  */
65     unsigned int precision;
66 
67     /* Number of bits actually used in the semantics. */
68     unsigned int sizeInBits;
69 
70     // Returns true if any number described by this semantics can be precisely
71     // represented by the specified semantics.
72     bool isRepresentableBy(const fltSemantics &S) const {
73       return maxExponent <= S.maxExponent && minExponent >= S.minExponent &&
74              precision <= S.precision;
75     }
76   };
77 
78   static const fltSemantics semIEEEhalf = {15, -14, 11, 16};
79   static const fltSemantics semBFloat = {127, -126, 8, 16};
80   static const fltSemantics semIEEEsingle = {127, -126, 24, 32};
81   static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64};
82   static const fltSemantics semIEEEquad = {16383, -16382, 113, 128};
83   static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80};
84   static const fltSemantics semBogus = {0, 0, 0, 0};
85 
86   /* The IBM double-double semantics. Such a number consists of a pair of IEEE
87      64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal,
88      (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo.
89      Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent
90      to each other, and two 11-bit exponents.
91 
92      Note: we need to make the value different from semBogus as otherwise
93      an unsafe optimization may collapse both values to a single address,
94      and we heavily rely on them having distinct addresses.             */
95   static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 128};
96 
97   /* These are legacy semantics for the fallback, inaccrurate implementation of
98      IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the
99      operation. It's equivalent to having an IEEE number with consecutive 106
100      bits of mantissa and 11 bits of exponent.
101 
102      It's not equivalent to IBM double-double. For example, a legit IBM
103      double-double, 1 + epsilon:
104 
105        1 + epsilon = 1 + (1 >> 1076)
106 
107      is not representable by a consecutive 106 bits of mantissa.
108 
109      Currently, these semantics are used in the following way:
110 
111        semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) ->
112        (64-bit APInt, 64-bit APInt) -> (128-bit APInt) ->
113        semPPCDoubleDoubleLegacy -> IEEE operations
114 
115      We use bitcastToAPInt() to get the bit representation (in APInt) of the
116      underlying IEEEdouble, then use the APInt constructor to construct the
117      legacy IEEE float.
118 
119      TODO: Implement all operations in semPPCDoubleDouble, and delete these
120      semantics.  */
121   static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53,
122                                                         53 + 53, 128};
123 
124   const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) {
125     switch (S) {
126     case S_IEEEhalf:
127       return IEEEhalf();
128     case S_BFloat:
129       return BFloat();
130     case S_IEEEsingle:
131       return IEEEsingle();
132     case S_IEEEdouble:
133       return IEEEdouble();
134     case S_x87DoubleExtended:
135       return x87DoubleExtended();
136     case S_IEEEquad:
137       return IEEEquad();
138     case S_PPCDoubleDouble:
139       return PPCDoubleDouble();
140     }
141     llvm_unreachable("Unrecognised floating semantics");
142   }
143 
144   APFloatBase::Semantics
145   APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) {
146     if (&Sem == &llvm::APFloat::IEEEhalf())
147       return S_IEEEhalf;
148     else if (&Sem == &llvm::APFloat::BFloat())
149       return S_BFloat;
150     else if (&Sem == &llvm::APFloat::IEEEsingle())
151       return S_IEEEsingle;
152     else if (&Sem == &llvm::APFloat::IEEEdouble())
153       return S_IEEEdouble;
154     else if (&Sem == &llvm::APFloat::x87DoubleExtended())
155       return S_x87DoubleExtended;
156     else if (&Sem == &llvm::APFloat::IEEEquad())
157       return S_IEEEquad;
158     else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
159       return S_PPCDoubleDouble;
160     else
161       llvm_unreachable("Unknown floating semantics");
162   }
163 
164   const fltSemantics &APFloatBase::IEEEhalf() {
165     return semIEEEhalf;
166   }
167   const fltSemantics &APFloatBase::BFloat() {
168     return semBFloat;
169   }
170   const fltSemantics &APFloatBase::IEEEsingle() {
171     return semIEEEsingle;
172   }
173   const fltSemantics &APFloatBase::IEEEdouble() {
174     return semIEEEdouble;
175   }
176   const fltSemantics &APFloatBase::IEEEquad() {
177     return semIEEEquad;
178   }
179   const fltSemantics &APFloatBase::x87DoubleExtended() {
180     return semX87DoubleExtended;
181   }
182   const fltSemantics &APFloatBase::Bogus() {
183     return semBogus;
184   }
185   const fltSemantics &APFloatBase::PPCDoubleDouble() {
186     return semPPCDoubleDouble;
187   }
188 
189   constexpr RoundingMode APFloatBase::rmNearestTiesToEven;
190   constexpr RoundingMode APFloatBase::rmTowardPositive;
191   constexpr RoundingMode APFloatBase::rmTowardNegative;
192   constexpr RoundingMode APFloatBase::rmTowardZero;
193   constexpr RoundingMode APFloatBase::rmNearestTiesToAway;
194 
195   /* A tight upper bound on number of parts required to hold the value
196      pow(5, power) is
197 
198        power * 815 / (351 * integerPartWidth) + 1
199 
200      However, whilst the result may require only this many parts,
201      because we are multiplying two values to get it, the
202      multiplication may require an extra part with the excess part
203      being zero (consider the trivial case of 1 * 1, tcFullMultiply
204      requires two parts to hold the single-part result).  So we add an
205      extra one to guarantee enough space whilst multiplying.  */
206   const unsigned int maxExponent = 16383;
207   const unsigned int maxPrecision = 113;
208   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
209   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth));
210 
211   unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) {
212     return semantics.precision;
213   }
214   APFloatBase::ExponentType
215   APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) {
216     return semantics.maxExponent;
217   }
218   APFloatBase::ExponentType
219   APFloatBase::semanticsMinExponent(const fltSemantics &semantics) {
220     return semantics.minExponent;
221   }
222   unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) {
223     return semantics.sizeInBits;
224   }
225 
226   unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) {
227     return Sem.sizeInBits;
228 }
229 
230 /* A bunch of private, handy routines.  */
231 
232 static inline Error createError(const Twine &Err) {
233   return make_error<StringError>(Err, inconvertibleErrorCode());
234 }
235 
236 static inline unsigned int
237 partCountForBits(unsigned int bits)
238 {
239   return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth;
240 }
241 
242 /* Returns 0U-9U.  Return values >= 10U are not digits.  */
243 static inline unsigned int
244 decDigitValue(unsigned int c)
245 {
246   return c - '0';
247 }
248 
249 /* Return the value of a decimal exponent of the form
250    [+-]ddddddd.
251 
252    If the exponent overflows, returns a large exponent with the
253    appropriate sign.  */
254 static Expected<int> readExponent(StringRef::iterator begin,
255                                   StringRef::iterator end) {
256   bool isNegative;
257   unsigned int absExponent;
258   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
259   StringRef::iterator p = begin;
260 
261   // Treat no exponent as 0 to match binutils
262   if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) {
263     return 0;
264   }
265 
266   isNegative = (*p == '-');
267   if (*p == '-' || *p == '+') {
268     p++;
269     if (p == end)
270       return createError("Exponent has no digits");
271   }
272 
273   absExponent = decDigitValue(*p++);
274   if (absExponent >= 10U)
275     return createError("Invalid character in exponent");
276 
277   for (; p != end; ++p) {
278     unsigned int value;
279 
280     value = decDigitValue(*p);
281     if (value >= 10U)
282       return createError("Invalid character in exponent");
283 
284     absExponent = absExponent * 10U + value;
285     if (absExponent >= overlargeExponent) {
286       absExponent = overlargeExponent;
287       break;
288     }
289   }
290 
291   if (isNegative)
292     return -(int) absExponent;
293   else
294     return (int) absExponent;
295 }
296 
297 /* This is ugly and needs cleaning up, but I don't immediately see
298    how whilst remaining safe.  */
299 static Expected<int> totalExponent(StringRef::iterator p,
300                                    StringRef::iterator end,
301                                    int exponentAdjustment) {
302   int unsignedExponent;
303   bool negative, overflow;
304   int exponent = 0;
305 
306   if (p == end)
307     return createError("Exponent has no digits");
308 
309   negative = *p == '-';
310   if (*p == '-' || *p == '+') {
311     p++;
312     if (p == end)
313       return createError("Exponent has no digits");
314   }
315 
316   unsignedExponent = 0;
317   overflow = false;
318   for (; p != end; ++p) {
319     unsigned int value;
320 
321     value = decDigitValue(*p);
322     if (value >= 10U)
323       return createError("Invalid character in exponent");
324 
325     unsignedExponent = unsignedExponent * 10 + value;
326     if (unsignedExponent > 32767) {
327       overflow = true;
328       break;
329     }
330   }
331 
332   if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
333     overflow = true;
334 
335   if (!overflow) {
336     exponent = unsignedExponent;
337     if (negative)
338       exponent = -exponent;
339     exponent += exponentAdjustment;
340     if (exponent > 32767 || exponent < -32768)
341       overflow = true;
342   }
343 
344   if (overflow)
345     exponent = negative ? -32768: 32767;
346 
347   return exponent;
348 }
349 
350 static Expected<StringRef::iterator>
351 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
352                            StringRef::iterator *dot) {
353   StringRef::iterator p = begin;
354   *dot = end;
355   while (p != end && *p == '0')
356     p++;
357 
358   if (p != end && *p == '.') {
359     *dot = p++;
360 
361     if (end - begin == 1)
362       return createError("Significand has no digits");
363 
364     while (p != end && *p == '0')
365       p++;
366   }
367 
368   return p;
369 }
370 
371 /* Given a normal decimal floating point number of the form
372 
373      dddd.dddd[eE][+-]ddd
374 
375    where the decimal point and exponent are optional, fill out the
376    structure D.  Exponent is appropriate if the significand is
377    treated as an integer, and normalizedExponent if the significand
378    is taken to have the decimal point after a single leading
379    non-zero digit.
380 
381    If the value is zero, V->firstSigDigit points to a non-digit, and
382    the return exponent is zero.
383 */
384 struct decimalInfo {
385   const char *firstSigDigit;
386   const char *lastSigDigit;
387   int exponent;
388   int normalizedExponent;
389 };
390 
391 static Error interpretDecimal(StringRef::iterator begin,
392                               StringRef::iterator end, decimalInfo *D) {
393   StringRef::iterator dot = end;
394 
395   auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
396   if (!PtrOrErr)
397     return PtrOrErr.takeError();
398   StringRef::iterator p = *PtrOrErr;
399 
400   D->firstSigDigit = p;
401   D->exponent = 0;
402   D->normalizedExponent = 0;
403 
404   for (; p != end; ++p) {
405     if (*p == '.') {
406       if (dot != end)
407         return createError("String contains multiple dots");
408       dot = p++;
409       if (p == end)
410         break;
411     }
412     if (decDigitValue(*p) >= 10U)
413       break;
414   }
415 
416   if (p != end) {
417     if (*p != 'e' && *p != 'E')
418       return createError("Invalid character in significand");
419     if (p == begin)
420       return createError("Significand has no digits");
421     if (dot != end && p - begin == 1)
422       return createError("Significand has no digits");
423 
424     /* p points to the first non-digit in the string */
425     auto ExpOrErr = readExponent(p + 1, end);
426     if (!ExpOrErr)
427       return ExpOrErr.takeError();
428     D->exponent = *ExpOrErr;
429 
430     /* Implied decimal point?  */
431     if (dot == end)
432       dot = p;
433   }
434 
435   /* If number is all zeroes accept any exponent.  */
436   if (p != D->firstSigDigit) {
437     /* Drop insignificant trailing zeroes.  */
438     if (p != begin) {
439       do
440         do
441           p--;
442         while (p != begin && *p == '0');
443       while (p != begin && *p == '.');
444     }
445 
446     /* Adjust the exponents for any decimal point.  */
447     D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
448     D->normalizedExponent = (D->exponent +
449               static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
450                                       - (dot > D->firstSigDigit && dot < p)));
451   }
452 
453   D->lastSigDigit = p;
454   return Error::success();
455 }
456 
457 /* Return the trailing fraction of a hexadecimal number.
458    DIGITVALUE is the first hex digit of the fraction, P points to
459    the next digit.  */
460 static Expected<lostFraction>
461 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
462                             unsigned int digitValue) {
463   unsigned int hexDigit;
464 
465   /* If the first trailing digit isn't 0 or 8 we can work out the
466      fraction immediately.  */
467   if (digitValue > 8)
468     return lfMoreThanHalf;
469   else if (digitValue < 8 && digitValue > 0)
470     return lfLessThanHalf;
471 
472   // Otherwise we need to find the first non-zero digit.
473   while (p != end && (*p == '0' || *p == '.'))
474     p++;
475 
476   if (p == end)
477     return createError("Invalid trailing hexadecimal fraction!");
478 
479   hexDigit = hexDigitValue(*p);
480 
481   /* If we ran off the end it is exactly zero or one-half, otherwise
482      a little more.  */
483   if (hexDigit == -1U)
484     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
485   else
486     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
487 }
488 
489 /* Return the fraction lost were a bignum truncated losing the least
490    significant BITS bits.  */
491 static lostFraction
492 lostFractionThroughTruncation(const APFloatBase::integerPart *parts,
493                               unsigned int partCount,
494                               unsigned int bits)
495 {
496   unsigned int lsb;
497 
498   lsb = APInt::tcLSB(parts, partCount);
499 
500   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
501   if (bits <= lsb)
502     return lfExactlyZero;
503   if (bits == lsb + 1)
504     return lfExactlyHalf;
505   if (bits <= partCount * APFloatBase::integerPartWidth &&
506       APInt::tcExtractBit(parts, bits - 1))
507     return lfMoreThanHalf;
508 
509   return lfLessThanHalf;
510 }
511 
512 /* Shift DST right BITS bits noting lost fraction.  */
513 static lostFraction
514 shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)
515 {
516   lostFraction lost_fraction;
517 
518   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
519 
520   APInt::tcShiftRight(dst, parts, bits);
521 
522   return lost_fraction;
523 }
524 
525 /* Combine the effect of two lost fractions.  */
526 static lostFraction
527 combineLostFractions(lostFraction moreSignificant,
528                      lostFraction lessSignificant)
529 {
530   if (lessSignificant != lfExactlyZero) {
531     if (moreSignificant == lfExactlyZero)
532       moreSignificant = lfLessThanHalf;
533     else if (moreSignificant == lfExactlyHalf)
534       moreSignificant = lfMoreThanHalf;
535   }
536 
537   return moreSignificant;
538 }
539 
540 /* The error from the true value, in half-ulps, on multiplying two
541    floating point numbers, which differ from the value they
542    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
543    than the returned value.
544 
545    See "How to Read Floating Point Numbers Accurately" by William D
546    Clinger.  */
547 static unsigned int
548 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
549 {
550   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
551 
552   if (HUerr1 + HUerr2 == 0)
553     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
554   else
555     return inexactMultiply + 2 * (HUerr1 + HUerr2);
556 }
557 
558 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
559    when the least significant BITS are truncated.  BITS cannot be
560    zero.  */
561 static APFloatBase::integerPart
562 ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits,
563                  bool isNearest) {
564   unsigned int count, partBits;
565   APFloatBase::integerPart part, boundary;
566 
567   assert(bits != 0);
568 
569   bits--;
570   count = bits / APFloatBase::integerPartWidth;
571   partBits = bits % APFloatBase::integerPartWidth + 1;
572 
573   part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits));
574 
575   if (isNearest)
576     boundary = (APFloatBase::integerPart) 1 << (partBits - 1);
577   else
578     boundary = 0;
579 
580   if (count == 0) {
581     if (part - boundary <= boundary - part)
582       return part - boundary;
583     else
584       return boundary - part;
585   }
586 
587   if (part == boundary) {
588     while (--count)
589       if (parts[count])
590         return ~(APFloatBase::integerPart) 0; /* A lot.  */
591 
592     return parts[0];
593   } else if (part == boundary - 1) {
594     while (--count)
595       if (~parts[count])
596         return ~(APFloatBase::integerPart) 0; /* A lot.  */
597 
598     return -parts[0];
599   }
600 
601   return ~(APFloatBase::integerPart) 0; /* A lot.  */
602 }
603 
604 /* Place pow(5, power) in DST, and return the number of parts used.
605    DST must be at least one part larger than size of the answer.  */
606 static unsigned int
607 powerOf5(APFloatBase::integerPart *dst, unsigned int power) {
608   static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 };
609   APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
610   pow5s[0] = 78125 * 5;
611 
612   unsigned int partsCount[16] = { 1 };
613   APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
614   unsigned int result;
615   assert(power <= maxExponent);
616 
617   p1 = dst;
618   p2 = scratch;
619 
620   *p1 = firstEightPowers[power & 7];
621   power >>= 3;
622 
623   result = 1;
624   pow5 = pow5s;
625 
626   for (unsigned int n = 0; power; power >>= 1, n++) {
627     unsigned int pc;
628 
629     pc = partsCount[n];
630 
631     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
632     if (pc == 0) {
633       pc = partsCount[n - 1];
634       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
635       pc *= 2;
636       if (pow5[pc - 1] == 0)
637         pc--;
638       partsCount[n] = pc;
639     }
640 
641     if (power & 1) {
642       APFloatBase::integerPart *tmp;
643 
644       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
645       result += pc;
646       if (p2[result - 1] == 0)
647         result--;
648 
649       /* Now result is in p1 with partsCount parts and p2 is scratch
650          space.  */
651       tmp = p1;
652       p1 = p2;
653       p2 = tmp;
654     }
655 
656     pow5 += pc;
657   }
658 
659   if (p1 != dst)
660     APInt::tcAssign(dst, p1, result);
661 
662   return result;
663 }
664 
665 /* Zero at the end to avoid modular arithmetic when adding one; used
666    when rounding up during hexadecimal output.  */
667 static const char hexDigitsLower[] = "0123456789abcdef0";
668 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
669 static const char infinityL[] = "infinity";
670 static const char infinityU[] = "INFINITY";
671 static const char NaNL[] = "nan";
672 static const char NaNU[] = "NAN";
673 
674 /* Write out an integerPart in hexadecimal, starting with the most
675    significant nibble.  Write out exactly COUNT hexdigits, return
676    COUNT.  */
677 static unsigned int
678 partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count,
679            const char *hexDigitChars)
680 {
681   unsigned int result = count;
682 
683   assert(count != 0 && count <= APFloatBase::integerPartWidth / 4);
684 
685   part >>= (APFloatBase::integerPartWidth - 4 * count);
686   while (count--) {
687     dst[count] = hexDigitChars[part & 0xf];
688     part >>= 4;
689   }
690 
691   return result;
692 }
693 
694 /* Write out an unsigned decimal integer.  */
695 static char *
696 writeUnsignedDecimal (char *dst, unsigned int n)
697 {
698   char buff[40], *p;
699 
700   p = buff;
701   do
702     *p++ = '0' + n % 10;
703   while (n /= 10);
704 
705   do
706     *dst++ = *--p;
707   while (p != buff);
708 
709   return dst;
710 }
711 
712 /* Write out a signed decimal integer.  */
713 static char *
714 writeSignedDecimal (char *dst, int value)
715 {
716   if (value < 0) {
717     *dst++ = '-';
718     dst = writeUnsignedDecimal(dst, -(unsigned) value);
719   } else
720     dst = writeUnsignedDecimal(dst, value);
721 
722   return dst;
723 }
724 
725 namespace detail {
726 /* Constructors.  */
727 void IEEEFloat::initialize(const fltSemantics *ourSemantics) {
728   unsigned int count;
729 
730   semantics = ourSemantics;
731   count = partCount();
732   if (count > 1)
733     significand.parts = new integerPart[count];
734 }
735 
736 void IEEEFloat::freeSignificand() {
737   if (needsCleanup())
738     delete [] significand.parts;
739 }
740 
741 void IEEEFloat::assign(const IEEEFloat &rhs) {
742   assert(semantics == rhs.semantics);
743 
744   sign = rhs.sign;
745   category = rhs.category;
746   exponent = rhs.exponent;
747   if (isFiniteNonZero() || category == fcNaN)
748     copySignificand(rhs);
749 }
750 
751 void IEEEFloat::copySignificand(const IEEEFloat &rhs) {
752   assert(isFiniteNonZero() || category == fcNaN);
753   assert(rhs.partCount() >= partCount());
754 
755   APInt::tcAssign(significandParts(), rhs.significandParts(),
756                   partCount());
757 }
758 
759 /* Make this number a NaN, with an arbitrary but deterministic value
760    for the significand.  If double or longer, this is a signalling NaN,
761    which may not be ideal.  If float, this is QNaN(0).  */
762 void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) {
763   category = fcNaN;
764   sign = Negative;
765   exponent = exponentNaN();
766 
767   integerPart *significand = significandParts();
768   unsigned numParts = partCount();
769 
770   // Set the significand bits to the fill.
771   if (!fill || fill->getNumWords() < numParts)
772     APInt::tcSet(significand, 0, numParts);
773   if (fill) {
774     APInt::tcAssign(significand, fill->getRawData(),
775                     std::min(fill->getNumWords(), numParts));
776 
777     // Zero out the excess bits of the significand.
778     unsigned bitsToPreserve = semantics->precision - 1;
779     unsigned part = bitsToPreserve / 64;
780     bitsToPreserve %= 64;
781     significand[part] &= ((1ULL << bitsToPreserve) - 1);
782     for (part++; part != numParts; ++part)
783       significand[part] = 0;
784   }
785 
786   unsigned QNaNBit = semantics->precision - 2;
787 
788   if (SNaN) {
789     // We always have to clear the QNaN bit to make it an SNaN.
790     APInt::tcClearBit(significand, QNaNBit);
791 
792     // If there are no bits set in the payload, we have to set
793     // *something* to make it a NaN instead of an infinity;
794     // conventionally, this is the next bit down from the QNaN bit.
795     if (APInt::tcIsZero(significand, numParts))
796       APInt::tcSetBit(significand, QNaNBit - 1);
797   } else {
798     // We always have to set the QNaN bit to make it a QNaN.
799     APInt::tcSetBit(significand, QNaNBit);
800   }
801 
802   // For x87 extended precision, we want to make a NaN, not a
803   // pseudo-NaN.  Maybe we should expose the ability to make
804   // pseudo-NaNs?
805   if (semantics == &semX87DoubleExtended)
806     APInt::tcSetBit(significand, QNaNBit + 1);
807 }
808 
809 IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) {
810   if (this != &rhs) {
811     if (semantics != rhs.semantics) {
812       freeSignificand();
813       initialize(rhs.semantics);
814     }
815     assign(rhs);
816   }
817 
818   return *this;
819 }
820 
821 IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) {
822   freeSignificand();
823 
824   semantics = rhs.semantics;
825   significand = rhs.significand;
826   exponent = rhs.exponent;
827   category = rhs.category;
828   sign = rhs.sign;
829 
830   rhs.semantics = &semBogus;
831   return *this;
832 }
833 
834 bool IEEEFloat::isDenormal() const {
835   return isFiniteNonZero() && (exponent == semantics->minExponent) &&
836          (APInt::tcExtractBit(significandParts(),
837                               semantics->precision - 1) == 0);
838 }
839 
840 bool IEEEFloat::isSmallest() const {
841   // The smallest number by magnitude in our format will be the smallest
842   // denormal, i.e. the floating point number with exponent being minimum
843   // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
844   return isFiniteNonZero() && exponent == semantics->minExponent &&
845     significandMSB() == 0;
846 }
847 
848 bool IEEEFloat::isSignificandAllOnes() const {
849   // Test if the significand excluding the integral bit is all ones. This allows
850   // us to test for binade boundaries.
851   const integerPart *Parts = significandParts();
852   const unsigned PartCount = partCountForBits(semantics->precision);
853   for (unsigned i = 0; i < PartCount - 1; i++)
854     if (~Parts[i])
855       return false;
856 
857   // Set the unused high bits to all ones when we compare.
858   const unsigned NumHighBits =
859     PartCount*integerPartWidth - semantics->precision + 1;
860   assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&
861          "Can not have more high bits to fill than integerPartWidth");
862   const integerPart HighBitFill =
863     ~integerPart(0) << (integerPartWidth - NumHighBits);
864   if (~(Parts[PartCount - 1] | HighBitFill))
865     return false;
866 
867   return true;
868 }
869 
870 bool IEEEFloat::isSignificandAllZeros() const {
871   // Test if the significand excluding the integral bit is all zeros. This
872   // allows us to test for binade boundaries.
873   const integerPart *Parts = significandParts();
874   const unsigned PartCount = partCountForBits(semantics->precision);
875 
876   for (unsigned i = 0; i < PartCount - 1; i++)
877     if (Parts[i])
878       return false;
879 
880   // Compute how many bits are used in the final word.
881   const unsigned NumHighBits =
882     PartCount*integerPartWidth - semantics->precision + 1;
883   assert(NumHighBits < integerPartWidth && "Can not have more high bits to "
884          "clear than integerPartWidth");
885   const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
886 
887   if (Parts[PartCount - 1] & HighBitMask)
888     return false;
889 
890   return true;
891 }
892 
893 bool IEEEFloat::isLargest() const {
894   // The largest number by magnitude in our format will be the floating point
895   // number with maximum exponent and with significand that is all ones.
896   return isFiniteNonZero() && exponent == semantics->maxExponent
897     && isSignificandAllOnes();
898 }
899 
900 bool IEEEFloat::isInteger() const {
901   // This could be made more efficient; I'm going for obviously correct.
902   if (!isFinite()) return false;
903   IEEEFloat truncated = *this;
904   truncated.roundToIntegral(rmTowardZero);
905   return compare(truncated) == cmpEqual;
906 }
907 
908 bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const {
909   if (this == &rhs)
910     return true;
911   if (semantics != rhs.semantics ||
912       category != rhs.category ||
913       sign != rhs.sign)
914     return false;
915   if (category==fcZero || category==fcInfinity)
916     return true;
917 
918   if (isFiniteNonZero() && exponent != rhs.exponent)
919     return false;
920 
921   return std::equal(significandParts(), significandParts() + partCount(),
922                     rhs.significandParts());
923 }
924 
925 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) {
926   initialize(&ourSemantics);
927   sign = 0;
928   category = fcNormal;
929   zeroSignificand();
930   exponent = ourSemantics.precision - 1;
931   significandParts()[0] = value;
932   normalize(rmNearestTiesToEven, lfExactlyZero);
933 }
934 
935 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) {
936   initialize(&ourSemantics);
937   makeZero(false);
938 }
939 
940 // Delegate to the previous constructor, because later copy constructor may
941 // actually inspects category, which can't be garbage.
942 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
943     : IEEEFloat(ourSemantics) {}
944 
945 IEEEFloat::IEEEFloat(const IEEEFloat &rhs) {
946   initialize(rhs.semantics);
947   assign(rhs);
948 }
949 
950 IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) {
951   *this = std::move(rhs);
952 }
953 
954 IEEEFloat::~IEEEFloat() { freeSignificand(); }
955 
956 unsigned int IEEEFloat::partCount() const {
957   return partCountForBits(semantics->precision + 1);
958 }
959 
960 const IEEEFloat::integerPart *IEEEFloat::significandParts() const {
961   return const_cast<IEEEFloat *>(this)->significandParts();
962 }
963 
964 IEEEFloat::integerPart *IEEEFloat::significandParts() {
965   if (partCount() > 1)
966     return significand.parts;
967   else
968     return &significand.part;
969 }
970 
971 void IEEEFloat::zeroSignificand() {
972   APInt::tcSet(significandParts(), 0, partCount());
973 }
974 
975 /* Increment an fcNormal floating point number's significand.  */
976 void IEEEFloat::incrementSignificand() {
977   integerPart carry;
978 
979   carry = APInt::tcIncrement(significandParts(), partCount());
980 
981   /* Our callers should never cause us to overflow.  */
982   assert(carry == 0);
983   (void)carry;
984 }
985 
986 /* Add the significand of the RHS.  Returns the carry flag.  */
987 IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) {
988   integerPart *parts;
989 
990   parts = significandParts();
991 
992   assert(semantics == rhs.semantics);
993   assert(exponent == rhs.exponent);
994 
995   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
996 }
997 
998 /* Subtract the significand of the RHS with a borrow flag.  Returns
999    the borrow flag.  */
1000 IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs,
1001                                                       integerPart borrow) {
1002   integerPart *parts;
1003 
1004   parts = significandParts();
1005 
1006   assert(semantics == rhs.semantics);
1007   assert(exponent == rhs.exponent);
1008 
1009   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
1010                            partCount());
1011 }
1012 
1013 /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
1014    on to the full-precision result of the multiplication.  Returns the
1015    lost fraction.  */
1016 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
1017                                             IEEEFloat addend) {
1018   unsigned int omsb;        // One, not zero, based MSB.
1019   unsigned int partsCount, newPartsCount, precision;
1020   integerPart *lhsSignificand;
1021   integerPart scratch[4];
1022   integerPart *fullSignificand;
1023   lostFraction lost_fraction;
1024   bool ignored;
1025 
1026   assert(semantics == rhs.semantics);
1027 
1028   precision = semantics->precision;
1029 
1030   // Allocate space for twice as many bits as the original significand, plus one
1031   // extra bit for the addition to overflow into.
1032   newPartsCount = partCountForBits(precision * 2 + 1);
1033 
1034   if (newPartsCount > 4)
1035     fullSignificand = new integerPart[newPartsCount];
1036   else
1037     fullSignificand = scratch;
1038 
1039   lhsSignificand = significandParts();
1040   partsCount = partCount();
1041 
1042   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
1043                         rhs.significandParts(), partsCount, partsCount);
1044 
1045   lost_fraction = lfExactlyZero;
1046   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1047   exponent += rhs.exponent;
1048 
1049   // Assume the operands involved in the multiplication are single-precision
1050   // FP, and the two multiplicants are:
1051   //   *this = a23 . a22 ... a0 * 2^e1
1052   //     rhs = b23 . b22 ... b0 * 2^e2
1053   // the result of multiplication is:
1054   //   *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
1055   // Note that there are three significant bits at the left-hand side of the
1056   // radix point: two for the multiplication, and an overflow bit for the
1057   // addition (that will always be zero at this point). Move the radix point
1058   // toward left by two bits, and adjust exponent accordingly.
1059   exponent += 2;
1060 
1061   if (addend.isNonZero()) {
1062     // The intermediate result of the multiplication has "2 * precision"
1063     // signicant bit; adjust the addend to be consistent with mul result.
1064     //
1065     Significand savedSignificand = significand;
1066     const fltSemantics *savedSemantics = semantics;
1067     fltSemantics extendedSemantics;
1068     opStatus status;
1069     unsigned int extendedPrecision;
1070 
1071     // Normalize our MSB to one below the top bit to allow for overflow.
1072     extendedPrecision = 2 * precision + 1;
1073     if (omsb != extendedPrecision - 1) {
1074       assert(extendedPrecision > omsb);
1075       APInt::tcShiftLeft(fullSignificand, newPartsCount,
1076                          (extendedPrecision - 1) - omsb);
1077       exponent -= (extendedPrecision - 1) - omsb;
1078     }
1079 
1080     /* Create new semantics.  */
1081     extendedSemantics = *semantics;
1082     extendedSemantics.precision = extendedPrecision;
1083 
1084     if (newPartsCount == 1)
1085       significand.part = fullSignificand[0];
1086     else
1087       significand.parts = fullSignificand;
1088     semantics = &extendedSemantics;
1089 
1090     // Make a copy so we can convert it to the extended semantics.
1091     // Note that we cannot convert the addend directly, as the extendedSemantics
1092     // is a local variable (which we take a reference to).
1093     IEEEFloat extendedAddend(addend);
1094     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
1095     assert(status == opOK);
1096     (void)status;
1097 
1098     // Shift the significand of the addend right by one bit. This guarantees
1099     // that the high bit of the significand is zero (same as fullSignificand),
1100     // so the addition will overflow (if it does overflow at all) into the top bit.
1101     lost_fraction = extendedAddend.shiftSignificandRight(1);
1102     assert(lost_fraction == lfExactlyZero &&
1103            "Lost precision while shifting addend for fused-multiply-add.");
1104 
1105     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
1106 
1107     /* Restore our state.  */
1108     if (newPartsCount == 1)
1109       fullSignificand[0] = significand.part;
1110     significand = savedSignificand;
1111     semantics = savedSemantics;
1112 
1113     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1114   }
1115 
1116   // Convert the result having "2 * precision" significant-bits back to the one
1117   // having "precision" significant-bits. First, move the radix point from
1118   // poision "2*precision - 1" to "precision - 1". The exponent need to be
1119   // adjusted by "2*precision - 1" - "precision - 1" = "precision".
1120   exponent -= precision + 1;
1121 
1122   // In case MSB resides at the left-hand side of radix point, shift the
1123   // mantissa right by some amount to make sure the MSB reside right before
1124   // the radix point (i.e. "MSB . rest-significant-bits").
1125   //
1126   // Note that the result is not normalized when "omsb < precision". So, the
1127   // caller needs to call IEEEFloat::normalize() if normalized value is
1128   // expected.
1129   if (omsb > precision) {
1130     unsigned int bits, significantParts;
1131     lostFraction lf;
1132 
1133     bits = omsb - precision;
1134     significantParts = partCountForBits(omsb);
1135     lf = shiftRight(fullSignificand, significantParts, bits);
1136     lost_fraction = combineLostFractions(lf, lost_fraction);
1137     exponent += bits;
1138   }
1139 
1140   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
1141 
1142   if (newPartsCount > 4)
1143     delete [] fullSignificand;
1144 
1145   return lost_fraction;
1146 }
1147 
1148 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) {
1149   return multiplySignificand(rhs, IEEEFloat(*semantics));
1150 }
1151 
1152 /* Multiply the significands of LHS and RHS to DST.  */
1153 lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {
1154   unsigned int bit, i, partsCount;
1155   const integerPart *rhsSignificand;
1156   integerPart *lhsSignificand, *dividend, *divisor;
1157   integerPart scratch[4];
1158   lostFraction lost_fraction;
1159 
1160   assert(semantics == rhs.semantics);
1161 
1162   lhsSignificand = significandParts();
1163   rhsSignificand = rhs.significandParts();
1164   partsCount = partCount();
1165 
1166   if (partsCount > 2)
1167     dividend = new integerPart[partsCount * 2];
1168   else
1169     dividend = scratch;
1170 
1171   divisor = dividend + partsCount;
1172 
1173   /* Copy the dividend and divisor as they will be modified in-place.  */
1174   for (i = 0; i < partsCount; i++) {
1175     dividend[i] = lhsSignificand[i];
1176     divisor[i] = rhsSignificand[i];
1177     lhsSignificand[i] = 0;
1178   }
1179 
1180   exponent -= rhs.exponent;
1181 
1182   unsigned int precision = semantics->precision;
1183 
1184   /* Normalize the divisor.  */
1185   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
1186   if (bit) {
1187     exponent += bit;
1188     APInt::tcShiftLeft(divisor, partsCount, bit);
1189   }
1190 
1191   /* Normalize the dividend.  */
1192   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1193   if (bit) {
1194     exponent -= bit;
1195     APInt::tcShiftLeft(dividend, partsCount, bit);
1196   }
1197 
1198   /* Ensure the dividend >= divisor initially for the loop below.
1199      Incidentally, this means that the division loop below is
1200      guaranteed to set the integer bit to one.  */
1201   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1202     exponent--;
1203     APInt::tcShiftLeft(dividend, partsCount, 1);
1204     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1205   }
1206 
1207   /* Long division.  */
1208   for (bit = precision; bit; bit -= 1) {
1209     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1210       APInt::tcSubtract(dividend, divisor, 0, partsCount);
1211       APInt::tcSetBit(lhsSignificand, bit - 1);
1212     }
1213 
1214     APInt::tcShiftLeft(dividend, partsCount, 1);
1215   }
1216 
1217   /* Figure out the lost fraction.  */
1218   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1219 
1220   if (cmp > 0)
1221     lost_fraction = lfMoreThanHalf;
1222   else if (cmp == 0)
1223     lost_fraction = lfExactlyHalf;
1224   else if (APInt::tcIsZero(dividend, partsCount))
1225     lost_fraction = lfExactlyZero;
1226   else
1227     lost_fraction = lfLessThanHalf;
1228 
1229   if (partsCount > 2)
1230     delete [] dividend;
1231 
1232   return lost_fraction;
1233 }
1234 
1235 unsigned int IEEEFloat::significandMSB() const {
1236   return APInt::tcMSB(significandParts(), partCount());
1237 }
1238 
1239 unsigned int IEEEFloat::significandLSB() const {
1240   return APInt::tcLSB(significandParts(), partCount());
1241 }
1242 
1243 /* Note that a zero result is NOT normalized to fcZero.  */
1244 lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) {
1245   /* Our exponent should not overflow.  */
1246   assert((ExponentType) (exponent + bits) >= exponent);
1247 
1248   exponent += bits;
1249 
1250   return shiftRight(significandParts(), partCount(), bits);
1251 }
1252 
1253 /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
1254 void IEEEFloat::shiftSignificandLeft(unsigned int bits) {
1255   assert(bits < semantics->precision);
1256 
1257   if (bits) {
1258     unsigned int partsCount = partCount();
1259 
1260     APInt::tcShiftLeft(significandParts(), partsCount, bits);
1261     exponent -= bits;
1262 
1263     assert(!APInt::tcIsZero(significandParts(), partsCount));
1264   }
1265 }
1266 
1267 IEEEFloat::cmpResult
1268 IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const {
1269   int compare;
1270 
1271   assert(semantics == rhs.semantics);
1272   assert(isFiniteNonZero());
1273   assert(rhs.isFiniteNonZero());
1274 
1275   compare = exponent - rhs.exponent;
1276 
1277   /* If exponents are equal, do an unsigned bignum comparison of the
1278      significands.  */
1279   if (compare == 0)
1280     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1281                                partCount());
1282 
1283   if (compare > 0)
1284     return cmpGreaterThan;
1285   else if (compare < 0)
1286     return cmpLessThan;
1287   else
1288     return cmpEqual;
1289 }
1290 
1291 /* Set the least significant BITS bits of a bignum, clear the
1292    rest.  */
1293 static void tcSetLeastSignificantBits(APInt::WordType *dst, unsigned parts,
1294                                       unsigned bits) {
1295   unsigned i = 0;
1296   while (bits > APInt::APINT_BITS_PER_WORD) {
1297     dst[i++] = ~(APInt::WordType)0;
1298     bits -= APInt::APINT_BITS_PER_WORD;
1299   }
1300 
1301   if (bits)
1302     dst[i++] = ~(APInt::WordType)0 >> (APInt::APINT_BITS_PER_WORD - bits);
1303 
1304   while (i < parts)
1305     dst[i++] = 0;
1306 }
1307 
1308 /* Handle overflow.  Sign is preserved.  We either become infinity or
1309    the largest finite number.  */
1310 IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) {
1311   /* Infinity?  */
1312   if (rounding_mode == rmNearestTiesToEven ||
1313       rounding_mode == rmNearestTiesToAway ||
1314       (rounding_mode == rmTowardPositive && !sign) ||
1315       (rounding_mode == rmTowardNegative && sign)) {
1316     category = fcInfinity;
1317     return (opStatus) (opOverflow | opInexact);
1318   }
1319 
1320   /* Otherwise we become the largest finite number.  */
1321   category = fcNormal;
1322   exponent = semantics->maxExponent;
1323   tcSetLeastSignificantBits(significandParts(), partCount(),
1324                             semantics->precision);
1325 
1326   return opInexact;
1327 }
1328 
1329 /* Returns TRUE if, when truncating the current number, with BIT the
1330    new LSB, with the given lost fraction and rounding mode, the result
1331    would need to be rounded away from zero (i.e., by increasing the
1332    signficand).  This routine must work for fcZero of both signs, and
1333    fcNormal numbers.  */
1334 bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode,
1335                                   lostFraction lost_fraction,
1336                                   unsigned int bit) const {
1337   /* NaNs and infinities should not have lost fractions.  */
1338   assert(isFiniteNonZero() || category == fcZero);
1339 
1340   /* Current callers never pass this so we don't handle it.  */
1341   assert(lost_fraction != lfExactlyZero);
1342 
1343   switch (rounding_mode) {
1344   case rmNearestTiesToAway:
1345     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1346 
1347   case rmNearestTiesToEven:
1348     if (lost_fraction == lfMoreThanHalf)
1349       return true;
1350 
1351     /* Our zeroes don't have a significand to test.  */
1352     if (lost_fraction == lfExactlyHalf && category != fcZero)
1353       return APInt::tcExtractBit(significandParts(), bit);
1354 
1355     return false;
1356 
1357   case rmTowardZero:
1358     return false;
1359 
1360   case rmTowardPositive:
1361     return !sign;
1362 
1363   case rmTowardNegative:
1364     return sign;
1365 
1366   default:
1367     break;
1368   }
1369   llvm_unreachable("Invalid rounding mode found");
1370 }
1371 
1372 IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode,
1373                                          lostFraction lost_fraction) {
1374   unsigned int omsb;                /* One, not zero, based MSB.  */
1375   int exponentChange;
1376 
1377   if (!isFiniteNonZero())
1378     return opOK;
1379 
1380   /* Before rounding normalize the exponent of fcNormal numbers.  */
1381   omsb = significandMSB() + 1;
1382 
1383   if (omsb) {
1384     /* OMSB is numbered from 1.  We want to place it in the integer
1385        bit numbered PRECISION if possible, with a compensating change in
1386        the exponent.  */
1387     exponentChange = omsb - semantics->precision;
1388 
1389     /* If the resulting exponent is too high, overflow according to
1390        the rounding mode.  */
1391     if (exponent + exponentChange > semantics->maxExponent)
1392       return handleOverflow(rounding_mode);
1393 
1394     /* Subnormal numbers have exponent minExponent, and their MSB
1395        is forced based on that.  */
1396     if (exponent + exponentChange < semantics->minExponent)
1397       exponentChange = semantics->minExponent - exponent;
1398 
1399     /* Shifting left is easy as we don't lose precision.  */
1400     if (exponentChange < 0) {
1401       assert(lost_fraction == lfExactlyZero);
1402 
1403       shiftSignificandLeft(-exponentChange);
1404 
1405       return opOK;
1406     }
1407 
1408     if (exponentChange > 0) {
1409       lostFraction lf;
1410 
1411       /* Shift right and capture any new lost fraction.  */
1412       lf = shiftSignificandRight(exponentChange);
1413 
1414       lost_fraction = combineLostFractions(lf, lost_fraction);
1415 
1416       /* Keep OMSB up-to-date.  */
1417       if (omsb > (unsigned) exponentChange)
1418         omsb -= exponentChange;
1419       else
1420         omsb = 0;
1421     }
1422   }
1423 
1424   /* Now round the number according to rounding_mode given the lost
1425      fraction.  */
1426 
1427   /* As specified in IEEE 754, since we do not trap we do not report
1428      underflow for exact results.  */
1429   if (lost_fraction == lfExactlyZero) {
1430     /* Canonicalize zeroes.  */
1431     if (omsb == 0)
1432       category = fcZero;
1433 
1434     return opOK;
1435   }
1436 
1437   /* Increment the significand if we're rounding away from zero.  */
1438   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1439     if (omsb == 0)
1440       exponent = semantics->minExponent;
1441 
1442     incrementSignificand();
1443     omsb = significandMSB() + 1;
1444 
1445     /* Did the significand increment overflow?  */
1446     if (omsb == (unsigned) semantics->precision + 1) {
1447       /* Renormalize by incrementing the exponent and shifting our
1448          significand right one.  However if we already have the
1449          maximum exponent we overflow to infinity.  */
1450       if (exponent == semantics->maxExponent) {
1451         category = fcInfinity;
1452 
1453         return (opStatus) (opOverflow | opInexact);
1454       }
1455 
1456       shiftSignificandRight(1);
1457 
1458       return opInexact;
1459     }
1460   }
1461 
1462   /* The normal case - we were and are not denormal, and any
1463      significand increment above didn't overflow.  */
1464   if (omsb == semantics->precision)
1465     return opInexact;
1466 
1467   /* We have a non-zero denormal.  */
1468   assert(omsb < semantics->precision);
1469 
1470   /* Canonicalize zeroes.  */
1471   if (omsb == 0)
1472     category = fcZero;
1473 
1474   /* The fcZero case is a denormal that underflowed to zero.  */
1475   return (opStatus) (opUnderflow | opInexact);
1476 }
1477 
1478 IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs,
1479                                                      bool subtract) {
1480   switch (PackCategoriesIntoKey(category, rhs.category)) {
1481   default:
1482     llvm_unreachable(nullptr);
1483 
1484   case PackCategoriesIntoKey(fcZero, fcNaN):
1485   case PackCategoriesIntoKey(fcNormal, fcNaN):
1486   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1487     assign(rhs);
1488     LLVM_FALLTHROUGH;
1489   case PackCategoriesIntoKey(fcNaN, fcZero):
1490   case PackCategoriesIntoKey(fcNaN, fcNormal):
1491   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1492   case PackCategoriesIntoKey(fcNaN, fcNaN):
1493     if (isSignaling()) {
1494       makeQuiet();
1495       return opInvalidOp;
1496     }
1497     return rhs.isSignaling() ? opInvalidOp : opOK;
1498 
1499   case PackCategoriesIntoKey(fcNormal, fcZero):
1500   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1501   case PackCategoriesIntoKey(fcInfinity, fcZero):
1502     return opOK;
1503 
1504   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1505   case PackCategoriesIntoKey(fcZero, fcInfinity):
1506     category = fcInfinity;
1507     sign = rhs.sign ^ subtract;
1508     return opOK;
1509 
1510   case PackCategoriesIntoKey(fcZero, fcNormal):
1511     assign(rhs);
1512     sign = rhs.sign ^ subtract;
1513     return opOK;
1514 
1515   case PackCategoriesIntoKey(fcZero, fcZero):
1516     /* Sign depends on rounding mode; handled by caller.  */
1517     return opOK;
1518 
1519   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1520     /* Differently signed infinities can only be validly
1521        subtracted.  */
1522     if (((sign ^ rhs.sign)!=0) != subtract) {
1523       makeNaN();
1524       return opInvalidOp;
1525     }
1526 
1527     return opOK;
1528 
1529   case PackCategoriesIntoKey(fcNormal, fcNormal):
1530     return opDivByZero;
1531   }
1532 }
1533 
1534 /* Add or subtract two normal numbers.  */
1535 lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs,
1536                                                  bool subtract) {
1537   integerPart carry;
1538   lostFraction lost_fraction;
1539   int bits;
1540 
1541   /* Determine if the operation on the absolute values is effectively
1542      an addition or subtraction.  */
1543   subtract ^= static_cast<bool>(sign ^ rhs.sign);
1544 
1545   /* Are we bigger exponent-wise than the RHS?  */
1546   bits = exponent - rhs.exponent;
1547 
1548   /* Subtraction is more subtle than one might naively expect.  */
1549   if (subtract) {
1550     IEEEFloat temp_rhs(rhs);
1551 
1552     if (bits == 0)
1553       lost_fraction = lfExactlyZero;
1554     else if (bits > 0) {
1555       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1556       shiftSignificandLeft(1);
1557     } else {
1558       lost_fraction = shiftSignificandRight(-bits - 1);
1559       temp_rhs.shiftSignificandLeft(1);
1560     }
1561 
1562     // Should we reverse the subtraction.
1563     if (compareAbsoluteValue(temp_rhs) == cmpLessThan) {
1564       carry = temp_rhs.subtractSignificand
1565         (*this, lost_fraction != lfExactlyZero);
1566       copySignificand(temp_rhs);
1567       sign = !sign;
1568     } else {
1569       carry = subtractSignificand
1570         (temp_rhs, lost_fraction != lfExactlyZero);
1571     }
1572 
1573     /* Invert the lost fraction - it was on the RHS and
1574        subtracted.  */
1575     if (lost_fraction == lfLessThanHalf)
1576       lost_fraction = lfMoreThanHalf;
1577     else if (lost_fraction == lfMoreThanHalf)
1578       lost_fraction = lfLessThanHalf;
1579 
1580     /* The code above is intended to ensure that no borrow is
1581        necessary.  */
1582     assert(!carry);
1583     (void)carry;
1584   } else {
1585     if (bits > 0) {
1586       IEEEFloat temp_rhs(rhs);
1587 
1588       lost_fraction = temp_rhs.shiftSignificandRight(bits);
1589       carry = addSignificand(temp_rhs);
1590     } else {
1591       lost_fraction = shiftSignificandRight(-bits);
1592       carry = addSignificand(rhs);
1593     }
1594 
1595     /* We have a guard bit; generating a carry cannot happen.  */
1596     assert(!carry);
1597     (void)carry;
1598   }
1599 
1600   return lost_fraction;
1601 }
1602 
1603 IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) {
1604   switch (PackCategoriesIntoKey(category, rhs.category)) {
1605   default:
1606     llvm_unreachable(nullptr);
1607 
1608   case PackCategoriesIntoKey(fcZero, fcNaN):
1609   case PackCategoriesIntoKey(fcNormal, fcNaN):
1610   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1611     assign(rhs);
1612     sign = false;
1613     LLVM_FALLTHROUGH;
1614   case PackCategoriesIntoKey(fcNaN, fcZero):
1615   case PackCategoriesIntoKey(fcNaN, fcNormal):
1616   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1617   case PackCategoriesIntoKey(fcNaN, fcNaN):
1618     sign ^= rhs.sign; // restore the original sign
1619     if (isSignaling()) {
1620       makeQuiet();
1621       return opInvalidOp;
1622     }
1623     return rhs.isSignaling() ? opInvalidOp : opOK;
1624 
1625   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1626   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1627   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1628     category = fcInfinity;
1629     return opOK;
1630 
1631   case PackCategoriesIntoKey(fcZero, fcNormal):
1632   case PackCategoriesIntoKey(fcNormal, fcZero):
1633   case PackCategoriesIntoKey(fcZero, fcZero):
1634     category = fcZero;
1635     return opOK;
1636 
1637   case PackCategoriesIntoKey(fcZero, fcInfinity):
1638   case PackCategoriesIntoKey(fcInfinity, fcZero):
1639     makeNaN();
1640     return opInvalidOp;
1641 
1642   case PackCategoriesIntoKey(fcNormal, fcNormal):
1643     return opOK;
1644   }
1645 }
1646 
1647 IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) {
1648   switch (PackCategoriesIntoKey(category, rhs.category)) {
1649   default:
1650     llvm_unreachable(nullptr);
1651 
1652   case PackCategoriesIntoKey(fcZero, fcNaN):
1653   case PackCategoriesIntoKey(fcNormal, fcNaN):
1654   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1655     assign(rhs);
1656     sign = false;
1657     LLVM_FALLTHROUGH;
1658   case PackCategoriesIntoKey(fcNaN, fcZero):
1659   case PackCategoriesIntoKey(fcNaN, fcNormal):
1660   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1661   case PackCategoriesIntoKey(fcNaN, fcNaN):
1662     sign ^= rhs.sign; // restore the original sign
1663     if (isSignaling()) {
1664       makeQuiet();
1665       return opInvalidOp;
1666     }
1667     return rhs.isSignaling() ? opInvalidOp : opOK;
1668 
1669   case PackCategoriesIntoKey(fcInfinity, fcZero):
1670   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1671   case PackCategoriesIntoKey(fcZero, fcInfinity):
1672   case PackCategoriesIntoKey(fcZero, fcNormal):
1673     return opOK;
1674 
1675   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1676     category = fcZero;
1677     return opOK;
1678 
1679   case PackCategoriesIntoKey(fcNormal, fcZero):
1680     category = fcInfinity;
1681     return opDivByZero;
1682 
1683   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1684   case PackCategoriesIntoKey(fcZero, fcZero):
1685     makeNaN();
1686     return opInvalidOp;
1687 
1688   case PackCategoriesIntoKey(fcNormal, fcNormal):
1689     return opOK;
1690   }
1691 }
1692 
1693 IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) {
1694   switch (PackCategoriesIntoKey(category, rhs.category)) {
1695   default:
1696     llvm_unreachable(nullptr);
1697 
1698   case PackCategoriesIntoKey(fcZero, fcNaN):
1699   case PackCategoriesIntoKey(fcNormal, fcNaN):
1700   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1701     assign(rhs);
1702     LLVM_FALLTHROUGH;
1703   case PackCategoriesIntoKey(fcNaN, fcZero):
1704   case PackCategoriesIntoKey(fcNaN, fcNormal):
1705   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1706   case PackCategoriesIntoKey(fcNaN, fcNaN):
1707     if (isSignaling()) {
1708       makeQuiet();
1709       return opInvalidOp;
1710     }
1711     return rhs.isSignaling() ? opInvalidOp : opOK;
1712 
1713   case PackCategoriesIntoKey(fcZero, fcInfinity):
1714   case PackCategoriesIntoKey(fcZero, fcNormal):
1715   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1716     return opOK;
1717 
1718   case PackCategoriesIntoKey(fcNormal, fcZero):
1719   case PackCategoriesIntoKey(fcInfinity, fcZero):
1720   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1721   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1722   case PackCategoriesIntoKey(fcZero, fcZero):
1723     makeNaN();
1724     return opInvalidOp;
1725 
1726   case PackCategoriesIntoKey(fcNormal, fcNormal):
1727     return opOK;
1728   }
1729 }
1730 
1731 IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) {
1732   switch (PackCategoriesIntoKey(category, rhs.category)) {
1733   default:
1734     llvm_unreachable(nullptr);
1735 
1736   case PackCategoriesIntoKey(fcZero, fcNaN):
1737   case PackCategoriesIntoKey(fcNormal, fcNaN):
1738   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1739     assign(rhs);
1740     LLVM_FALLTHROUGH;
1741   case PackCategoriesIntoKey(fcNaN, fcZero):
1742   case PackCategoriesIntoKey(fcNaN, fcNormal):
1743   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1744   case PackCategoriesIntoKey(fcNaN, fcNaN):
1745     if (isSignaling()) {
1746       makeQuiet();
1747       return opInvalidOp;
1748     }
1749     return rhs.isSignaling() ? opInvalidOp : opOK;
1750 
1751   case PackCategoriesIntoKey(fcZero, fcInfinity):
1752   case PackCategoriesIntoKey(fcZero, fcNormal):
1753   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1754     return opOK;
1755 
1756   case PackCategoriesIntoKey(fcNormal, fcZero):
1757   case PackCategoriesIntoKey(fcInfinity, fcZero):
1758   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1759   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1760   case PackCategoriesIntoKey(fcZero, fcZero):
1761     makeNaN();
1762     return opInvalidOp;
1763 
1764   case PackCategoriesIntoKey(fcNormal, fcNormal):
1765     return opDivByZero; // fake status, indicating this is not a special case
1766   }
1767 }
1768 
1769 /* Change sign.  */
1770 void IEEEFloat::changeSign() {
1771   /* Look mummy, this one's easy.  */
1772   sign = !sign;
1773 }
1774 
1775 /* Normalized addition or subtraction.  */
1776 IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs,
1777                                              roundingMode rounding_mode,
1778                                              bool subtract) {
1779   opStatus fs;
1780 
1781   fs = addOrSubtractSpecials(rhs, subtract);
1782 
1783   /* This return code means it was not a simple case.  */
1784   if (fs == opDivByZero) {
1785     lostFraction lost_fraction;
1786 
1787     lost_fraction = addOrSubtractSignificand(rhs, subtract);
1788     fs = normalize(rounding_mode, lost_fraction);
1789 
1790     /* Can only be zero if we lost no fraction.  */
1791     assert(category != fcZero || lost_fraction == lfExactlyZero);
1792   }
1793 
1794   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1795      positive zero unless rounding to minus infinity, except that
1796      adding two like-signed zeroes gives that zero.  */
1797   if (category == fcZero) {
1798     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1799       sign = (rounding_mode == rmTowardNegative);
1800   }
1801 
1802   return fs;
1803 }
1804 
1805 /* Normalized addition.  */
1806 IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs,
1807                                    roundingMode rounding_mode) {
1808   return addOrSubtract(rhs, rounding_mode, false);
1809 }
1810 
1811 /* Normalized subtraction.  */
1812 IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs,
1813                                         roundingMode rounding_mode) {
1814   return addOrSubtract(rhs, rounding_mode, true);
1815 }
1816 
1817 /* Normalized multiply.  */
1818 IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs,
1819                                         roundingMode rounding_mode) {
1820   opStatus fs;
1821 
1822   sign ^= rhs.sign;
1823   fs = multiplySpecials(rhs);
1824 
1825   if (isFiniteNonZero()) {
1826     lostFraction lost_fraction = multiplySignificand(rhs);
1827     fs = normalize(rounding_mode, lost_fraction);
1828     if (lost_fraction != lfExactlyZero)
1829       fs = (opStatus) (fs | opInexact);
1830   }
1831 
1832   return fs;
1833 }
1834 
1835 /* Normalized divide.  */
1836 IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs,
1837                                       roundingMode rounding_mode) {
1838   opStatus fs;
1839 
1840   sign ^= rhs.sign;
1841   fs = divideSpecials(rhs);
1842 
1843   if (isFiniteNonZero()) {
1844     lostFraction lost_fraction = divideSignificand(rhs);
1845     fs = normalize(rounding_mode, lost_fraction);
1846     if (lost_fraction != lfExactlyZero)
1847       fs = (opStatus) (fs | opInexact);
1848   }
1849 
1850   return fs;
1851 }
1852 
1853 /* Normalized remainder.  */
1854 IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) {
1855   opStatus fs;
1856   unsigned int origSign = sign;
1857 
1858   // First handle the special cases.
1859   fs = remainderSpecials(rhs);
1860   if (fs != opDivByZero)
1861     return fs;
1862 
1863   fs = opOK;
1864 
1865   // Make sure the current value is less than twice the denom. If the addition
1866   // did not succeed (an overflow has happened), which means that the finite
1867   // value we currently posses must be less than twice the denom (as we are
1868   // using the same semantics).
1869   IEEEFloat P2 = rhs;
1870   if (P2.add(rhs, rmNearestTiesToEven) == opOK) {
1871     fs = mod(P2);
1872     assert(fs == opOK);
1873   }
1874 
1875   // Lets work with absolute numbers.
1876   IEEEFloat P = rhs;
1877   P.sign = false;
1878   sign = false;
1879 
1880   //
1881   // To calculate the remainder we use the following scheme.
1882   //
1883   // The remainder is defained as follows:
1884   //
1885   // remainder = numer - rquot * denom = x - r * p
1886   //
1887   // Where r is the result of: x/p, rounded toward the nearest integral value
1888   // (with halfway cases rounded toward the even number).
1889   //
1890   // Currently, (after x mod 2p):
1891   // r is the number of 2p's present inside x, which is inherently, an even
1892   // number of p's.
1893   //
1894   // We may split the remaining calculation into 4 options:
1895   // - if x < 0.5p then we round to the nearest number with is 0, and are done.
1896   // - if x == 0.5p then we round to the nearest even number which is 0, and we
1897   //   are done as well.
1898   // - if 0.5p < x < p then we round to nearest number which is 1, and we have
1899   //   to subtract 1p at least once.
1900   // - if x >= p then we must subtract p at least once, as x must be a
1901   //   remainder.
1902   //
1903   // By now, we were done, or we added 1 to r, which in turn, now an odd number.
1904   //
1905   // We can now split the remaining calculation to the following 3 options:
1906   // - if x < 0.5p then we round to the nearest number with is 0, and are done.
1907   // - if x == 0.5p then we round to the nearest even number. As r is odd, we
1908   //   must round up to the next even number. so we must subtract p once more.
1909   // - if x > 0.5p (and inherently x < p) then we must round r up to the next
1910   //   integral, and subtract p once more.
1911   //
1912 
1913   // Extend the semantics to prevent an overflow/underflow or inexact result.
1914   bool losesInfo;
1915   fltSemantics extendedSemantics = *semantics;
1916   extendedSemantics.maxExponent++;
1917   extendedSemantics.minExponent--;
1918   extendedSemantics.precision += 2;
1919 
1920   IEEEFloat VEx = *this;
1921   fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
1922   assert(fs == opOK && !losesInfo);
1923   IEEEFloat PEx = P;
1924   fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
1925   assert(fs == opOK && !losesInfo);
1926 
1927   // It is simpler to work with 2x instead of 0.5p, and we do not need to lose
1928   // any fraction.
1929   fs = VEx.add(VEx, rmNearestTiesToEven);
1930   assert(fs == opOK);
1931 
1932   if (VEx.compare(PEx) == cmpGreaterThan) {
1933     fs = subtract(P, rmNearestTiesToEven);
1934     assert(fs == opOK);
1935 
1936     // Make VEx = this.add(this), but because we have different semantics, we do
1937     // not want to `convert` again, so we just subtract PEx twice (which equals
1938     // to the desired value).
1939     fs = VEx.subtract(PEx, rmNearestTiesToEven);
1940     assert(fs == opOK);
1941     fs = VEx.subtract(PEx, rmNearestTiesToEven);
1942     assert(fs == opOK);
1943 
1944     cmpResult result = VEx.compare(PEx);
1945     if (result == cmpGreaterThan || result == cmpEqual) {
1946       fs = subtract(P, rmNearestTiesToEven);
1947       assert(fs == opOK);
1948     }
1949   }
1950 
1951   if (isZero())
1952     sign = origSign;    // IEEE754 requires this
1953   else
1954     sign ^= origSign;
1955   return fs;
1956 }
1957 
1958 /* Normalized llvm frem (C fmod). */
1959 IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) {
1960   opStatus fs;
1961   fs = modSpecials(rhs);
1962   unsigned int origSign = sign;
1963 
1964   while (isFiniteNonZero() && rhs.isFiniteNonZero() &&
1965          compareAbsoluteValue(rhs) != cmpLessThan) {
1966     IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven);
1967     if (compareAbsoluteValue(V) == cmpLessThan)
1968       V = scalbn(V, -1, rmNearestTiesToEven);
1969     V.sign = sign;
1970 
1971     fs = subtract(V, rmNearestTiesToEven);
1972     assert(fs==opOK);
1973   }
1974   if (isZero())
1975     sign = origSign; // fmod requires this
1976   return fs;
1977 }
1978 
1979 /* Normalized fused-multiply-add.  */
1980 IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand,
1981                                                 const IEEEFloat &addend,
1982                                                 roundingMode rounding_mode) {
1983   opStatus fs;
1984 
1985   /* Post-multiplication sign, before addition.  */
1986   sign ^= multiplicand.sign;
1987 
1988   /* If and only if all arguments are normal do we need to do an
1989      extended-precision calculation.  */
1990   if (isFiniteNonZero() &&
1991       multiplicand.isFiniteNonZero() &&
1992       addend.isFinite()) {
1993     lostFraction lost_fraction;
1994 
1995     lost_fraction = multiplySignificand(multiplicand, addend);
1996     fs = normalize(rounding_mode, lost_fraction);
1997     if (lost_fraction != lfExactlyZero)
1998       fs = (opStatus) (fs | opInexact);
1999 
2000     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
2001        positive zero unless rounding to minus infinity, except that
2002        adding two like-signed zeroes gives that zero.  */
2003     if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
2004       sign = (rounding_mode == rmTowardNegative);
2005   } else {
2006     fs = multiplySpecials(multiplicand);
2007 
2008     /* FS can only be opOK or opInvalidOp.  There is no more work
2009        to do in the latter case.  The IEEE-754R standard says it is
2010        implementation-defined in this case whether, if ADDEND is a
2011        quiet NaN, we raise invalid op; this implementation does so.
2012 
2013        If we need to do the addition we can do so with normal
2014        precision.  */
2015     if (fs == opOK)
2016       fs = addOrSubtract(addend, rounding_mode, false);
2017   }
2018 
2019   return fs;
2020 }
2021 
2022 /* Rounding-mode correct round to integral value.  */
2023 IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) {
2024   opStatus fs;
2025 
2026   if (isInfinity())
2027     // [IEEE Std 754-2008 6.1]:
2028     // The behavior of infinity in floating-point arithmetic is derived from the
2029     // limiting cases of real arithmetic with operands of arbitrarily
2030     // large magnitude, when such a limit exists.
2031     // ...
2032     // Operations on infinite operands are usually exact and therefore signal no
2033     // exceptions ...
2034     return opOK;
2035 
2036   if (isNaN()) {
2037     if (isSignaling()) {
2038       // [IEEE Std 754-2008 6.2]:
2039       // Under default exception handling, any operation signaling an invalid
2040       // operation exception and for which a floating-point result is to be
2041       // delivered shall deliver a quiet NaN.
2042       makeQuiet();
2043       // [IEEE Std 754-2008 6.2]:
2044       // Signaling NaNs shall be reserved operands that, under default exception
2045       // handling, signal the invalid operation exception(see 7.2) for every
2046       // general-computational and signaling-computational operation except for
2047       // the conversions described in 5.12.
2048       return opInvalidOp;
2049     } else {
2050       // [IEEE Std 754-2008 6.2]:
2051       // For an operation with quiet NaN inputs, other than maximum and minimum
2052       // operations, if a floating-point result is to be delivered the result
2053       // shall be a quiet NaN which should be one of the input NaNs.
2054       // ...
2055       // Every general-computational and quiet-computational operation involving
2056       // one or more input NaNs, none of them signaling, shall signal no
2057       // exception, except fusedMultiplyAdd might signal the invalid operation
2058       // exception(see 7.2).
2059       return opOK;
2060     }
2061   }
2062 
2063   if (isZero()) {
2064     // [IEEE Std 754-2008 6.3]:
2065     // ... the sign of the result of conversions, the quantize operation, the
2066     // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is
2067     // the sign of the first or only operand.
2068     return opOK;
2069   }
2070 
2071   // If the exponent is large enough, we know that this value is already
2072   // integral, and the arithmetic below would potentially cause it to saturate
2073   // to +/-Inf.  Bail out early instead.
2074   if (exponent+1 >= (int)semanticsPrecision(*semantics))
2075     return opOK;
2076 
2077   // The algorithm here is quite simple: we add 2^(p-1), where p is the
2078   // precision of our format, and then subtract it back off again.  The choice
2079   // of rounding modes for the addition/subtraction determines the rounding mode
2080   // for our integral rounding as well.
2081   // NOTE: When the input value is negative, we do subtraction followed by
2082   // addition instead.
2083   APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
2084   IntegerConstant <<= semanticsPrecision(*semantics)-1;
2085   IEEEFloat MagicConstant(*semantics);
2086   fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
2087                                       rmNearestTiesToEven);
2088   assert(fs == opOK);
2089   MagicConstant.sign = sign;
2090 
2091   // Preserve the input sign so that we can handle the case of zero result
2092   // correctly.
2093   bool inputSign = isNegative();
2094 
2095   fs = add(MagicConstant, rounding_mode);
2096 
2097   // Current value and 'MagicConstant' are both integers, so the result of the
2098   // subtraction is always exact according to Sterbenz' lemma.
2099   subtract(MagicConstant, rounding_mode);
2100 
2101   // Restore the input sign.
2102   if (inputSign != isNegative())
2103     changeSign();
2104 
2105   return fs;
2106 }
2107 
2108 
2109 /* Comparison requires normalized numbers.  */
2110 IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const {
2111   cmpResult result;
2112 
2113   assert(semantics == rhs.semantics);
2114 
2115   switch (PackCategoriesIntoKey(category, rhs.category)) {
2116   default:
2117     llvm_unreachable(nullptr);
2118 
2119   case PackCategoriesIntoKey(fcNaN, fcZero):
2120   case PackCategoriesIntoKey(fcNaN, fcNormal):
2121   case PackCategoriesIntoKey(fcNaN, fcInfinity):
2122   case PackCategoriesIntoKey(fcNaN, fcNaN):
2123   case PackCategoriesIntoKey(fcZero, fcNaN):
2124   case PackCategoriesIntoKey(fcNormal, fcNaN):
2125   case PackCategoriesIntoKey(fcInfinity, fcNaN):
2126     return cmpUnordered;
2127 
2128   case PackCategoriesIntoKey(fcInfinity, fcNormal):
2129   case PackCategoriesIntoKey(fcInfinity, fcZero):
2130   case PackCategoriesIntoKey(fcNormal, fcZero):
2131     if (sign)
2132       return cmpLessThan;
2133     else
2134       return cmpGreaterThan;
2135 
2136   case PackCategoriesIntoKey(fcNormal, fcInfinity):
2137   case PackCategoriesIntoKey(fcZero, fcInfinity):
2138   case PackCategoriesIntoKey(fcZero, fcNormal):
2139     if (rhs.sign)
2140       return cmpGreaterThan;
2141     else
2142       return cmpLessThan;
2143 
2144   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
2145     if (sign == rhs.sign)
2146       return cmpEqual;
2147     else if (sign)
2148       return cmpLessThan;
2149     else
2150       return cmpGreaterThan;
2151 
2152   case PackCategoriesIntoKey(fcZero, fcZero):
2153     return cmpEqual;
2154 
2155   case PackCategoriesIntoKey(fcNormal, fcNormal):
2156     break;
2157   }
2158 
2159   /* Two normal numbers.  Do they have the same sign?  */
2160   if (sign != rhs.sign) {
2161     if (sign)
2162       result = cmpLessThan;
2163     else
2164       result = cmpGreaterThan;
2165   } else {
2166     /* Compare absolute values; invert result if negative.  */
2167     result = compareAbsoluteValue(rhs);
2168 
2169     if (sign) {
2170       if (result == cmpLessThan)
2171         result = cmpGreaterThan;
2172       else if (result == cmpGreaterThan)
2173         result = cmpLessThan;
2174     }
2175   }
2176 
2177   return result;
2178 }
2179 
2180 /// IEEEFloat::convert - convert a value of one floating point type to another.
2181 /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
2182 /// records whether the transformation lost information, i.e. whether
2183 /// converting the result back to the original type will produce the
2184 /// original value (this is almost the same as return value==fsOK, but there
2185 /// are edge cases where this is not so).
2186 
2187 IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
2188                                        roundingMode rounding_mode,
2189                                        bool *losesInfo) {
2190   lostFraction lostFraction;
2191   unsigned int newPartCount, oldPartCount;
2192   opStatus fs;
2193   int shift;
2194   const fltSemantics &fromSemantics = *semantics;
2195 
2196   lostFraction = lfExactlyZero;
2197   newPartCount = partCountForBits(toSemantics.precision + 1);
2198   oldPartCount = partCount();
2199   shift = toSemantics.precision - fromSemantics.precision;
2200 
2201   bool X86SpecialNan = false;
2202   if (&fromSemantics == &semX87DoubleExtended &&
2203       &toSemantics != &semX87DoubleExtended && category == fcNaN &&
2204       (!(*significandParts() & 0x8000000000000000ULL) ||
2205        !(*significandParts() & 0x4000000000000000ULL))) {
2206     // x86 has some unusual NaNs which cannot be represented in any other
2207     // format; note them here.
2208     X86SpecialNan = true;
2209   }
2210 
2211   // If this is a truncation of a denormal number, and the target semantics
2212   // has larger exponent range than the source semantics (this can happen
2213   // when truncating from PowerPC double-double to double format), the
2214   // right shift could lose result mantissa bits.  Adjust exponent instead
2215   // of performing excessive shift.
2216   // Also do a similar trick in case shifting denormal would produce zero
2217   // significand as this case isn't handled correctly by normalize.
2218   if (shift < 0 && isFiniteNonZero()) {
2219     int omsb = significandMSB() + 1;
2220     int exponentChange = omsb - fromSemantics.precision;
2221     if (exponent + exponentChange < toSemantics.minExponent)
2222       exponentChange = toSemantics.minExponent - exponent;
2223     if (exponentChange < shift)
2224       exponentChange = shift;
2225     if (exponentChange < 0) {
2226       shift -= exponentChange;
2227       exponent += exponentChange;
2228     } else if (omsb <= -shift) {
2229       exponentChange = omsb + shift - 1; // leave at least one bit set
2230       shift -= exponentChange;
2231       exponent += exponentChange;
2232     }
2233   }
2234 
2235   // If this is a truncation, perform the shift before we narrow the storage.
2236   if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
2237     lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
2238 
2239   // Fix the storage so it can hold to new value.
2240   if (newPartCount > oldPartCount) {
2241     // The new type requires more storage; make it available.
2242     integerPart *newParts;
2243     newParts = new integerPart[newPartCount];
2244     APInt::tcSet(newParts, 0, newPartCount);
2245     if (isFiniteNonZero() || category==fcNaN)
2246       APInt::tcAssign(newParts, significandParts(), oldPartCount);
2247     freeSignificand();
2248     significand.parts = newParts;
2249   } else if (newPartCount == 1 && oldPartCount != 1) {
2250     // Switch to built-in storage for a single part.
2251     integerPart newPart = 0;
2252     if (isFiniteNonZero() || category==fcNaN)
2253       newPart = significandParts()[0];
2254     freeSignificand();
2255     significand.part = newPart;
2256   }
2257 
2258   // Now that we have the right storage, switch the semantics.
2259   semantics = &toSemantics;
2260 
2261   // If this is an extension, perform the shift now that the storage is
2262   // available.
2263   if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
2264     APInt::tcShiftLeft(significandParts(), newPartCount, shift);
2265 
2266   if (isFiniteNonZero()) {
2267     fs = normalize(rounding_mode, lostFraction);
2268     *losesInfo = (fs != opOK);
2269   } else if (category == fcNaN) {
2270     *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
2271 
2272     // For x87 extended precision, we want to make a NaN, not a special NaN if
2273     // the input wasn't special either.
2274     if (!X86SpecialNan && semantics == &semX87DoubleExtended)
2275       APInt::tcSetBit(significandParts(), semantics->precision - 1);
2276 
2277     // Convert of sNaN creates qNaN and raises an exception (invalid op).
2278     // This also guarantees that a sNaN does not become Inf on a truncation
2279     // that loses all payload bits.
2280     if (isSignaling()) {
2281       makeQuiet();
2282       fs = opInvalidOp;
2283     } else {
2284       fs = opOK;
2285     }
2286   } else {
2287     *losesInfo = false;
2288     fs = opOK;
2289   }
2290 
2291   return fs;
2292 }
2293 
2294 /* Convert a floating point number to an integer according to the
2295    rounding mode.  If the rounded integer value is out of range this
2296    returns an invalid operation exception and the contents of the
2297    destination parts are unspecified.  If the rounded value is in
2298    range but the floating point number is not the exact integer, the C
2299    standard doesn't require an inexact exception to be raised.  IEEE
2300    854 does require it so we do that.
2301 
2302    Note that for conversions to integer type the C standard requires
2303    round-to-zero to always be used.  */
2304 IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger(
2305     MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned,
2306     roundingMode rounding_mode, bool *isExact) const {
2307   lostFraction lost_fraction;
2308   const integerPart *src;
2309   unsigned int dstPartsCount, truncatedBits;
2310 
2311   *isExact = false;
2312 
2313   /* Handle the three special cases first.  */
2314   if (category == fcInfinity || category == fcNaN)
2315     return opInvalidOp;
2316 
2317   dstPartsCount = partCountForBits(width);
2318   assert(dstPartsCount <= parts.size() && "Integer too big");
2319 
2320   if (category == fcZero) {
2321     APInt::tcSet(parts.data(), 0, dstPartsCount);
2322     // Negative zero can't be represented as an int.
2323     *isExact = !sign;
2324     return opOK;
2325   }
2326 
2327   src = significandParts();
2328 
2329   /* Step 1: place our absolute value, with any fraction truncated, in
2330      the destination.  */
2331   if (exponent < 0) {
2332     /* Our absolute value is less than one; truncate everything.  */
2333     APInt::tcSet(parts.data(), 0, dstPartsCount);
2334     /* For exponent -1 the integer bit represents .5, look at that.
2335        For smaller exponents leftmost truncated bit is 0. */
2336     truncatedBits = semantics->precision -1U - exponent;
2337   } else {
2338     /* We want the most significant (exponent + 1) bits; the rest are
2339        truncated.  */
2340     unsigned int bits = exponent + 1U;
2341 
2342     /* Hopelessly large in magnitude?  */
2343     if (bits > width)
2344       return opInvalidOp;
2345 
2346     if (bits < semantics->precision) {
2347       /* We truncate (semantics->precision - bits) bits.  */
2348       truncatedBits = semantics->precision - bits;
2349       APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits);
2350     } else {
2351       /* We want at least as many bits as are available.  */
2352       APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision,
2353                        0);
2354       APInt::tcShiftLeft(parts.data(), dstPartsCount,
2355                          bits - semantics->precision);
2356       truncatedBits = 0;
2357     }
2358   }
2359 
2360   /* Step 2: work out any lost fraction, and increment the absolute
2361      value if we would round away from zero.  */
2362   if (truncatedBits) {
2363     lost_fraction = lostFractionThroughTruncation(src, partCount(),
2364                                                   truncatedBits);
2365     if (lost_fraction != lfExactlyZero &&
2366         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2367       if (APInt::tcIncrement(parts.data(), dstPartsCount))
2368         return opInvalidOp;     /* Overflow.  */
2369     }
2370   } else {
2371     lost_fraction = lfExactlyZero;
2372   }
2373 
2374   /* Step 3: check if we fit in the destination.  */
2375   unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1;
2376 
2377   if (sign) {
2378     if (!isSigned) {
2379       /* Negative numbers cannot be represented as unsigned.  */
2380       if (omsb != 0)
2381         return opInvalidOp;
2382     } else {
2383       /* It takes omsb bits to represent the unsigned integer value.
2384          We lose a bit for the sign, but care is needed as the
2385          maximally negative integer is a special case.  */
2386       if (omsb == width &&
2387           APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb)
2388         return opInvalidOp;
2389 
2390       /* This case can happen because of rounding.  */
2391       if (omsb > width)
2392         return opInvalidOp;
2393     }
2394 
2395     APInt::tcNegate (parts.data(), dstPartsCount);
2396   } else {
2397     if (omsb >= width + !isSigned)
2398       return opInvalidOp;
2399   }
2400 
2401   if (lost_fraction == lfExactlyZero) {
2402     *isExact = true;
2403     return opOK;
2404   } else
2405     return opInexact;
2406 }
2407 
2408 /* Same as convertToSignExtendedInteger, except we provide
2409    deterministic values in case of an invalid operation exception,
2410    namely zero for NaNs and the minimal or maximal value respectively
2411    for underflow or overflow.
2412    The *isExact output tells whether the result is exact, in the sense
2413    that converting it back to the original floating point type produces
2414    the original value.  This is almost equivalent to result==opOK,
2415    except for negative zeroes.
2416 */
2417 IEEEFloat::opStatus
2418 IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts,
2419                             unsigned int width, bool isSigned,
2420                             roundingMode rounding_mode, bool *isExact) const {
2421   opStatus fs;
2422 
2423   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2424                                     isExact);
2425 
2426   if (fs == opInvalidOp) {
2427     unsigned int bits, dstPartsCount;
2428 
2429     dstPartsCount = partCountForBits(width);
2430     assert(dstPartsCount <= parts.size() && "Integer too big");
2431 
2432     if (category == fcNaN)
2433       bits = 0;
2434     else if (sign)
2435       bits = isSigned;
2436     else
2437       bits = width - isSigned;
2438 
2439     tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits);
2440     if (sign && isSigned)
2441       APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1);
2442   }
2443 
2444   return fs;
2445 }
2446 
2447 /* Convert an unsigned integer SRC to a floating point number,
2448    rounding according to ROUNDING_MODE.  The sign of the floating
2449    point number is not modified.  */
2450 IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts(
2451     const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) {
2452   unsigned int omsb, precision, dstCount;
2453   integerPart *dst;
2454   lostFraction lost_fraction;
2455 
2456   category = fcNormal;
2457   omsb = APInt::tcMSB(src, srcCount) + 1;
2458   dst = significandParts();
2459   dstCount = partCount();
2460   precision = semantics->precision;
2461 
2462   /* We want the most significant PRECISION bits of SRC.  There may not
2463      be that many; extract what we can.  */
2464   if (precision <= omsb) {
2465     exponent = omsb - 1;
2466     lost_fraction = lostFractionThroughTruncation(src, srcCount,
2467                                                   omsb - precision);
2468     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2469   } else {
2470     exponent = precision - 1;
2471     lost_fraction = lfExactlyZero;
2472     APInt::tcExtract(dst, dstCount, src, omsb, 0);
2473   }
2474 
2475   return normalize(rounding_mode, lost_fraction);
2476 }
2477 
2478 IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned,
2479                                                 roundingMode rounding_mode) {
2480   unsigned int partCount = Val.getNumWords();
2481   APInt api = Val;
2482 
2483   sign = false;
2484   if (isSigned && api.isNegative()) {
2485     sign = true;
2486     api = -api;
2487   }
2488 
2489   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2490 }
2491 
2492 /* Convert a two's complement integer SRC to a floating point number,
2493    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
2494    integer is signed, in which case it must be sign-extended.  */
2495 IEEEFloat::opStatus
2496 IEEEFloat::convertFromSignExtendedInteger(const integerPart *src,
2497                                           unsigned int srcCount, bool isSigned,
2498                                           roundingMode rounding_mode) {
2499   opStatus status;
2500 
2501   if (isSigned &&
2502       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2503     integerPart *copy;
2504 
2505     /* If we're signed and negative negate a copy.  */
2506     sign = true;
2507     copy = new integerPart[srcCount];
2508     APInt::tcAssign(copy, src, srcCount);
2509     APInt::tcNegate(copy, srcCount);
2510     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2511     delete [] copy;
2512   } else {
2513     sign = false;
2514     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2515   }
2516 
2517   return status;
2518 }
2519 
2520 /* FIXME: should this just take a const APInt reference?  */
2521 IEEEFloat::opStatus
2522 IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2523                                           unsigned int width, bool isSigned,
2524                                           roundingMode rounding_mode) {
2525   unsigned int partCount = partCountForBits(width);
2526   APInt api = APInt(width, makeArrayRef(parts, partCount));
2527 
2528   sign = false;
2529   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2530     sign = true;
2531     api = -api;
2532   }
2533 
2534   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2535 }
2536 
2537 Expected<IEEEFloat::opStatus>
2538 IEEEFloat::convertFromHexadecimalString(StringRef s,
2539                                         roundingMode rounding_mode) {
2540   lostFraction lost_fraction = lfExactlyZero;
2541 
2542   category = fcNormal;
2543   zeroSignificand();
2544   exponent = 0;
2545 
2546   integerPart *significand = significandParts();
2547   unsigned partsCount = partCount();
2548   unsigned bitPos = partsCount * integerPartWidth;
2549   bool computedTrailingFraction = false;
2550 
2551   // Skip leading zeroes and any (hexa)decimal point.
2552   StringRef::iterator begin = s.begin();
2553   StringRef::iterator end = s.end();
2554   StringRef::iterator dot;
2555   auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2556   if (!PtrOrErr)
2557     return PtrOrErr.takeError();
2558   StringRef::iterator p = *PtrOrErr;
2559   StringRef::iterator firstSignificantDigit = p;
2560 
2561   while (p != end) {
2562     integerPart hex_value;
2563 
2564     if (*p == '.') {
2565       if (dot != end)
2566         return createError("String contains multiple dots");
2567       dot = p++;
2568       continue;
2569     }
2570 
2571     hex_value = hexDigitValue(*p);
2572     if (hex_value == -1U)
2573       break;
2574 
2575     p++;
2576 
2577     // Store the number while we have space.
2578     if (bitPos) {
2579       bitPos -= 4;
2580       hex_value <<= bitPos % integerPartWidth;
2581       significand[bitPos / integerPartWidth] |= hex_value;
2582     } else if (!computedTrailingFraction) {
2583       auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value);
2584       if (!FractOrErr)
2585         return FractOrErr.takeError();
2586       lost_fraction = *FractOrErr;
2587       computedTrailingFraction = true;
2588     }
2589   }
2590 
2591   /* Hex floats require an exponent but not a hexadecimal point.  */
2592   if (p == end)
2593     return createError("Hex strings require an exponent");
2594   if (*p != 'p' && *p != 'P')
2595     return createError("Invalid character in significand");
2596   if (p == begin)
2597     return createError("Significand has no digits");
2598   if (dot != end && p - begin == 1)
2599     return createError("Significand has no digits");
2600 
2601   /* Ignore the exponent if we are zero.  */
2602   if (p != firstSignificantDigit) {
2603     int expAdjustment;
2604 
2605     /* Implicit hexadecimal point?  */
2606     if (dot == end)
2607       dot = p;
2608 
2609     /* Calculate the exponent adjustment implicit in the number of
2610        significant digits.  */
2611     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2612     if (expAdjustment < 0)
2613       expAdjustment++;
2614     expAdjustment = expAdjustment * 4 - 1;
2615 
2616     /* Adjust for writing the significand starting at the most
2617        significant nibble.  */
2618     expAdjustment += semantics->precision;
2619     expAdjustment -= partsCount * integerPartWidth;
2620 
2621     /* Adjust for the given exponent.  */
2622     auto ExpOrErr = totalExponent(p + 1, end, expAdjustment);
2623     if (!ExpOrErr)
2624       return ExpOrErr.takeError();
2625     exponent = *ExpOrErr;
2626   }
2627 
2628   return normalize(rounding_mode, lost_fraction);
2629 }
2630 
2631 IEEEFloat::opStatus
2632 IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2633                                         unsigned sigPartCount, int exp,
2634                                         roundingMode rounding_mode) {
2635   unsigned int parts, pow5PartCount;
2636   fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
2637   integerPart pow5Parts[maxPowerOfFiveParts];
2638   bool isNearest;
2639 
2640   isNearest = (rounding_mode == rmNearestTiesToEven ||
2641                rounding_mode == rmNearestTiesToAway);
2642 
2643   parts = partCountForBits(semantics->precision + 11);
2644 
2645   /* Calculate pow(5, abs(exp)).  */
2646   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2647 
2648   for (;; parts *= 2) {
2649     opStatus sigStatus, powStatus;
2650     unsigned int excessPrecision, truncatedBits;
2651 
2652     calcSemantics.precision = parts * integerPartWidth - 1;
2653     excessPrecision = calcSemantics.precision - semantics->precision;
2654     truncatedBits = excessPrecision;
2655 
2656     IEEEFloat decSig(calcSemantics, uninitialized);
2657     decSig.makeZero(sign);
2658     IEEEFloat pow5(calcSemantics);
2659 
2660     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2661                                                 rmNearestTiesToEven);
2662     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2663                                               rmNearestTiesToEven);
2664     /* Add exp, as 10^n = 5^n * 2^n.  */
2665     decSig.exponent += exp;
2666 
2667     lostFraction calcLostFraction;
2668     integerPart HUerr, HUdistance;
2669     unsigned int powHUerr;
2670 
2671     if (exp >= 0) {
2672       /* multiplySignificand leaves the precision-th bit set to 1.  */
2673       calcLostFraction = decSig.multiplySignificand(pow5);
2674       powHUerr = powStatus != opOK;
2675     } else {
2676       calcLostFraction = decSig.divideSignificand(pow5);
2677       /* Denormal numbers have less precision.  */
2678       if (decSig.exponent < semantics->minExponent) {
2679         excessPrecision += (semantics->minExponent - decSig.exponent);
2680         truncatedBits = excessPrecision;
2681         if (excessPrecision > calcSemantics.precision)
2682           excessPrecision = calcSemantics.precision;
2683       }
2684       /* Extra half-ulp lost in reciprocal of exponent.  */
2685       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2686     }
2687 
2688     /* Both multiplySignificand and divideSignificand return the
2689        result with the integer bit set.  */
2690     assert(APInt::tcExtractBit
2691            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2692 
2693     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2694                        powHUerr);
2695     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2696                                       excessPrecision, isNearest);
2697 
2698     /* Are we guaranteed to round correctly if we truncate?  */
2699     if (HUdistance >= HUerr) {
2700       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2701                        calcSemantics.precision - excessPrecision,
2702                        excessPrecision);
2703       /* Take the exponent of decSig.  If we tcExtract-ed less bits
2704          above we must adjust our exponent to compensate for the
2705          implicit right shift.  */
2706       exponent = (decSig.exponent + semantics->precision
2707                   - (calcSemantics.precision - excessPrecision));
2708       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2709                                                        decSig.partCount(),
2710                                                        truncatedBits);
2711       return normalize(rounding_mode, calcLostFraction);
2712     }
2713   }
2714 }
2715 
2716 Expected<IEEEFloat::opStatus>
2717 IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) {
2718   decimalInfo D;
2719   opStatus fs;
2720 
2721   /* Scan the text.  */
2722   StringRef::iterator p = str.begin();
2723   if (Error Err = interpretDecimal(p, str.end(), &D))
2724     return std::move(Err);
2725 
2726   /* Handle the quick cases.  First the case of no significant digits,
2727      i.e. zero, and then exponents that are obviously too large or too
2728      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
2729      definitely overflows if
2730 
2731            (exp - 1) * L >= maxExponent
2732 
2733      and definitely underflows to zero where
2734 
2735            (exp + 1) * L <= minExponent - precision
2736 
2737      With integer arithmetic the tightest bounds for L are
2738 
2739            93/28 < L < 196/59            [ numerator <= 256 ]
2740            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
2741   */
2742 
2743   // Test if we have a zero number allowing for strings with no null terminators
2744   // and zero decimals with non-zero exponents.
2745   //
2746   // We computed firstSigDigit by ignoring all zeros and dots. Thus if
2747   // D->firstSigDigit equals str.end(), every digit must be a zero and there can
2748   // be at most one dot. On the other hand, if we have a zero with a non-zero
2749   // exponent, then we know that D.firstSigDigit will be non-numeric.
2750   if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
2751     category = fcZero;
2752     fs = opOK;
2753 
2754   /* Check whether the normalized exponent is high enough to overflow
2755      max during the log-rebasing in the max-exponent check below. */
2756   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2757     fs = handleOverflow(rounding_mode);
2758 
2759   /* If it wasn't, then it also wasn't high enough to overflow max
2760      during the log-rebasing in the min-exponent check.  Check that it
2761      won't overflow min in either check, then perform the min-exponent
2762      check. */
2763   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2764              (D.normalizedExponent + 1) * 28738 <=
2765                8651 * (semantics->minExponent - (int) semantics->precision)) {
2766     /* Underflow to zero and round.  */
2767     category = fcNormal;
2768     zeroSignificand();
2769     fs = normalize(rounding_mode, lfLessThanHalf);
2770 
2771   /* We can finally safely perform the max-exponent check. */
2772   } else if ((D.normalizedExponent - 1) * 42039
2773              >= 12655 * semantics->maxExponent) {
2774     /* Overflow and round.  */
2775     fs = handleOverflow(rounding_mode);
2776   } else {
2777     integerPart *decSignificand;
2778     unsigned int partCount;
2779 
2780     /* A tight upper bound on number of bits required to hold an
2781        N-digit decimal integer is N * 196 / 59.  Allocate enough space
2782        to hold the full significand, and an extra part required by
2783        tcMultiplyPart.  */
2784     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2785     partCount = partCountForBits(1 + 196 * partCount / 59);
2786     decSignificand = new integerPart[partCount + 1];
2787     partCount = 0;
2788 
2789     /* Convert to binary efficiently - we do almost all multiplication
2790        in an integerPart.  When this would overflow do we do a single
2791        bignum multiplication, and then revert again to multiplication
2792        in an integerPart.  */
2793     do {
2794       integerPart decValue, val, multiplier;
2795 
2796       val = 0;
2797       multiplier = 1;
2798 
2799       do {
2800         if (*p == '.') {
2801           p++;
2802           if (p == str.end()) {
2803             break;
2804           }
2805         }
2806         decValue = decDigitValue(*p++);
2807         if (decValue >= 10U) {
2808           delete[] decSignificand;
2809           return createError("Invalid character in significand");
2810         }
2811         multiplier *= 10;
2812         val = val * 10 + decValue;
2813         /* The maximum number that can be multiplied by ten with any
2814            digit added without overflowing an integerPart.  */
2815       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2816 
2817       /* Multiply out the current part.  */
2818       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2819                             partCount, partCount + 1, false);
2820 
2821       /* If we used another part (likely but not guaranteed), increase
2822          the count.  */
2823       if (decSignificand[partCount])
2824         partCount++;
2825     } while (p <= D.lastSigDigit);
2826 
2827     category = fcNormal;
2828     fs = roundSignificandWithExponent(decSignificand, partCount,
2829                                       D.exponent, rounding_mode);
2830 
2831     delete [] decSignificand;
2832   }
2833 
2834   return fs;
2835 }
2836 
2837 bool IEEEFloat::convertFromStringSpecials(StringRef str) {
2838   const size_t MIN_NAME_SIZE = 3;
2839 
2840   if (str.size() < MIN_NAME_SIZE)
2841     return false;
2842 
2843   if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) {
2844     makeInf(false);
2845     return true;
2846   }
2847 
2848   bool IsNegative = str.front() == '-';
2849   if (IsNegative) {
2850     str = str.drop_front();
2851     if (str.size() < MIN_NAME_SIZE)
2852       return false;
2853 
2854     if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) {
2855       makeInf(true);
2856       return true;
2857     }
2858   }
2859 
2860   // If we have a 's' (or 'S') prefix, then this is a Signaling NaN.
2861   bool IsSignaling = str.front() == 's' || str.front() == 'S';
2862   if (IsSignaling) {
2863     str = str.drop_front();
2864     if (str.size() < MIN_NAME_SIZE)
2865       return false;
2866   }
2867 
2868   if (str.startswith("nan") || str.startswith("NaN")) {
2869     str = str.drop_front(3);
2870 
2871     // A NaN without payload.
2872     if (str.empty()) {
2873       makeNaN(IsSignaling, IsNegative);
2874       return true;
2875     }
2876 
2877     // Allow the payload to be inside parentheses.
2878     if (str.front() == '(') {
2879       // Parentheses should be balanced (and not empty).
2880       if (str.size() <= 2 || str.back() != ')')
2881         return false;
2882 
2883       str = str.slice(1, str.size() - 1);
2884     }
2885 
2886     // Determine the payload number's radix.
2887     unsigned Radix = 10;
2888     if (str[0] == '0') {
2889       if (str.size() > 1 && tolower(str[1]) == 'x') {
2890         str = str.drop_front(2);
2891         Radix = 16;
2892       } else
2893         Radix = 8;
2894     }
2895 
2896     // Parse the payload and make the NaN.
2897     APInt Payload;
2898     if (!str.getAsInteger(Radix, Payload)) {
2899       makeNaN(IsSignaling, IsNegative, &Payload);
2900       return true;
2901     }
2902   }
2903 
2904   return false;
2905 }
2906 
2907 Expected<IEEEFloat::opStatus>
2908 IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) {
2909   if (str.empty())
2910     return createError("Invalid string length");
2911 
2912   // Handle special cases.
2913   if (convertFromStringSpecials(str))
2914     return opOK;
2915 
2916   /* Handle a leading minus sign.  */
2917   StringRef::iterator p = str.begin();
2918   size_t slen = str.size();
2919   sign = *p == '-' ? 1 : 0;
2920   if (*p == '-' || *p == '+') {
2921     p++;
2922     slen--;
2923     if (!slen)
2924       return createError("String has no digits");
2925   }
2926 
2927   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2928     if (slen == 2)
2929       return createError("Invalid string");
2930     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2931                                         rounding_mode);
2932   }
2933 
2934   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2935 }
2936 
2937 /* Write out a hexadecimal representation of the floating point value
2938    to DST, which must be of sufficient size, in the C99 form
2939    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
2940    excluding the terminating NUL.
2941 
2942    If UPPERCASE, the output is in upper case, otherwise in lower case.
2943 
2944    HEXDIGITS digits appear altogether, rounding the value if
2945    necessary.  If HEXDIGITS is 0, the minimal precision to display the
2946    number precisely is used instead.  If nothing would appear after
2947    the decimal point it is suppressed.
2948 
2949    The decimal exponent is always printed and has at least one digit.
2950    Zero values display an exponent of zero.  Infinities and NaNs
2951    appear as "infinity" or "nan" respectively.
2952 
2953    The above rules are as specified by C99.  There is ambiguity about
2954    what the leading hexadecimal digit should be.  This implementation
2955    uses whatever is necessary so that the exponent is displayed as
2956    stored.  This implies the exponent will fall within the IEEE format
2957    range, and the leading hexadecimal digit will be 0 (for denormals),
2958    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2959    any other digits zero).
2960 */
2961 unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits,
2962                                            bool upperCase,
2963                                            roundingMode rounding_mode) const {
2964   char *p;
2965 
2966   p = dst;
2967   if (sign)
2968     *dst++ = '-';
2969 
2970   switch (category) {
2971   case fcInfinity:
2972     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2973     dst += sizeof infinityL - 1;
2974     break;
2975 
2976   case fcNaN:
2977     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2978     dst += sizeof NaNU - 1;
2979     break;
2980 
2981   case fcZero:
2982     *dst++ = '0';
2983     *dst++ = upperCase ? 'X': 'x';
2984     *dst++ = '0';
2985     if (hexDigits > 1) {
2986       *dst++ = '.';
2987       memset (dst, '0', hexDigits - 1);
2988       dst += hexDigits - 1;
2989     }
2990     *dst++ = upperCase ? 'P': 'p';
2991     *dst++ = '0';
2992     break;
2993 
2994   case fcNormal:
2995     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2996     break;
2997   }
2998 
2999   *dst = 0;
3000 
3001   return static_cast<unsigned int>(dst - p);
3002 }
3003 
3004 /* Does the hard work of outputting the correctly rounded hexadecimal
3005    form of a normal floating point number with the specified number of
3006    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
3007    digits necessary to print the value precisely is output.  */
3008 char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
3009                                           bool upperCase,
3010                                           roundingMode rounding_mode) const {
3011   unsigned int count, valueBits, shift, partsCount, outputDigits;
3012   const char *hexDigitChars;
3013   const integerPart *significand;
3014   char *p;
3015   bool roundUp;
3016 
3017   *dst++ = '0';
3018   *dst++ = upperCase ? 'X': 'x';
3019 
3020   roundUp = false;
3021   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
3022 
3023   significand = significandParts();
3024   partsCount = partCount();
3025 
3026   /* +3 because the first digit only uses the single integer bit, so
3027      we have 3 virtual zero most-significant-bits.  */
3028   valueBits = semantics->precision + 3;
3029   shift = integerPartWidth - valueBits % integerPartWidth;
3030 
3031   /* The natural number of digits required ignoring trailing
3032      insignificant zeroes.  */
3033   outputDigits = (valueBits - significandLSB () + 3) / 4;
3034 
3035   /* hexDigits of zero means use the required number for the
3036      precision.  Otherwise, see if we are truncating.  If we are,
3037      find out if we need to round away from zero.  */
3038   if (hexDigits) {
3039     if (hexDigits < outputDigits) {
3040       /* We are dropping non-zero bits, so need to check how to round.
3041          "bits" is the number of dropped bits.  */
3042       unsigned int bits;
3043       lostFraction fraction;
3044 
3045       bits = valueBits - hexDigits * 4;
3046       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
3047       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
3048     }
3049     outputDigits = hexDigits;
3050   }
3051 
3052   /* Write the digits consecutively, and start writing in the location
3053      of the hexadecimal point.  We move the most significant digit
3054      left and add the hexadecimal point later.  */
3055   p = ++dst;
3056 
3057   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
3058 
3059   while (outputDigits && count) {
3060     integerPart part;
3061 
3062     /* Put the most significant integerPartWidth bits in "part".  */
3063     if (--count == partsCount)
3064       part = 0;  /* An imaginary higher zero part.  */
3065     else
3066       part = significand[count] << shift;
3067 
3068     if (count && shift)
3069       part |= significand[count - 1] >> (integerPartWidth - shift);
3070 
3071     /* Convert as much of "part" to hexdigits as we can.  */
3072     unsigned int curDigits = integerPartWidth / 4;
3073 
3074     if (curDigits > outputDigits)
3075       curDigits = outputDigits;
3076     dst += partAsHex (dst, part, curDigits, hexDigitChars);
3077     outputDigits -= curDigits;
3078   }
3079 
3080   if (roundUp) {
3081     char *q = dst;
3082 
3083     /* Note that hexDigitChars has a trailing '0'.  */
3084     do {
3085       q--;
3086       *q = hexDigitChars[hexDigitValue (*q) + 1];
3087     } while (*q == '0');
3088     assert(q >= p);
3089   } else {
3090     /* Add trailing zeroes.  */
3091     memset (dst, '0', outputDigits);
3092     dst += outputDigits;
3093   }
3094 
3095   /* Move the most significant digit to before the point, and if there
3096      is something after the decimal point add it.  This must come
3097      after rounding above.  */
3098   p[-1] = p[0];
3099   if (dst -1 == p)
3100     dst--;
3101   else
3102     p[0] = '.';
3103 
3104   /* Finally output the exponent.  */
3105   *dst++ = upperCase ? 'P': 'p';
3106 
3107   return writeSignedDecimal (dst, exponent);
3108 }
3109 
3110 hash_code hash_value(const IEEEFloat &Arg) {
3111   if (!Arg.isFiniteNonZero())
3112     return hash_combine((uint8_t)Arg.category,
3113                         // NaN has no sign, fix it at zero.
3114                         Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
3115                         Arg.semantics->precision);
3116 
3117   // Normal floats need their exponent and significand hashed.
3118   return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
3119                       Arg.semantics->precision, Arg.exponent,
3120                       hash_combine_range(
3121                         Arg.significandParts(),
3122                         Arg.significandParts() + Arg.partCount()));
3123 }
3124 
3125 // Conversion from APFloat to/from host float/double.  It may eventually be
3126 // possible to eliminate these and have everybody deal with APFloats, but that
3127 // will take a while.  This approach will not easily extend to long double.
3128 // Current implementation requires integerPartWidth==64, which is correct at
3129 // the moment but could be made more general.
3130 
3131 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
3132 // the actual IEEE respresentations.  We compensate for that here.
3133 
3134 APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
3135   assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended);
3136   assert(partCount()==2);
3137 
3138   uint64_t myexponent, mysignificand;
3139 
3140   if (isFiniteNonZero()) {
3141     myexponent = exponent+16383; //bias
3142     mysignificand = significandParts()[0];
3143     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
3144       myexponent = 0;   // denormal
3145   } else if (category==fcZero) {
3146     myexponent = 0;
3147     mysignificand = 0;
3148   } else if (category==fcInfinity) {
3149     myexponent = 0x7fff;
3150     mysignificand = 0x8000000000000000ULL;
3151   } else {
3152     assert(category == fcNaN && "Unknown category");
3153     myexponent = 0x7fff;
3154     mysignificand = significandParts()[0];
3155   }
3156 
3157   uint64_t words[2];
3158   words[0] = mysignificand;
3159   words[1] =  ((uint64_t)(sign & 1) << 15) |
3160               (myexponent & 0x7fffLL);
3161   return APInt(80, words);
3162 }
3163 
3164 APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
3165   assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy);
3166   assert(partCount()==2);
3167 
3168   uint64_t words[2];
3169   opStatus fs;
3170   bool losesInfo;
3171 
3172   // Convert number to double.  To avoid spurious underflows, we re-
3173   // normalize against the "double" minExponent first, and only *then*
3174   // truncate the mantissa.  The result of that second conversion
3175   // may be inexact, but should never underflow.
3176   // Declare fltSemantics before APFloat that uses it (and
3177   // saves pointer to it) to ensure correct destruction order.
3178   fltSemantics extendedSemantics = *semantics;
3179   extendedSemantics.minExponent = semIEEEdouble.minExponent;
3180   IEEEFloat extended(*this);
3181   fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
3182   assert(fs == opOK && !losesInfo);
3183   (void)fs;
3184 
3185   IEEEFloat u(extended);
3186   fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
3187   assert(fs == opOK || fs == opInexact);
3188   (void)fs;
3189   words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
3190 
3191   // If conversion was exact or resulted in a special case, we're done;
3192   // just set the second double to zero.  Otherwise, re-convert back to
3193   // the extended format and compute the difference.  This now should
3194   // convert exactly to double.
3195   if (u.isFiniteNonZero() && losesInfo) {
3196     fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
3197     assert(fs == opOK && !losesInfo);
3198     (void)fs;
3199 
3200     IEEEFloat v(extended);
3201     v.subtract(u, rmNearestTiesToEven);
3202     fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
3203     assert(fs == opOK && !losesInfo);
3204     (void)fs;
3205     words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
3206   } else {
3207     words[1] = 0;
3208   }
3209 
3210   return APInt(128, words);
3211 }
3212 
3213 APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
3214   assert(semantics == (const llvm::fltSemantics*)&semIEEEquad);
3215   assert(partCount()==2);
3216 
3217   uint64_t myexponent, mysignificand, mysignificand2;
3218 
3219   if (isFiniteNonZero()) {
3220     myexponent = exponent+16383; //bias
3221     mysignificand = significandParts()[0];
3222     mysignificand2 = significandParts()[1];
3223     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
3224       myexponent = 0;   // denormal
3225   } else if (category==fcZero) {
3226     myexponent = 0;
3227     mysignificand = mysignificand2 = 0;
3228   } else if (category==fcInfinity) {
3229     myexponent = 0x7fff;
3230     mysignificand = mysignificand2 = 0;
3231   } else {
3232     assert(category == fcNaN && "Unknown category!");
3233     myexponent = 0x7fff;
3234     mysignificand = significandParts()[0];
3235     mysignificand2 = significandParts()[1];
3236   }
3237 
3238   uint64_t words[2];
3239   words[0] = mysignificand;
3240   words[1] = ((uint64_t)(sign & 1) << 63) |
3241              ((myexponent & 0x7fff) << 48) |
3242              (mysignificand2 & 0xffffffffffffLL);
3243 
3244   return APInt(128, words);
3245 }
3246 
3247 APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
3248   assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble);
3249   assert(partCount()==1);
3250 
3251   uint64_t myexponent, mysignificand;
3252 
3253   if (isFiniteNonZero()) {
3254     myexponent = exponent+1023; //bias
3255     mysignificand = *significandParts();
3256     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
3257       myexponent = 0;   // denormal
3258   } else if (category==fcZero) {
3259     myexponent = 0;
3260     mysignificand = 0;
3261   } else if (category==fcInfinity) {
3262     myexponent = 0x7ff;
3263     mysignificand = 0;
3264   } else {
3265     assert(category == fcNaN && "Unknown category!");
3266     myexponent = 0x7ff;
3267     mysignificand = *significandParts();
3268   }
3269 
3270   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
3271                      ((myexponent & 0x7ff) <<  52) |
3272                      (mysignificand & 0xfffffffffffffLL))));
3273 }
3274 
3275 APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
3276   assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle);
3277   assert(partCount()==1);
3278 
3279   uint32_t myexponent, mysignificand;
3280 
3281   if (isFiniteNonZero()) {
3282     myexponent = exponent+127; //bias
3283     mysignificand = (uint32_t)*significandParts();
3284     if (myexponent == 1 && !(mysignificand & 0x800000))
3285       myexponent = 0;   // denormal
3286   } else if (category==fcZero) {
3287     myexponent = 0;
3288     mysignificand = 0;
3289   } else if (category==fcInfinity) {
3290     myexponent = 0xff;
3291     mysignificand = 0;
3292   } else {
3293     assert(category == fcNaN && "Unknown category!");
3294     myexponent = 0xff;
3295     mysignificand = (uint32_t)*significandParts();
3296   }
3297 
3298   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
3299                     (mysignificand & 0x7fffff)));
3300 }
3301 
3302 APInt IEEEFloat::convertBFloatAPFloatToAPInt() const {
3303   assert(semantics == (const llvm::fltSemantics *)&semBFloat);
3304   assert(partCount() == 1);
3305 
3306   uint32_t myexponent, mysignificand;
3307 
3308   if (isFiniteNonZero()) {
3309     myexponent = exponent + 127; // bias
3310     mysignificand = (uint32_t)*significandParts();
3311     if (myexponent == 1 && !(mysignificand & 0x80))
3312       myexponent = 0; // denormal
3313   } else if (category == fcZero) {
3314     myexponent = 0;
3315     mysignificand = 0;
3316   } else if (category == fcInfinity) {
3317     myexponent = 0xff;
3318     mysignificand = 0;
3319   } else {
3320     assert(category == fcNaN && "Unknown category!");
3321     myexponent = 0xff;
3322     mysignificand = (uint32_t)*significandParts();
3323   }
3324 
3325   return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) |
3326                     (mysignificand & 0x7f)));
3327 }
3328 
3329 APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
3330   assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf);
3331   assert(partCount()==1);
3332 
3333   uint32_t myexponent, mysignificand;
3334 
3335   if (isFiniteNonZero()) {
3336     myexponent = exponent+15; //bias
3337     mysignificand = (uint32_t)*significandParts();
3338     if (myexponent == 1 && !(mysignificand & 0x400))
3339       myexponent = 0;   // denormal
3340   } else if (category==fcZero) {
3341     myexponent = 0;
3342     mysignificand = 0;
3343   } else if (category==fcInfinity) {
3344     myexponent = 0x1f;
3345     mysignificand = 0;
3346   } else {
3347     assert(category == fcNaN && "Unknown category!");
3348     myexponent = 0x1f;
3349     mysignificand = (uint32_t)*significandParts();
3350   }
3351 
3352   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
3353                     (mysignificand & 0x3ff)));
3354 }
3355 
3356 // This function creates an APInt that is just a bit map of the floating
3357 // point constant as it would appear in memory.  It is not a conversion,
3358 // and treating the result as a normal integer is unlikely to be useful.
3359 
3360 APInt IEEEFloat::bitcastToAPInt() const {
3361   if (semantics == (const llvm::fltSemantics*)&semIEEEhalf)
3362     return convertHalfAPFloatToAPInt();
3363 
3364   if (semantics == (const llvm::fltSemantics *)&semBFloat)
3365     return convertBFloatAPFloatToAPInt();
3366 
3367   if (semantics == (const llvm::fltSemantics*)&semIEEEsingle)
3368     return convertFloatAPFloatToAPInt();
3369 
3370   if (semantics == (const llvm::fltSemantics*)&semIEEEdouble)
3371     return convertDoubleAPFloatToAPInt();
3372 
3373   if (semantics == (const llvm::fltSemantics*)&semIEEEquad)
3374     return convertQuadrupleAPFloatToAPInt();
3375 
3376   if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)
3377     return convertPPCDoubleDoubleAPFloatToAPInt();
3378 
3379   assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&
3380          "unknown format!");
3381   return convertF80LongDoubleAPFloatToAPInt();
3382 }
3383 
3384 float IEEEFloat::convertToFloat() const {
3385   assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&
3386          "Float semantics are not IEEEsingle");
3387   APInt api = bitcastToAPInt();
3388   return api.bitsToFloat();
3389 }
3390 
3391 double IEEEFloat::convertToDouble() const {
3392   assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&
3393          "Float semantics are not IEEEdouble");
3394   APInt api = bitcastToAPInt();
3395   return api.bitsToDouble();
3396 }
3397 
3398 /// Integer bit is explicit in this format.  Intel hardware (387 and later)
3399 /// does not support these bit patterns:
3400 ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
3401 ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
3402 ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
3403 ///  exponent = 0, integer bit 1 ("pseudodenormal")
3404 /// At the moment, the first three are treated as NaNs, the last one as Normal.
3405 void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {
3406   uint64_t i1 = api.getRawData()[0];
3407   uint64_t i2 = api.getRawData()[1];
3408   uint64_t myexponent = (i2 & 0x7fff);
3409   uint64_t mysignificand = i1;
3410   uint8_t myintegerbit = mysignificand >> 63;
3411 
3412   initialize(&semX87DoubleExtended);
3413   assert(partCount()==2);
3414 
3415   sign = static_cast<unsigned int>(i2>>15);
3416   if (myexponent == 0 && mysignificand == 0) {
3417     makeZero(sign);
3418   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3419     makeInf(sign);
3420   } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) ||
3421              (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) {
3422     category = fcNaN;
3423     exponent = exponentNaN();
3424     significandParts()[0] = mysignificand;
3425     significandParts()[1] = 0;
3426   } else {
3427     category = fcNormal;
3428     exponent = myexponent - 16383;
3429     significandParts()[0] = mysignificand;
3430     significandParts()[1] = 0;
3431     if (myexponent==0)          // denormal
3432       exponent = -16382;
3433   }
3434 }
3435 
3436 void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) {
3437   uint64_t i1 = api.getRawData()[0];
3438   uint64_t i2 = api.getRawData()[1];
3439   opStatus fs;
3440   bool losesInfo;
3441 
3442   // Get the first double and convert to our format.
3443   initFromDoubleAPInt(APInt(64, i1));
3444   fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
3445   assert(fs == opOK && !losesInfo);
3446   (void)fs;
3447 
3448   // Unless we have a special case, add in second double.
3449   if (isFiniteNonZero()) {
3450     IEEEFloat v(semIEEEdouble, APInt(64, i2));
3451     fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
3452     assert(fs == opOK && !losesInfo);
3453     (void)fs;
3454 
3455     add(v, rmNearestTiesToEven);
3456   }
3457 }
3458 
3459 void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {
3460   uint64_t i1 = api.getRawData()[0];
3461   uint64_t i2 = api.getRawData()[1];
3462   uint64_t myexponent = (i2 >> 48) & 0x7fff;
3463   uint64_t mysignificand  = i1;
3464   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3465 
3466   initialize(&semIEEEquad);
3467   assert(partCount()==2);
3468 
3469   sign = static_cast<unsigned int>(i2>>63);
3470   if (myexponent==0 &&
3471       (mysignificand==0 && mysignificand2==0)) {
3472     makeZero(sign);
3473   } else if (myexponent==0x7fff &&
3474              (mysignificand==0 && mysignificand2==0)) {
3475     makeInf(sign);
3476   } else if (myexponent==0x7fff &&
3477              (mysignificand!=0 || mysignificand2 !=0)) {
3478     category = fcNaN;
3479     exponent = exponentNaN();
3480     significandParts()[0] = mysignificand;
3481     significandParts()[1] = mysignificand2;
3482   } else {
3483     category = fcNormal;
3484     exponent = myexponent - 16383;
3485     significandParts()[0] = mysignificand;
3486     significandParts()[1] = mysignificand2;
3487     if (myexponent==0)          // denormal
3488       exponent = -16382;
3489     else
3490       significandParts()[1] |= 0x1000000000000LL;  // integer bit
3491   }
3492 }
3493 
3494 void IEEEFloat::initFromDoubleAPInt(const APInt &api) {
3495   uint64_t i = *api.getRawData();
3496   uint64_t myexponent = (i >> 52) & 0x7ff;
3497   uint64_t mysignificand = i & 0xfffffffffffffLL;
3498 
3499   initialize(&semIEEEdouble);
3500   assert(partCount()==1);
3501 
3502   sign = static_cast<unsigned int>(i>>63);
3503   if (myexponent==0 && mysignificand==0) {
3504     makeZero(sign);
3505   } else if (myexponent==0x7ff && mysignificand==0) {
3506     makeInf(sign);
3507   } else if (myexponent==0x7ff && mysignificand!=0) {
3508     category = fcNaN;
3509     exponent = exponentNaN();
3510     *significandParts() = mysignificand;
3511   } else {
3512     category = fcNormal;
3513     exponent = myexponent - 1023;
3514     *significandParts() = mysignificand;
3515     if (myexponent==0)          // denormal
3516       exponent = -1022;
3517     else
3518       *significandParts() |= 0x10000000000000LL;  // integer bit
3519   }
3520 }
3521 
3522 void IEEEFloat::initFromFloatAPInt(const APInt &api) {
3523   uint32_t i = (uint32_t)*api.getRawData();
3524   uint32_t myexponent = (i >> 23) & 0xff;
3525   uint32_t mysignificand = i & 0x7fffff;
3526 
3527   initialize(&semIEEEsingle);
3528   assert(partCount()==1);
3529 
3530   sign = i >> 31;
3531   if (myexponent==0 && mysignificand==0) {
3532     makeZero(sign);
3533   } else if (myexponent==0xff && mysignificand==0) {
3534     makeInf(sign);
3535   } else if (myexponent==0xff && mysignificand!=0) {
3536     category = fcNaN;
3537     exponent = exponentNaN();
3538     *significandParts() = mysignificand;
3539   } else {
3540     category = fcNormal;
3541     exponent = myexponent - 127;  //bias
3542     *significandParts() = mysignificand;
3543     if (myexponent==0)    // denormal
3544       exponent = -126;
3545     else
3546       *significandParts() |= 0x800000; // integer bit
3547   }
3548 }
3549 
3550 void IEEEFloat::initFromBFloatAPInt(const APInt &api) {
3551   uint32_t i = (uint32_t)*api.getRawData();
3552   uint32_t myexponent = (i >> 7) & 0xff;
3553   uint32_t mysignificand = i & 0x7f;
3554 
3555   initialize(&semBFloat);
3556   assert(partCount() == 1);
3557 
3558   sign = i >> 15;
3559   if (myexponent == 0 && mysignificand == 0) {
3560     makeZero(sign);
3561   } else if (myexponent == 0xff && mysignificand == 0) {
3562     makeInf(sign);
3563   } else if (myexponent == 0xff && mysignificand != 0) {
3564     category = fcNaN;
3565     exponent = exponentNaN();
3566     *significandParts() = mysignificand;
3567   } else {
3568     category = fcNormal;
3569     exponent = myexponent - 127; // bias
3570     *significandParts() = mysignificand;
3571     if (myexponent == 0) // denormal
3572       exponent = -126;
3573     else
3574       *significandParts() |= 0x80; // integer bit
3575   }
3576 }
3577 
3578 void IEEEFloat::initFromHalfAPInt(const APInt &api) {
3579   uint32_t i = (uint32_t)*api.getRawData();
3580   uint32_t myexponent = (i >> 10) & 0x1f;
3581   uint32_t mysignificand = i & 0x3ff;
3582 
3583   initialize(&semIEEEhalf);
3584   assert(partCount()==1);
3585 
3586   sign = i >> 15;
3587   if (myexponent==0 && mysignificand==0) {
3588     makeZero(sign);
3589   } else if (myexponent==0x1f && mysignificand==0) {
3590     makeInf(sign);
3591   } else if (myexponent==0x1f && mysignificand!=0) {
3592     category = fcNaN;
3593     exponent = exponentNaN();
3594     *significandParts() = mysignificand;
3595   } else {
3596     category = fcNormal;
3597     exponent = myexponent - 15;  //bias
3598     *significandParts() = mysignificand;
3599     if (myexponent==0)    // denormal
3600       exponent = -14;
3601     else
3602       *significandParts() |= 0x400; // integer bit
3603   }
3604 }
3605 
3606 /// Treat api as containing the bits of a floating point number.  Currently
3607 /// we infer the floating point type from the size of the APInt.  The
3608 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3609 /// when the size is anything else).
3610 void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {
3611   assert(api.getBitWidth() == Sem->sizeInBits);
3612   if (Sem == &semIEEEhalf)
3613     return initFromHalfAPInt(api);
3614   if (Sem == &semBFloat)
3615     return initFromBFloatAPInt(api);
3616   if (Sem == &semIEEEsingle)
3617     return initFromFloatAPInt(api);
3618   if (Sem == &semIEEEdouble)
3619     return initFromDoubleAPInt(api);
3620   if (Sem == &semX87DoubleExtended)
3621     return initFromF80LongDoubleAPInt(api);
3622   if (Sem == &semIEEEquad)
3623     return initFromQuadrupleAPInt(api);
3624   if (Sem == &semPPCDoubleDoubleLegacy)
3625     return initFromPPCDoubleDoubleAPInt(api);
3626 
3627   llvm_unreachable(nullptr);
3628 }
3629 
3630 /// Make this number the largest magnitude normal number in the given
3631 /// semantics.
3632 void IEEEFloat::makeLargest(bool Negative) {
3633   // We want (in interchange format):
3634   //   sign = {Negative}
3635   //   exponent = 1..10
3636   //   significand = 1..1
3637   category = fcNormal;
3638   sign = Negative;
3639   exponent = semantics->maxExponent;
3640 
3641   // Use memset to set all but the highest integerPart to all ones.
3642   integerPart *significand = significandParts();
3643   unsigned PartCount = partCount();
3644   memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
3645 
3646   // Set the high integerPart especially setting all unused top bits for
3647   // internal consistency.
3648   const unsigned NumUnusedHighBits =
3649     PartCount*integerPartWidth - semantics->precision;
3650   significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
3651                                    ? (~integerPart(0) >> NumUnusedHighBits)
3652                                    : 0;
3653 }
3654 
3655 /// Make this number the smallest magnitude denormal number in the given
3656 /// semantics.
3657 void IEEEFloat::makeSmallest(bool Negative) {
3658   // We want (in interchange format):
3659   //   sign = {Negative}
3660   //   exponent = 0..0
3661   //   significand = 0..01
3662   category = fcNormal;
3663   sign = Negative;
3664   exponent = semantics->minExponent;
3665   APInt::tcSet(significandParts(), 1, partCount());
3666 }
3667 
3668 void IEEEFloat::makeSmallestNormalized(bool Negative) {
3669   // We want (in interchange format):
3670   //   sign = {Negative}
3671   //   exponent = 0..0
3672   //   significand = 10..0
3673 
3674   category = fcNormal;
3675   zeroSignificand();
3676   sign = Negative;
3677   exponent = semantics->minExponent;
3678   significandParts()[partCountForBits(semantics->precision) - 1] |=
3679       (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth));
3680 }
3681 
3682 IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) {
3683   initFromAPInt(&Sem, API);
3684 }
3685 
3686 IEEEFloat::IEEEFloat(float f) {
3687   initFromAPInt(&semIEEEsingle, APInt::floatToBits(f));
3688 }
3689 
3690 IEEEFloat::IEEEFloat(double d) {
3691   initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d));
3692 }
3693 
3694 namespace {
3695   void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3696     Buffer.append(Str.begin(), Str.end());
3697   }
3698 
3699   /// Removes data from the given significand until it is no more
3700   /// precise than is required for the desired precision.
3701   void AdjustToPrecision(APInt &significand,
3702                          int &exp, unsigned FormatPrecision) {
3703     unsigned bits = significand.getActiveBits();
3704 
3705     // 196/59 is a very slight overestimate of lg_2(10).
3706     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3707 
3708     if (bits <= bitsRequired) return;
3709 
3710     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3711     if (!tensRemovable) return;
3712 
3713     exp += tensRemovable;
3714 
3715     APInt divisor(significand.getBitWidth(), 1);
3716     APInt powten(significand.getBitWidth(), 10);
3717     while (true) {
3718       if (tensRemovable & 1)
3719         divisor *= powten;
3720       tensRemovable >>= 1;
3721       if (!tensRemovable) break;
3722       powten *= powten;
3723     }
3724 
3725     significand = significand.udiv(divisor);
3726 
3727     // Truncate the significand down to its active bit count.
3728     significand = significand.trunc(significand.getActiveBits());
3729   }
3730 
3731 
3732   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3733                          int &exp, unsigned FormatPrecision) {
3734     unsigned N = buffer.size();
3735     if (N <= FormatPrecision) return;
3736 
3737     // The most significant figures are the last ones in the buffer.
3738     unsigned FirstSignificant = N - FormatPrecision;
3739 
3740     // Round.
3741     // FIXME: this probably shouldn't use 'round half up'.
3742 
3743     // Rounding down is just a truncation, except we also want to drop
3744     // trailing zeros from the new result.
3745     if (buffer[FirstSignificant - 1] < '5') {
3746       while (FirstSignificant < N && buffer[FirstSignificant] == '0')
3747         FirstSignificant++;
3748 
3749       exp += FirstSignificant;
3750       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3751       return;
3752     }
3753 
3754     // Rounding up requires a decimal add-with-carry.  If we continue
3755     // the carry, the newly-introduced zeros will just be truncated.
3756     for (unsigned I = FirstSignificant; I != N; ++I) {
3757       if (buffer[I] == '9') {
3758         FirstSignificant++;
3759       } else {
3760         buffer[I]++;
3761         break;
3762       }
3763     }
3764 
3765     // If we carried through, we have exactly one digit of precision.
3766     if (FirstSignificant == N) {
3767       exp += FirstSignificant;
3768       buffer.clear();
3769       buffer.push_back('1');
3770       return;
3771     }
3772 
3773     exp += FirstSignificant;
3774     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3775   }
3776 } // namespace
3777 
3778 void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
3779                          unsigned FormatMaxPadding, bool TruncateZero) const {
3780   switch (category) {
3781   case fcInfinity:
3782     if (isNegative())
3783       return append(Str, "-Inf");
3784     else
3785       return append(Str, "+Inf");
3786 
3787   case fcNaN: return append(Str, "NaN");
3788 
3789   case fcZero:
3790     if (isNegative())
3791       Str.push_back('-');
3792 
3793     if (!FormatMaxPadding) {
3794       if (TruncateZero)
3795         append(Str, "0.0E+0");
3796       else {
3797         append(Str, "0.0");
3798         if (FormatPrecision > 1)
3799           Str.append(FormatPrecision - 1, '0');
3800         append(Str, "e+00");
3801       }
3802     } else
3803       Str.push_back('0');
3804     return;
3805 
3806   case fcNormal:
3807     break;
3808   }
3809 
3810   if (isNegative())
3811     Str.push_back('-');
3812 
3813   // Decompose the number into an APInt and an exponent.
3814   int exp = exponent - ((int) semantics->precision - 1);
3815   APInt significand(semantics->precision,
3816                     makeArrayRef(significandParts(),
3817                                  partCountForBits(semantics->precision)));
3818 
3819   // Set FormatPrecision if zero.  We want to do this before we
3820   // truncate trailing zeros, as those are part of the precision.
3821   if (!FormatPrecision) {
3822     // We use enough digits so the number can be round-tripped back to an
3823     // APFloat. The formula comes from "How to Print Floating-Point Numbers
3824     // Accurately" by Steele and White.
3825     // FIXME: Using a formula based purely on the precision is conservative;
3826     // we can print fewer digits depending on the actual value being printed.
3827 
3828     // FormatPrecision = 2 + floor(significandBits / lg_2(10))
3829     FormatPrecision = 2 + semantics->precision * 59 / 196;
3830   }
3831 
3832   // Ignore trailing binary zeros.
3833   int trailingZeros = significand.countTrailingZeros();
3834   exp += trailingZeros;
3835   significand.lshrInPlace(trailingZeros);
3836 
3837   // Change the exponent from 2^e to 10^e.
3838   if (exp == 0) {
3839     // Nothing to do.
3840   } else if (exp > 0) {
3841     // Just shift left.
3842     significand = significand.zext(semantics->precision + exp);
3843     significand <<= exp;
3844     exp = 0;
3845   } else { /* exp < 0 */
3846     int texp = -exp;
3847 
3848     // We transform this using the identity:
3849     //   (N)(2^-e) == (N)(5^e)(10^-e)
3850     // This means we have to multiply N (the significand) by 5^e.
3851     // To avoid overflow, we have to operate on numbers large
3852     // enough to store N * 5^e:
3853     //   log2(N * 5^e) == log2(N) + e * log2(5)
3854     //                 <= semantics->precision + e * 137 / 59
3855     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3856 
3857     unsigned precision = semantics->precision + (137 * texp + 136) / 59;
3858 
3859     // Multiply significand by 5^e.
3860     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3861     significand = significand.zext(precision);
3862     APInt five_to_the_i(precision, 5);
3863     while (true) {
3864       if (texp & 1) significand *= five_to_the_i;
3865 
3866       texp >>= 1;
3867       if (!texp) break;
3868       five_to_the_i *= five_to_the_i;
3869     }
3870   }
3871 
3872   AdjustToPrecision(significand, exp, FormatPrecision);
3873 
3874   SmallVector<char, 256> buffer;
3875 
3876   // Fill the buffer.
3877   unsigned precision = significand.getBitWidth();
3878   APInt ten(precision, 10);
3879   APInt digit(precision, 0);
3880 
3881   bool inTrail = true;
3882   while (significand != 0) {
3883     // digit <- significand % 10
3884     // significand <- significand / 10
3885     APInt::udivrem(significand, ten, significand, digit);
3886 
3887     unsigned d = digit.getZExtValue();
3888 
3889     // Drop trailing zeros.
3890     if (inTrail && !d) exp++;
3891     else {
3892       buffer.push_back((char) ('0' + d));
3893       inTrail = false;
3894     }
3895   }
3896 
3897   assert(!buffer.empty() && "no characters in buffer!");
3898 
3899   // Drop down to FormatPrecision.
3900   // TODO: don't do more precise calculations above than are required.
3901   AdjustToPrecision(buffer, exp, FormatPrecision);
3902 
3903   unsigned NDigits = buffer.size();
3904 
3905   // Check whether we should use scientific notation.
3906   bool FormatScientific;
3907   if (!FormatMaxPadding)
3908     FormatScientific = true;
3909   else {
3910     if (exp >= 0) {
3911       // 765e3 --> 765000
3912       //              ^^^
3913       // But we shouldn't make the number look more precise than it is.
3914       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3915                           NDigits + (unsigned) exp > FormatPrecision);
3916     } else {
3917       // Power of the most significant digit.
3918       int MSD = exp + (int) (NDigits - 1);
3919       if (MSD >= 0) {
3920         // 765e-2 == 7.65
3921         FormatScientific = false;
3922       } else {
3923         // 765e-5 == 0.00765
3924         //           ^ ^^
3925         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3926       }
3927     }
3928   }
3929 
3930   // Scientific formatting is pretty straightforward.
3931   if (FormatScientific) {
3932     exp += (NDigits - 1);
3933 
3934     Str.push_back(buffer[NDigits-1]);
3935     Str.push_back('.');
3936     if (NDigits == 1 && TruncateZero)
3937       Str.push_back('0');
3938     else
3939       for (unsigned I = 1; I != NDigits; ++I)
3940         Str.push_back(buffer[NDigits-1-I]);
3941     // Fill with zeros up to FormatPrecision.
3942     if (!TruncateZero && FormatPrecision > NDigits - 1)
3943       Str.append(FormatPrecision - NDigits + 1, '0');
3944     // For !TruncateZero we use lower 'e'.
3945     Str.push_back(TruncateZero ? 'E' : 'e');
3946 
3947     Str.push_back(exp >= 0 ? '+' : '-');
3948     if (exp < 0) exp = -exp;
3949     SmallVector<char, 6> expbuf;
3950     do {
3951       expbuf.push_back((char) ('0' + (exp % 10)));
3952       exp /= 10;
3953     } while (exp);
3954     // Exponent always at least two digits if we do not truncate zeros.
3955     if (!TruncateZero && expbuf.size() < 2)
3956       expbuf.push_back('0');
3957     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3958       Str.push_back(expbuf[E-1-I]);
3959     return;
3960   }
3961 
3962   // Non-scientific, positive exponents.
3963   if (exp >= 0) {
3964     for (unsigned I = 0; I != NDigits; ++I)
3965       Str.push_back(buffer[NDigits-1-I]);
3966     for (unsigned I = 0; I != (unsigned) exp; ++I)
3967       Str.push_back('0');
3968     return;
3969   }
3970 
3971   // Non-scientific, negative exponents.
3972 
3973   // The number of digits to the left of the decimal point.
3974   int NWholeDigits = exp + (int) NDigits;
3975 
3976   unsigned I = 0;
3977   if (NWholeDigits > 0) {
3978     for (; I != (unsigned) NWholeDigits; ++I)
3979       Str.push_back(buffer[NDigits-I-1]);
3980     Str.push_back('.');
3981   } else {
3982     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3983 
3984     Str.push_back('0');
3985     Str.push_back('.');
3986     for (unsigned Z = 1; Z != NZeros; ++Z)
3987       Str.push_back('0');
3988   }
3989 
3990   for (; I != NDigits; ++I)
3991     Str.push_back(buffer[NDigits-I-1]);
3992 }
3993 
3994 bool IEEEFloat::getExactInverse(APFloat *inv) const {
3995   // Special floats and denormals have no exact inverse.
3996   if (!isFiniteNonZero())
3997     return false;
3998 
3999   // Check that the number is a power of two by making sure that only the
4000   // integer bit is set in the significand.
4001   if (significandLSB() != semantics->precision - 1)
4002     return false;
4003 
4004   // Get the inverse.
4005   IEEEFloat reciprocal(*semantics, 1ULL);
4006   if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
4007     return false;
4008 
4009   // Avoid multiplication with a denormal, it is not safe on all platforms and
4010   // may be slower than a normal division.
4011   if (reciprocal.isDenormal())
4012     return false;
4013 
4014   assert(reciprocal.isFiniteNonZero() &&
4015          reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
4016 
4017   if (inv)
4018     *inv = APFloat(reciprocal, *semantics);
4019 
4020   return true;
4021 }
4022 
4023 bool IEEEFloat::isSignaling() const {
4024   if (!isNaN())
4025     return false;
4026 
4027   // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
4028   // first bit of the trailing significand being 0.
4029   return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
4030 }
4031 
4032 /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
4033 ///
4034 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
4035 /// appropriate sign switching before/after the computation.
4036 IEEEFloat::opStatus IEEEFloat::next(bool nextDown) {
4037   // If we are performing nextDown, swap sign so we have -x.
4038   if (nextDown)
4039     changeSign();
4040 
4041   // Compute nextUp(x)
4042   opStatus result = opOK;
4043 
4044   // Handle each float category separately.
4045   switch (category) {
4046   case fcInfinity:
4047     // nextUp(+inf) = +inf
4048     if (!isNegative())
4049       break;
4050     // nextUp(-inf) = -getLargest()
4051     makeLargest(true);
4052     break;
4053   case fcNaN:
4054     // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
4055     // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
4056     //                     change the payload.
4057     if (isSignaling()) {
4058       result = opInvalidOp;
4059       // For consistency, propagate the sign of the sNaN to the qNaN.
4060       makeNaN(false, isNegative(), nullptr);
4061     }
4062     break;
4063   case fcZero:
4064     // nextUp(pm 0) = +getSmallest()
4065     makeSmallest(false);
4066     break;
4067   case fcNormal:
4068     // nextUp(-getSmallest()) = -0
4069     if (isSmallest() && isNegative()) {
4070       APInt::tcSet(significandParts(), 0, partCount());
4071       category = fcZero;
4072       exponent = 0;
4073       break;
4074     }
4075 
4076     // nextUp(getLargest()) == INFINITY
4077     if (isLargest() && !isNegative()) {
4078       APInt::tcSet(significandParts(), 0, partCount());
4079       category = fcInfinity;
4080       exponent = semantics->maxExponent + 1;
4081       break;
4082     }
4083 
4084     // nextUp(normal) == normal + inc.
4085     if (isNegative()) {
4086       // If we are negative, we need to decrement the significand.
4087 
4088       // We only cross a binade boundary that requires adjusting the exponent
4089       // if:
4090       //   1. exponent != semantics->minExponent. This implies we are not in the
4091       //   smallest binade or are dealing with denormals.
4092       //   2. Our significand excluding the integral bit is all zeros.
4093       bool WillCrossBinadeBoundary =
4094         exponent != semantics->minExponent && isSignificandAllZeros();
4095 
4096       // Decrement the significand.
4097       //
4098       // We always do this since:
4099       //   1. If we are dealing with a non-binade decrement, by definition we
4100       //   just decrement the significand.
4101       //   2. If we are dealing with a normal -> normal binade decrement, since
4102       //   we have an explicit integral bit the fact that all bits but the
4103       //   integral bit are zero implies that subtracting one will yield a
4104       //   significand with 0 integral bit and 1 in all other spots. Thus we
4105       //   must just adjust the exponent and set the integral bit to 1.
4106       //   3. If we are dealing with a normal -> denormal binade decrement,
4107       //   since we set the integral bit to 0 when we represent denormals, we
4108       //   just decrement the significand.
4109       integerPart *Parts = significandParts();
4110       APInt::tcDecrement(Parts, partCount());
4111 
4112       if (WillCrossBinadeBoundary) {
4113         // Our result is a normal number. Do the following:
4114         // 1. Set the integral bit to 1.
4115         // 2. Decrement the exponent.
4116         APInt::tcSetBit(Parts, semantics->precision - 1);
4117         exponent--;
4118       }
4119     } else {
4120       // If we are positive, we need to increment the significand.
4121 
4122       // We only cross a binade boundary that requires adjusting the exponent if
4123       // the input is not a denormal and all of said input's significand bits
4124       // are set. If all of said conditions are true: clear the significand, set
4125       // the integral bit to 1, and increment the exponent. If we have a
4126       // denormal always increment since moving denormals and the numbers in the
4127       // smallest normal binade have the same exponent in our representation.
4128       bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
4129 
4130       if (WillCrossBinadeBoundary) {
4131         integerPart *Parts = significandParts();
4132         APInt::tcSet(Parts, 0, partCount());
4133         APInt::tcSetBit(Parts, semantics->precision - 1);
4134         assert(exponent != semantics->maxExponent &&
4135                "We can not increment an exponent beyond the maxExponent allowed"
4136                " by the given floating point semantics.");
4137         exponent++;
4138       } else {
4139         incrementSignificand();
4140       }
4141     }
4142     break;
4143   }
4144 
4145   // If we are performing nextDown, swap sign so we have -nextUp(-x)
4146   if (nextDown)
4147     changeSign();
4148 
4149   return result;
4150 }
4151 
4152 APFloatBase::ExponentType IEEEFloat::exponentNaN() const {
4153   return semantics->maxExponent + 1;
4154 }
4155 
4156 APFloatBase::ExponentType IEEEFloat::exponentInf() const {
4157   return semantics->maxExponent + 1;
4158 }
4159 
4160 APFloatBase::ExponentType IEEEFloat::exponentZero() const {
4161   return semantics->minExponent - 1;
4162 }
4163 
4164 void IEEEFloat::makeInf(bool Negative) {
4165   category = fcInfinity;
4166   sign = Negative;
4167   exponent = exponentInf();
4168   APInt::tcSet(significandParts(), 0, partCount());
4169 }
4170 
4171 void IEEEFloat::makeZero(bool Negative) {
4172   category = fcZero;
4173   sign = Negative;
4174   exponent = exponentZero();
4175   APInt::tcSet(significandParts(), 0, partCount());
4176 }
4177 
4178 void IEEEFloat::makeQuiet() {
4179   assert(isNaN());
4180   APInt::tcSetBit(significandParts(), semantics->precision - 2);
4181 }
4182 
4183 int ilogb(const IEEEFloat &Arg) {
4184   if (Arg.isNaN())
4185     return IEEEFloat::IEK_NaN;
4186   if (Arg.isZero())
4187     return IEEEFloat::IEK_Zero;
4188   if (Arg.isInfinity())
4189     return IEEEFloat::IEK_Inf;
4190   if (!Arg.isDenormal())
4191     return Arg.exponent;
4192 
4193   IEEEFloat Normalized(Arg);
4194   int SignificandBits = Arg.getSemantics().precision - 1;
4195 
4196   Normalized.exponent += SignificandBits;
4197   Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero);
4198   return Normalized.exponent - SignificandBits;
4199 }
4200 
4201 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) {
4202   auto MaxExp = X.getSemantics().maxExponent;
4203   auto MinExp = X.getSemantics().minExponent;
4204 
4205   // If Exp is wildly out-of-scale, simply adding it to X.exponent will
4206   // overflow; clamp it to a safe range before adding, but ensure that the range
4207   // is large enough that the clamp does not change the result. The range we
4208   // need to support is the difference between the largest possible exponent and
4209   // the normalized exponent of half the smallest denormal.
4210 
4211   int SignificandBits = X.getSemantics().precision - 1;
4212   int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;
4213 
4214   // Clamp to one past the range ends to let normalize handle overlflow.
4215   X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement);
4216   X.normalize(RoundingMode, lfExactlyZero);
4217   if (X.isNaN())
4218     X.makeQuiet();
4219   return X;
4220 }
4221 
4222 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) {
4223   Exp = ilogb(Val);
4224 
4225   // Quiet signalling nans.
4226   if (Exp == IEEEFloat::IEK_NaN) {
4227     IEEEFloat Quiet(Val);
4228     Quiet.makeQuiet();
4229     return Quiet;
4230   }
4231 
4232   if (Exp == IEEEFloat::IEK_Inf)
4233     return Val;
4234 
4235   // 1 is added because frexp is defined to return a normalized fraction in
4236   // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
4237   Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1;
4238   return scalbn(Val, -Exp, RM);
4239 }
4240 
4241 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S)
4242     : Semantics(&S),
4243       Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) {
4244   assert(Semantics == &semPPCDoubleDouble);
4245 }
4246 
4247 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag)
4248     : Semantics(&S),
4249       Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized),
4250                             APFloat(semIEEEdouble, uninitialized)}) {
4251   assert(Semantics == &semPPCDoubleDouble);
4252 }
4253 
4254 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I)
4255     : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I),
4256                                            APFloat(semIEEEdouble)}) {
4257   assert(Semantics == &semPPCDoubleDouble);
4258 }
4259 
4260 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I)
4261     : Semantics(&S),
4262       Floats(new APFloat[2]{
4263           APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])),
4264           APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) {
4265   assert(Semantics == &semPPCDoubleDouble);
4266 }
4267 
4268 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First,
4269                              APFloat &&Second)
4270     : Semantics(&S),
4271       Floats(new APFloat[2]{std::move(First), std::move(Second)}) {
4272   assert(Semantics == &semPPCDoubleDouble);
4273   assert(&Floats[0].getSemantics() == &semIEEEdouble);
4274   assert(&Floats[1].getSemantics() == &semIEEEdouble);
4275 }
4276 
4277 DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
4278     : Semantics(RHS.Semantics),
4279       Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]),
4280                                          APFloat(RHS.Floats[1])}
4281                         : nullptr) {
4282   assert(Semantics == &semPPCDoubleDouble);
4283 }
4284 
4285 DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS)
4286     : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {
4287   RHS.Semantics = &semBogus;
4288   assert(Semantics == &semPPCDoubleDouble);
4289 }
4290 
4291 DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) {
4292   if (Semantics == RHS.Semantics && RHS.Floats) {
4293     Floats[0] = RHS.Floats[0];
4294     Floats[1] = RHS.Floats[1];
4295   } else if (this != &RHS) {
4296     this->~DoubleAPFloat();
4297     new (this) DoubleAPFloat(RHS);
4298   }
4299   return *this;
4300 }
4301 
4302 // Implement addition, subtraction, multiplication and division based on:
4303 // "Software for Doubled-Precision Floating-Point Computations",
4304 // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
4305 APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa,
4306                                          const APFloat &c, const APFloat &cc,
4307                                          roundingMode RM) {
4308   int Status = opOK;
4309   APFloat z = a;
4310   Status |= z.add(c, RM);
4311   if (!z.isFinite()) {
4312     if (!z.isInfinity()) {
4313       Floats[0] = std::move(z);
4314       Floats[1].makeZero(/* Neg = */ false);
4315       return (opStatus)Status;
4316     }
4317     Status = opOK;
4318     auto AComparedToC = a.compareAbsoluteValue(c);
4319     z = cc;
4320     Status |= z.add(aa, RM);
4321     if (AComparedToC == APFloat::cmpGreaterThan) {
4322       // z = cc + aa + c + a;
4323       Status |= z.add(c, RM);
4324       Status |= z.add(a, RM);
4325     } else {
4326       // z = cc + aa + a + c;
4327       Status |= z.add(a, RM);
4328       Status |= z.add(c, RM);
4329     }
4330     if (!z.isFinite()) {
4331       Floats[0] = std::move(z);
4332       Floats[1].makeZero(/* Neg = */ false);
4333       return (opStatus)Status;
4334     }
4335     Floats[0] = z;
4336     APFloat zz = aa;
4337     Status |= zz.add(cc, RM);
4338     if (AComparedToC == APFloat::cmpGreaterThan) {
4339       // Floats[1] = a - z + c + zz;
4340       Floats[1] = a;
4341       Status |= Floats[1].subtract(z, RM);
4342       Status |= Floats[1].add(c, RM);
4343       Status |= Floats[1].add(zz, RM);
4344     } else {
4345       // Floats[1] = c - z + a + zz;
4346       Floats[1] = c;
4347       Status |= Floats[1].subtract(z, RM);
4348       Status |= Floats[1].add(a, RM);
4349       Status |= Floats[1].add(zz, RM);
4350     }
4351   } else {
4352     // q = a - z;
4353     APFloat q = a;
4354     Status |= q.subtract(z, RM);
4355 
4356     // zz = q + c + (a - (q + z)) + aa + cc;
4357     // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
4358     auto zz = q;
4359     Status |= zz.add(c, RM);
4360     Status |= q.add(z, RM);
4361     Status |= q.subtract(a, RM);
4362     q.changeSign();
4363     Status |= zz.add(q, RM);
4364     Status |= zz.add(aa, RM);
4365     Status |= zz.add(cc, RM);
4366     if (zz.isZero() && !zz.isNegative()) {
4367       Floats[0] = std::move(z);
4368       Floats[1].makeZero(/* Neg = */ false);
4369       return opOK;
4370     }
4371     Floats[0] = z;
4372     Status |= Floats[0].add(zz, RM);
4373     if (!Floats[0].isFinite()) {
4374       Floats[1].makeZero(/* Neg = */ false);
4375       return (opStatus)Status;
4376     }
4377     Floats[1] = std::move(z);
4378     Status |= Floats[1].subtract(Floats[0], RM);
4379     Status |= Floats[1].add(zz, RM);
4380   }
4381   return (opStatus)Status;
4382 }
4383 
4384 APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,
4385                                                 const DoubleAPFloat &RHS,
4386                                                 DoubleAPFloat &Out,
4387                                                 roundingMode RM) {
4388   if (LHS.getCategory() == fcNaN) {
4389     Out = LHS;
4390     return opOK;
4391   }
4392   if (RHS.getCategory() == fcNaN) {
4393     Out = RHS;
4394     return opOK;
4395   }
4396   if (LHS.getCategory() == fcZero) {
4397     Out = RHS;
4398     return opOK;
4399   }
4400   if (RHS.getCategory() == fcZero) {
4401     Out = LHS;
4402     return opOK;
4403   }
4404   if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity &&
4405       LHS.isNegative() != RHS.isNegative()) {
4406     Out.makeNaN(false, Out.isNegative(), nullptr);
4407     return opInvalidOp;
4408   }
4409   if (LHS.getCategory() == fcInfinity) {
4410     Out = LHS;
4411     return opOK;
4412   }
4413   if (RHS.getCategory() == fcInfinity) {
4414     Out = RHS;
4415     return opOK;
4416   }
4417   assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal);
4418 
4419   APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]),
4420       CC(RHS.Floats[1]);
4421   assert(&A.getSemantics() == &semIEEEdouble);
4422   assert(&AA.getSemantics() == &semIEEEdouble);
4423   assert(&C.getSemantics() == &semIEEEdouble);
4424   assert(&CC.getSemantics() == &semIEEEdouble);
4425   assert(&Out.Floats[0].getSemantics() == &semIEEEdouble);
4426   assert(&Out.Floats[1].getSemantics() == &semIEEEdouble);
4427   return Out.addImpl(A, AA, C, CC, RM);
4428 }
4429 
4430 APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS,
4431                                      roundingMode RM) {
4432   return addWithSpecial(*this, RHS, *this, RM);
4433 }
4434 
4435 APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS,
4436                                           roundingMode RM) {
4437   changeSign();
4438   auto Ret = add(RHS, RM);
4439   changeSign();
4440   return Ret;
4441 }
4442 
4443 APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS,
4444                                           APFloat::roundingMode RM) {
4445   const auto &LHS = *this;
4446   auto &Out = *this;
4447   /* Interesting observation: For special categories, finding the lowest
4448      common ancestor of the following layered graph gives the correct
4449      return category:
4450 
4451         NaN
4452        /   \
4453      Zero  Inf
4454        \   /
4455        Normal
4456 
4457      e.g. NaN * NaN = NaN
4458           Zero * Inf = NaN
4459           Normal * Zero = Zero
4460           Normal * Inf = Inf
4461   */
4462   if (LHS.getCategory() == fcNaN) {
4463     Out = LHS;
4464     return opOK;
4465   }
4466   if (RHS.getCategory() == fcNaN) {
4467     Out = RHS;
4468     return opOK;
4469   }
4470   if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) ||
4471       (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) {
4472     Out.makeNaN(false, false, nullptr);
4473     return opOK;
4474   }
4475   if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) {
4476     Out = LHS;
4477     return opOK;
4478   }
4479   if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) {
4480     Out = RHS;
4481     return opOK;
4482   }
4483   assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&
4484          "Special cases not handled exhaustively");
4485 
4486   int Status = opOK;
4487   APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1];
4488   // t = a * c
4489   APFloat T = A;
4490   Status |= T.multiply(C, RM);
4491   if (!T.isFiniteNonZero()) {
4492     Floats[0] = T;
4493     Floats[1].makeZero(/* Neg = */ false);
4494     return (opStatus)Status;
4495   }
4496 
4497   // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
4498   APFloat Tau = A;
4499   T.changeSign();
4500   Status |= Tau.fusedMultiplyAdd(C, T, RM);
4501   T.changeSign();
4502   {
4503     // v = a * d
4504     APFloat V = A;
4505     Status |= V.multiply(D, RM);
4506     // w = b * c
4507     APFloat W = B;
4508     Status |= W.multiply(C, RM);
4509     Status |= V.add(W, RM);
4510     // tau += v + w
4511     Status |= Tau.add(V, RM);
4512   }
4513   // u = t + tau
4514   APFloat U = T;
4515   Status |= U.add(Tau, RM);
4516 
4517   Floats[0] = U;
4518   if (!U.isFinite()) {
4519     Floats[1].makeZero(/* Neg = */ false);
4520   } else {
4521     // Floats[1] = (t - u) + tau
4522     Status |= T.subtract(U, RM);
4523     Status |= T.add(Tau, RM);
4524     Floats[1] = T;
4525   }
4526   return (opStatus)Status;
4527 }
4528 
4529 APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS,
4530                                         APFloat::roundingMode RM) {
4531   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4532   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4533   auto Ret =
4534       Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM);
4535   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4536   return Ret;
4537 }
4538 
4539 APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) {
4540   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4541   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4542   auto Ret =
4543       Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
4544   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4545   return Ret;
4546 }
4547 
4548 APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) {
4549   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4550   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4551   auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
4552   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4553   return Ret;
4554 }
4555 
4556 APFloat::opStatus
4557 DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
4558                                 const DoubleAPFloat &Addend,
4559                                 APFloat::roundingMode RM) {
4560   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4561   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4562   auto Ret = Tmp.fusedMultiplyAdd(
4563       APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()),
4564       APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM);
4565   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4566   return Ret;
4567 }
4568 
4569 APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) {
4570   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4571   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4572   auto Ret = Tmp.roundToIntegral(RM);
4573   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4574   return Ret;
4575 }
4576 
4577 void DoubleAPFloat::changeSign() {
4578   Floats[0].changeSign();
4579   Floats[1].changeSign();
4580 }
4581 
4582 APFloat::cmpResult
4583 DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const {
4584   auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]);
4585   if (Result != cmpEqual)
4586     return Result;
4587   Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]);
4588   if (Result == cmpLessThan || Result == cmpGreaterThan) {
4589     auto Against = Floats[0].isNegative() ^ Floats[1].isNegative();
4590     auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative();
4591     if (Against && !RHSAgainst)
4592       return cmpLessThan;
4593     if (!Against && RHSAgainst)
4594       return cmpGreaterThan;
4595     if (!Against && !RHSAgainst)
4596       return Result;
4597     if (Against && RHSAgainst)
4598       return (cmpResult)(cmpLessThan + cmpGreaterThan - Result);
4599   }
4600   return Result;
4601 }
4602 
4603 APFloat::fltCategory DoubleAPFloat::getCategory() const {
4604   return Floats[0].getCategory();
4605 }
4606 
4607 bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); }
4608 
4609 void DoubleAPFloat::makeInf(bool Neg) {
4610   Floats[0].makeInf(Neg);
4611   Floats[1].makeZero(/* Neg = */ false);
4612 }
4613 
4614 void DoubleAPFloat::makeZero(bool Neg) {
4615   Floats[0].makeZero(Neg);
4616   Floats[1].makeZero(/* Neg = */ false);
4617 }
4618 
4619 void DoubleAPFloat::makeLargest(bool Neg) {
4620   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4621   Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull));
4622   Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull));
4623   if (Neg)
4624     changeSign();
4625 }
4626 
4627 void DoubleAPFloat::makeSmallest(bool Neg) {
4628   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4629   Floats[0].makeSmallest(Neg);
4630   Floats[1].makeZero(/* Neg = */ false);
4631 }
4632 
4633 void DoubleAPFloat::makeSmallestNormalized(bool Neg) {
4634   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4635   Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull));
4636   if (Neg)
4637     Floats[0].changeSign();
4638   Floats[1].makeZero(/* Neg = */ false);
4639 }
4640 
4641 void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) {
4642   Floats[0].makeNaN(SNaN, Neg, fill);
4643   Floats[1].makeZero(/* Neg = */ false);
4644 }
4645 
4646 APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const {
4647   auto Result = Floats[0].compare(RHS.Floats[0]);
4648   // |Float[0]| > |Float[1]|
4649   if (Result == APFloat::cmpEqual)
4650     return Floats[1].compare(RHS.Floats[1]);
4651   return Result;
4652 }
4653 
4654 bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const {
4655   return Floats[0].bitwiseIsEqual(RHS.Floats[0]) &&
4656          Floats[1].bitwiseIsEqual(RHS.Floats[1]);
4657 }
4658 
4659 hash_code hash_value(const DoubleAPFloat &Arg) {
4660   if (Arg.Floats)
4661     return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1]));
4662   return hash_combine(Arg.Semantics);
4663 }
4664 
4665 APInt DoubleAPFloat::bitcastToAPInt() const {
4666   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4667   uint64_t Data[] = {
4668       Floats[0].bitcastToAPInt().getRawData()[0],
4669       Floats[1].bitcastToAPInt().getRawData()[0],
4670   };
4671   return APInt(128, 2, Data);
4672 }
4673 
4674 Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S,
4675                                                              roundingMode RM) {
4676   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4677   APFloat Tmp(semPPCDoubleDoubleLegacy);
4678   auto Ret = Tmp.convertFromString(S, RM);
4679   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4680   return Ret;
4681 }
4682 
4683 APFloat::opStatus DoubleAPFloat::next(bool nextDown) {
4684   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4685   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4686   auto Ret = Tmp.next(nextDown);
4687   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4688   return Ret;
4689 }
4690 
4691 APFloat::opStatus
4692 DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input,
4693                                 unsigned int Width, bool IsSigned,
4694                                 roundingMode RM, bool *IsExact) const {
4695   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4696   return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
4697       .convertToInteger(Input, Width, IsSigned, RM, IsExact);
4698 }
4699 
4700 APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input,
4701                                                   bool IsSigned,
4702                                                   roundingMode RM) {
4703   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4704   APFloat Tmp(semPPCDoubleDoubleLegacy);
4705   auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM);
4706   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4707   return Ret;
4708 }
4709 
4710 APFloat::opStatus
4711 DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input,
4712                                               unsigned int InputSize,
4713                                               bool IsSigned, roundingMode RM) {
4714   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4715   APFloat Tmp(semPPCDoubleDoubleLegacy);
4716   auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM);
4717   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4718   return Ret;
4719 }
4720 
4721 APFloat::opStatus
4722 DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input,
4723                                               unsigned int InputSize,
4724                                               bool IsSigned, roundingMode RM) {
4725   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4726   APFloat Tmp(semPPCDoubleDoubleLegacy);
4727   auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM);
4728   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4729   return Ret;
4730 }
4731 
4732 unsigned int DoubleAPFloat::convertToHexString(char *DST,
4733                                                unsigned int HexDigits,
4734                                                bool UpperCase,
4735                                                roundingMode RM) const {
4736   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4737   return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
4738       .convertToHexString(DST, HexDigits, UpperCase, RM);
4739 }
4740 
4741 bool DoubleAPFloat::isDenormal() const {
4742   return getCategory() == fcNormal &&
4743          (Floats[0].isDenormal() || Floats[1].isDenormal() ||
4744           // (double)(Hi + Lo) == Hi defines a normal number.
4745           Floats[0] != Floats[0] + Floats[1]);
4746 }
4747 
4748 bool DoubleAPFloat::isSmallest() const {
4749   if (getCategory() != fcNormal)
4750     return false;
4751   DoubleAPFloat Tmp(*this);
4752   Tmp.makeSmallest(this->isNegative());
4753   return Tmp.compare(*this) == cmpEqual;
4754 }
4755 
4756 bool DoubleAPFloat::isLargest() const {
4757   if (getCategory() != fcNormal)
4758     return false;
4759   DoubleAPFloat Tmp(*this);
4760   Tmp.makeLargest(this->isNegative());
4761   return Tmp.compare(*this) == cmpEqual;
4762 }
4763 
4764 bool DoubleAPFloat::isInteger() const {
4765   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4766   return Floats[0].isInteger() && Floats[1].isInteger();
4767 }
4768 
4769 void DoubleAPFloat::toString(SmallVectorImpl<char> &Str,
4770                              unsigned FormatPrecision,
4771                              unsigned FormatMaxPadding,
4772                              bool TruncateZero) const {
4773   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4774   APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
4775       .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero);
4776 }
4777 
4778 bool DoubleAPFloat::getExactInverse(APFloat *inv) const {
4779   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4780   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4781   if (!inv)
4782     return Tmp.getExactInverse(nullptr);
4783   APFloat Inv(semPPCDoubleDoubleLegacy);
4784   auto Ret = Tmp.getExactInverse(&Inv);
4785   *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt());
4786   return Ret;
4787 }
4788 
4789 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp,
4790                      APFloat::roundingMode RM) {
4791   assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4792   return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM),
4793                        scalbn(Arg.Floats[1], Exp, RM));
4794 }
4795 
4796 DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp,
4797                     APFloat::roundingMode RM) {
4798   assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4799   APFloat First = frexp(Arg.Floats[0], Exp, RM);
4800   APFloat Second = Arg.Floats[1];
4801   if (Arg.getCategory() == APFloat::fcNormal)
4802     Second = scalbn(Second, -Exp, RM);
4803   return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second));
4804 }
4805 
4806 } // namespace detail
4807 
4808 APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {
4809   if (usesLayout<IEEEFloat>(Semantics)) {
4810     new (&IEEE) IEEEFloat(std::move(F));
4811     return;
4812   }
4813   if (usesLayout<DoubleAPFloat>(Semantics)) {
4814     const fltSemantics& S = F.getSemantics();
4815     new (&Double)
4816         DoubleAPFloat(Semantics, APFloat(std::move(F), S),
4817                       APFloat(semIEEEdouble));
4818     return;
4819   }
4820   llvm_unreachable("Unexpected semantics");
4821 }
4822 
4823 Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str,
4824                                                        roundingMode RM) {
4825   APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM));
4826 }
4827 
4828 hash_code hash_value(const APFloat &Arg) {
4829   if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics()))
4830     return hash_value(Arg.U.IEEE);
4831   if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics()))
4832     return hash_value(Arg.U.Double);
4833   llvm_unreachable("Unexpected semantics");
4834 }
4835 
4836 APFloat::APFloat(const fltSemantics &Semantics, StringRef S)
4837     : APFloat(Semantics) {
4838   auto StatusOrErr = convertFromString(S, rmNearestTiesToEven);
4839   assert(StatusOrErr && "Invalid floating point representation");
4840   consumeError(StatusOrErr.takeError());
4841 }
4842 
4843 APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics,
4844                                    roundingMode RM, bool *losesInfo) {
4845   if (&getSemantics() == &ToSemantics) {
4846     *losesInfo = false;
4847     return opOK;
4848   }
4849   if (usesLayout<IEEEFloat>(getSemantics()) &&
4850       usesLayout<IEEEFloat>(ToSemantics))
4851     return U.IEEE.convert(ToSemantics, RM, losesInfo);
4852   if (usesLayout<IEEEFloat>(getSemantics()) &&
4853       usesLayout<DoubleAPFloat>(ToSemantics)) {
4854     assert(&ToSemantics == &semPPCDoubleDouble);
4855     auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo);
4856     *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt());
4857     return Ret;
4858   }
4859   if (usesLayout<DoubleAPFloat>(getSemantics()) &&
4860       usesLayout<IEEEFloat>(ToSemantics)) {
4861     auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo);
4862     *this = APFloat(std::move(getIEEE()), ToSemantics);
4863     return Ret;
4864   }
4865   llvm_unreachable("Unexpected semantics");
4866 }
4867 
4868 APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics) {
4869   return APFloat(Semantics, APInt::getAllOnes(Semantics.sizeInBits));
4870 }
4871 
4872 void APFloat::print(raw_ostream &OS) const {
4873   SmallVector<char, 16> Buffer;
4874   toString(Buffer);
4875   OS << Buffer << "\n";
4876 }
4877 
4878 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4879 LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); }
4880 #endif
4881 
4882 void APFloat::Profile(FoldingSetNodeID &NID) const {
4883   NID.Add(bitcastToAPInt());
4884 }
4885 
4886 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
4887    an APSInt, whose initial bit-width and signed-ness are used to determine the
4888    precision of the conversion.
4889  */
4890 APFloat::opStatus APFloat::convertToInteger(APSInt &result,
4891                                             roundingMode rounding_mode,
4892                                             bool *isExact) const {
4893   unsigned bitWidth = result.getBitWidth();
4894   SmallVector<uint64_t, 4> parts(result.getNumWords());
4895   opStatus status = convertToInteger(parts, bitWidth, result.isSigned(),
4896                                      rounding_mode, isExact);
4897   // Keeps the original signed-ness.
4898   result = APInt(bitWidth, parts);
4899   return status;
4900 }
4901 
4902 double APFloat::convertToDouble() const {
4903   if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEdouble)
4904     return getIEEE().convertToDouble();
4905   assert(getSemantics().isRepresentableBy(semIEEEdouble) &&
4906          "Float semantics is not representable by IEEEdouble");
4907   APFloat Temp = *this;
4908   bool LosesInfo;
4909   opStatus St = Temp.convert(semIEEEdouble, rmNearestTiesToEven, &LosesInfo);
4910   assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");
4911   (void)St;
4912   return Temp.getIEEE().convertToDouble();
4913 }
4914 
4915 float APFloat::convertToFloat() const {
4916   if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEsingle)
4917     return getIEEE().convertToFloat();
4918   assert(getSemantics().isRepresentableBy(semIEEEsingle) &&
4919          "Float semantics is not representable by IEEEsingle");
4920   APFloat Temp = *this;
4921   bool LosesInfo;
4922   opStatus St = Temp.convert(semIEEEsingle, rmNearestTiesToEven, &LosesInfo);
4923   assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");
4924   (void)St;
4925   return Temp.getIEEE().convertToFloat();
4926 }
4927 
4928 } // namespace llvm
4929 
4930 #undef APFLOAT_DISPATCH_ON_SEMANTICS
4931