1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision floating 10 // point values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/Error.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <cstring> 27 #include <limits.h> 28 29 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ 30 do { \ 31 if (usesLayout<IEEEFloat>(getSemantics())) \ 32 return U.IEEE.METHOD_CALL; \ 33 if (usesLayout<DoubleAPFloat>(getSemantics())) \ 34 return U.Double.METHOD_CALL; \ 35 llvm_unreachable("Unexpected semantics"); \ 36 } while (false) 37 38 using namespace llvm; 39 40 /// A macro used to combine two fcCategory enums into one key which can be used 41 /// in a switch statement to classify how the interaction of two APFloat's 42 /// categories affects an operation. 43 /// 44 /// TODO: If clang source code is ever allowed to use constexpr in its own 45 /// codebase, change this into a static inline function. 46 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) 47 48 /* Assumed in hexadecimal significand parsing, and conversion to 49 hexadecimal strings. */ 50 static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); 51 52 namespace llvm { 53 /* Represents floating point arithmetic semantics. */ 54 struct fltSemantics { 55 /* The largest E such that 2^E is representable; this matches the 56 definition of IEEE 754. */ 57 APFloatBase::ExponentType maxExponent; 58 59 /* The smallest E such that 2^E is a normalized number; this 60 matches the definition of IEEE 754. */ 61 APFloatBase::ExponentType minExponent; 62 63 /* Number of bits in the significand. This includes the integer 64 bit. */ 65 unsigned int precision; 66 67 /* Number of bits actually used in the semantics. */ 68 unsigned int sizeInBits; 69 70 // Returns true if any number described by this semantics can be precisely 71 // represented by the specified semantics. 72 bool isRepresentableBy(const fltSemantics &S) const { 73 return maxExponent <= S.maxExponent && minExponent >= S.minExponent && 74 precision <= S.precision; 75 } 76 }; 77 78 static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; 79 static const fltSemantics semBFloat = {127, -126, 8, 16}; 80 static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; 81 static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; 82 static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; 83 static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; 84 static const fltSemantics semBogus = {0, 0, 0, 0}; 85 86 /* The IBM double-double semantics. Such a number consists of a pair of IEEE 87 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, 88 (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. 89 Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent 90 to each other, and two 11-bit exponents. 91 92 Note: we need to make the value different from semBogus as otherwise 93 an unsafe optimization may collapse both values to a single address, 94 and we heavily rely on them having distinct addresses. */ 95 static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0}; 96 97 /* These are legacy semantics for the fallback, inaccrurate implementation of 98 IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the 99 operation. It's equivalent to having an IEEE number with consecutive 106 100 bits of mantissa and 11 bits of exponent. 101 102 It's not equivalent to IBM double-double. For example, a legit IBM 103 double-double, 1 + epsilon: 104 105 1 + epsilon = 1 + (1 >> 1076) 106 107 is not representable by a consecutive 106 bits of mantissa. 108 109 Currently, these semantics are used in the following way: 110 111 semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> 112 (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> 113 semPPCDoubleDoubleLegacy -> IEEE operations 114 115 We use bitcastToAPInt() to get the bit representation (in APInt) of the 116 underlying IEEEdouble, then use the APInt constructor to construct the 117 legacy IEEE float. 118 119 TODO: Implement all operations in semPPCDoubleDouble, and delete these 120 semantics. */ 121 static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, 122 53 + 53, 128}; 123 124 const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { 125 switch (S) { 126 case S_IEEEhalf: 127 return IEEEhalf(); 128 case S_BFloat: 129 return BFloat(); 130 case S_IEEEsingle: 131 return IEEEsingle(); 132 case S_IEEEdouble: 133 return IEEEdouble(); 134 case S_x87DoubleExtended: 135 return x87DoubleExtended(); 136 case S_IEEEquad: 137 return IEEEquad(); 138 case S_PPCDoubleDouble: 139 return PPCDoubleDouble(); 140 } 141 llvm_unreachable("Unrecognised floating semantics"); 142 } 143 144 APFloatBase::Semantics 145 APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { 146 if (&Sem == &llvm::APFloat::IEEEhalf()) 147 return S_IEEEhalf; 148 else if (&Sem == &llvm::APFloat::BFloat()) 149 return S_BFloat; 150 else if (&Sem == &llvm::APFloat::IEEEsingle()) 151 return S_IEEEsingle; 152 else if (&Sem == &llvm::APFloat::IEEEdouble()) 153 return S_IEEEdouble; 154 else if (&Sem == &llvm::APFloat::x87DoubleExtended()) 155 return S_x87DoubleExtended; 156 else if (&Sem == &llvm::APFloat::IEEEquad()) 157 return S_IEEEquad; 158 else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) 159 return S_PPCDoubleDouble; 160 else 161 llvm_unreachable("Unknown floating semantics"); 162 } 163 164 const fltSemantics &APFloatBase::IEEEhalf() { 165 return semIEEEhalf; 166 } 167 const fltSemantics &APFloatBase::BFloat() { 168 return semBFloat; 169 } 170 const fltSemantics &APFloatBase::IEEEsingle() { 171 return semIEEEsingle; 172 } 173 const fltSemantics &APFloatBase::IEEEdouble() { 174 return semIEEEdouble; 175 } 176 const fltSemantics &APFloatBase::IEEEquad() { 177 return semIEEEquad; 178 } 179 const fltSemantics &APFloatBase::x87DoubleExtended() { 180 return semX87DoubleExtended; 181 } 182 const fltSemantics &APFloatBase::Bogus() { 183 return semBogus; 184 } 185 const fltSemantics &APFloatBase::PPCDoubleDouble() { 186 return semPPCDoubleDouble; 187 } 188 189 constexpr RoundingMode APFloatBase::rmNearestTiesToEven; 190 constexpr RoundingMode APFloatBase::rmTowardPositive; 191 constexpr RoundingMode APFloatBase::rmTowardNegative; 192 constexpr RoundingMode APFloatBase::rmTowardZero; 193 constexpr RoundingMode APFloatBase::rmNearestTiesToAway; 194 195 /* A tight upper bound on number of parts required to hold the value 196 pow(5, power) is 197 198 power * 815 / (351 * integerPartWidth) + 1 199 200 However, whilst the result may require only this many parts, 201 because we are multiplying two values to get it, the 202 multiplication may require an extra part with the excess part 203 being zero (consider the trivial case of 1 * 1, tcFullMultiply 204 requires two parts to hold the single-part result). So we add an 205 extra one to guarantee enough space whilst multiplying. */ 206 const unsigned int maxExponent = 16383; 207 const unsigned int maxPrecision = 113; 208 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; 209 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); 210 211 unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { 212 return semantics.precision; 213 } 214 APFloatBase::ExponentType 215 APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { 216 return semantics.maxExponent; 217 } 218 APFloatBase::ExponentType 219 APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { 220 return semantics.minExponent; 221 } 222 unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { 223 return semantics.sizeInBits; 224 } 225 226 unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { 227 return Sem.sizeInBits; 228 } 229 230 /* A bunch of private, handy routines. */ 231 232 static inline Error createError(const Twine &Err) { 233 return make_error<StringError>(Err, inconvertibleErrorCode()); 234 } 235 236 static inline unsigned int 237 partCountForBits(unsigned int bits) 238 { 239 return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; 240 } 241 242 /* Returns 0U-9U. Return values >= 10U are not digits. */ 243 static inline unsigned int 244 decDigitValue(unsigned int c) 245 { 246 return c - '0'; 247 } 248 249 /* Return the value of a decimal exponent of the form 250 [+-]ddddddd. 251 252 If the exponent overflows, returns a large exponent with the 253 appropriate sign. */ 254 static Expected<int> readExponent(StringRef::iterator begin, 255 StringRef::iterator end) { 256 bool isNegative; 257 unsigned int absExponent; 258 const unsigned int overlargeExponent = 24000; /* FIXME. */ 259 StringRef::iterator p = begin; 260 261 // Treat no exponent as 0 to match binutils 262 if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { 263 return 0; 264 } 265 266 isNegative = (*p == '-'); 267 if (*p == '-' || *p == '+') { 268 p++; 269 if (p == end) 270 return createError("Exponent has no digits"); 271 } 272 273 absExponent = decDigitValue(*p++); 274 if (absExponent >= 10U) 275 return createError("Invalid character in exponent"); 276 277 for (; p != end; ++p) { 278 unsigned int value; 279 280 value = decDigitValue(*p); 281 if (value >= 10U) 282 return createError("Invalid character in exponent"); 283 284 absExponent = absExponent * 10U + value; 285 if (absExponent >= overlargeExponent) { 286 absExponent = overlargeExponent; 287 break; 288 } 289 } 290 291 if (isNegative) 292 return -(int) absExponent; 293 else 294 return (int) absExponent; 295 } 296 297 /* This is ugly and needs cleaning up, but I don't immediately see 298 how whilst remaining safe. */ 299 static Expected<int> totalExponent(StringRef::iterator p, 300 StringRef::iterator end, 301 int exponentAdjustment) { 302 int unsignedExponent; 303 bool negative, overflow; 304 int exponent = 0; 305 306 if (p == end) 307 return createError("Exponent has no digits"); 308 309 negative = *p == '-'; 310 if (*p == '-' || *p == '+') { 311 p++; 312 if (p == end) 313 return createError("Exponent has no digits"); 314 } 315 316 unsignedExponent = 0; 317 overflow = false; 318 for (; p != end; ++p) { 319 unsigned int value; 320 321 value = decDigitValue(*p); 322 if (value >= 10U) 323 return createError("Invalid character in exponent"); 324 325 unsignedExponent = unsignedExponent * 10 + value; 326 if (unsignedExponent > 32767) { 327 overflow = true; 328 break; 329 } 330 } 331 332 if (exponentAdjustment > 32767 || exponentAdjustment < -32768) 333 overflow = true; 334 335 if (!overflow) { 336 exponent = unsignedExponent; 337 if (negative) 338 exponent = -exponent; 339 exponent += exponentAdjustment; 340 if (exponent > 32767 || exponent < -32768) 341 overflow = true; 342 } 343 344 if (overflow) 345 exponent = negative ? -32768: 32767; 346 347 return exponent; 348 } 349 350 static Expected<StringRef::iterator> 351 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, 352 StringRef::iterator *dot) { 353 StringRef::iterator p = begin; 354 *dot = end; 355 while (p != end && *p == '0') 356 p++; 357 358 if (p != end && *p == '.') { 359 *dot = p++; 360 361 if (end - begin == 1) 362 return createError("Significand has no digits"); 363 364 while (p != end && *p == '0') 365 p++; 366 } 367 368 return p; 369 } 370 371 /* Given a normal decimal floating point number of the form 372 373 dddd.dddd[eE][+-]ddd 374 375 where the decimal point and exponent are optional, fill out the 376 structure D. Exponent is appropriate if the significand is 377 treated as an integer, and normalizedExponent if the significand 378 is taken to have the decimal point after a single leading 379 non-zero digit. 380 381 If the value is zero, V->firstSigDigit points to a non-digit, and 382 the return exponent is zero. 383 */ 384 struct decimalInfo { 385 const char *firstSigDigit; 386 const char *lastSigDigit; 387 int exponent; 388 int normalizedExponent; 389 }; 390 391 static Error interpretDecimal(StringRef::iterator begin, 392 StringRef::iterator end, decimalInfo *D) { 393 StringRef::iterator dot = end; 394 395 auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); 396 if (!PtrOrErr) 397 return PtrOrErr.takeError(); 398 StringRef::iterator p = *PtrOrErr; 399 400 D->firstSigDigit = p; 401 D->exponent = 0; 402 D->normalizedExponent = 0; 403 404 for (; p != end; ++p) { 405 if (*p == '.') { 406 if (dot != end) 407 return createError("String contains multiple dots"); 408 dot = p++; 409 if (p == end) 410 break; 411 } 412 if (decDigitValue(*p) >= 10U) 413 break; 414 } 415 416 if (p != end) { 417 if (*p != 'e' && *p != 'E') 418 return createError("Invalid character in significand"); 419 if (p == begin) 420 return createError("Significand has no digits"); 421 if (dot != end && p - begin == 1) 422 return createError("Significand has no digits"); 423 424 /* p points to the first non-digit in the string */ 425 auto ExpOrErr = readExponent(p + 1, end); 426 if (!ExpOrErr) 427 return ExpOrErr.takeError(); 428 D->exponent = *ExpOrErr; 429 430 /* Implied decimal point? */ 431 if (dot == end) 432 dot = p; 433 } 434 435 /* If number is all zeroes accept any exponent. */ 436 if (p != D->firstSigDigit) { 437 /* Drop insignificant trailing zeroes. */ 438 if (p != begin) { 439 do 440 do 441 p--; 442 while (p != begin && *p == '0'); 443 while (p != begin && *p == '.'); 444 } 445 446 /* Adjust the exponents for any decimal point. */ 447 D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); 448 D->normalizedExponent = (D->exponent + 449 static_cast<APFloat::ExponentType>((p - D->firstSigDigit) 450 - (dot > D->firstSigDigit && dot < p))); 451 } 452 453 D->lastSigDigit = p; 454 return Error::success(); 455 } 456 457 /* Return the trailing fraction of a hexadecimal number. 458 DIGITVALUE is the first hex digit of the fraction, P points to 459 the next digit. */ 460 static Expected<lostFraction> 461 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, 462 unsigned int digitValue) { 463 unsigned int hexDigit; 464 465 /* If the first trailing digit isn't 0 or 8 we can work out the 466 fraction immediately. */ 467 if (digitValue > 8) 468 return lfMoreThanHalf; 469 else if (digitValue < 8 && digitValue > 0) 470 return lfLessThanHalf; 471 472 // Otherwise we need to find the first non-zero digit. 473 while (p != end && (*p == '0' || *p == '.')) 474 p++; 475 476 if (p == end) 477 return createError("Invalid trailing hexadecimal fraction!"); 478 479 hexDigit = hexDigitValue(*p); 480 481 /* If we ran off the end it is exactly zero or one-half, otherwise 482 a little more. */ 483 if (hexDigit == -1U) 484 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; 485 else 486 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; 487 } 488 489 /* Return the fraction lost were a bignum truncated losing the least 490 significant BITS bits. */ 491 static lostFraction 492 lostFractionThroughTruncation(const APFloatBase::integerPart *parts, 493 unsigned int partCount, 494 unsigned int bits) 495 { 496 unsigned int lsb; 497 498 lsb = APInt::tcLSB(parts, partCount); 499 500 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ 501 if (bits <= lsb) 502 return lfExactlyZero; 503 if (bits == lsb + 1) 504 return lfExactlyHalf; 505 if (bits <= partCount * APFloatBase::integerPartWidth && 506 APInt::tcExtractBit(parts, bits - 1)) 507 return lfMoreThanHalf; 508 509 return lfLessThanHalf; 510 } 511 512 /* Shift DST right BITS bits noting lost fraction. */ 513 static lostFraction 514 shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) 515 { 516 lostFraction lost_fraction; 517 518 lost_fraction = lostFractionThroughTruncation(dst, parts, bits); 519 520 APInt::tcShiftRight(dst, parts, bits); 521 522 return lost_fraction; 523 } 524 525 /* Combine the effect of two lost fractions. */ 526 static lostFraction 527 combineLostFractions(lostFraction moreSignificant, 528 lostFraction lessSignificant) 529 { 530 if (lessSignificant != lfExactlyZero) { 531 if (moreSignificant == lfExactlyZero) 532 moreSignificant = lfLessThanHalf; 533 else if (moreSignificant == lfExactlyHalf) 534 moreSignificant = lfMoreThanHalf; 535 } 536 537 return moreSignificant; 538 } 539 540 /* The error from the true value, in half-ulps, on multiplying two 541 floating point numbers, which differ from the value they 542 approximate by at most HUE1 and HUE2 half-ulps, is strictly less 543 than the returned value. 544 545 See "How to Read Floating Point Numbers Accurately" by William D 546 Clinger. */ 547 static unsigned int 548 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) 549 { 550 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); 551 552 if (HUerr1 + HUerr2 == 0) 553 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ 554 else 555 return inexactMultiply + 2 * (HUerr1 + HUerr2); 556 } 557 558 /* The number of ulps from the boundary (zero, or half if ISNEAREST) 559 when the least significant BITS are truncated. BITS cannot be 560 zero. */ 561 static APFloatBase::integerPart 562 ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, 563 bool isNearest) { 564 unsigned int count, partBits; 565 APFloatBase::integerPart part, boundary; 566 567 assert(bits != 0); 568 569 bits--; 570 count = bits / APFloatBase::integerPartWidth; 571 partBits = bits % APFloatBase::integerPartWidth + 1; 572 573 part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); 574 575 if (isNearest) 576 boundary = (APFloatBase::integerPart) 1 << (partBits - 1); 577 else 578 boundary = 0; 579 580 if (count == 0) { 581 if (part - boundary <= boundary - part) 582 return part - boundary; 583 else 584 return boundary - part; 585 } 586 587 if (part == boundary) { 588 while (--count) 589 if (parts[count]) 590 return ~(APFloatBase::integerPart) 0; /* A lot. */ 591 592 return parts[0]; 593 } else if (part == boundary - 1) { 594 while (--count) 595 if (~parts[count]) 596 return ~(APFloatBase::integerPart) 0; /* A lot. */ 597 598 return -parts[0]; 599 } 600 601 return ~(APFloatBase::integerPart) 0; /* A lot. */ 602 } 603 604 /* Place pow(5, power) in DST, and return the number of parts used. 605 DST must be at least one part larger than size of the answer. */ 606 static unsigned int 607 powerOf5(APFloatBase::integerPart *dst, unsigned int power) { 608 static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; 609 APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; 610 pow5s[0] = 78125 * 5; 611 612 unsigned int partsCount[16] = { 1 }; 613 APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; 614 unsigned int result; 615 assert(power <= maxExponent); 616 617 p1 = dst; 618 p2 = scratch; 619 620 *p1 = firstEightPowers[power & 7]; 621 power >>= 3; 622 623 result = 1; 624 pow5 = pow5s; 625 626 for (unsigned int n = 0; power; power >>= 1, n++) { 627 unsigned int pc; 628 629 pc = partsCount[n]; 630 631 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ 632 if (pc == 0) { 633 pc = partsCount[n - 1]; 634 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); 635 pc *= 2; 636 if (pow5[pc - 1] == 0) 637 pc--; 638 partsCount[n] = pc; 639 } 640 641 if (power & 1) { 642 APFloatBase::integerPart *tmp; 643 644 APInt::tcFullMultiply(p2, p1, pow5, result, pc); 645 result += pc; 646 if (p2[result - 1] == 0) 647 result--; 648 649 /* Now result is in p1 with partsCount parts and p2 is scratch 650 space. */ 651 tmp = p1; 652 p1 = p2; 653 p2 = tmp; 654 } 655 656 pow5 += pc; 657 } 658 659 if (p1 != dst) 660 APInt::tcAssign(dst, p1, result); 661 662 return result; 663 } 664 665 /* Zero at the end to avoid modular arithmetic when adding one; used 666 when rounding up during hexadecimal output. */ 667 static const char hexDigitsLower[] = "0123456789abcdef0"; 668 static const char hexDigitsUpper[] = "0123456789ABCDEF0"; 669 static const char infinityL[] = "infinity"; 670 static const char infinityU[] = "INFINITY"; 671 static const char NaNL[] = "nan"; 672 static const char NaNU[] = "NAN"; 673 674 /* Write out an integerPart in hexadecimal, starting with the most 675 significant nibble. Write out exactly COUNT hexdigits, return 676 COUNT. */ 677 static unsigned int 678 partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, 679 const char *hexDigitChars) 680 { 681 unsigned int result = count; 682 683 assert(count != 0 && count <= APFloatBase::integerPartWidth / 4); 684 685 part >>= (APFloatBase::integerPartWidth - 4 * count); 686 while (count--) { 687 dst[count] = hexDigitChars[part & 0xf]; 688 part >>= 4; 689 } 690 691 return result; 692 } 693 694 /* Write out an unsigned decimal integer. */ 695 static char * 696 writeUnsignedDecimal (char *dst, unsigned int n) 697 { 698 char buff[40], *p; 699 700 p = buff; 701 do 702 *p++ = '0' + n % 10; 703 while (n /= 10); 704 705 do 706 *dst++ = *--p; 707 while (p != buff); 708 709 return dst; 710 } 711 712 /* Write out a signed decimal integer. */ 713 static char * 714 writeSignedDecimal (char *dst, int value) 715 { 716 if (value < 0) { 717 *dst++ = '-'; 718 dst = writeUnsignedDecimal(dst, -(unsigned) value); 719 } else 720 dst = writeUnsignedDecimal(dst, value); 721 722 return dst; 723 } 724 725 namespace detail { 726 /* Constructors. */ 727 void IEEEFloat::initialize(const fltSemantics *ourSemantics) { 728 unsigned int count; 729 730 semantics = ourSemantics; 731 count = partCount(); 732 if (count > 1) 733 significand.parts = new integerPart[count]; 734 } 735 736 void IEEEFloat::freeSignificand() { 737 if (needsCleanup()) 738 delete [] significand.parts; 739 } 740 741 void IEEEFloat::assign(const IEEEFloat &rhs) { 742 assert(semantics == rhs.semantics); 743 744 sign = rhs.sign; 745 category = rhs.category; 746 exponent = rhs.exponent; 747 if (isFiniteNonZero() || category == fcNaN) 748 copySignificand(rhs); 749 } 750 751 void IEEEFloat::copySignificand(const IEEEFloat &rhs) { 752 assert(isFiniteNonZero() || category == fcNaN); 753 assert(rhs.partCount() >= partCount()); 754 755 APInt::tcAssign(significandParts(), rhs.significandParts(), 756 partCount()); 757 } 758 759 /* Make this number a NaN, with an arbitrary but deterministic value 760 for the significand. If double or longer, this is a signalling NaN, 761 which may not be ideal. If float, this is QNaN(0). */ 762 void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { 763 category = fcNaN; 764 sign = Negative; 765 exponent = exponentNaN(); 766 767 integerPart *significand = significandParts(); 768 unsigned numParts = partCount(); 769 770 // Set the significand bits to the fill. 771 if (!fill || fill->getNumWords() < numParts) 772 APInt::tcSet(significand, 0, numParts); 773 if (fill) { 774 APInt::tcAssign(significand, fill->getRawData(), 775 std::min(fill->getNumWords(), numParts)); 776 777 // Zero out the excess bits of the significand. 778 unsigned bitsToPreserve = semantics->precision - 1; 779 unsigned part = bitsToPreserve / 64; 780 bitsToPreserve %= 64; 781 significand[part] &= ((1ULL << bitsToPreserve) - 1); 782 for (part++; part != numParts; ++part) 783 significand[part] = 0; 784 } 785 786 unsigned QNaNBit = semantics->precision - 2; 787 788 if (SNaN) { 789 // We always have to clear the QNaN bit to make it an SNaN. 790 APInt::tcClearBit(significand, QNaNBit); 791 792 // If there are no bits set in the payload, we have to set 793 // *something* to make it a NaN instead of an infinity; 794 // conventionally, this is the next bit down from the QNaN bit. 795 if (APInt::tcIsZero(significand, numParts)) 796 APInt::tcSetBit(significand, QNaNBit - 1); 797 } else { 798 // We always have to set the QNaN bit to make it a QNaN. 799 APInt::tcSetBit(significand, QNaNBit); 800 } 801 802 // For x87 extended precision, we want to make a NaN, not a 803 // pseudo-NaN. Maybe we should expose the ability to make 804 // pseudo-NaNs? 805 if (semantics == &semX87DoubleExtended) 806 APInt::tcSetBit(significand, QNaNBit + 1); 807 } 808 809 IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { 810 if (this != &rhs) { 811 if (semantics != rhs.semantics) { 812 freeSignificand(); 813 initialize(rhs.semantics); 814 } 815 assign(rhs); 816 } 817 818 return *this; 819 } 820 821 IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { 822 freeSignificand(); 823 824 semantics = rhs.semantics; 825 significand = rhs.significand; 826 exponent = rhs.exponent; 827 category = rhs.category; 828 sign = rhs.sign; 829 830 rhs.semantics = &semBogus; 831 return *this; 832 } 833 834 bool IEEEFloat::isDenormal() const { 835 return isFiniteNonZero() && (exponent == semantics->minExponent) && 836 (APInt::tcExtractBit(significandParts(), 837 semantics->precision - 1) == 0); 838 } 839 840 bool IEEEFloat::isSmallest() const { 841 // The smallest number by magnitude in our format will be the smallest 842 // denormal, i.e. the floating point number with exponent being minimum 843 // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). 844 return isFiniteNonZero() && exponent == semantics->minExponent && 845 significandMSB() == 0; 846 } 847 848 bool IEEEFloat::isSignificandAllOnes() const { 849 // Test if the significand excluding the integral bit is all ones. This allows 850 // us to test for binade boundaries. 851 const integerPart *Parts = significandParts(); 852 const unsigned PartCount = partCountForBits(semantics->precision); 853 for (unsigned i = 0; i < PartCount - 1; i++) 854 if (~Parts[i]) 855 return false; 856 857 // Set the unused high bits to all ones when we compare. 858 const unsigned NumHighBits = 859 PartCount*integerPartWidth - semantics->precision + 1; 860 assert(NumHighBits <= integerPartWidth && NumHighBits > 0 && 861 "Can not have more high bits to fill than integerPartWidth"); 862 const integerPart HighBitFill = 863 ~integerPart(0) << (integerPartWidth - NumHighBits); 864 if (~(Parts[PartCount - 1] | HighBitFill)) 865 return false; 866 867 return true; 868 } 869 870 bool IEEEFloat::isSignificandAllZeros() const { 871 // Test if the significand excluding the integral bit is all zeros. This 872 // allows us to test for binade boundaries. 873 const integerPart *Parts = significandParts(); 874 const unsigned PartCount = partCountForBits(semantics->precision); 875 876 for (unsigned i = 0; i < PartCount - 1; i++) 877 if (Parts[i]) 878 return false; 879 880 // Compute how many bits are used in the final word. 881 const unsigned NumHighBits = 882 PartCount*integerPartWidth - semantics->precision + 1; 883 assert(NumHighBits < integerPartWidth && "Can not have more high bits to " 884 "clear than integerPartWidth"); 885 const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; 886 887 if (Parts[PartCount - 1] & HighBitMask) 888 return false; 889 890 return true; 891 } 892 893 bool IEEEFloat::isLargest() const { 894 // The largest number by magnitude in our format will be the floating point 895 // number with maximum exponent and with significand that is all ones. 896 return isFiniteNonZero() && exponent == semantics->maxExponent 897 && isSignificandAllOnes(); 898 } 899 900 bool IEEEFloat::isInteger() const { 901 // This could be made more efficient; I'm going for obviously correct. 902 if (!isFinite()) return false; 903 IEEEFloat truncated = *this; 904 truncated.roundToIntegral(rmTowardZero); 905 return compare(truncated) == cmpEqual; 906 } 907 908 bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { 909 if (this == &rhs) 910 return true; 911 if (semantics != rhs.semantics || 912 category != rhs.category || 913 sign != rhs.sign) 914 return false; 915 if (category==fcZero || category==fcInfinity) 916 return true; 917 918 if (isFiniteNonZero() && exponent != rhs.exponent) 919 return false; 920 921 return std::equal(significandParts(), significandParts() + partCount(), 922 rhs.significandParts()); 923 } 924 925 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { 926 initialize(&ourSemantics); 927 sign = 0; 928 category = fcNormal; 929 zeroSignificand(); 930 exponent = ourSemantics.precision - 1; 931 significandParts()[0] = value; 932 normalize(rmNearestTiesToEven, lfExactlyZero); 933 } 934 935 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { 936 initialize(&ourSemantics); 937 makeZero(false); 938 } 939 940 // Delegate to the previous constructor, because later copy constructor may 941 // actually inspects category, which can't be garbage. 942 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) 943 : IEEEFloat(ourSemantics) {} 944 945 IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { 946 initialize(rhs.semantics); 947 assign(rhs); 948 } 949 950 IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { 951 *this = std::move(rhs); 952 } 953 954 IEEEFloat::~IEEEFloat() { freeSignificand(); } 955 956 unsigned int IEEEFloat::partCount() const { 957 return partCountForBits(semantics->precision + 1); 958 } 959 960 const IEEEFloat::integerPart *IEEEFloat::significandParts() const { 961 return const_cast<IEEEFloat *>(this)->significandParts(); 962 } 963 964 IEEEFloat::integerPart *IEEEFloat::significandParts() { 965 if (partCount() > 1) 966 return significand.parts; 967 else 968 return &significand.part; 969 } 970 971 void IEEEFloat::zeroSignificand() { 972 APInt::tcSet(significandParts(), 0, partCount()); 973 } 974 975 /* Increment an fcNormal floating point number's significand. */ 976 void IEEEFloat::incrementSignificand() { 977 integerPart carry; 978 979 carry = APInt::tcIncrement(significandParts(), partCount()); 980 981 /* Our callers should never cause us to overflow. */ 982 assert(carry == 0); 983 (void)carry; 984 } 985 986 /* Add the significand of the RHS. Returns the carry flag. */ 987 IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { 988 integerPart *parts; 989 990 parts = significandParts(); 991 992 assert(semantics == rhs.semantics); 993 assert(exponent == rhs.exponent); 994 995 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); 996 } 997 998 /* Subtract the significand of the RHS with a borrow flag. Returns 999 the borrow flag. */ 1000 IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, 1001 integerPart borrow) { 1002 integerPart *parts; 1003 1004 parts = significandParts(); 1005 1006 assert(semantics == rhs.semantics); 1007 assert(exponent == rhs.exponent); 1008 1009 return APInt::tcSubtract(parts, rhs.significandParts(), borrow, 1010 partCount()); 1011 } 1012 1013 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it 1014 on to the full-precision result of the multiplication. Returns the 1015 lost fraction. */ 1016 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, 1017 IEEEFloat addend) { 1018 unsigned int omsb; // One, not zero, based MSB. 1019 unsigned int partsCount, newPartsCount, precision; 1020 integerPart *lhsSignificand; 1021 integerPart scratch[4]; 1022 integerPart *fullSignificand; 1023 lostFraction lost_fraction; 1024 bool ignored; 1025 1026 assert(semantics == rhs.semantics); 1027 1028 precision = semantics->precision; 1029 1030 // Allocate space for twice as many bits as the original significand, plus one 1031 // extra bit for the addition to overflow into. 1032 newPartsCount = partCountForBits(precision * 2 + 1); 1033 1034 if (newPartsCount > 4) 1035 fullSignificand = new integerPart[newPartsCount]; 1036 else 1037 fullSignificand = scratch; 1038 1039 lhsSignificand = significandParts(); 1040 partsCount = partCount(); 1041 1042 APInt::tcFullMultiply(fullSignificand, lhsSignificand, 1043 rhs.significandParts(), partsCount, partsCount); 1044 1045 lost_fraction = lfExactlyZero; 1046 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 1047 exponent += rhs.exponent; 1048 1049 // Assume the operands involved in the multiplication are single-precision 1050 // FP, and the two multiplicants are: 1051 // *this = a23 . a22 ... a0 * 2^e1 1052 // rhs = b23 . b22 ... b0 * 2^e2 1053 // the result of multiplication is: 1054 // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) 1055 // Note that there are three significant bits at the left-hand side of the 1056 // radix point: two for the multiplication, and an overflow bit for the 1057 // addition (that will always be zero at this point). Move the radix point 1058 // toward left by two bits, and adjust exponent accordingly. 1059 exponent += 2; 1060 1061 if (addend.isNonZero()) { 1062 // The intermediate result of the multiplication has "2 * precision" 1063 // signicant bit; adjust the addend to be consistent with mul result. 1064 // 1065 Significand savedSignificand = significand; 1066 const fltSemantics *savedSemantics = semantics; 1067 fltSemantics extendedSemantics; 1068 opStatus status; 1069 unsigned int extendedPrecision; 1070 1071 // Normalize our MSB to one below the top bit to allow for overflow. 1072 extendedPrecision = 2 * precision + 1; 1073 if (omsb != extendedPrecision - 1) { 1074 assert(extendedPrecision > omsb); 1075 APInt::tcShiftLeft(fullSignificand, newPartsCount, 1076 (extendedPrecision - 1) - omsb); 1077 exponent -= (extendedPrecision - 1) - omsb; 1078 } 1079 1080 /* Create new semantics. */ 1081 extendedSemantics = *semantics; 1082 extendedSemantics.precision = extendedPrecision; 1083 1084 if (newPartsCount == 1) 1085 significand.part = fullSignificand[0]; 1086 else 1087 significand.parts = fullSignificand; 1088 semantics = &extendedSemantics; 1089 1090 // Make a copy so we can convert it to the extended semantics. 1091 // Note that we cannot convert the addend directly, as the extendedSemantics 1092 // is a local variable (which we take a reference to). 1093 IEEEFloat extendedAddend(addend); 1094 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); 1095 assert(status == opOK); 1096 (void)status; 1097 1098 // Shift the significand of the addend right by one bit. This guarantees 1099 // that the high bit of the significand is zero (same as fullSignificand), 1100 // so the addition will overflow (if it does overflow at all) into the top bit. 1101 lost_fraction = extendedAddend.shiftSignificandRight(1); 1102 assert(lost_fraction == lfExactlyZero && 1103 "Lost precision while shifting addend for fused-multiply-add."); 1104 1105 lost_fraction = addOrSubtractSignificand(extendedAddend, false); 1106 1107 /* Restore our state. */ 1108 if (newPartsCount == 1) 1109 fullSignificand[0] = significand.part; 1110 significand = savedSignificand; 1111 semantics = savedSemantics; 1112 1113 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 1114 } 1115 1116 // Convert the result having "2 * precision" significant-bits back to the one 1117 // having "precision" significant-bits. First, move the radix point from 1118 // poision "2*precision - 1" to "precision - 1". The exponent need to be 1119 // adjusted by "2*precision - 1" - "precision - 1" = "precision". 1120 exponent -= precision + 1; 1121 1122 // In case MSB resides at the left-hand side of radix point, shift the 1123 // mantissa right by some amount to make sure the MSB reside right before 1124 // the radix point (i.e. "MSB . rest-significant-bits"). 1125 // 1126 // Note that the result is not normalized when "omsb < precision". So, the 1127 // caller needs to call IEEEFloat::normalize() if normalized value is 1128 // expected. 1129 if (omsb > precision) { 1130 unsigned int bits, significantParts; 1131 lostFraction lf; 1132 1133 bits = omsb - precision; 1134 significantParts = partCountForBits(omsb); 1135 lf = shiftRight(fullSignificand, significantParts, bits); 1136 lost_fraction = combineLostFractions(lf, lost_fraction); 1137 exponent += bits; 1138 } 1139 1140 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); 1141 1142 if (newPartsCount > 4) 1143 delete [] fullSignificand; 1144 1145 return lost_fraction; 1146 } 1147 1148 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) { 1149 return multiplySignificand(rhs, IEEEFloat(*semantics)); 1150 } 1151 1152 /* Multiply the significands of LHS and RHS to DST. */ 1153 lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { 1154 unsigned int bit, i, partsCount; 1155 const integerPart *rhsSignificand; 1156 integerPart *lhsSignificand, *dividend, *divisor; 1157 integerPart scratch[4]; 1158 lostFraction lost_fraction; 1159 1160 assert(semantics == rhs.semantics); 1161 1162 lhsSignificand = significandParts(); 1163 rhsSignificand = rhs.significandParts(); 1164 partsCount = partCount(); 1165 1166 if (partsCount > 2) 1167 dividend = new integerPart[partsCount * 2]; 1168 else 1169 dividend = scratch; 1170 1171 divisor = dividend + partsCount; 1172 1173 /* Copy the dividend and divisor as they will be modified in-place. */ 1174 for (i = 0; i < partsCount; i++) { 1175 dividend[i] = lhsSignificand[i]; 1176 divisor[i] = rhsSignificand[i]; 1177 lhsSignificand[i] = 0; 1178 } 1179 1180 exponent -= rhs.exponent; 1181 1182 unsigned int precision = semantics->precision; 1183 1184 /* Normalize the divisor. */ 1185 bit = precision - APInt::tcMSB(divisor, partsCount) - 1; 1186 if (bit) { 1187 exponent += bit; 1188 APInt::tcShiftLeft(divisor, partsCount, bit); 1189 } 1190 1191 /* Normalize the dividend. */ 1192 bit = precision - APInt::tcMSB(dividend, partsCount) - 1; 1193 if (bit) { 1194 exponent -= bit; 1195 APInt::tcShiftLeft(dividend, partsCount, bit); 1196 } 1197 1198 /* Ensure the dividend >= divisor initially for the loop below. 1199 Incidentally, this means that the division loop below is 1200 guaranteed to set the integer bit to one. */ 1201 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { 1202 exponent--; 1203 APInt::tcShiftLeft(dividend, partsCount, 1); 1204 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); 1205 } 1206 1207 /* Long division. */ 1208 for (bit = precision; bit; bit -= 1) { 1209 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { 1210 APInt::tcSubtract(dividend, divisor, 0, partsCount); 1211 APInt::tcSetBit(lhsSignificand, bit - 1); 1212 } 1213 1214 APInt::tcShiftLeft(dividend, partsCount, 1); 1215 } 1216 1217 /* Figure out the lost fraction. */ 1218 int cmp = APInt::tcCompare(dividend, divisor, partsCount); 1219 1220 if (cmp > 0) 1221 lost_fraction = lfMoreThanHalf; 1222 else if (cmp == 0) 1223 lost_fraction = lfExactlyHalf; 1224 else if (APInt::tcIsZero(dividend, partsCount)) 1225 lost_fraction = lfExactlyZero; 1226 else 1227 lost_fraction = lfLessThanHalf; 1228 1229 if (partsCount > 2) 1230 delete [] dividend; 1231 1232 return lost_fraction; 1233 } 1234 1235 unsigned int IEEEFloat::significandMSB() const { 1236 return APInt::tcMSB(significandParts(), partCount()); 1237 } 1238 1239 unsigned int IEEEFloat::significandLSB() const { 1240 return APInt::tcLSB(significandParts(), partCount()); 1241 } 1242 1243 /* Note that a zero result is NOT normalized to fcZero. */ 1244 lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { 1245 /* Our exponent should not overflow. */ 1246 assert((ExponentType) (exponent + bits) >= exponent); 1247 1248 exponent += bits; 1249 1250 return shiftRight(significandParts(), partCount(), bits); 1251 } 1252 1253 /* Shift the significand left BITS bits, subtract BITS from its exponent. */ 1254 void IEEEFloat::shiftSignificandLeft(unsigned int bits) { 1255 assert(bits < semantics->precision); 1256 1257 if (bits) { 1258 unsigned int partsCount = partCount(); 1259 1260 APInt::tcShiftLeft(significandParts(), partsCount, bits); 1261 exponent -= bits; 1262 1263 assert(!APInt::tcIsZero(significandParts(), partsCount)); 1264 } 1265 } 1266 1267 IEEEFloat::cmpResult 1268 IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { 1269 int compare; 1270 1271 assert(semantics == rhs.semantics); 1272 assert(isFiniteNonZero()); 1273 assert(rhs.isFiniteNonZero()); 1274 1275 compare = exponent - rhs.exponent; 1276 1277 /* If exponents are equal, do an unsigned bignum comparison of the 1278 significands. */ 1279 if (compare == 0) 1280 compare = APInt::tcCompare(significandParts(), rhs.significandParts(), 1281 partCount()); 1282 1283 if (compare > 0) 1284 return cmpGreaterThan; 1285 else if (compare < 0) 1286 return cmpLessThan; 1287 else 1288 return cmpEqual; 1289 } 1290 1291 /* Handle overflow. Sign is preserved. We either become infinity or 1292 the largest finite number. */ 1293 IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { 1294 /* Infinity? */ 1295 if (rounding_mode == rmNearestTiesToEven || 1296 rounding_mode == rmNearestTiesToAway || 1297 (rounding_mode == rmTowardPositive && !sign) || 1298 (rounding_mode == rmTowardNegative && sign)) { 1299 category = fcInfinity; 1300 return (opStatus) (opOverflow | opInexact); 1301 } 1302 1303 /* Otherwise we become the largest finite number. */ 1304 category = fcNormal; 1305 exponent = semantics->maxExponent; 1306 APInt::tcSetLeastSignificantBits(significandParts(), partCount(), 1307 semantics->precision); 1308 1309 return opInexact; 1310 } 1311 1312 /* Returns TRUE if, when truncating the current number, with BIT the 1313 new LSB, with the given lost fraction and rounding mode, the result 1314 would need to be rounded away from zero (i.e., by increasing the 1315 signficand). This routine must work for fcZero of both signs, and 1316 fcNormal numbers. */ 1317 bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, 1318 lostFraction lost_fraction, 1319 unsigned int bit) const { 1320 /* NaNs and infinities should not have lost fractions. */ 1321 assert(isFiniteNonZero() || category == fcZero); 1322 1323 /* Current callers never pass this so we don't handle it. */ 1324 assert(lost_fraction != lfExactlyZero); 1325 1326 switch (rounding_mode) { 1327 case rmNearestTiesToAway: 1328 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; 1329 1330 case rmNearestTiesToEven: 1331 if (lost_fraction == lfMoreThanHalf) 1332 return true; 1333 1334 /* Our zeroes don't have a significand to test. */ 1335 if (lost_fraction == lfExactlyHalf && category != fcZero) 1336 return APInt::tcExtractBit(significandParts(), bit); 1337 1338 return false; 1339 1340 case rmTowardZero: 1341 return false; 1342 1343 case rmTowardPositive: 1344 return !sign; 1345 1346 case rmTowardNegative: 1347 return sign; 1348 1349 default: 1350 break; 1351 } 1352 llvm_unreachable("Invalid rounding mode found"); 1353 } 1354 1355 IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, 1356 lostFraction lost_fraction) { 1357 unsigned int omsb; /* One, not zero, based MSB. */ 1358 int exponentChange; 1359 1360 if (!isFiniteNonZero()) 1361 return opOK; 1362 1363 /* Before rounding normalize the exponent of fcNormal numbers. */ 1364 omsb = significandMSB() + 1; 1365 1366 if (omsb) { 1367 /* OMSB is numbered from 1. We want to place it in the integer 1368 bit numbered PRECISION if possible, with a compensating change in 1369 the exponent. */ 1370 exponentChange = omsb - semantics->precision; 1371 1372 /* If the resulting exponent is too high, overflow according to 1373 the rounding mode. */ 1374 if (exponent + exponentChange > semantics->maxExponent) 1375 return handleOverflow(rounding_mode); 1376 1377 /* Subnormal numbers have exponent minExponent, and their MSB 1378 is forced based on that. */ 1379 if (exponent + exponentChange < semantics->minExponent) 1380 exponentChange = semantics->minExponent - exponent; 1381 1382 /* Shifting left is easy as we don't lose precision. */ 1383 if (exponentChange < 0) { 1384 assert(lost_fraction == lfExactlyZero); 1385 1386 shiftSignificandLeft(-exponentChange); 1387 1388 return opOK; 1389 } 1390 1391 if (exponentChange > 0) { 1392 lostFraction lf; 1393 1394 /* Shift right and capture any new lost fraction. */ 1395 lf = shiftSignificandRight(exponentChange); 1396 1397 lost_fraction = combineLostFractions(lf, lost_fraction); 1398 1399 /* Keep OMSB up-to-date. */ 1400 if (omsb > (unsigned) exponentChange) 1401 omsb -= exponentChange; 1402 else 1403 omsb = 0; 1404 } 1405 } 1406 1407 /* Now round the number according to rounding_mode given the lost 1408 fraction. */ 1409 1410 /* As specified in IEEE 754, since we do not trap we do not report 1411 underflow for exact results. */ 1412 if (lost_fraction == lfExactlyZero) { 1413 /* Canonicalize zeroes. */ 1414 if (omsb == 0) 1415 category = fcZero; 1416 1417 return opOK; 1418 } 1419 1420 /* Increment the significand if we're rounding away from zero. */ 1421 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { 1422 if (omsb == 0) 1423 exponent = semantics->minExponent; 1424 1425 incrementSignificand(); 1426 omsb = significandMSB() + 1; 1427 1428 /* Did the significand increment overflow? */ 1429 if (omsb == (unsigned) semantics->precision + 1) { 1430 /* Renormalize by incrementing the exponent and shifting our 1431 significand right one. However if we already have the 1432 maximum exponent we overflow to infinity. */ 1433 if (exponent == semantics->maxExponent) { 1434 category = fcInfinity; 1435 1436 return (opStatus) (opOverflow | opInexact); 1437 } 1438 1439 shiftSignificandRight(1); 1440 1441 return opInexact; 1442 } 1443 } 1444 1445 /* The normal case - we were and are not denormal, and any 1446 significand increment above didn't overflow. */ 1447 if (omsb == semantics->precision) 1448 return opInexact; 1449 1450 /* We have a non-zero denormal. */ 1451 assert(omsb < semantics->precision); 1452 1453 /* Canonicalize zeroes. */ 1454 if (omsb == 0) 1455 category = fcZero; 1456 1457 /* The fcZero case is a denormal that underflowed to zero. */ 1458 return (opStatus) (opUnderflow | opInexact); 1459 } 1460 1461 IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, 1462 bool subtract) { 1463 switch (PackCategoriesIntoKey(category, rhs.category)) { 1464 default: 1465 llvm_unreachable(nullptr); 1466 1467 case PackCategoriesIntoKey(fcZero, fcNaN): 1468 case PackCategoriesIntoKey(fcNormal, fcNaN): 1469 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1470 assign(rhs); 1471 LLVM_FALLTHROUGH; 1472 case PackCategoriesIntoKey(fcNaN, fcZero): 1473 case PackCategoriesIntoKey(fcNaN, fcNormal): 1474 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1475 case PackCategoriesIntoKey(fcNaN, fcNaN): 1476 if (isSignaling()) { 1477 makeQuiet(); 1478 return opInvalidOp; 1479 } 1480 return rhs.isSignaling() ? opInvalidOp : opOK; 1481 1482 case PackCategoriesIntoKey(fcNormal, fcZero): 1483 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1484 case PackCategoriesIntoKey(fcInfinity, fcZero): 1485 return opOK; 1486 1487 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1488 case PackCategoriesIntoKey(fcZero, fcInfinity): 1489 category = fcInfinity; 1490 sign = rhs.sign ^ subtract; 1491 return opOK; 1492 1493 case PackCategoriesIntoKey(fcZero, fcNormal): 1494 assign(rhs); 1495 sign = rhs.sign ^ subtract; 1496 return opOK; 1497 1498 case PackCategoriesIntoKey(fcZero, fcZero): 1499 /* Sign depends on rounding mode; handled by caller. */ 1500 return opOK; 1501 1502 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1503 /* Differently signed infinities can only be validly 1504 subtracted. */ 1505 if (((sign ^ rhs.sign)!=0) != subtract) { 1506 makeNaN(); 1507 return opInvalidOp; 1508 } 1509 1510 return opOK; 1511 1512 case PackCategoriesIntoKey(fcNormal, fcNormal): 1513 return opDivByZero; 1514 } 1515 } 1516 1517 /* Add or subtract two normal numbers. */ 1518 lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, 1519 bool subtract) { 1520 integerPart carry; 1521 lostFraction lost_fraction; 1522 int bits; 1523 1524 /* Determine if the operation on the absolute values is effectively 1525 an addition or subtraction. */ 1526 subtract ^= static_cast<bool>(sign ^ rhs.sign); 1527 1528 /* Are we bigger exponent-wise than the RHS? */ 1529 bits = exponent - rhs.exponent; 1530 1531 /* Subtraction is more subtle than one might naively expect. */ 1532 if (subtract) { 1533 IEEEFloat temp_rhs(rhs); 1534 1535 if (bits == 0) 1536 lost_fraction = lfExactlyZero; 1537 else if (bits > 0) { 1538 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); 1539 shiftSignificandLeft(1); 1540 } else { 1541 lost_fraction = shiftSignificandRight(-bits - 1); 1542 temp_rhs.shiftSignificandLeft(1); 1543 } 1544 1545 // Should we reverse the subtraction. 1546 if (compareAbsoluteValue(temp_rhs) == cmpLessThan) { 1547 carry = temp_rhs.subtractSignificand 1548 (*this, lost_fraction != lfExactlyZero); 1549 copySignificand(temp_rhs); 1550 sign = !sign; 1551 } else { 1552 carry = subtractSignificand 1553 (temp_rhs, lost_fraction != lfExactlyZero); 1554 } 1555 1556 /* Invert the lost fraction - it was on the RHS and 1557 subtracted. */ 1558 if (lost_fraction == lfLessThanHalf) 1559 lost_fraction = lfMoreThanHalf; 1560 else if (lost_fraction == lfMoreThanHalf) 1561 lost_fraction = lfLessThanHalf; 1562 1563 /* The code above is intended to ensure that no borrow is 1564 necessary. */ 1565 assert(!carry); 1566 (void)carry; 1567 } else { 1568 if (bits > 0) { 1569 IEEEFloat temp_rhs(rhs); 1570 1571 lost_fraction = temp_rhs.shiftSignificandRight(bits); 1572 carry = addSignificand(temp_rhs); 1573 } else { 1574 lost_fraction = shiftSignificandRight(-bits); 1575 carry = addSignificand(rhs); 1576 } 1577 1578 /* We have a guard bit; generating a carry cannot happen. */ 1579 assert(!carry); 1580 (void)carry; 1581 } 1582 1583 return lost_fraction; 1584 } 1585 1586 IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { 1587 switch (PackCategoriesIntoKey(category, rhs.category)) { 1588 default: 1589 llvm_unreachable(nullptr); 1590 1591 case PackCategoriesIntoKey(fcZero, fcNaN): 1592 case PackCategoriesIntoKey(fcNormal, fcNaN): 1593 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1594 assign(rhs); 1595 sign = false; 1596 LLVM_FALLTHROUGH; 1597 case PackCategoriesIntoKey(fcNaN, fcZero): 1598 case PackCategoriesIntoKey(fcNaN, fcNormal): 1599 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1600 case PackCategoriesIntoKey(fcNaN, fcNaN): 1601 sign ^= rhs.sign; // restore the original sign 1602 if (isSignaling()) { 1603 makeQuiet(); 1604 return opInvalidOp; 1605 } 1606 return rhs.isSignaling() ? opInvalidOp : opOK; 1607 1608 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1609 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1610 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1611 category = fcInfinity; 1612 return opOK; 1613 1614 case PackCategoriesIntoKey(fcZero, fcNormal): 1615 case PackCategoriesIntoKey(fcNormal, fcZero): 1616 case PackCategoriesIntoKey(fcZero, fcZero): 1617 category = fcZero; 1618 return opOK; 1619 1620 case PackCategoriesIntoKey(fcZero, fcInfinity): 1621 case PackCategoriesIntoKey(fcInfinity, fcZero): 1622 makeNaN(); 1623 return opInvalidOp; 1624 1625 case PackCategoriesIntoKey(fcNormal, fcNormal): 1626 return opOK; 1627 } 1628 } 1629 1630 IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { 1631 switch (PackCategoriesIntoKey(category, rhs.category)) { 1632 default: 1633 llvm_unreachable(nullptr); 1634 1635 case PackCategoriesIntoKey(fcZero, fcNaN): 1636 case PackCategoriesIntoKey(fcNormal, fcNaN): 1637 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1638 assign(rhs); 1639 sign = false; 1640 LLVM_FALLTHROUGH; 1641 case PackCategoriesIntoKey(fcNaN, fcZero): 1642 case PackCategoriesIntoKey(fcNaN, fcNormal): 1643 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1644 case PackCategoriesIntoKey(fcNaN, fcNaN): 1645 sign ^= rhs.sign; // restore the original sign 1646 if (isSignaling()) { 1647 makeQuiet(); 1648 return opInvalidOp; 1649 } 1650 return rhs.isSignaling() ? opInvalidOp : opOK; 1651 1652 case PackCategoriesIntoKey(fcInfinity, fcZero): 1653 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1654 case PackCategoriesIntoKey(fcZero, fcInfinity): 1655 case PackCategoriesIntoKey(fcZero, fcNormal): 1656 return opOK; 1657 1658 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1659 category = fcZero; 1660 return opOK; 1661 1662 case PackCategoriesIntoKey(fcNormal, fcZero): 1663 category = fcInfinity; 1664 return opDivByZero; 1665 1666 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1667 case PackCategoriesIntoKey(fcZero, fcZero): 1668 makeNaN(); 1669 return opInvalidOp; 1670 1671 case PackCategoriesIntoKey(fcNormal, fcNormal): 1672 return opOK; 1673 } 1674 } 1675 1676 IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { 1677 switch (PackCategoriesIntoKey(category, rhs.category)) { 1678 default: 1679 llvm_unreachable(nullptr); 1680 1681 case PackCategoriesIntoKey(fcZero, fcNaN): 1682 case PackCategoriesIntoKey(fcNormal, fcNaN): 1683 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1684 assign(rhs); 1685 LLVM_FALLTHROUGH; 1686 case PackCategoriesIntoKey(fcNaN, fcZero): 1687 case PackCategoriesIntoKey(fcNaN, fcNormal): 1688 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1689 case PackCategoriesIntoKey(fcNaN, fcNaN): 1690 if (isSignaling()) { 1691 makeQuiet(); 1692 return opInvalidOp; 1693 } 1694 return rhs.isSignaling() ? opInvalidOp : opOK; 1695 1696 case PackCategoriesIntoKey(fcZero, fcInfinity): 1697 case PackCategoriesIntoKey(fcZero, fcNormal): 1698 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1699 return opOK; 1700 1701 case PackCategoriesIntoKey(fcNormal, fcZero): 1702 case PackCategoriesIntoKey(fcInfinity, fcZero): 1703 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1704 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1705 case PackCategoriesIntoKey(fcZero, fcZero): 1706 makeNaN(); 1707 return opInvalidOp; 1708 1709 case PackCategoriesIntoKey(fcNormal, fcNormal): 1710 return opOK; 1711 } 1712 } 1713 1714 IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) { 1715 switch (PackCategoriesIntoKey(category, rhs.category)) { 1716 default: 1717 llvm_unreachable(nullptr); 1718 1719 case PackCategoriesIntoKey(fcZero, fcNaN): 1720 case PackCategoriesIntoKey(fcNormal, fcNaN): 1721 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1722 assign(rhs); 1723 LLVM_FALLTHROUGH; 1724 case PackCategoriesIntoKey(fcNaN, fcZero): 1725 case PackCategoriesIntoKey(fcNaN, fcNormal): 1726 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1727 case PackCategoriesIntoKey(fcNaN, fcNaN): 1728 if (isSignaling()) { 1729 makeQuiet(); 1730 return opInvalidOp; 1731 } 1732 return rhs.isSignaling() ? opInvalidOp : opOK; 1733 1734 case PackCategoriesIntoKey(fcZero, fcInfinity): 1735 case PackCategoriesIntoKey(fcZero, fcNormal): 1736 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1737 return opOK; 1738 1739 case PackCategoriesIntoKey(fcNormal, fcZero): 1740 case PackCategoriesIntoKey(fcInfinity, fcZero): 1741 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1742 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1743 case PackCategoriesIntoKey(fcZero, fcZero): 1744 makeNaN(); 1745 return opInvalidOp; 1746 1747 case PackCategoriesIntoKey(fcNormal, fcNormal): 1748 return opDivByZero; // fake status, indicating this is not a special case 1749 } 1750 } 1751 1752 /* Change sign. */ 1753 void IEEEFloat::changeSign() { 1754 /* Look mummy, this one's easy. */ 1755 sign = !sign; 1756 } 1757 1758 /* Normalized addition or subtraction. */ 1759 IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, 1760 roundingMode rounding_mode, 1761 bool subtract) { 1762 opStatus fs; 1763 1764 fs = addOrSubtractSpecials(rhs, subtract); 1765 1766 /* This return code means it was not a simple case. */ 1767 if (fs == opDivByZero) { 1768 lostFraction lost_fraction; 1769 1770 lost_fraction = addOrSubtractSignificand(rhs, subtract); 1771 fs = normalize(rounding_mode, lost_fraction); 1772 1773 /* Can only be zero if we lost no fraction. */ 1774 assert(category != fcZero || lost_fraction == lfExactlyZero); 1775 } 1776 1777 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1778 positive zero unless rounding to minus infinity, except that 1779 adding two like-signed zeroes gives that zero. */ 1780 if (category == fcZero) { 1781 if (rhs.category != fcZero || (sign == rhs.sign) == subtract) 1782 sign = (rounding_mode == rmTowardNegative); 1783 } 1784 1785 return fs; 1786 } 1787 1788 /* Normalized addition. */ 1789 IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, 1790 roundingMode rounding_mode) { 1791 return addOrSubtract(rhs, rounding_mode, false); 1792 } 1793 1794 /* Normalized subtraction. */ 1795 IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, 1796 roundingMode rounding_mode) { 1797 return addOrSubtract(rhs, rounding_mode, true); 1798 } 1799 1800 /* Normalized multiply. */ 1801 IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, 1802 roundingMode rounding_mode) { 1803 opStatus fs; 1804 1805 sign ^= rhs.sign; 1806 fs = multiplySpecials(rhs); 1807 1808 if (isFiniteNonZero()) { 1809 lostFraction lost_fraction = multiplySignificand(rhs); 1810 fs = normalize(rounding_mode, lost_fraction); 1811 if (lost_fraction != lfExactlyZero) 1812 fs = (opStatus) (fs | opInexact); 1813 } 1814 1815 return fs; 1816 } 1817 1818 /* Normalized divide. */ 1819 IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, 1820 roundingMode rounding_mode) { 1821 opStatus fs; 1822 1823 sign ^= rhs.sign; 1824 fs = divideSpecials(rhs); 1825 1826 if (isFiniteNonZero()) { 1827 lostFraction lost_fraction = divideSignificand(rhs); 1828 fs = normalize(rounding_mode, lost_fraction); 1829 if (lost_fraction != lfExactlyZero) 1830 fs = (opStatus) (fs | opInexact); 1831 } 1832 1833 return fs; 1834 } 1835 1836 /* Normalized remainder. */ 1837 IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { 1838 opStatus fs; 1839 unsigned int origSign = sign; 1840 1841 // First handle the special cases. 1842 fs = remainderSpecials(rhs); 1843 if (fs != opDivByZero) 1844 return fs; 1845 1846 fs = opOK; 1847 1848 // Make sure the current value is less than twice the denom. If the addition 1849 // did not succeed (an overflow has happened), which means that the finite 1850 // value we currently posses must be less than twice the denom (as we are 1851 // using the same semantics). 1852 IEEEFloat P2 = rhs; 1853 if (P2.add(rhs, rmNearestTiesToEven) == opOK) { 1854 fs = mod(P2); 1855 assert(fs == opOK); 1856 } 1857 1858 // Lets work with absolute numbers. 1859 IEEEFloat P = rhs; 1860 P.sign = false; 1861 sign = false; 1862 1863 // 1864 // To calculate the remainder we use the following scheme. 1865 // 1866 // The remainder is defained as follows: 1867 // 1868 // remainder = numer - rquot * denom = x - r * p 1869 // 1870 // Where r is the result of: x/p, rounded toward the nearest integral value 1871 // (with halfway cases rounded toward the even number). 1872 // 1873 // Currently, (after x mod 2p): 1874 // r is the number of 2p's present inside x, which is inherently, an even 1875 // number of p's. 1876 // 1877 // We may split the remaining calculation into 4 options: 1878 // - if x < 0.5p then we round to the nearest number with is 0, and are done. 1879 // - if x == 0.5p then we round to the nearest even number which is 0, and we 1880 // are done as well. 1881 // - if 0.5p < x < p then we round to nearest number which is 1, and we have 1882 // to subtract 1p at least once. 1883 // - if x >= p then we must subtract p at least once, as x must be a 1884 // remainder. 1885 // 1886 // By now, we were done, or we added 1 to r, which in turn, now an odd number. 1887 // 1888 // We can now split the remaining calculation to the following 3 options: 1889 // - if x < 0.5p then we round to the nearest number with is 0, and are done. 1890 // - if x == 0.5p then we round to the nearest even number. As r is odd, we 1891 // must round up to the next even number. so we must subtract p once more. 1892 // - if x > 0.5p (and inherently x < p) then we must round r up to the next 1893 // integral, and subtract p once more. 1894 // 1895 1896 // Extend the semantics to prevent an overflow/underflow or inexact result. 1897 bool losesInfo; 1898 fltSemantics extendedSemantics = *semantics; 1899 extendedSemantics.maxExponent++; 1900 extendedSemantics.minExponent--; 1901 extendedSemantics.precision += 2; 1902 1903 IEEEFloat VEx = *this; 1904 fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 1905 assert(fs == opOK && !losesInfo); 1906 IEEEFloat PEx = P; 1907 fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 1908 assert(fs == opOK && !losesInfo); 1909 1910 // It is simpler to work with 2x instead of 0.5p, and we do not need to lose 1911 // any fraction. 1912 fs = VEx.add(VEx, rmNearestTiesToEven); 1913 assert(fs == opOK); 1914 1915 if (VEx.compare(PEx) == cmpGreaterThan) { 1916 fs = subtract(P, rmNearestTiesToEven); 1917 assert(fs == opOK); 1918 1919 // Make VEx = this.add(this), but because we have different semantics, we do 1920 // not want to `convert` again, so we just subtract PEx twice (which equals 1921 // to the desired value). 1922 fs = VEx.subtract(PEx, rmNearestTiesToEven); 1923 assert(fs == opOK); 1924 fs = VEx.subtract(PEx, rmNearestTiesToEven); 1925 assert(fs == opOK); 1926 1927 cmpResult result = VEx.compare(PEx); 1928 if (result == cmpGreaterThan || result == cmpEqual) { 1929 fs = subtract(P, rmNearestTiesToEven); 1930 assert(fs == opOK); 1931 } 1932 } 1933 1934 if (isZero()) 1935 sign = origSign; // IEEE754 requires this 1936 else 1937 sign ^= origSign; 1938 return fs; 1939 } 1940 1941 /* Normalized llvm frem (C fmod). */ 1942 IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { 1943 opStatus fs; 1944 fs = modSpecials(rhs); 1945 unsigned int origSign = sign; 1946 1947 while (isFiniteNonZero() && rhs.isFiniteNonZero() && 1948 compareAbsoluteValue(rhs) != cmpLessThan) { 1949 IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); 1950 if (compareAbsoluteValue(V) == cmpLessThan) 1951 V = scalbn(V, -1, rmNearestTiesToEven); 1952 V.sign = sign; 1953 1954 fs = subtract(V, rmNearestTiesToEven); 1955 assert(fs==opOK); 1956 } 1957 if (isZero()) 1958 sign = origSign; // fmod requires this 1959 return fs; 1960 } 1961 1962 /* Normalized fused-multiply-add. */ 1963 IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, 1964 const IEEEFloat &addend, 1965 roundingMode rounding_mode) { 1966 opStatus fs; 1967 1968 /* Post-multiplication sign, before addition. */ 1969 sign ^= multiplicand.sign; 1970 1971 /* If and only if all arguments are normal do we need to do an 1972 extended-precision calculation. */ 1973 if (isFiniteNonZero() && 1974 multiplicand.isFiniteNonZero() && 1975 addend.isFinite()) { 1976 lostFraction lost_fraction; 1977 1978 lost_fraction = multiplySignificand(multiplicand, addend); 1979 fs = normalize(rounding_mode, lost_fraction); 1980 if (lost_fraction != lfExactlyZero) 1981 fs = (opStatus) (fs | opInexact); 1982 1983 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1984 positive zero unless rounding to minus infinity, except that 1985 adding two like-signed zeroes gives that zero. */ 1986 if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) 1987 sign = (rounding_mode == rmTowardNegative); 1988 } else { 1989 fs = multiplySpecials(multiplicand); 1990 1991 /* FS can only be opOK or opInvalidOp. There is no more work 1992 to do in the latter case. The IEEE-754R standard says it is 1993 implementation-defined in this case whether, if ADDEND is a 1994 quiet NaN, we raise invalid op; this implementation does so. 1995 1996 If we need to do the addition we can do so with normal 1997 precision. */ 1998 if (fs == opOK) 1999 fs = addOrSubtract(addend, rounding_mode, false); 2000 } 2001 2002 return fs; 2003 } 2004 2005 /* Rounding-mode correct round to integral value. */ 2006 IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { 2007 opStatus fs; 2008 2009 if (isInfinity()) 2010 // [IEEE Std 754-2008 6.1]: 2011 // The behavior of infinity in floating-point arithmetic is derived from the 2012 // limiting cases of real arithmetic with operands of arbitrarily 2013 // large magnitude, when such a limit exists. 2014 // ... 2015 // Operations on infinite operands are usually exact and therefore signal no 2016 // exceptions ... 2017 return opOK; 2018 2019 if (isNaN()) { 2020 if (isSignaling()) { 2021 // [IEEE Std 754-2008 6.2]: 2022 // Under default exception handling, any operation signaling an invalid 2023 // operation exception and for which a floating-point result is to be 2024 // delivered shall deliver a quiet NaN. 2025 makeQuiet(); 2026 // [IEEE Std 754-2008 6.2]: 2027 // Signaling NaNs shall be reserved operands that, under default exception 2028 // handling, signal the invalid operation exception(see 7.2) for every 2029 // general-computational and signaling-computational operation except for 2030 // the conversions described in 5.12. 2031 return opInvalidOp; 2032 } else { 2033 // [IEEE Std 754-2008 6.2]: 2034 // For an operation with quiet NaN inputs, other than maximum and minimum 2035 // operations, if a floating-point result is to be delivered the result 2036 // shall be a quiet NaN which should be one of the input NaNs. 2037 // ... 2038 // Every general-computational and quiet-computational operation involving 2039 // one or more input NaNs, none of them signaling, shall signal no 2040 // exception, except fusedMultiplyAdd might signal the invalid operation 2041 // exception(see 7.2). 2042 return opOK; 2043 } 2044 } 2045 2046 if (isZero()) { 2047 // [IEEE Std 754-2008 6.3]: 2048 // ... the sign of the result of conversions, the quantize operation, the 2049 // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is 2050 // the sign of the first or only operand. 2051 return opOK; 2052 } 2053 2054 // If the exponent is large enough, we know that this value is already 2055 // integral, and the arithmetic below would potentially cause it to saturate 2056 // to +/-Inf. Bail out early instead. 2057 if (exponent+1 >= (int)semanticsPrecision(*semantics)) 2058 return opOK; 2059 2060 // The algorithm here is quite simple: we add 2^(p-1), where p is the 2061 // precision of our format, and then subtract it back off again. The choice 2062 // of rounding modes for the addition/subtraction determines the rounding mode 2063 // for our integral rounding as well. 2064 // NOTE: When the input value is negative, we do subtraction followed by 2065 // addition instead. 2066 APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); 2067 IntegerConstant <<= semanticsPrecision(*semantics)-1; 2068 IEEEFloat MagicConstant(*semantics); 2069 fs = MagicConstant.convertFromAPInt(IntegerConstant, false, 2070 rmNearestTiesToEven); 2071 assert(fs == opOK); 2072 MagicConstant.sign = sign; 2073 2074 // Preserve the input sign so that we can handle the case of zero result 2075 // correctly. 2076 bool inputSign = isNegative(); 2077 2078 fs = add(MagicConstant, rounding_mode); 2079 2080 // Current value and 'MagicConstant' are both integers, so the result of the 2081 // subtraction is always exact according to Sterbenz' lemma. 2082 subtract(MagicConstant, rounding_mode); 2083 2084 // Restore the input sign. 2085 if (inputSign != isNegative()) 2086 changeSign(); 2087 2088 return fs; 2089 } 2090 2091 2092 /* Comparison requires normalized numbers. */ 2093 IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { 2094 cmpResult result; 2095 2096 assert(semantics == rhs.semantics); 2097 2098 switch (PackCategoriesIntoKey(category, rhs.category)) { 2099 default: 2100 llvm_unreachable(nullptr); 2101 2102 case PackCategoriesIntoKey(fcNaN, fcZero): 2103 case PackCategoriesIntoKey(fcNaN, fcNormal): 2104 case PackCategoriesIntoKey(fcNaN, fcInfinity): 2105 case PackCategoriesIntoKey(fcNaN, fcNaN): 2106 case PackCategoriesIntoKey(fcZero, fcNaN): 2107 case PackCategoriesIntoKey(fcNormal, fcNaN): 2108 case PackCategoriesIntoKey(fcInfinity, fcNaN): 2109 return cmpUnordered; 2110 2111 case PackCategoriesIntoKey(fcInfinity, fcNormal): 2112 case PackCategoriesIntoKey(fcInfinity, fcZero): 2113 case PackCategoriesIntoKey(fcNormal, fcZero): 2114 if (sign) 2115 return cmpLessThan; 2116 else 2117 return cmpGreaterThan; 2118 2119 case PackCategoriesIntoKey(fcNormal, fcInfinity): 2120 case PackCategoriesIntoKey(fcZero, fcInfinity): 2121 case PackCategoriesIntoKey(fcZero, fcNormal): 2122 if (rhs.sign) 2123 return cmpGreaterThan; 2124 else 2125 return cmpLessThan; 2126 2127 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 2128 if (sign == rhs.sign) 2129 return cmpEqual; 2130 else if (sign) 2131 return cmpLessThan; 2132 else 2133 return cmpGreaterThan; 2134 2135 case PackCategoriesIntoKey(fcZero, fcZero): 2136 return cmpEqual; 2137 2138 case PackCategoriesIntoKey(fcNormal, fcNormal): 2139 break; 2140 } 2141 2142 /* Two normal numbers. Do they have the same sign? */ 2143 if (sign != rhs.sign) { 2144 if (sign) 2145 result = cmpLessThan; 2146 else 2147 result = cmpGreaterThan; 2148 } else { 2149 /* Compare absolute values; invert result if negative. */ 2150 result = compareAbsoluteValue(rhs); 2151 2152 if (sign) { 2153 if (result == cmpLessThan) 2154 result = cmpGreaterThan; 2155 else if (result == cmpGreaterThan) 2156 result = cmpLessThan; 2157 } 2158 } 2159 2160 return result; 2161 } 2162 2163 /// IEEEFloat::convert - convert a value of one floating point type to another. 2164 /// The return value corresponds to the IEEE754 exceptions. *losesInfo 2165 /// records whether the transformation lost information, i.e. whether 2166 /// converting the result back to the original type will produce the 2167 /// original value (this is almost the same as return value==fsOK, but there 2168 /// are edge cases where this is not so). 2169 2170 IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, 2171 roundingMode rounding_mode, 2172 bool *losesInfo) { 2173 lostFraction lostFraction; 2174 unsigned int newPartCount, oldPartCount; 2175 opStatus fs; 2176 int shift; 2177 const fltSemantics &fromSemantics = *semantics; 2178 2179 lostFraction = lfExactlyZero; 2180 newPartCount = partCountForBits(toSemantics.precision + 1); 2181 oldPartCount = partCount(); 2182 shift = toSemantics.precision - fromSemantics.precision; 2183 2184 bool X86SpecialNan = false; 2185 if (&fromSemantics == &semX87DoubleExtended && 2186 &toSemantics != &semX87DoubleExtended && category == fcNaN && 2187 (!(*significandParts() & 0x8000000000000000ULL) || 2188 !(*significandParts() & 0x4000000000000000ULL))) { 2189 // x86 has some unusual NaNs which cannot be represented in any other 2190 // format; note them here. 2191 X86SpecialNan = true; 2192 } 2193 2194 // If this is a truncation of a denormal number, and the target semantics 2195 // has larger exponent range than the source semantics (this can happen 2196 // when truncating from PowerPC double-double to double format), the 2197 // right shift could lose result mantissa bits. Adjust exponent instead 2198 // of performing excessive shift. 2199 if (shift < 0 && isFiniteNonZero()) { 2200 int exponentChange = significandMSB() + 1 - fromSemantics.precision; 2201 if (exponent + exponentChange < toSemantics.minExponent) 2202 exponentChange = toSemantics.minExponent - exponent; 2203 if (exponentChange < shift) 2204 exponentChange = shift; 2205 if (exponentChange < 0) { 2206 shift -= exponentChange; 2207 exponent += exponentChange; 2208 } 2209 } 2210 2211 // If this is a truncation, perform the shift before we narrow the storage. 2212 if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) 2213 lostFraction = shiftRight(significandParts(), oldPartCount, -shift); 2214 2215 // Fix the storage so it can hold to new value. 2216 if (newPartCount > oldPartCount) { 2217 // The new type requires more storage; make it available. 2218 integerPart *newParts; 2219 newParts = new integerPart[newPartCount]; 2220 APInt::tcSet(newParts, 0, newPartCount); 2221 if (isFiniteNonZero() || category==fcNaN) 2222 APInt::tcAssign(newParts, significandParts(), oldPartCount); 2223 freeSignificand(); 2224 significand.parts = newParts; 2225 } else if (newPartCount == 1 && oldPartCount != 1) { 2226 // Switch to built-in storage for a single part. 2227 integerPart newPart = 0; 2228 if (isFiniteNonZero() || category==fcNaN) 2229 newPart = significandParts()[0]; 2230 freeSignificand(); 2231 significand.part = newPart; 2232 } 2233 2234 // Now that we have the right storage, switch the semantics. 2235 semantics = &toSemantics; 2236 2237 // If this is an extension, perform the shift now that the storage is 2238 // available. 2239 if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) 2240 APInt::tcShiftLeft(significandParts(), newPartCount, shift); 2241 2242 if (isFiniteNonZero()) { 2243 fs = normalize(rounding_mode, lostFraction); 2244 *losesInfo = (fs != opOK); 2245 } else if (category == fcNaN) { 2246 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; 2247 2248 // For x87 extended precision, we want to make a NaN, not a special NaN if 2249 // the input wasn't special either. 2250 if (!X86SpecialNan && semantics == &semX87DoubleExtended) 2251 APInt::tcSetBit(significandParts(), semantics->precision - 1); 2252 2253 // Convert of sNaN creates qNaN and raises an exception (invalid op). 2254 // This also guarantees that a sNaN does not become Inf on a truncation 2255 // that loses all payload bits. 2256 if (isSignaling()) { 2257 makeQuiet(); 2258 fs = opInvalidOp; 2259 } else { 2260 fs = opOK; 2261 } 2262 } else { 2263 *losesInfo = false; 2264 fs = opOK; 2265 } 2266 2267 return fs; 2268 } 2269 2270 /* Convert a floating point number to an integer according to the 2271 rounding mode. If the rounded integer value is out of range this 2272 returns an invalid operation exception and the contents of the 2273 destination parts are unspecified. If the rounded value is in 2274 range but the floating point number is not the exact integer, the C 2275 standard doesn't require an inexact exception to be raised. IEEE 2276 854 does require it so we do that. 2277 2278 Note that for conversions to integer type the C standard requires 2279 round-to-zero to always be used. */ 2280 IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( 2281 MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, 2282 roundingMode rounding_mode, bool *isExact) const { 2283 lostFraction lost_fraction; 2284 const integerPart *src; 2285 unsigned int dstPartsCount, truncatedBits; 2286 2287 *isExact = false; 2288 2289 /* Handle the three special cases first. */ 2290 if (category == fcInfinity || category == fcNaN) 2291 return opInvalidOp; 2292 2293 dstPartsCount = partCountForBits(width); 2294 assert(dstPartsCount <= parts.size() && "Integer too big"); 2295 2296 if (category == fcZero) { 2297 APInt::tcSet(parts.data(), 0, dstPartsCount); 2298 // Negative zero can't be represented as an int. 2299 *isExact = !sign; 2300 return opOK; 2301 } 2302 2303 src = significandParts(); 2304 2305 /* Step 1: place our absolute value, with any fraction truncated, in 2306 the destination. */ 2307 if (exponent < 0) { 2308 /* Our absolute value is less than one; truncate everything. */ 2309 APInt::tcSet(parts.data(), 0, dstPartsCount); 2310 /* For exponent -1 the integer bit represents .5, look at that. 2311 For smaller exponents leftmost truncated bit is 0. */ 2312 truncatedBits = semantics->precision -1U - exponent; 2313 } else { 2314 /* We want the most significant (exponent + 1) bits; the rest are 2315 truncated. */ 2316 unsigned int bits = exponent + 1U; 2317 2318 /* Hopelessly large in magnitude? */ 2319 if (bits > width) 2320 return opInvalidOp; 2321 2322 if (bits < semantics->precision) { 2323 /* We truncate (semantics->precision - bits) bits. */ 2324 truncatedBits = semantics->precision - bits; 2325 APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); 2326 } else { 2327 /* We want at least as many bits as are available. */ 2328 APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, 2329 0); 2330 APInt::tcShiftLeft(parts.data(), dstPartsCount, 2331 bits - semantics->precision); 2332 truncatedBits = 0; 2333 } 2334 } 2335 2336 /* Step 2: work out any lost fraction, and increment the absolute 2337 value if we would round away from zero. */ 2338 if (truncatedBits) { 2339 lost_fraction = lostFractionThroughTruncation(src, partCount(), 2340 truncatedBits); 2341 if (lost_fraction != lfExactlyZero && 2342 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { 2343 if (APInt::tcIncrement(parts.data(), dstPartsCount)) 2344 return opInvalidOp; /* Overflow. */ 2345 } 2346 } else { 2347 lost_fraction = lfExactlyZero; 2348 } 2349 2350 /* Step 3: check if we fit in the destination. */ 2351 unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; 2352 2353 if (sign) { 2354 if (!isSigned) { 2355 /* Negative numbers cannot be represented as unsigned. */ 2356 if (omsb != 0) 2357 return opInvalidOp; 2358 } else { 2359 /* It takes omsb bits to represent the unsigned integer value. 2360 We lose a bit for the sign, but care is needed as the 2361 maximally negative integer is a special case. */ 2362 if (omsb == width && 2363 APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) 2364 return opInvalidOp; 2365 2366 /* This case can happen because of rounding. */ 2367 if (omsb > width) 2368 return opInvalidOp; 2369 } 2370 2371 APInt::tcNegate (parts.data(), dstPartsCount); 2372 } else { 2373 if (omsb >= width + !isSigned) 2374 return opInvalidOp; 2375 } 2376 2377 if (lost_fraction == lfExactlyZero) { 2378 *isExact = true; 2379 return opOK; 2380 } else 2381 return opInexact; 2382 } 2383 2384 /* Same as convertToSignExtendedInteger, except we provide 2385 deterministic values in case of an invalid operation exception, 2386 namely zero for NaNs and the minimal or maximal value respectively 2387 for underflow or overflow. 2388 The *isExact output tells whether the result is exact, in the sense 2389 that converting it back to the original floating point type produces 2390 the original value. This is almost equivalent to result==opOK, 2391 except for negative zeroes. 2392 */ 2393 IEEEFloat::opStatus 2394 IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, 2395 unsigned int width, bool isSigned, 2396 roundingMode rounding_mode, bool *isExact) const { 2397 opStatus fs; 2398 2399 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 2400 isExact); 2401 2402 if (fs == opInvalidOp) { 2403 unsigned int bits, dstPartsCount; 2404 2405 dstPartsCount = partCountForBits(width); 2406 assert(dstPartsCount <= parts.size() && "Integer too big"); 2407 2408 if (category == fcNaN) 2409 bits = 0; 2410 else if (sign) 2411 bits = isSigned; 2412 else 2413 bits = width - isSigned; 2414 2415 APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); 2416 if (sign && isSigned) 2417 APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); 2418 } 2419 2420 return fs; 2421 } 2422 2423 /* Convert an unsigned integer SRC to a floating point number, 2424 rounding according to ROUNDING_MODE. The sign of the floating 2425 point number is not modified. */ 2426 IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( 2427 const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { 2428 unsigned int omsb, precision, dstCount; 2429 integerPart *dst; 2430 lostFraction lost_fraction; 2431 2432 category = fcNormal; 2433 omsb = APInt::tcMSB(src, srcCount) + 1; 2434 dst = significandParts(); 2435 dstCount = partCount(); 2436 precision = semantics->precision; 2437 2438 /* We want the most significant PRECISION bits of SRC. There may not 2439 be that many; extract what we can. */ 2440 if (precision <= omsb) { 2441 exponent = omsb - 1; 2442 lost_fraction = lostFractionThroughTruncation(src, srcCount, 2443 omsb - precision); 2444 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); 2445 } else { 2446 exponent = precision - 1; 2447 lost_fraction = lfExactlyZero; 2448 APInt::tcExtract(dst, dstCount, src, omsb, 0); 2449 } 2450 2451 return normalize(rounding_mode, lost_fraction); 2452 } 2453 2454 IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, 2455 roundingMode rounding_mode) { 2456 unsigned int partCount = Val.getNumWords(); 2457 APInt api = Val; 2458 2459 sign = false; 2460 if (isSigned && api.isNegative()) { 2461 sign = true; 2462 api = -api; 2463 } 2464 2465 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2466 } 2467 2468 /* Convert a two's complement integer SRC to a floating point number, 2469 rounding according to ROUNDING_MODE. ISSIGNED is true if the 2470 integer is signed, in which case it must be sign-extended. */ 2471 IEEEFloat::opStatus 2472 IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, 2473 unsigned int srcCount, bool isSigned, 2474 roundingMode rounding_mode) { 2475 opStatus status; 2476 2477 if (isSigned && 2478 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { 2479 integerPart *copy; 2480 2481 /* If we're signed and negative negate a copy. */ 2482 sign = true; 2483 copy = new integerPart[srcCount]; 2484 APInt::tcAssign(copy, src, srcCount); 2485 APInt::tcNegate(copy, srcCount); 2486 status = convertFromUnsignedParts(copy, srcCount, rounding_mode); 2487 delete [] copy; 2488 } else { 2489 sign = false; 2490 status = convertFromUnsignedParts(src, srcCount, rounding_mode); 2491 } 2492 2493 return status; 2494 } 2495 2496 /* FIXME: should this just take a const APInt reference? */ 2497 IEEEFloat::opStatus 2498 IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, 2499 unsigned int width, bool isSigned, 2500 roundingMode rounding_mode) { 2501 unsigned int partCount = partCountForBits(width); 2502 APInt api = APInt(width, makeArrayRef(parts, partCount)); 2503 2504 sign = false; 2505 if (isSigned && APInt::tcExtractBit(parts, width - 1)) { 2506 sign = true; 2507 api = -api; 2508 } 2509 2510 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2511 } 2512 2513 Expected<IEEEFloat::opStatus> 2514 IEEEFloat::convertFromHexadecimalString(StringRef s, 2515 roundingMode rounding_mode) { 2516 lostFraction lost_fraction = lfExactlyZero; 2517 2518 category = fcNormal; 2519 zeroSignificand(); 2520 exponent = 0; 2521 2522 integerPart *significand = significandParts(); 2523 unsigned partsCount = partCount(); 2524 unsigned bitPos = partsCount * integerPartWidth; 2525 bool computedTrailingFraction = false; 2526 2527 // Skip leading zeroes and any (hexa)decimal point. 2528 StringRef::iterator begin = s.begin(); 2529 StringRef::iterator end = s.end(); 2530 StringRef::iterator dot; 2531 auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); 2532 if (!PtrOrErr) 2533 return PtrOrErr.takeError(); 2534 StringRef::iterator p = *PtrOrErr; 2535 StringRef::iterator firstSignificantDigit = p; 2536 2537 while (p != end) { 2538 integerPart hex_value; 2539 2540 if (*p == '.') { 2541 if (dot != end) 2542 return createError("String contains multiple dots"); 2543 dot = p++; 2544 continue; 2545 } 2546 2547 hex_value = hexDigitValue(*p); 2548 if (hex_value == -1U) 2549 break; 2550 2551 p++; 2552 2553 // Store the number while we have space. 2554 if (bitPos) { 2555 bitPos -= 4; 2556 hex_value <<= bitPos % integerPartWidth; 2557 significand[bitPos / integerPartWidth] |= hex_value; 2558 } else if (!computedTrailingFraction) { 2559 auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value); 2560 if (!FractOrErr) 2561 return FractOrErr.takeError(); 2562 lost_fraction = *FractOrErr; 2563 computedTrailingFraction = true; 2564 } 2565 } 2566 2567 /* Hex floats require an exponent but not a hexadecimal point. */ 2568 if (p == end) 2569 return createError("Hex strings require an exponent"); 2570 if (*p != 'p' && *p != 'P') 2571 return createError("Invalid character in significand"); 2572 if (p == begin) 2573 return createError("Significand has no digits"); 2574 if (dot != end && p - begin == 1) 2575 return createError("Significand has no digits"); 2576 2577 /* Ignore the exponent if we are zero. */ 2578 if (p != firstSignificantDigit) { 2579 int expAdjustment; 2580 2581 /* Implicit hexadecimal point? */ 2582 if (dot == end) 2583 dot = p; 2584 2585 /* Calculate the exponent adjustment implicit in the number of 2586 significant digits. */ 2587 expAdjustment = static_cast<int>(dot - firstSignificantDigit); 2588 if (expAdjustment < 0) 2589 expAdjustment++; 2590 expAdjustment = expAdjustment * 4 - 1; 2591 2592 /* Adjust for writing the significand starting at the most 2593 significant nibble. */ 2594 expAdjustment += semantics->precision; 2595 expAdjustment -= partsCount * integerPartWidth; 2596 2597 /* Adjust for the given exponent. */ 2598 auto ExpOrErr = totalExponent(p + 1, end, expAdjustment); 2599 if (!ExpOrErr) 2600 return ExpOrErr.takeError(); 2601 exponent = *ExpOrErr; 2602 } 2603 2604 return normalize(rounding_mode, lost_fraction); 2605 } 2606 2607 IEEEFloat::opStatus 2608 IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, 2609 unsigned sigPartCount, int exp, 2610 roundingMode rounding_mode) { 2611 unsigned int parts, pow5PartCount; 2612 fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; 2613 integerPart pow5Parts[maxPowerOfFiveParts]; 2614 bool isNearest; 2615 2616 isNearest = (rounding_mode == rmNearestTiesToEven || 2617 rounding_mode == rmNearestTiesToAway); 2618 2619 parts = partCountForBits(semantics->precision + 11); 2620 2621 /* Calculate pow(5, abs(exp)). */ 2622 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); 2623 2624 for (;; parts *= 2) { 2625 opStatus sigStatus, powStatus; 2626 unsigned int excessPrecision, truncatedBits; 2627 2628 calcSemantics.precision = parts * integerPartWidth - 1; 2629 excessPrecision = calcSemantics.precision - semantics->precision; 2630 truncatedBits = excessPrecision; 2631 2632 IEEEFloat decSig(calcSemantics, uninitialized); 2633 decSig.makeZero(sign); 2634 IEEEFloat pow5(calcSemantics); 2635 2636 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, 2637 rmNearestTiesToEven); 2638 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, 2639 rmNearestTiesToEven); 2640 /* Add exp, as 10^n = 5^n * 2^n. */ 2641 decSig.exponent += exp; 2642 2643 lostFraction calcLostFraction; 2644 integerPart HUerr, HUdistance; 2645 unsigned int powHUerr; 2646 2647 if (exp >= 0) { 2648 /* multiplySignificand leaves the precision-th bit set to 1. */ 2649 calcLostFraction = decSig.multiplySignificand(pow5); 2650 powHUerr = powStatus != opOK; 2651 } else { 2652 calcLostFraction = decSig.divideSignificand(pow5); 2653 /* Denormal numbers have less precision. */ 2654 if (decSig.exponent < semantics->minExponent) { 2655 excessPrecision += (semantics->minExponent - decSig.exponent); 2656 truncatedBits = excessPrecision; 2657 if (excessPrecision > calcSemantics.precision) 2658 excessPrecision = calcSemantics.precision; 2659 } 2660 /* Extra half-ulp lost in reciprocal of exponent. */ 2661 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; 2662 } 2663 2664 /* Both multiplySignificand and divideSignificand return the 2665 result with the integer bit set. */ 2666 assert(APInt::tcExtractBit 2667 (decSig.significandParts(), calcSemantics.precision - 1) == 1); 2668 2669 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, 2670 powHUerr); 2671 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), 2672 excessPrecision, isNearest); 2673 2674 /* Are we guaranteed to round correctly if we truncate? */ 2675 if (HUdistance >= HUerr) { 2676 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), 2677 calcSemantics.precision - excessPrecision, 2678 excessPrecision); 2679 /* Take the exponent of decSig. If we tcExtract-ed less bits 2680 above we must adjust our exponent to compensate for the 2681 implicit right shift. */ 2682 exponent = (decSig.exponent + semantics->precision 2683 - (calcSemantics.precision - excessPrecision)); 2684 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), 2685 decSig.partCount(), 2686 truncatedBits); 2687 return normalize(rounding_mode, calcLostFraction); 2688 } 2689 } 2690 } 2691 2692 Expected<IEEEFloat::opStatus> 2693 IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { 2694 decimalInfo D; 2695 opStatus fs; 2696 2697 /* Scan the text. */ 2698 StringRef::iterator p = str.begin(); 2699 if (Error Err = interpretDecimal(p, str.end(), &D)) 2700 return std::move(Err); 2701 2702 /* Handle the quick cases. First the case of no significant digits, 2703 i.e. zero, and then exponents that are obviously too large or too 2704 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp 2705 definitely overflows if 2706 2707 (exp - 1) * L >= maxExponent 2708 2709 and definitely underflows to zero where 2710 2711 (exp + 1) * L <= minExponent - precision 2712 2713 With integer arithmetic the tightest bounds for L are 2714 2715 93/28 < L < 196/59 [ numerator <= 256 ] 2716 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] 2717 */ 2718 2719 // Test if we have a zero number allowing for strings with no null terminators 2720 // and zero decimals with non-zero exponents. 2721 // 2722 // We computed firstSigDigit by ignoring all zeros and dots. Thus if 2723 // D->firstSigDigit equals str.end(), every digit must be a zero and there can 2724 // be at most one dot. On the other hand, if we have a zero with a non-zero 2725 // exponent, then we know that D.firstSigDigit will be non-numeric. 2726 if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { 2727 category = fcZero; 2728 fs = opOK; 2729 2730 /* Check whether the normalized exponent is high enough to overflow 2731 max during the log-rebasing in the max-exponent check below. */ 2732 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { 2733 fs = handleOverflow(rounding_mode); 2734 2735 /* If it wasn't, then it also wasn't high enough to overflow max 2736 during the log-rebasing in the min-exponent check. Check that it 2737 won't overflow min in either check, then perform the min-exponent 2738 check. */ 2739 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || 2740 (D.normalizedExponent + 1) * 28738 <= 2741 8651 * (semantics->minExponent - (int) semantics->precision)) { 2742 /* Underflow to zero and round. */ 2743 category = fcNormal; 2744 zeroSignificand(); 2745 fs = normalize(rounding_mode, lfLessThanHalf); 2746 2747 /* We can finally safely perform the max-exponent check. */ 2748 } else if ((D.normalizedExponent - 1) * 42039 2749 >= 12655 * semantics->maxExponent) { 2750 /* Overflow and round. */ 2751 fs = handleOverflow(rounding_mode); 2752 } else { 2753 integerPart *decSignificand; 2754 unsigned int partCount; 2755 2756 /* A tight upper bound on number of bits required to hold an 2757 N-digit decimal integer is N * 196 / 59. Allocate enough space 2758 to hold the full significand, and an extra part required by 2759 tcMultiplyPart. */ 2760 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; 2761 partCount = partCountForBits(1 + 196 * partCount / 59); 2762 decSignificand = new integerPart[partCount + 1]; 2763 partCount = 0; 2764 2765 /* Convert to binary efficiently - we do almost all multiplication 2766 in an integerPart. When this would overflow do we do a single 2767 bignum multiplication, and then revert again to multiplication 2768 in an integerPart. */ 2769 do { 2770 integerPart decValue, val, multiplier; 2771 2772 val = 0; 2773 multiplier = 1; 2774 2775 do { 2776 if (*p == '.') { 2777 p++; 2778 if (p == str.end()) { 2779 break; 2780 } 2781 } 2782 decValue = decDigitValue(*p++); 2783 if (decValue >= 10U) { 2784 delete[] decSignificand; 2785 return createError("Invalid character in significand"); 2786 } 2787 multiplier *= 10; 2788 val = val * 10 + decValue; 2789 /* The maximum number that can be multiplied by ten with any 2790 digit added without overflowing an integerPart. */ 2791 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); 2792 2793 /* Multiply out the current part. */ 2794 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, 2795 partCount, partCount + 1, false); 2796 2797 /* If we used another part (likely but not guaranteed), increase 2798 the count. */ 2799 if (decSignificand[partCount]) 2800 partCount++; 2801 } while (p <= D.lastSigDigit); 2802 2803 category = fcNormal; 2804 fs = roundSignificandWithExponent(decSignificand, partCount, 2805 D.exponent, rounding_mode); 2806 2807 delete [] decSignificand; 2808 } 2809 2810 return fs; 2811 } 2812 2813 bool IEEEFloat::convertFromStringSpecials(StringRef str) { 2814 const size_t MIN_NAME_SIZE = 3; 2815 2816 if (str.size() < MIN_NAME_SIZE) 2817 return false; 2818 2819 if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { 2820 makeInf(false); 2821 return true; 2822 } 2823 2824 bool IsNegative = str.front() == '-'; 2825 if (IsNegative) { 2826 str = str.drop_front(); 2827 if (str.size() < MIN_NAME_SIZE) 2828 return false; 2829 2830 if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) { 2831 makeInf(true); 2832 return true; 2833 } 2834 } 2835 2836 // If we have a 's' (or 'S') prefix, then this is a Signaling NaN. 2837 bool IsSignaling = str.front() == 's' || str.front() == 'S'; 2838 if (IsSignaling) { 2839 str = str.drop_front(); 2840 if (str.size() < MIN_NAME_SIZE) 2841 return false; 2842 } 2843 2844 if (str.startswith("nan") || str.startswith("NaN")) { 2845 str = str.drop_front(3); 2846 2847 // A NaN without payload. 2848 if (str.empty()) { 2849 makeNaN(IsSignaling, IsNegative); 2850 return true; 2851 } 2852 2853 // Allow the payload to be inside parentheses. 2854 if (str.front() == '(') { 2855 // Parentheses should be balanced (and not empty). 2856 if (str.size() <= 2 || str.back() != ')') 2857 return false; 2858 2859 str = str.slice(1, str.size() - 1); 2860 } 2861 2862 // Determine the payload number's radix. 2863 unsigned Radix = 10; 2864 if (str[0] == '0') { 2865 if (str.size() > 1 && tolower(str[1]) == 'x') { 2866 str = str.drop_front(2); 2867 Radix = 16; 2868 } else 2869 Radix = 8; 2870 } 2871 2872 // Parse the payload and make the NaN. 2873 APInt Payload; 2874 if (!str.getAsInteger(Radix, Payload)) { 2875 makeNaN(IsSignaling, IsNegative, &Payload); 2876 return true; 2877 } 2878 } 2879 2880 return false; 2881 } 2882 2883 Expected<IEEEFloat::opStatus> 2884 IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) { 2885 if (str.empty()) 2886 return createError("Invalid string length"); 2887 2888 // Handle special cases. 2889 if (convertFromStringSpecials(str)) 2890 return opOK; 2891 2892 /* Handle a leading minus sign. */ 2893 StringRef::iterator p = str.begin(); 2894 size_t slen = str.size(); 2895 sign = *p == '-' ? 1 : 0; 2896 if (*p == '-' || *p == '+') { 2897 p++; 2898 slen--; 2899 if (!slen) 2900 return createError("String has no digits"); 2901 } 2902 2903 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { 2904 if (slen == 2) 2905 return createError("Invalid string"); 2906 return convertFromHexadecimalString(StringRef(p + 2, slen - 2), 2907 rounding_mode); 2908 } 2909 2910 return convertFromDecimalString(StringRef(p, slen), rounding_mode); 2911 } 2912 2913 /* Write out a hexadecimal representation of the floating point value 2914 to DST, which must be of sufficient size, in the C99 form 2915 [-]0xh.hhhhp[+-]d. Return the number of characters written, 2916 excluding the terminating NUL. 2917 2918 If UPPERCASE, the output is in upper case, otherwise in lower case. 2919 2920 HEXDIGITS digits appear altogether, rounding the value if 2921 necessary. If HEXDIGITS is 0, the minimal precision to display the 2922 number precisely is used instead. If nothing would appear after 2923 the decimal point it is suppressed. 2924 2925 The decimal exponent is always printed and has at least one digit. 2926 Zero values display an exponent of zero. Infinities and NaNs 2927 appear as "infinity" or "nan" respectively. 2928 2929 The above rules are as specified by C99. There is ambiguity about 2930 what the leading hexadecimal digit should be. This implementation 2931 uses whatever is necessary so that the exponent is displayed as 2932 stored. This implies the exponent will fall within the IEEE format 2933 range, and the leading hexadecimal digit will be 0 (for denormals), 2934 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with 2935 any other digits zero). 2936 */ 2937 unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, 2938 bool upperCase, 2939 roundingMode rounding_mode) const { 2940 char *p; 2941 2942 p = dst; 2943 if (sign) 2944 *dst++ = '-'; 2945 2946 switch (category) { 2947 case fcInfinity: 2948 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); 2949 dst += sizeof infinityL - 1; 2950 break; 2951 2952 case fcNaN: 2953 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); 2954 dst += sizeof NaNU - 1; 2955 break; 2956 2957 case fcZero: 2958 *dst++ = '0'; 2959 *dst++ = upperCase ? 'X': 'x'; 2960 *dst++ = '0'; 2961 if (hexDigits > 1) { 2962 *dst++ = '.'; 2963 memset (dst, '0', hexDigits - 1); 2964 dst += hexDigits - 1; 2965 } 2966 *dst++ = upperCase ? 'P': 'p'; 2967 *dst++ = '0'; 2968 break; 2969 2970 case fcNormal: 2971 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); 2972 break; 2973 } 2974 2975 *dst = 0; 2976 2977 return static_cast<unsigned int>(dst - p); 2978 } 2979 2980 /* Does the hard work of outputting the correctly rounded hexadecimal 2981 form of a normal floating point number with the specified number of 2982 hexadecimal digits. If HEXDIGITS is zero the minimum number of 2983 digits necessary to print the value precisely is output. */ 2984 char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, 2985 bool upperCase, 2986 roundingMode rounding_mode) const { 2987 unsigned int count, valueBits, shift, partsCount, outputDigits; 2988 const char *hexDigitChars; 2989 const integerPart *significand; 2990 char *p; 2991 bool roundUp; 2992 2993 *dst++ = '0'; 2994 *dst++ = upperCase ? 'X': 'x'; 2995 2996 roundUp = false; 2997 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; 2998 2999 significand = significandParts(); 3000 partsCount = partCount(); 3001 3002 /* +3 because the first digit only uses the single integer bit, so 3003 we have 3 virtual zero most-significant-bits. */ 3004 valueBits = semantics->precision + 3; 3005 shift = integerPartWidth - valueBits % integerPartWidth; 3006 3007 /* The natural number of digits required ignoring trailing 3008 insignificant zeroes. */ 3009 outputDigits = (valueBits - significandLSB () + 3) / 4; 3010 3011 /* hexDigits of zero means use the required number for the 3012 precision. Otherwise, see if we are truncating. If we are, 3013 find out if we need to round away from zero. */ 3014 if (hexDigits) { 3015 if (hexDigits < outputDigits) { 3016 /* We are dropping non-zero bits, so need to check how to round. 3017 "bits" is the number of dropped bits. */ 3018 unsigned int bits; 3019 lostFraction fraction; 3020 3021 bits = valueBits - hexDigits * 4; 3022 fraction = lostFractionThroughTruncation (significand, partsCount, bits); 3023 roundUp = roundAwayFromZero(rounding_mode, fraction, bits); 3024 } 3025 outputDigits = hexDigits; 3026 } 3027 3028 /* Write the digits consecutively, and start writing in the location 3029 of the hexadecimal point. We move the most significant digit 3030 left and add the hexadecimal point later. */ 3031 p = ++dst; 3032 3033 count = (valueBits + integerPartWidth - 1) / integerPartWidth; 3034 3035 while (outputDigits && count) { 3036 integerPart part; 3037 3038 /* Put the most significant integerPartWidth bits in "part". */ 3039 if (--count == partsCount) 3040 part = 0; /* An imaginary higher zero part. */ 3041 else 3042 part = significand[count] << shift; 3043 3044 if (count && shift) 3045 part |= significand[count - 1] >> (integerPartWidth - shift); 3046 3047 /* Convert as much of "part" to hexdigits as we can. */ 3048 unsigned int curDigits = integerPartWidth / 4; 3049 3050 if (curDigits > outputDigits) 3051 curDigits = outputDigits; 3052 dst += partAsHex (dst, part, curDigits, hexDigitChars); 3053 outputDigits -= curDigits; 3054 } 3055 3056 if (roundUp) { 3057 char *q = dst; 3058 3059 /* Note that hexDigitChars has a trailing '0'. */ 3060 do { 3061 q--; 3062 *q = hexDigitChars[hexDigitValue (*q) + 1]; 3063 } while (*q == '0'); 3064 assert(q >= p); 3065 } else { 3066 /* Add trailing zeroes. */ 3067 memset (dst, '0', outputDigits); 3068 dst += outputDigits; 3069 } 3070 3071 /* Move the most significant digit to before the point, and if there 3072 is something after the decimal point add it. This must come 3073 after rounding above. */ 3074 p[-1] = p[0]; 3075 if (dst -1 == p) 3076 dst--; 3077 else 3078 p[0] = '.'; 3079 3080 /* Finally output the exponent. */ 3081 *dst++ = upperCase ? 'P': 'p'; 3082 3083 return writeSignedDecimal (dst, exponent); 3084 } 3085 3086 hash_code hash_value(const IEEEFloat &Arg) { 3087 if (!Arg.isFiniteNonZero()) 3088 return hash_combine((uint8_t)Arg.category, 3089 // NaN has no sign, fix it at zero. 3090 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, 3091 Arg.semantics->precision); 3092 3093 // Normal floats need their exponent and significand hashed. 3094 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, 3095 Arg.semantics->precision, Arg.exponent, 3096 hash_combine_range( 3097 Arg.significandParts(), 3098 Arg.significandParts() + Arg.partCount())); 3099 } 3100 3101 // Conversion from APFloat to/from host float/double. It may eventually be 3102 // possible to eliminate these and have everybody deal with APFloats, but that 3103 // will take a while. This approach will not easily extend to long double. 3104 // Current implementation requires integerPartWidth==64, which is correct at 3105 // the moment but could be made more general. 3106 3107 // Denormals have exponent minExponent in APFloat, but minExponent-1 in 3108 // the actual IEEE respresentations. We compensate for that here. 3109 3110 APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { 3111 assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended); 3112 assert(partCount()==2); 3113 3114 uint64_t myexponent, mysignificand; 3115 3116 if (isFiniteNonZero()) { 3117 myexponent = exponent+16383; //bias 3118 mysignificand = significandParts()[0]; 3119 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) 3120 myexponent = 0; // denormal 3121 } else if (category==fcZero) { 3122 myexponent = 0; 3123 mysignificand = 0; 3124 } else if (category==fcInfinity) { 3125 myexponent = 0x7fff; 3126 mysignificand = 0x8000000000000000ULL; 3127 } else { 3128 assert(category == fcNaN && "Unknown category"); 3129 myexponent = 0x7fff; 3130 mysignificand = significandParts()[0]; 3131 } 3132 3133 uint64_t words[2]; 3134 words[0] = mysignificand; 3135 words[1] = ((uint64_t)(sign & 1) << 15) | 3136 (myexponent & 0x7fffLL); 3137 return APInt(80, words); 3138 } 3139 3140 APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { 3141 assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy); 3142 assert(partCount()==2); 3143 3144 uint64_t words[2]; 3145 opStatus fs; 3146 bool losesInfo; 3147 3148 // Convert number to double. To avoid spurious underflows, we re- 3149 // normalize against the "double" minExponent first, and only *then* 3150 // truncate the mantissa. The result of that second conversion 3151 // may be inexact, but should never underflow. 3152 // Declare fltSemantics before APFloat that uses it (and 3153 // saves pointer to it) to ensure correct destruction order. 3154 fltSemantics extendedSemantics = *semantics; 3155 extendedSemantics.minExponent = semIEEEdouble.minExponent; 3156 IEEEFloat extended(*this); 3157 fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 3158 assert(fs == opOK && !losesInfo); 3159 (void)fs; 3160 3161 IEEEFloat u(extended); 3162 fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); 3163 assert(fs == opOK || fs == opInexact); 3164 (void)fs; 3165 words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); 3166 3167 // If conversion was exact or resulted in a special case, we're done; 3168 // just set the second double to zero. Otherwise, re-convert back to 3169 // the extended format and compute the difference. This now should 3170 // convert exactly to double. 3171 if (u.isFiniteNonZero() && losesInfo) { 3172 fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 3173 assert(fs == opOK && !losesInfo); 3174 (void)fs; 3175 3176 IEEEFloat v(extended); 3177 v.subtract(u, rmNearestTiesToEven); 3178 fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); 3179 assert(fs == opOK && !losesInfo); 3180 (void)fs; 3181 words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); 3182 } else { 3183 words[1] = 0; 3184 } 3185 3186 return APInt(128, words); 3187 } 3188 3189 APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { 3190 assert(semantics == (const llvm::fltSemantics*)&semIEEEquad); 3191 assert(partCount()==2); 3192 3193 uint64_t myexponent, mysignificand, mysignificand2; 3194 3195 if (isFiniteNonZero()) { 3196 myexponent = exponent+16383; //bias 3197 mysignificand = significandParts()[0]; 3198 mysignificand2 = significandParts()[1]; 3199 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) 3200 myexponent = 0; // denormal 3201 } else if (category==fcZero) { 3202 myexponent = 0; 3203 mysignificand = mysignificand2 = 0; 3204 } else if (category==fcInfinity) { 3205 myexponent = 0x7fff; 3206 mysignificand = mysignificand2 = 0; 3207 } else { 3208 assert(category == fcNaN && "Unknown category!"); 3209 myexponent = 0x7fff; 3210 mysignificand = significandParts()[0]; 3211 mysignificand2 = significandParts()[1]; 3212 } 3213 3214 uint64_t words[2]; 3215 words[0] = mysignificand; 3216 words[1] = ((uint64_t)(sign & 1) << 63) | 3217 ((myexponent & 0x7fff) << 48) | 3218 (mysignificand2 & 0xffffffffffffLL); 3219 3220 return APInt(128, words); 3221 } 3222 3223 APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { 3224 assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble); 3225 assert(partCount()==1); 3226 3227 uint64_t myexponent, mysignificand; 3228 3229 if (isFiniteNonZero()) { 3230 myexponent = exponent+1023; //bias 3231 mysignificand = *significandParts(); 3232 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 3233 myexponent = 0; // denormal 3234 } else if (category==fcZero) { 3235 myexponent = 0; 3236 mysignificand = 0; 3237 } else if (category==fcInfinity) { 3238 myexponent = 0x7ff; 3239 mysignificand = 0; 3240 } else { 3241 assert(category == fcNaN && "Unknown category!"); 3242 myexponent = 0x7ff; 3243 mysignificand = *significandParts(); 3244 } 3245 3246 return APInt(64, ((((uint64_t)(sign & 1) << 63) | 3247 ((myexponent & 0x7ff) << 52) | 3248 (mysignificand & 0xfffffffffffffLL)))); 3249 } 3250 3251 APInt IEEEFloat::convertFloatAPFloatToAPInt() const { 3252 assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle); 3253 assert(partCount()==1); 3254 3255 uint32_t myexponent, mysignificand; 3256 3257 if (isFiniteNonZero()) { 3258 myexponent = exponent+127; //bias 3259 mysignificand = (uint32_t)*significandParts(); 3260 if (myexponent == 1 && !(mysignificand & 0x800000)) 3261 myexponent = 0; // denormal 3262 } else if (category==fcZero) { 3263 myexponent = 0; 3264 mysignificand = 0; 3265 } else if (category==fcInfinity) { 3266 myexponent = 0xff; 3267 mysignificand = 0; 3268 } else { 3269 assert(category == fcNaN && "Unknown category!"); 3270 myexponent = 0xff; 3271 mysignificand = (uint32_t)*significandParts(); 3272 } 3273 3274 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | 3275 (mysignificand & 0x7fffff))); 3276 } 3277 3278 APInt IEEEFloat::convertBFloatAPFloatToAPInt() const { 3279 assert(semantics == (const llvm::fltSemantics *)&semBFloat); 3280 assert(partCount() == 1); 3281 3282 uint32_t myexponent, mysignificand; 3283 3284 if (isFiniteNonZero()) { 3285 myexponent = exponent + 127; // bias 3286 mysignificand = (uint32_t)*significandParts(); 3287 if (myexponent == 1 && !(mysignificand & 0x80)) 3288 myexponent = 0; // denormal 3289 } else if (category == fcZero) { 3290 myexponent = 0; 3291 mysignificand = 0; 3292 } else if (category == fcInfinity) { 3293 myexponent = 0xff; 3294 mysignificand = 0; 3295 } else { 3296 assert(category == fcNaN && "Unknown category!"); 3297 myexponent = 0xff; 3298 mysignificand = (uint32_t)*significandParts(); 3299 } 3300 3301 return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) | 3302 (mysignificand & 0x7f))); 3303 } 3304 3305 APInt IEEEFloat::convertHalfAPFloatToAPInt() const { 3306 assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf); 3307 assert(partCount()==1); 3308 3309 uint32_t myexponent, mysignificand; 3310 3311 if (isFiniteNonZero()) { 3312 myexponent = exponent+15; //bias 3313 mysignificand = (uint32_t)*significandParts(); 3314 if (myexponent == 1 && !(mysignificand & 0x400)) 3315 myexponent = 0; // denormal 3316 } else if (category==fcZero) { 3317 myexponent = 0; 3318 mysignificand = 0; 3319 } else if (category==fcInfinity) { 3320 myexponent = 0x1f; 3321 mysignificand = 0; 3322 } else { 3323 assert(category == fcNaN && "Unknown category!"); 3324 myexponent = 0x1f; 3325 mysignificand = (uint32_t)*significandParts(); 3326 } 3327 3328 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | 3329 (mysignificand & 0x3ff))); 3330 } 3331 3332 // This function creates an APInt that is just a bit map of the floating 3333 // point constant as it would appear in memory. It is not a conversion, 3334 // and treating the result as a normal integer is unlikely to be useful. 3335 3336 APInt IEEEFloat::bitcastToAPInt() const { 3337 if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) 3338 return convertHalfAPFloatToAPInt(); 3339 3340 if (semantics == (const llvm::fltSemantics *)&semBFloat) 3341 return convertBFloatAPFloatToAPInt(); 3342 3343 if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) 3344 return convertFloatAPFloatToAPInt(); 3345 3346 if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) 3347 return convertDoubleAPFloatToAPInt(); 3348 3349 if (semantics == (const llvm::fltSemantics*)&semIEEEquad) 3350 return convertQuadrupleAPFloatToAPInt(); 3351 3352 if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) 3353 return convertPPCDoubleDoubleAPFloatToAPInt(); 3354 3355 assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && 3356 "unknown format!"); 3357 return convertF80LongDoubleAPFloatToAPInt(); 3358 } 3359 3360 float IEEEFloat::convertToFloat() const { 3361 assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle && 3362 "Float semantics are not IEEEsingle"); 3363 APInt api = bitcastToAPInt(); 3364 return api.bitsToFloat(); 3365 } 3366 3367 double IEEEFloat::convertToDouble() const { 3368 assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble && 3369 "Float semantics are not IEEEdouble"); 3370 APInt api = bitcastToAPInt(); 3371 return api.bitsToDouble(); 3372 } 3373 3374 /// Integer bit is explicit in this format. Intel hardware (387 and later) 3375 /// does not support these bit patterns: 3376 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") 3377 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") 3378 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") 3379 /// exponent = 0, integer bit 1 ("pseudodenormal") 3380 /// At the moment, the first three are treated as NaNs, the last one as Normal. 3381 void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { 3382 assert(api.getBitWidth()==80); 3383 uint64_t i1 = api.getRawData()[0]; 3384 uint64_t i2 = api.getRawData()[1]; 3385 uint64_t myexponent = (i2 & 0x7fff); 3386 uint64_t mysignificand = i1; 3387 uint8_t myintegerbit = mysignificand >> 63; 3388 3389 initialize(&semX87DoubleExtended); 3390 assert(partCount()==2); 3391 3392 sign = static_cast<unsigned int>(i2>>15); 3393 if (myexponent == 0 && mysignificand == 0) { 3394 makeZero(sign); 3395 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { 3396 makeInf(sign); 3397 } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || 3398 (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { 3399 category = fcNaN; 3400 exponent = exponentNaN(); 3401 significandParts()[0] = mysignificand; 3402 significandParts()[1] = 0; 3403 } else { 3404 category = fcNormal; 3405 exponent = myexponent - 16383; 3406 significandParts()[0] = mysignificand; 3407 significandParts()[1] = 0; 3408 if (myexponent==0) // denormal 3409 exponent = -16382; 3410 } 3411 } 3412 3413 void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { 3414 assert(api.getBitWidth()==128); 3415 uint64_t i1 = api.getRawData()[0]; 3416 uint64_t i2 = api.getRawData()[1]; 3417 opStatus fs; 3418 bool losesInfo; 3419 3420 // Get the first double and convert to our format. 3421 initFromDoubleAPInt(APInt(64, i1)); 3422 fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); 3423 assert(fs == opOK && !losesInfo); 3424 (void)fs; 3425 3426 // Unless we have a special case, add in second double. 3427 if (isFiniteNonZero()) { 3428 IEEEFloat v(semIEEEdouble, APInt(64, i2)); 3429 fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); 3430 assert(fs == opOK && !losesInfo); 3431 (void)fs; 3432 3433 add(v, rmNearestTiesToEven); 3434 } 3435 } 3436 3437 void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { 3438 assert(api.getBitWidth()==128); 3439 uint64_t i1 = api.getRawData()[0]; 3440 uint64_t i2 = api.getRawData()[1]; 3441 uint64_t myexponent = (i2 >> 48) & 0x7fff; 3442 uint64_t mysignificand = i1; 3443 uint64_t mysignificand2 = i2 & 0xffffffffffffLL; 3444 3445 initialize(&semIEEEquad); 3446 assert(partCount()==2); 3447 3448 sign = static_cast<unsigned int>(i2>>63); 3449 if (myexponent==0 && 3450 (mysignificand==0 && mysignificand2==0)) { 3451 makeZero(sign); 3452 } else if (myexponent==0x7fff && 3453 (mysignificand==0 && mysignificand2==0)) { 3454 makeInf(sign); 3455 } else if (myexponent==0x7fff && 3456 (mysignificand!=0 || mysignificand2 !=0)) { 3457 category = fcNaN; 3458 exponent = exponentNaN(); 3459 significandParts()[0] = mysignificand; 3460 significandParts()[1] = mysignificand2; 3461 } else { 3462 category = fcNormal; 3463 exponent = myexponent - 16383; 3464 significandParts()[0] = mysignificand; 3465 significandParts()[1] = mysignificand2; 3466 if (myexponent==0) // denormal 3467 exponent = -16382; 3468 else 3469 significandParts()[1] |= 0x1000000000000LL; // integer bit 3470 } 3471 } 3472 3473 void IEEEFloat::initFromDoubleAPInt(const APInt &api) { 3474 assert(api.getBitWidth()==64); 3475 uint64_t i = *api.getRawData(); 3476 uint64_t myexponent = (i >> 52) & 0x7ff; 3477 uint64_t mysignificand = i & 0xfffffffffffffLL; 3478 3479 initialize(&semIEEEdouble); 3480 assert(partCount()==1); 3481 3482 sign = static_cast<unsigned int>(i>>63); 3483 if (myexponent==0 && mysignificand==0) { 3484 makeZero(sign); 3485 } else if (myexponent==0x7ff && mysignificand==0) { 3486 makeInf(sign); 3487 } else if (myexponent==0x7ff && mysignificand!=0) { 3488 category = fcNaN; 3489 exponent = exponentNaN(); 3490 *significandParts() = mysignificand; 3491 } else { 3492 category = fcNormal; 3493 exponent = myexponent - 1023; 3494 *significandParts() = mysignificand; 3495 if (myexponent==0) // denormal 3496 exponent = -1022; 3497 else 3498 *significandParts() |= 0x10000000000000LL; // integer bit 3499 } 3500 } 3501 3502 void IEEEFloat::initFromFloatAPInt(const APInt &api) { 3503 assert(api.getBitWidth()==32); 3504 uint32_t i = (uint32_t)*api.getRawData(); 3505 uint32_t myexponent = (i >> 23) & 0xff; 3506 uint32_t mysignificand = i & 0x7fffff; 3507 3508 initialize(&semIEEEsingle); 3509 assert(partCount()==1); 3510 3511 sign = i >> 31; 3512 if (myexponent==0 && mysignificand==0) { 3513 makeZero(sign); 3514 } else if (myexponent==0xff && mysignificand==0) { 3515 makeInf(sign); 3516 } else if (myexponent==0xff && mysignificand!=0) { 3517 category = fcNaN; 3518 exponent = exponentNaN(); 3519 *significandParts() = mysignificand; 3520 } else { 3521 category = fcNormal; 3522 exponent = myexponent - 127; //bias 3523 *significandParts() = mysignificand; 3524 if (myexponent==0) // denormal 3525 exponent = -126; 3526 else 3527 *significandParts() |= 0x800000; // integer bit 3528 } 3529 } 3530 3531 void IEEEFloat::initFromBFloatAPInt(const APInt &api) { 3532 assert(api.getBitWidth() == 16); 3533 uint32_t i = (uint32_t)*api.getRawData(); 3534 uint32_t myexponent = (i >> 7) & 0xff; 3535 uint32_t mysignificand = i & 0x7f; 3536 3537 initialize(&semBFloat); 3538 assert(partCount() == 1); 3539 3540 sign = i >> 15; 3541 if (myexponent == 0 && mysignificand == 0) { 3542 makeZero(sign); 3543 } else if (myexponent == 0xff && mysignificand == 0) { 3544 makeInf(sign); 3545 } else if (myexponent == 0xff && mysignificand != 0) { 3546 category = fcNaN; 3547 exponent = exponentNaN(); 3548 *significandParts() = mysignificand; 3549 } else { 3550 category = fcNormal; 3551 exponent = myexponent - 127; // bias 3552 *significandParts() = mysignificand; 3553 if (myexponent == 0) // denormal 3554 exponent = -126; 3555 else 3556 *significandParts() |= 0x80; // integer bit 3557 } 3558 } 3559 3560 void IEEEFloat::initFromHalfAPInt(const APInt &api) { 3561 assert(api.getBitWidth()==16); 3562 uint32_t i = (uint32_t)*api.getRawData(); 3563 uint32_t myexponent = (i >> 10) & 0x1f; 3564 uint32_t mysignificand = i & 0x3ff; 3565 3566 initialize(&semIEEEhalf); 3567 assert(partCount()==1); 3568 3569 sign = i >> 15; 3570 if (myexponent==0 && mysignificand==0) { 3571 makeZero(sign); 3572 } else if (myexponent==0x1f && mysignificand==0) { 3573 makeInf(sign); 3574 } else if (myexponent==0x1f && mysignificand!=0) { 3575 category = fcNaN; 3576 exponent = exponentNaN(); 3577 *significandParts() = mysignificand; 3578 } else { 3579 category = fcNormal; 3580 exponent = myexponent - 15; //bias 3581 *significandParts() = mysignificand; 3582 if (myexponent==0) // denormal 3583 exponent = -14; 3584 else 3585 *significandParts() |= 0x400; // integer bit 3586 } 3587 } 3588 3589 /// Treat api as containing the bits of a floating point number. Currently 3590 /// we infer the floating point type from the size of the APInt. The 3591 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful 3592 /// when the size is anything else). 3593 void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { 3594 if (Sem == &semIEEEhalf) 3595 return initFromHalfAPInt(api); 3596 if (Sem == &semBFloat) 3597 return initFromBFloatAPInt(api); 3598 if (Sem == &semIEEEsingle) 3599 return initFromFloatAPInt(api); 3600 if (Sem == &semIEEEdouble) 3601 return initFromDoubleAPInt(api); 3602 if (Sem == &semX87DoubleExtended) 3603 return initFromF80LongDoubleAPInt(api); 3604 if (Sem == &semIEEEquad) 3605 return initFromQuadrupleAPInt(api); 3606 if (Sem == &semPPCDoubleDoubleLegacy) 3607 return initFromPPCDoubleDoubleAPInt(api); 3608 3609 llvm_unreachable(nullptr); 3610 } 3611 3612 /// Make this number the largest magnitude normal number in the given 3613 /// semantics. 3614 void IEEEFloat::makeLargest(bool Negative) { 3615 // We want (in interchange format): 3616 // sign = {Negative} 3617 // exponent = 1..10 3618 // significand = 1..1 3619 category = fcNormal; 3620 sign = Negative; 3621 exponent = semantics->maxExponent; 3622 3623 // Use memset to set all but the highest integerPart to all ones. 3624 integerPart *significand = significandParts(); 3625 unsigned PartCount = partCount(); 3626 memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); 3627 3628 // Set the high integerPart especially setting all unused top bits for 3629 // internal consistency. 3630 const unsigned NumUnusedHighBits = 3631 PartCount*integerPartWidth - semantics->precision; 3632 significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) 3633 ? (~integerPart(0) >> NumUnusedHighBits) 3634 : 0; 3635 } 3636 3637 /// Make this number the smallest magnitude denormal number in the given 3638 /// semantics. 3639 void IEEEFloat::makeSmallest(bool Negative) { 3640 // We want (in interchange format): 3641 // sign = {Negative} 3642 // exponent = 0..0 3643 // significand = 0..01 3644 category = fcNormal; 3645 sign = Negative; 3646 exponent = semantics->minExponent; 3647 APInt::tcSet(significandParts(), 1, partCount()); 3648 } 3649 3650 void IEEEFloat::makeSmallestNormalized(bool Negative) { 3651 // We want (in interchange format): 3652 // sign = {Negative} 3653 // exponent = 0..0 3654 // significand = 10..0 3655 3656 category = fcNormal; 3657 zeroSignificand(); 3658 sign = Negative; 3659 exponent = semantics->minExponent; 3660 significandParts()[partCountForBits(semantics->precision) - 1] |= 3661 (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); 3662 } 3663 3664 IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { 3665 initFromAPInt(&Sem, API); 3666 } 3667 3668 IEEEFloat::IEEEFloat(float f) { 3669 initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); 3670 } 3671 3672 IEEEFloat::IEEEFloat(double d) { 3673 initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); 3674 } 3675 3676 namespace { 3677 void append(SmallVectorImpl<char> &Buffer, StringRef Str) { 3678 Buffer.append(Str.begin(), Str.end()); 3679 } 3680 3681 /// Removes data from the given significand until it is no more 3682 /// precise than is required for the desired precision. 3683 void AdjustToPrecision(APInt &significand, 3684 int &exp, unsigned FormatPrecision) { 3685 unsigned bits = significand.getActiveBits(); 3686 3687 // 196/59 is a very slight overestimate of lg_2(10). 3688 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; 3689 3690 if (bits <= bitsRequired) return; 3691 3692 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; 3693 if (!tensRemovable) return; 3694 3695 exp += tensRemovable; 3696 3697 APInt divisor(significand.getBitWidth(), 1); 3698 APInt powten(significand.getBitWidth(), 10); 3699 while (true) { 3700 if (tensRemovable & 1) 3701 divisor *= powten; 3702 tensRemovable >>= 1; 3703 if (!tensRemovable) break; 3704 powten *= powten; 3705 } 3706 3707 significand = significand.udiv(divisor); 3708 3709 // Truncate the significand down to its active bit count. 3710 significand = significand.trunc(significand.getActiveBits()); 3711 } 3712 3713 3714 void AdjustToPrecision(SmallVectorImpl<char> &buffer, 3715 int &exp, unsigned FormatPrecision) { 3716 unsigned N = buffer.size(); 3717 if (N <= FormatPrecision) return; 3718 3719 // The most significant figures are the last ones in the buffer. 3720 unsigned FirstSignificant = N - FormatPrecision; 3721 3722 // Round. 3723 // FIXME: this probably shouldn't use 'round half up'. 3724 3725 // Rounding down is just a truncation, except we also want to drop 3726 // trailing zeros from the new result. 3727 if (buffer[FirstSignificant - 1] < '5') { 3728 while (FirstSignificant < N && buffer[FirstSignificant] == '0') 3729 FirstSignificant++; 3730 3731 exp += FirstSignificant; 3732 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3733 return; 3734 } 3735 3736 // Rounding up requires a decimal add-with-carry. If we continue 3737 // the carry, the newly-introduced zeros will just be truncated. 3738 for (unsigned I = FirstSignificant; I != N; ++I) { 3739 if (buffer[I] == '9') { 3740 FirstSignificant++; 3741 } else { 3742 buffer[I]++; 3743 break; 3744 } 3745 } 3746 3747 // If we carried through, we have exactly one digit of precision. 3748 if (FirstSignificant == N) { 3749 exp += FirstSignificant; 3750 buffer.clear(); 3751 buffer.push_back('1'); 3752 return; 3753 } 3754 3755 exp += FirstSignificant; 3756 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3757 } 3758 } // namespace 3759 3760 void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, 3761 unsigned FormatMaxPadding, bool TruncateZero) const { 3762 switch (category) { 3763 case fcInfinity: 3764 if (isNegative()) 3765 return append(Str, "-Inf"); 3766 else 3767 return append(Str, "+Inf"); 3768 3769 case fcNaN: return append(Str, "NaN"); 3770 3771 case fcZero: 3772 if (isNegative()) 3773 Str.push_back('-'); 3774 3775 if (!FormatMaxPadding) { 3776 if (TruncateZero) 3777 append(Str, "0.0E+0"); 3778 else { 3779 append(Str, "0.0"); 3780 if (FormatPrecision > 1) 3781 Str.append(FormatPrecision - 1, '0'); 3782 append(Str, "e+00"); 3783 } 3784 } else 3785 Str.push_back('0'); 3786 return; 3787 3788 case fcNormal: 3789 break; 3790 } 3791 3792 if (isNegative()) 3793 Str.push_back('-'); 3794 3795 // Decompose the number into an APInt and an exponent. 3796 int exp = exponent - ((int) semantics->precision - 1); 3797 APInt significand(semantics->precision, 3798 makeArrayRef(significandParts(), 3799 partCountForBits(semantics->precision))); 3800 3801 // Set FormatPrecision if zero. We want to do this before we 3802 // truncate trailing zeros, as those are part of the precision. 3803 if (!FormatPrecision) { 3804 // We use enough digits so the number can be round-tripped back to an 3805 // APFloat. The formula comes from "How to Print Floating-Point Numbers 3806 // Accurately" by Steele and White. 3807 // FIXME: Using a formula based purely on the precision is conservative; 3808 // we can print fewer digits depending on the actual value being printed. 3809 3810 // FormatPrecision = 2 + floor(significandBits / lg_2(10)) 3811 FormatPrecision = 2 + semantics->precision * 59 / 196; 3812 } 3813 3814 // Ignore trailing binary zeros. 3815 int trailingZeros = significand.countTrailingZeros(); 3816 exp += trailingZeros; 3817 significand.lshrInPlace(trailingZeros); 3818 3819 // Change the exponent from 2^e to 10^e. 3820 if (exp == 0) { 3821 // Nothing to do. 3822 } else if (exp > 0) { 3823 // Just shift left. 3824 significand = significand.zext(semantics->precision + exp); 3825 significand <<= exp; 3826 exp = 0; 3827 } else { /* exp < 0 */ 3828 int texp = -exp; 3829 3830 // We transform this using the identity: 3831 // (N)(2^-e) == (N)(5^e)(10^-e) 3832 // This means we have to multiply N (the significand) by 5^e. 3833 // To avoid overflow, we have to operate on numbers large 3834 // enough to store N * 5^e: 3835 // log2(N * 5^e) == log2(N) + e * log2(5) 3836 // <= semantics->precision + e * 137 / 59 3837 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) 3838 3839 unsigned precision = semantics->precision + (137 * texp + 136) / 59; 3840 3841 // Multiply significand by 5^e. 3842 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) 3843 significand = significand.zext(precision); 3844 APInt five_to_the_i(precision, 5); 3845 while (true) { 3846 if (texp & 1) significand *= five_to_the_i; 3847 3848 texp >>= 1; 3849 if (!texp) break; 3850 five_to_the_i *= five_to_the_i; 3851 } 3852 } 3853 3854 AdjustToPrecision(significand, exp, FormatPrecision); 3855 3856 SmallVector<char, 256> buffer; 3857 3858 // Fill the buffer. 3859 unsigned precision = significand.getBitWidth(); 3860 APInt ten(precision, 10); 3861 APInt digit(precision, 0); 3862 3863 bool inTrail = true; 3864 while (significand != 0) { 3865 // digit <- significand % 10 3866 // significand <- significand / 10 3867 APInt::udivrem(significand, ten, significand, digit); 3868 3869 unsigned d = digit.getZExtValue(); 3870 3871 // Drop trailing zeros. 3872 if (inTrail && !d) exp++; 3873 else { 3874 buffer.push_back((char) ('0' + d)); 3875 inTrail = false; 3876 } 3877 } 3878 3879 assert(!buffer.empty() && "no characters in buffer!"); 3880 3881 // Drop down to FormatPrecision. 3882 // TODO: don't do more precise calculations above than are required. 3883 AdjustToPrecision(buffer, exp, FormatPrecision); 3884 3885 unsigned NDigits = buffer.size(); 3886 3887 // Check whether we should use scientific notation. 3888 bool FormatScientific; 3889 if (!FormatMaxPadding) 3890 FormatScientific = true; 3891 else { 3892 if (exp >= 0) { 3893 // 765e3 --> 765000 3894 // ^^^ 3895 // But we shouldn't make the number look more precise than it is. 3896 FormatScientific = ((unsigned) exp > FormatMaxPadding || 3897 NDigits + (unsigned) exp > FormatPrecision); 3898 } else { 3899 // Power of the most significant digit. 3900 int MSD = exp + (int) (NDigits - 1); 3901 if (MSD >= 0) { 3902 // 765e-2 == 7.65 3903 FormatScientific = false; 3904 } else { 3905 // 765e-5 == 0.00765 3906 // ^ ^^ 3907 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; 3908 } 3909 } 3910 } 3911 3912 // Scientific formatting is pretty straightforward. 3913 if (FormatScientific) { 3914 exp += (NDigits - 1); 3915 3916 Str.push_back(buffer[NDigits-1]); 3917 Str.push_back('.'); 3918 if (NDigits == 1 && TruncateZero) 3919 Str.push_back('0'); 3920 else 3921 for (unsigned I = 1; I != NDigits; ++I) 3922 Str.push_back(buffer[NDigits-1-I]); 3923 // Fill with zeros up to FormatPrecision. 3924 if (!TruncateZero && FormatPrecision > NDigits - 1) 3925 Str.append(FormatPrecision - NDigits + 1, '0'); 3926 // For !TruncateZero we use lower 'e'. 3927 Str.push_back(TruncateZero ? 'E' : 'e'); 3928 3929 Str.push_back(exp >= 0 ? '+' : '-'); 3930 if (exp < 0) exp = -exp; 3931 SmallVector<char, 6> expbuf; 3932 do { 3933 expbuf.push_back((char) ('0' + (exp % 10))); 3934 exp /= 10; 3935 } while (exp); 3936 // Exponent always at least two digits if we do not truncate zeros. 3937 if (!TruncateZero && expbuf.size() < 2) 3938 expbuf.push_back('0'); 3939 for (unsigned I = 0, E = expbuf.size(); I != E; ++I) 3940 Str.push_back(expbuf[E-1-I]); 3941 return; 3942 } 3943 3944 // Non-scientific, positive exponents. 3945 if (exp >= 0) { 3946 for (unsigned I = 0; I != NDigits; ++I) 3947 Str.push_back(buffer[NDigits-1-I]); 3948 for (unsigned I = 0; I != (unsigned) exp; ++I) 3949 Str.push_back('0'); 3950 return; 3951 } 3952 3953 // Non-scientific, negative exponents. 3954 3955 // The number of digits to the left of the decimal point. 3956 int NWholeDigits = exp + (int) NDigits; 3957 3958 unsigned I = 0; 3959 if (NWholeDigits > 0) { 3960 for (; I != (unsigned) NWholeDigits; ++I) 3961 Str.push_back(buffer[NDigits-I-1]); 3962 Str.push_back('.'); 3963 } else { 3964 unsigned NZeros = 1 + (unsigned) -NWholeDigits; 3965 3966 Str.push_back('0'); 3967 Str.push_back('.'); 3968 for (unsigned Z = 1; Z != NZeros; ++Z) 3969 Str.push_back('0'); 3970 } 3971 3972 for (; I != NDigits; ++I) 3973 Str.push_back(buffer[NDigits-I-1]); 3974 } 3975 3976 bool IEEEFloat::getExactInverse(APFloat *inv) const { 3977 // Special floats and denormals have no exact inverse. 3978 if (!isFiniteNonZero()) 3979 return false; 3980 3981 // Check that the number is a power of two by making sure that only the 3982 // integer bit is set in the significand. 3983 if (significandLSB() != semantics->precision - 1) 3984 return false; 3985 3986 // Get the inverse. 3987 IEEEFloat reciprocal(*semantics, 1ULL); 3988 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) 3989 return false; 3990 3991 // Avoid multiplication with a denormal, it is not safe on all platforms and 3992 // may be slower than a normal division. 3993 if (reciprocal.isDenormal()) 3994 return false; 3995 3996 assert(reciprocal.isFiniteNonZero() && 3997 reciprocal.significandLSB() == reciprocal.semantics->precision - 1); 3998 3999 if (inv) 4000 *inv = APFloat(reciprocal, *semantics); 4001 4002 return true; 4003 } 4004 4005 bool IEEEFloat::isSignaling() const { 4006 if (!isNaN()) 4007 return false; 4008 4009 // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the 4010 // first bit of the trailing significand being 0. 4011 return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); 4012 } 4013 4014 /// IEEE-754R 2008 5.3.1: nextUp/nextDown. 4015 /// 4016 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with 4017 /// appropriate sign switching before/after the computation. 4018 IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { 4019 // If we are performing nextDown, swap sign so we have -x. 4020 if (nextDown) 4021 changeSign(); 4022 4023 // Compute nextUp(x) 4024 opStatus result = opOK; 4025 4026 // Handle each float category separately. 4027 switch (category) { 4028 case fcInfinity: 4029 // nextUp(+inf) = +inf 4030 if (!isNegative()) 4031 break; 4032 // nextUp(-inf) = -getLargest() 4033 makeLargest(true); 4034 break; 4035 case fcNaN: 4036 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. 4037 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not 4038 // change the payload. 4039 if (isSignaling()) { 4040 result = opInvalidOp; 4041 // For consistency, propagate the sign of the sNaN to the qNaN. 4042 makeNaN(false, isNegative(), nullptr); 4043 } 4044 break; 4045 case fcZero: 4046 // nextUp(pm 0) = +getSmallest() 4047 makeSmallest(false); 4048 break; 4049 case fcNormal: 4050 // nextUp(-getSmallest()) = -0 4051 if (isSmallest() && isNegative()) { 4052 APInt::tcSet(significandParts(), 0, partCount()); 4053 category = fcZero; 4054 exponent = 0; 4055 break; 4056 } 4057 4058 // nextUp(getLargest()) == INFINITY 4059 if (isLargest() && !isNegative()) { 4060 APInt::tcSet(significandParts(), 0, partCount()); 4061 category = fcInfinity; 4062 exponent = semantics->maxExponent + 1; 4063 break; 4064 } 4065 4066 // nextUp(normal) == normal + inc. 4067 if (isNegative()) { 4068 // If we are negative, we need to decrement the significand. 4069 4070 // We only cross a binade boundary that requires adjusting the exponent 4071 // if: 4072 // 1. exponent != semantics->minExponent. This implies we are not in the 4073 // smallest binade or are dealing with denormals. 4074 // 2. Our significand excluding the integral bit is all zeros. 4075 bool WillCrossBinadeBoundary = 4076 exponent != semantics->minExponent && isSignificandAllZeros(); 4077 4078 // Decrement the significand. 4079 // 4080 // We always do this since: 4081 // 1. If we are dealing with a non-binade decrement, by definition we 4082 // just decrement the significand. 4083 // 2. If we are dealing with a normal -> normal binade decrement, since 4084 // we have an explicit integral bit the fact that all bits but the 4085 // integral bit are zero implies that subtracting one will yield a 4086 // significand with 0 integral bit and 1 in all other spots. Thus we 4087 // must just adjust the exponent and set the integral bit to 1. 4088 // 3. If we are dealing with a normal -> denormal binade decrement, 4089 // since we set the integral bit to 0 when we represent denormals, we 4090 // just decrement the significand. 4091 integerPart *Parts = significandParts(); 4092 APInt::tcDecrement(Parts, partCount()); 4093 4094 if (WillCrossBinadeBoundary) { 4095 // Our result is a normal number. Do the following: 4096 // 1. Set the integral bit to 1. 4097 // 2. Decrement the exponent. 4098 APInt::tcSetBit(Parts, semantics->precision - 1); 4099 exponent--; 4100 } 4101 } else { 4102 // If we are positive, we need to increment the significand. 4103 4104 // We only cross a binade boundary that requires adjusting the exponent if 4105 // the input is not a denormal and all of said input's significand bits 4106 // are set. If all of said conditions are true: clear the significand, set 4107 // the integral bit to 1, and increment the exponent. If we have a 4108 // denormal always increment since moving denormals and the numbers in the 4109 // smallest normal binade have the same exponent in our representation. 4110 bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); 4111 4112 if (WillCrossBinadeBoundary) { 4113 integerPart *Parts = significandParts(); 4114 APInt::tcSet(Parts, 0, partCount()); 4115 APInt::tcSetBit(Parts, semantics->precision - 1); 4116 assert(exponent != semantics->maxExponent && 4117 "We can not increment an exponent beyond the maxExponent allowed" 4118 " by the given floating point semantics."); 4119 exponent++; 4120 } else { 4121 incrementSignificand(); 4122 } 4123 } 4124 break; 4125 } 4126 4127 // If we are performing nextDown, swap sign so we have -nextUp(-x) 4128 if (nextDown) 4129 changeSign(); 4130 4131 return result; 4132 } 4133 4134 APFloatBase::ExponentType IEEEFloat::exponentNaN() const { 4135 return semantics->maxExponent + 1; 4136 } 4137 4138 APFloatBase::ExponentType IEEEFloat::exponentInf() const { 4139 return semantics->maxExponent + 1; 4140 } 4141 4142 APFloatBase::ExponentType IEEEFloat::exponentZero() const { 4143 return semantics->minExponent - 1; 4144 } 4145 4146 void IEEEFloat::makeInf(bool Negative) { 4147 category = fcInfinity; 4148 sign = Negative; 4149 exponent = exponentInf(); 4150 APInt::tcSet(significandParts(), 0, partCount()); 4151 } 4152 4153 void IEEEFloat::makeZero(bool Negative) { 4154 category = fcZero; 4155 sign = Negative; 4156 exponent = exponentZero(); 4157 APInt::tcSet(significandParts(), 0, partCount()); 4158 } 4159 4160 void IEEEFloat::makeQuiet() { 4161 assert(isNaN()); 4162 APInt::tcSetBit(significandParts(), semantics->precision - 2); 4163 } 4164 4165 int ilogb(const IEEEFloat &Arg) { 4166 if (Arg.isNaN()) 4167 return IEEEFloat::IEK_NaN; 4168 if (Arg.isZero()) 4169 return IEEEFloat::IEK_Zero; 4170 if (Arg.isInfinity()) 4171 return IEEEFloat::IEK_Inf; 4172 if (!Arg.isDenormal()) 4173 return Arg.exponent; 4174 4175 IEEEFloat Normalized(Arg); 4176 int SignificandBits = Arg.getSemantics().precision - 1; 4177 4178 Normalized.exponent += SignificandBits; 4179 Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); 4180 return Normalized.exponent - SignificandBits; 4181 } 4182 4183 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { 4184 auto MaxExp = X.getSemantics().maxExponent; 4185 auto MinExp = X.getSemantics().minExponent; 4186 4187 // If Exp is wildly out-of-scale, simply adding it to X.exponent will 4188 // overflow; clamp it to a safe range before adding, but ensure that the range 4189 // is large enough that the clamp does not change the result. The range we 4190 // need to support is the difference between the largest possible exponent and 4191 // the normalized exponent of half the smallest denormal. 4192 4193 int SignificandBits = X.getSemantics().precision - 1; 4194 int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; 4195 4196 // Clamp to one past the range ends to let normalize handle overlflow. 4197 X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); 4198 X.normalize(RoundingMode, lfExactlyZero); 4199 if (X.isNaN()) 4200 X.makeQuiet(); 4201 return X; 4202 } 4203 4204 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { 4205 Exp = ilogb(Val); 4206 4207 // Quiet signalling nans. 4208 if (Exp == IEEEFloat::IEK_NaN) { 4209 IEEEFloat Quiet(Val); 4210 Quiet.makeQuiet(); 4211 return Quiet; 4212 } 4213 4214 if (Exp == IEEEFloat::IEK_Inf) 4215 return Val; 4216 4217 // 1 is added because frexp is defined to return a normalized fraction in 4218 // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). 4219 Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; 4220 return scalbn(Val, -Exp, RM); 4221 } 4222 4223 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) 4224 : Semantics(&S), 4225 Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { 4226 assert(Semantics == &semPPCDoubleDouble); 4227 } 4228 4229 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) 4230 : Semantics(&S), 4231 Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), 4232 APFloat(semIEEEdouble, uninitialized)}) { 4233 assert(Semantics == &semPPCDoubleDouble); 4234 } 4235 4236 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) 4237 : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), 4238 APFloat(semIEEEdouble)}) { 4239 assert(Semantics == &semPPCDoubleDouble); 4240 } 4241 4242 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) 4243 : Semantics(&S), 4244 Floats(new APFloat[2]{ 4245 APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), 4246 APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { 4247 assert(Semantics == &semPPCDoubleDouble); 4248 } 4249 4250 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, 4251 APFloat &&Second) 4252 : Semantics(&S), 4253 Floats(new APFloat[2]{std::move(First), std::move(Second)}) { 4254 assert(Semantics == &semPPCDoubleDouble); 4255 assert(&Floats[0].getSemantics() == &semIEEEdouble); 4256 assert(&Floats[1].getSemantics() == &semIEEEdouble); 4257 } 4258 4259 DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) 4260 : Semantics(RHS.Semantics), 4261 Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), 4262 APFloat(RHS.Floats[1])} 4263 : nullptr) { 4264 assert(Semantics == &semPPCDoubleDouble); 4265 } 4266 4267 DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) 4268 : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { 4269 RHS.Semantics = &semBogus; 4270 assert(Semantics == &semPPCDoubleDouble); 4271 } 4272 4273 DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { 4274 if (Semantics == RHS.Semantics && RHS.Floats) { 4275 Floats[0] = RHS.Floats[0]; 4276 Floats[1] = RHS.Floats[1]; 4277 } else if (this != &RHS) { 4278 this->~DoubleAPFloat(); 4279 new (this) DoubleAPFloat(RHS); 4280 } 4281 return *this; 4282 } 4283 4284 // Implement addition, subtraction, multiplication and division based on: 4285 // "Software for Doubled-Precision Floating-Point Computations", 4286 // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. 4287 APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, 4288 const APFloat &c, const APFloat &cc, 4289 roundingMode RM) { 4290 int Status = opOK; 4291 APFloat z = a; 4292 Status |= z.add(c, RM); 4293 if (!z.isFinite()) { 4294 if (!z.isInfinity()) { 4295 Floats[0] = std::move(z); 4296 Floats[1].makeZero(/* Neg = */ false); 4297 return (opStatus)Status; 4298 } 4299 Status = opOK; 4300 auto AComparedToC = a.compareAbsoluteValue(c); 4301 z = cc; 4302 Status |= z.add(aa, RM); 4303 if (AComparedToC == APFloat::cmpGreaterThan) { 4304 // z = cc + aa + c + a; 4305 Status |= z.add(c, RM); 4306 Status |= z.add(a, RM); 4307 } else { 4308 // z = cc + aa + a + c; 4309 Status |= z.add(a, RM); 4310 Status |= z.add(c, RM); 4311 } 4312 if (!z.isFinite()) { 4313 Floats[0] = std::move(z); 4314 Floats[1].makeZero(/* Neg = */ false); 4315 return (opStatus)Status; 4316 } 4317 Floats[0] = z; 4318 APFloat zz = aa; 4319 Status |= zz.add(cc, RM); 4320 if (AComparedToC == APFloat::cmpGreaterThan) { 4321 // Floats[1] = a - z + c + zz; 4322 Floats[1] = a; 4323 Status |= Floats[1].subtract(z, RM); 4324 Status |= Floats[1].add(c, RM); 4325 Status |= Floats[1].add(zz, RM); 4326 } else { 4327 // Floats[1] = c - z + a + zz; 4328 Floats[1] = c; 4329 Status |= Floats[1].subtract(z, RM); 4330 Status |= Floats[1].add(a, RM); 4331 Status |= Floats[1].add(zz, RM); 4332 } 4333 } else { 4334 // q = a - z; 4335 APFloat q = a; 4336 Status |= q.subtract(z, RM); 4337 4338 // zz = q + c + (a - (q + z)) + aa + cc; 4339 // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. 4340 auto zz = q; 4341 Status |= zz.add(c, RM); 4342 Status |= q.add(z, RM); 4343 Status |= q.subtract(a, RM); 4344 q.changeSign(); 4345 Status |= zz.add(q, RM); 4346 Status |= zz.add(aa, RM); 4347 Status |= zz.add(cc, RM); 4348 if (zz.isZero() && !zz.isNegative()) { 4349 Floats[0] = std::move(z); 4350 Floats[1].makeZero(/* Neg = */ false); 4351 return opOK; 4352 } 4353 Floats[0] = z; 4354 Status |= Floats[0].add(zz, RM); 4355 if (!Floats[0].isFinite()) { 4356 Floats[1].makeZero(/* Neg = */ false); 4357 return (opStatus)Status; 4358 } 4359 Floats[1] = std::move(z); 4360 Status |= Floats[1].subtract(Floats[0], RM); 4361 Status |= Floats[1].add(zz, RM); 4362 } 4363 return (opStatus)Status; 4364 } 4365 4366 APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, 4367 const DoubleAPFloat &RHS, 4368 DoubleAPFloat &Out, 4369 roundingMode RM) { 4370 if (LHS.getCategory() == fcNaN) { 4371 Out = LHS; 4372 return opOK; 4373 } 4374 if (RHS.getCategory() == fcNaN) { 4375 Out = RHS; 4376 return opOK; 4377 } 4378 if (LHS.getCategory() == fcZero) { 4379 Out = RHS; 4380 return opOK; 4381 } 4382 if (RHS.getCategory() == fcZero) { 4383 Out = LHS; 4384 return opOK; 4385 } 4386 if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && 4387 LHS.isNegative() != RHS.isNegative()) { 4388 Out.makeNaN(false, Out.isNegative(), nullptr); 4389 return opInvalidOp; 4390 } 4391 if (LHS.getCategory() == fcInfinity) { 4392 Out = LHS; 4393 return opOK; 4394 } 4395 if (RHS.getCategory() == fcInfinity) { 4396 Out = RHS; 4397 return opOK; 4398 } 4399 assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal); 4400 4401 APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), 4402 CC(RHS.Floats[1]); 4403 assert(&A.getSemantics() == &semIEEEdouble); 4404 assert(&AA.getSemantics() == &semIEEEdouble); 4405 assert(&C.getSemantics() == &semIEEEdouble); 4406 assert(&CC.getSemantics() == &semIEEEdouble); 4407 assert(&Out.Floats[0].getSemantics() == &semIEEEdouble); 4408 assert(&Out.Floats[1].getSemantics() == &semIEEEdouble); 4409 return Out.addImpl(A, AA, C, CC, RM); 4410 } 4411 4412 APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, 4413 roundingMode RM) { 4414 return addWithSpecial(*this, RHS, *this, RM); 4415 } 4416 4417 APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, 4418 roundingMode RM) { 4419 changeSign(); 4420 auto Ret = add(RHS, RM); 4421 changeSign(); 4422 return Ret; 4423 } 4424 4425 APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, 4426 APFloat::roundingMode RM) { 4427 const auto &LHS = *this; 4428 auto &Out = *this; 4429 /* Interesting observation: For special categories, finding the lowest 4430 common ancestor of the following layered graph gives the correct 4431 return category: 4432 4433 NaN 4434 / \ 4435 Zero Inf 4436 \ / 4437 Normal 4438 4439 e.g. NaN * NaN = NaN 4440 Zero * Inf = NaN 4441 Normal * Zero = Zero 4442 Normal * Inf = Inf 4443 */ 4444 if (LHS.getCategory() == fcNaN) { 4445 Out = LHS; 4446 return opOK; 4447 } 4448 if (RHS.getCategory() == fcNaN) { 4449 Out = RHS; 4450 return opOK; 4451 } 4452 if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || 4453 (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { 4454 Out.makeNaN(false, false, nullptr); 4455 return opOK; 4456 } 4457 if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { 4458 Out = LHS; 4459 return opOK; 4460 } 4461 if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { 4462 Out = RHS; 4463 return opOK; 4464 } 4465 assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && 4466 "Special cases not handled exhaustively"); 4467 4468 int Status = opOK; 4469 APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; 4470 // t = a * c 4471 APFloat T = A; 4472 Status |= T.multiply(C, RM); 4473 if (!T.isFiniteNonZero()) { 4474 Floats[0] = T; 4475 Floats[1].makeZero(/* Neg = */ false); 4476 return (opStatus)Status; 4477 } 4478 4479 // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). 4480 APFloat Tau = A; 4481 T.changeSign(); 4482 Status |= Tau.fusedMultiplyAdd(C, T, RM); 4483 T.changeSign(); 4484 { 4485 // v = a * d 4486 APFloat V = A; 4487 Status |= V.multiply(D, RM); 4488 // w = b * c 4489 APFloat W = B; 4490 Status |= W.multiply(C, RM); 4491 Status |= V.add(W, RM); 4492 // tau += v + w 4493 Status |= Tau.add(V, RM); 4494 } 4495 // u = t + tau 4496 APFloat U = T; 4497 Status |= U.add(Tau, RM); 4498 4499 Floats[0] = U; 4500 if (!U.isFinite()) { 4501 Floats[1].makeZero(/* Neg = */ false); 4502 } else { 4503 // Floats[1] = (t - u) + tau 4504 Status |= T.subtract(U, RM); 4505 Status |= T.add(Tau, RM); 4506 Floats[1] = T; 4507 } 4508 return (opStatus)Status; 4509 } 4510 4511 APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, 4512 APFloat::roundingMode RM) { 4513 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4514 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4515 auto Ret = 4516 Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); 4517 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4518 return Ret; 4519 } 4520 4521 APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { 4522 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4523 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4524 auto Ret = 4525 Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); 4526 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4527 return Ret; 4528 } 4529 4530 APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { 4531 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4532 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4533 auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); 4534 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4535 return Ret; 4536 } 4537 4538 APFloat::opStatus 4539 DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, 4540 const DoubleAPFloat &Addend, 4541 APFloat::roundingMode RM) { 4542 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4543 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4544 auto Ret = Tmp.fusedMultiplyAdd( 4545 APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), 4546 APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); 4547 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4548 return Ret; 4549 } 4550 4551 APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { 4552 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4553 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4554 auto Ret = Tmp.roundToIntegral(RM); 4555 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4556 return Ret; 4557 } 4558 4559 void DoubleAPFloat::changeSign() { 4560 Floats[0].changeSign(); 4561 Floats[1].changeSign(); 4562 } 4563 4564 APFloat::cmpResult 4565 DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { 4566 auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); 4567 if (Result != cmpEqual) 4568 return Result; 4569 Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); 4570 if (Result == cmpLessThan || Result == cmpGreaterThan) { 4571 auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); 4572 auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); 4573 if (Against && !RHSAgainst) 4574 return cmpLessThan; 4575 if (!Against && RHSAgainst) 4576 return cmpGreaterThan; 4577 if (!Against && !RHSAgainst) 4578 return Result; 4579 if (Against && RHSAgainst) 4580 return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); 4581 } 4582 return Result; 4583 } 4584 4585 APFloat::fltCategory DoubleAPFloat::getCategory() const { 4586 return Floats[0].getCategory(); 4587 } 4588 4589 bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } 4590 4591 void DoubleAPFloat::makeInf(bool Neg) { 4592 Floats[0].makeInf(Neg); 4593 Floats[1].makeZero(/* Neg = */ false); 4594 } 4595 4596 void DoubleAPFloat::makeZero(bool Neg) { 4597 Floats[0].makeZero(Neg); 4598 Floats[1].makeZero(/* Neg = */ false); 4599 } 4600 4601 void DoubleAPFloat::makeLargest(bool Neg) { 4602 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4603 Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); 4604 Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); 4605 if (Neg) 4606 changeSign(); 4607 } 4608 4609 void DoubleAPFloat::makeSmallest(bool Neg) { 4610 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4611 Floats[0].makeSmallest(Neg); 4612 Floats[1].makeZero(/* Neg = */ false); 4613 } 4614 4615 void DoubleAPFloat::makeSmallestNormalized(bool Neg) { 4616 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4617 Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); 4618 if (Neg) 4619 Floats[0].changeSign(); 4620 Floats[1].makeZero(/* Neg = */ false); 4621 } 4622 4623 void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { 4624 Floats[0].makeNaN(SNaN, Neg, fill); 4625 Floats[1].makeZero(/* Neg = */ false); 4626 } 4627 4628 APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { 4629 auto Result = Floats[0].compare(RHS.Floats[0]); 4630 // |Float[0]| > |Float[1]| 4631 if (Result == APFloat::cmpEqual) 4632 return Floats[1].compare(RHS.Floats[1]); 4633 return Result; 4634 } 4635 4636 bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { 4637 return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && 4638 Floats[1].bitwiseIsEqual(RHS.Floats[1]); 4639 } 4640 4641 hash_code hash_value(const DoubleAPFloat &Arg) { 4642 if (Arg.Floats) 4643 return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); 4644 return hash_combine(Arg.Semantics); 4645 } 4646 4647 APInt DoubleAPFloat::bitcastToAPInt() const { 4648 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4649 uint64_t Data[] = { 4650 Floats[0].bitcastToAPInt().getRawData()[0], 4651 Floats[1].bitcastToAPInt().getRawData()[0], 4652 }; 4653 return APInt(128, 2, Data); 4654 } 4655 4656 Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S, 4657 roundingMode RM) { 4658 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4659 APFloat Tmp(semPPCDoubleDoubleLegacy); 4660 auto Ret = Tmp.convertFromString(S, RM); 4661 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4662 return Ret; 4663 } 4664 4665 APFloat::opStatus DoubleAPFloat::next(bool nextDown) { 4666 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4667 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4668 auto Ret = Tmp.next(nextDown); 4669 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4670 return Ret; 4671 } 4672 4673 APFloat::opStatus 4674 DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, 4675 unsigned int Width, bool IsSigned, 4676 roundingMode RM, bool *IsExact) const { 4677 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4678 return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) 4679 .convertToInteger(Input, Width, IsSigned, RM, IsExact); 4680 } 4681 4682 APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, 4683 bool IsSigned, 4684 roundingMode RM) { 4685 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4686 APFloat Tmp(semPPCDoubleDoubleLegacy); 4687 auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); 4688 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4689 return Ret; 4690 } 4691 4692 APFloat::opStatus 4693 DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, 4694 unsigned int InputSize, 4695 bool IsSigned, roundingMode RM) { 4696 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4697 APFloat Tmp(semPPCDoubleDoubleLegacy); 4698 auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); 4699 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4700 return Ret; 4701 } 4702 4703 APFloat::opStatus 4704 DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, 4705 unsigned int InputSize, 4706 bool IsSigned, roundingMode RM) { 4707 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4708 APFloat Tmp(semPPCDoubleDoubleLegacy); 4709 auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); 4710 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4711 return Ret; 4712 } 4713 4714 unsigned int DoubleAPFloat::convertToHexString(char *DST, 4715 unsigned int HexDigits, 4716 bool UpperCase, 4717 roundingMode RM) const { 4718 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4719 return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) 4720 .convertToHexString(DST, HexDigits, UpperCase, RM); 4721 } 4722 4723 bool DoubleAPFloat::isDenormal() const { 4724 return getCategory() == fcNormal && 4725 (Floats[0].isDenormal() || Floats[1].isDenormal() || 4726 // (double)(Hi + Lo) == Hi defines a normal number. 4727 Floats[0] != Floats[0] + Floats[1]); 4728 } 4729 4730 bool DoubleAPFloat::isSmallest() const { 4731 if (getCategory() != fcNormal) 4732 return false; 4733 DoubleAPFloat Tmp(*this); 4734 Tmp.makeSmallest(this->isNegative()); 4735 return Tmp.compare(*this) == cmpEqual; 4736 } 4737 4738 bool DoubleAPFloat::isLargest() const { 4739 if (getCategory() != fcNormal) 4740 return false; 4741 DoubleAPFloat Tmp(*this); 4742 Tmp.makeLargest(this->isNegative()); 4743 return Tmp.compare(*this) == cmpEqual; 4744 } 4745 4746 bool DoubleAPFloat::isInteger() const { 4747 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4748 return Floats[0].isInteger() && Floats[1].isInteger(); 4749 } 4750 4751 void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, 4752 unsigned FormatPrecision, 4753 unsigned FormatMaxPadding, 4754 bool TruncateZero) const { 4755 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4756 APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) 4757 .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); 4758 } 4759 4760 bool DoubleAPFloat::getExactInverse(APFloat *inv) const { 4761 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4762 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4763 if (!inv) 4764 return Tmp.getExactInverse(nullptr); 4765 APFloat Inv(semPPCDoubleDoubleLegacy); 4766 auto Ret = Tmp.getExactInverse(&Inv); 4767 *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); 4768 return Ret; 4769 } 4770 4771 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, 4772 APFloat::roundingMode RM) { 4773 assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4774 return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), 4775 scalbn(Arg.Floats[1], Exp, RM)); 4776 } 4777 4778 DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, 4779 APFloat::roundingMode RM) { 4780 assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4781 APFloat First = frexp(Arg.Floats[0], Exp, RM); 4782 APFloat Second = Arg.Floats[1]; 4783 if (Arg.getCategory() == APFloat::fcNormal) 4784 Second = scalbn(Second, -Exp, RM); 4785 return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); 4786 } 4787 4788 } // namespace detail 4789 4790 APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { 4791 if (usesLayout<IEEEFloat>(Semantics)) { 4792 new (&IEEE) IEEEFloat(std::move(F)); 4793 return; 4794 } 4795 if (usesLayout<DoubleAPFloat>(Semantics)) { 4796 const fltSemantics& S = F.getSemantics(); 4797 new (&Double) 4798 DoubleAPFloat(Semantics, APFloat(std::move(F), S), 4799 APFloat(semIEEEdouble)); 4800 return; 4801 } 4802 llvm_unreachable("Unexpected semantics"); 4803 } 4804 4805 Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str, 4806 roundingMode RM) { 4807 APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); 4808 } 4809 4810 hash_code hash_value(const APFloat &Arg) { 4811 if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) 4812 return hash_value(Arg.U.IEEE); 4813 if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) 4814 return hash_value(Arg.U.Double); 4815 llvm_unreachable("Unexpected semantics"); 4816 } 4817 4818 APFloat::APFloat(const fltSemantics &Semantics, StringRef S) 4819 : APFloat(Semantics) { 4820 auto StatusOrErr = convertFromString(S, rmNearestTiesToEven); 4821 assert(StatusOrErr && "Invalid floating point representation"); 4822 consumeError(StatusOrErr.takeError()); 4823 } 4824 4825 APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, 4826 roundingMode RM, bool *losesInfo) { 4827 if (&getSemantics() == &ToSemantics) { 4828 *losesInfo = false; 4829 return opOK; 4830 } 4831 if (usesLayout<IEEEFloat>(getSemantics()) && 4832 usesLayout<IEEEFloat>(ToSemantics)) 4833 return U.IEEE.convert(ToSemantics, RM, losesInfo); 4834 if (usesLayout<IEEEFloat>(getSemantics()) && 4835 usesLayout<DoubleAPFloat>(ToSemantics)) { 4836 assert(&ToSemantics == &semPPCDoubleDouble); 4837 auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); 4838 *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); 4839 return Ret; 4840 } 4841 if (usesLayout<DoubleAPFloat>(getSemantics()) && 4842 usesLayout<IEEEFloat>(ToSemantics)) { 4843 auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); 4844 *this = APFloat(std::move(getIEEE()), ToSemantics); 4845 return Ret; 4846 } 4847 llvm_unreachable("Unexpected semantics"); 4848 } 4849 4850 APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics, 4851 unsigned BitWidth) { 4852 return APFloat(Semantics, APInt::getAllOnesValue(BitWidth)); 4853 } 4854 4855 void APFloat::print(raw_ostream &OS) const { 4856 SmallVector<char, 16> Buffer; 4857 toString(Buffer); 4858 OS << Buffer << "\n"; 4859 } 4860 4861 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4862 LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); } 4863 #endif 4864 4865 void APFloat::Profile(FoldingSetNodeID &NID) const { 4866 NID.Add(bitcastToAPInt()); 4867 } 4868 4869 /* Same as convertToInteger(integerPart*, ...), except the result is returned in 4870 an APSInt, whose initial bit-width and signed-ness are used to determine the 4871 precision of the conversion. 4872 */ 4873 APFloat::opStatus APFloat::convertToInteger(APSInt &result, 4874 roundingMode rounding_mode, 4875 bool *isExact) const { 4876 unsigned bitWidth = result.getBitWidth(); 4877 SmallVector<uint64_t, 4> parts(result.getNumWords()); 4878 opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), 4879 rounding_mode, isExact); 4880 // Keeps the original signed-ness. 4881 result = APInt(bitWidth, parts); 4882 return status; 4883 } 4884 4885 double APFloat::convertToDouble() const { 4886 if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEdouble) 4887 return getIEEE().convertToDouble(); 4888 assert(getSemantics().isRepresentableBy(semIEEEdouble) && 4889 "Float semantics is not representable by IEEEdouble"); 4890 APFloat Temp = *this; 4891 bool LosesInfo; 4892 opStatus St = Temp.convert(semIEEEdouble, rmNearestTiesToEven, &LosesInfo); 4893 assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision"); 4894 (void)St; 4895 return Temp.getIEEE().convertToDouble(); 4896 } 4897 4898 float APFloat::convertToFloat() const { 4899 if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEsingle) 4900 return getIEEE().convertToFloat(); 4901 assert(getSemantics().isRepresentableBy(semIEEEsingle) && 4902 "Float semantics is not representable by IEEEsingle"); 4903 APFloat Temp = *this; 4904 bool LosesInfo; 4905 opStatus St = Temp.convert(semIEEEsingle, rmNearestTiesToEven, &LosesInfo); 4906 assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision"); 4907 (void)St; 4908 return Temp.getIEEE().convertToFloat(); 4909 } 4910 4911 } // namespace llvm 4912 4913 #undef APFLOAT_DISPATCH_ON_SEMANTICS 4914