1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision floating 10 // point values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <cstring> 27 #include <limits.h> 28 29 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ 30 do { \ 31 if (usesLayout<IEEEFloat>(getSemantics())) \ 32 return U.IEEE.METHOD_CALL; \ 33 if (usesLayout<DoubleAPFloat>(getSemantics())) \ 34 return U.Double.METHOD_CALL; \ 35 llvm_unreachable("Unexpected semantics"); \ 36 } while (false) 37 38 using namespace llvm; 39 40 /// A macro used to combine two fcCategory enums into one key which can be used 41 /// in a switch statement to classify how the interaction of two APFloat's 42 /// categories affects an operation. 43 /// 44 /// TODO: If clang source code is ever allowed to use constexpr in its own 45 /// codebase, change this into a static inline function. 46 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) 47 48 /* Assumed in hexadecimal significand parsing, and conversion to 49 hexadecimal strings. */ 50 static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); 51 52 namespace llvm { 53 /* Represents floating point arithmetic semantics. */ 54 struct fltSemantics { 55 /* The largest E such that 2^E is representable; this matches the 56 definition of IEEE 754. */ 57 APFloatBase::ExponentType maxExponent; 58 59 /* The smallest E such that 2^E is a normalized number; this 60 matches the definition of IEEE 754. */ 61 APFloatBase::ExponentType minExponent; 62 63 /* Number of bits in the significand. This includes the integer 64 bit. */ 65 unsigned int precision; 66 67 /* Number of bits actually used in the semantics. */ 68 unsigned int sizeInBits; 69 }; 70 71 static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; 72 static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; 73 static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; 74 static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; 75 static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; 76 static const fltSemantics semBogus = {0, 0, 0, 0}; 77 78 /* The IBM double-double semantics. Such a number consists of a pair of IEEE 79 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, 80 (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. 81 Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent 82 to each other, and two 11-bit exponents. 83 84 Note: we need to make the value different from semBogus as otherwise 85 an unsafe optimization may collapse both values to a single address, 86 and we heavily rely on them having distinct addresses. */ 87 static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0}; 88 89 /* These are legacy semantics for the fallback, inaccrurate implementation of 90 IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the 91 operation. It's equivalent to having an IEEE number with consecutive 106 92 bits of mantissa and 11 bits of exponent. 93 94 It's not equivalent to IBM double-double. For example, a legit IBM 95 double-double, 1 + epsilon: 96 97 1 + epsilon = 1 + (1 >> 1076) 98 99 is not representable by a consecutive 106 bits of mantissa. 100 101 Currently, these semantics are used in the following way: 102 103 semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> 104 (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> 105 semPPCDoubleDoubleLegacy -> IEEE operations 106 107 We use bitcastToAPInt() to get the bit representation (in APInt) of the 108 underlying IEEEdouble, then use the APInt constructor to construct the 109 legacy IEEE float. 110 111 TODO: Implement all operations in semPPCDoubleDouble, and delete these 112 semantics. */ 113 static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, 114 53 + 53, 128}; 115 116 const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { 117 switch (S) { 118 case S_IEEEhalf: 119 return IEEEhalf(); 120 case S_IEEEsingle: 121 return IEEEsingle(); 122 case S_IEEEdouble: 123 return IEEEdouble(); 124 case S_x87DoubleExtended: 125 return x87DoubleExtended(); 126 case S_IEEEquad: 127 return IEEEquad(); 128 case S_PPCDoubleDouble: 129 return PPCDoubleDouble(); 130 } 131 llvm_unreachable("Unrecognised floating semantics"); 132 } 133 134 APFloatBase::Semantics 135 APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { 136 if (&Sem == &llvm::APFloat::IEEEhalf()) 137 return S_IEEEhalf; 138 else if (&Sem == &llvm::APFloat::IEEEsingle()) 139 return S_IEEEsingle; 140 else if (&Sem == &llvm::APFloat::IEEEdouble()) 141 return S_IEEEdouble; 142 else if (&Sem == &llvm::APFloat::x87DoubleExtended()) 143 return S_x87DoubleExtended; 144 else if (&Sem == &llvm::APFloat::IEEEquad()) 145 return S_IEEEquad; 146 else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) 147 return S_PPCDoubleDouble; 148 else 149 llvm_unreachable("Unknown floating semantics"); 150 } 151 152 const fltSemantics &APFloatBase::IEEEhalf() { 153 return semIEEEhalf; 154 } 155 const fltSemantics &APFloatBase::IEEEsingle() { 156 return semIEEEsingle; 157 } 158 const fltSemantics &APFloatBase::IEEEdouble() { 159 return semIEEEdouble; 160 } 161 const fltSemantics &APFloatBase::IEEEquad() { 162 return semIEEEquad; 163 } 164 const fltSemantics &APFloatBase::x87DoubleExtended() { 165 return semX87DoubleExtended; 166 } 167 const fltSemantics &APFloatBase::Bogus() { 168 return semBogus; 169 } 170 const fltSemantics &APFloatBase::PPCDoubleDouble() { 171 return semPPCDoubleDouble; 172 } 173 174 /* A tight upper bound on number of parts required to hold the value 175 pow(5, power) is 176 177 power * 815 / (351 * integerPartWidth) + 1 178 179 However, whilst the result may require only this many parts, 180 because we are multiplying two values to get it, the 181 multiplication may require an extra part with the excess part 182 being zero (consider the trivial case of 1 * 1, tcFullMultiply 183 requires two parts to hold the single-part result). So we add an 184 extra one to guarantee enough space whilst multiplying. */ 185 const unsigned int maxExponent = 16383; 186 const unsigned int maxPrecision = 113; 187 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; 188 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); 189 190 unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { 191 return semantics.precision; 192 } 193 APFloatBase::ExponentType 194 APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { 195 return semantics.maxExponent; 196 } 197 APFloatBase::ExponentType 198 APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { 199 return semantics.minExponent; 200 } 201 unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { 202 return semantics.sizeInBits; 203 } 204 205 unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { 206 return Sem.sizeInBits; 207 } 208 209 /* A bunch of private, handy routines. */ 210 211 static inline unsigned int 212 partCountForBits(unsigned int bits) 213 { 214 return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; 215 } 216 217 /* Returns 0U-9U. Return values >= 10U are not digits. */ 218 static inline unsigned int 219 decDigitValue(unsigned int c) 220 { 221 return c - '0'; 222 } 223 224 /* Return the value of a decimal exponent of the form 225 [+-]ddddddd. 226 227 If the exponent overflows, returns a large exponent with the 228 appropriate sign. */ 229 static int 230 readExponent(StringRef::iterator begin, StringRef::iterator end) 231 { 232 bool isNegative; 233 unsigned int absExponent; 234 const unsigned int overlargeExponent = 24000; /* FIXME. */ 235 StringRef::iterator p = begin; 236 237 // Treat no exponent as 0 to match binutils 238 if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { 239 return 0; 240 } 241 242 isNegative = (*p == '-'); 243 if (*p == '-' || *p == '+') { 244 p++; 245 assert(p != end && "Exponent has no digits"); 246 } 247 248 absExponent = decDigitValue(*p++); 249 assert(absExponent < 10U && "Invalid character in exponent"); 250 251 for (; p != end; ++p) { 252 unsigned int value; 253 254 value = decDigitValue(*p); 255 assert(value < 10U && "Invalid character in exponent"); 256 257 value += absExponent * 10; 258 if (absExponent >= overlargeExponent) { 259 absExponent = overlargeExponent; 260 p = end; /* outwit assert below */ 261 break; 262 } 263 absExponent = value; 264 } 265 266 assert(p == end && "Invalid exponent in exponent"); 267 268 if (isNegative) 269 return -(int) absExponent; 270 else 271 return (int) absExponent; 272 } 273 274 /* This is ugly and needs cleaning up, but I don't immediately see 275 how whilst remaining safe. */ 276 static int 277 totalExponent(StringRef::iterator p, StringRef::iterator end, 278 int exponentAdjustment) 279 { 280 int unsignedExponent; 281 bool negative, overflow; 282 int exponent = 0; 283 284 assert(p != end && "Exponent has no digits"); 285 286 negative = *p == '-'; 287 if (*p == '-' || *p == '+') { 288 p++; 289 assert(p != end && "Exponent has no digits"); 290 } 291 292 unsignedExponent = 0; 293 overflow = false; 294 for (; p != end; ++p) { 295 unsigned int value; 296 297 value = decDigitValue(*p); 298 assert(value < 10U && "Invalid character in exponent"); 299 300 unsignedExponent = unsignedExponent * 10 + value; 301 if (unsignedExponent > 32767) { 302 overflow = true; 303 break; 304 } 305 } 306 307 if (exponentAdjustment > 32767 || exponentAdjustment < -32768) 308 overflow = true; 309 310 if (!overflow) { 311 exponent = unsignedExponent; 312 if (negative) 313 exponent = -exponent; 314 exponent += exponentAdjustment; 315 if (exponent > 32767 || exponent < -32768) 316 overflow = true; 317 } 318 319 if (overflow) 320 exponent = negative ? -32768: 32767; 321 322 return exponent; 323 } 324 325 static StringRef::iterator 326 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, 327 StringRef::iterator *dot) 328 { 329 StringRef::iterator p = begin; 330 *dot = end; 331 while (p != end && *p == '0') 332 p++; 333 334 if (p != end && *p == '.') { 335 *dot = p++; 336 337 assert(end - begin != 1 && "Significand has no digits"); 338 339 while (p != end && *p == '0') 340 p++; 341 } 342 343 return p; 344 } 345 346 /* Given a normal decimal floating point number of the form 347 348 dddd.dddd[eE][+-]ddd 349 350 where the decimal point and exponent are optional, fill out the 351 structure D. Exponent is appropriate if the significand is 352 treated as an integer, and normalizedExponent if the significand 353 is taken to have the decimal point after a single leading 354 non-zero digit. 355 356 If the value is zero, V->firstSigDigit points to a non-digit, and 357 the return exponent is zero. 358 */ 359 struct decimalInfo { 360 const char *firstSigDigit; 361 const char *lastSigDigit; 362 int exponent; 363 int normalizedExponent; 364 }; 365 366 static void 367 interpretDecimal(StringRef::iterator begin, StringRef::iterator end, 368 decimalInfo *D) 369 { 370 StringRef::iterator dot = end; 371 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); 372 373 D->firstSigDigit = p; 374 D->exponent = 0; 375 D->normalizedExponent = 0; 376 377 for (; p != end; ++p) { 378 if (*p == '.') { 379 assert(dot == end && "String contains multiple dots"); 380 dot = p++; 381 if (p == end) 382 break; 383 } 384 if (decDigitValue(*p) >= 10U) 385 break; 386 } 387 388 if (p != end) { 389 assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); 390 assert(p != begin && "Significand has no digits"); 391 assert((dot == end || p - begin != 1) && "Significand has no digits"); 392 393 /* p points to the first non-digit in the string */ 394 D->exponent = readExponent(p + 1, end); 395 396 /* Implied decimal point? */ 397 if (dot == end) 398 dot = p; 399 } 400 401 /* If number is all zeroes accept any exponent. */ 402 if (p != D->firstSigDigit) { 403 /* Drop insignificant trailing zeroes. */ 404 if (p != begin) { 405 do 406 do 407 p--; 408 while (p != begin && *p == '0'); 409 while (p != begin && *p == '.'); 410 } 411 412 /* Adjust the exponents for any decimal point. */ 413 D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); 414 D->normalizedExponent = (D->exponent + 415 static_cast<APFloat::ExponentType>((p - D->firstSigDigit) 416 - (dot > D->firstSigDigit && dot < p))); 417 } 418 419 D->lastSigDigit = p; 420 } 421 422 /* Return the trailing fraction of a hexadecimal number. 423 DIGITVALUE is the first hex digit of the fraction, P points to 424 the next digit. */ 425 static lostFraction 426 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, 427 unsigned int digitValue) 428 { 429 unsigned int hexDigit; 430 431 /* If the first trailing digit isn't 0 or 8 we can work out the 432 fraction immediately. */ 433 if (digitValue > 8) 434 return lfMoreThanHalf; 435 else if (digitValue < 8 && digitValue > 0) 436 return lfLessThanHalf; 437 438 // Otherwise we need to find the first non-zero digit. 439 while (p != end && (*p == '0' || *p == '.')) 440 p++; 441 442 assert(p != end && "Invalid trailing hexadecimal fraction!"); 443 444 hexDigit = hexDigitValue(*p); 445 446 /* If we ran off the end it is exactly zero or one-half, otherwise 447 a little more. */ 448 if (hexDigit == -1U) 449 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; 450 else 451 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; 452 } 453 454 /* Return the fraction lost were a bignum truncated losing the least 455 significant BITS bits. */ 456 static lostFraction 457 lostFractionThroughTruncation(const APFloatBase::integerPart *parts, 458 unsigned int partCount, 459 unsigned int bits) 460 { 461 unsigned int lsb; 462 463 lsb = APInt::tcLSB(parts, partCount); 464 465 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ 466 if (bits <= lsb) 467 return lfExactlyZero; 468 if (bits == lsb + 1) 469 return lfExactlyHalf; 470 if (bits <= partCount * APFloatBase::integerPartWidth && 471 APInt::tcExtractBit(parts, bits - 1)) 472 return lfMoreThanHalf; 473 474 return lfLessThanHalf; 475 } 476 477 /* Shift DST right BITS bits noting lost fraction. */ 478 static lostFraction 479 shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) 480 { 481 lostFraction lost_fraction; 482 483 lost_fraction = lostFractionThroughTruncation(dst, parts, bits); 484 485 APInt::tcShiftRight(dst, parts, bits); 486 487 return lost_fraction; 488 } 489 490 /* Combine the effect of two lost fractions. */ 491 static lostFraction 492 combineLostFractions(lostFraction moreSignificant, 493 lostFraction lessSignificant) 494 { 495 if (lessSignificant != lfExactlyZero) { 496 if (moreSignificant == lfExactlyZero) 497 moreSignificant = lfLessThanHalf; 498 else if (moreSignificant == lfExactlyHalf) 499 moreSignificant = lfMoreThanHalf; 500 } 501 502 return moreSignificant; 503 } 504 505 /* The error from the true value, in half-ulps, on multiplying two 506 floating point numbers, which differ from the value they 507 approximate by at most HUE1 and HUE2 half-ulps, is strictly less 508 than the returned value. 509 510 See "How to Read Floating Point Numbers Accurately" by William D 511 Clinger. */ 512 static unsigned int 513 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) 514 { 515 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); 516 517 if (HUerr1 + HUerr2 == 0) 518 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ 519 else 520 return inexactMultiply + 2 * (HUerr1 + HUerr2); 521 } 522 523 /* The number of ulps from the boundary (zero, or half if ISNEAREST) 524 when the least significant BITS are truncated. BITS cannot be 525 zero. */ 526 static APFloatBase::integerPart 527 ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, 528 bool isNearest) { 529 unsigned int count, partBits; 530 APFloatBase::integerPart part, boundary; 531 532 assert(bits != 0); 533 534 bits--; 535 count = bits / APFloatBase::integerPartWidth; 536 partBits = bits % APFloatBase::integerPartWidth + 1; 537 538 part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); 539 540 if (isNearest) 541 boundary = (APFloatBase::integerPart) 1 << (partBits - 1); 542 else 543 boundary = 0; 544 545 if (count == 0) { 546 if (part - boundary <= boundary - part) 547 return part - boundary; 548 else 549 return boundary - part; 550 } 551 552 if (part == boundary) { 553 while (--count) 554 if (parts[count]) 555 return ~(APFloatBase::integerPart) 0; /* A lot. */ 556 557 return parts[0]; 558 } else if (part == boundary - 1) { 559 while (--count) 560 if (~parts[count]) 561 return ~(APFloatBase::integerPart) 0; /* A lot. */ 562 563 return -parts[0]; 564 } 565 566 return ~(APFloatBase::integerPart) 0; /* A lot. */ 567 } 568 569 /* Place pow(5, power) in DST, and return the number of parts used. 570 DST must be at least one part larger than size of the answer. */ 571 static unsigned int 572 powerOf5(APFloatBase::integerPart *dst, unsigned int power) { 573 static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; 574 APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; 575 pow5s[0] = 78125 * 5; 576 577 unsigned int partsCount[16] = { 1 }; 578 APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; 579 unsigned int result; 580 assert(power <= maxExponent); 581 582 p1 = dst; 583 p2 = scratch; 584 585 *p1 = firstEightPowers[power & 7]; 586 power >>= 3; 587 588 result = 1; 589 pow5 = pow5s; 590 591 for (unsigned int n = 0; power; power >>= 1, n++) { 592 unsigned int pc; 593 594 pc = partsCount[n]; 595 596 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ 597 if (pc == 0) { 598 pc = partsCount[n - 1]; 599 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); 600 pc *= 2; 601 if (pow5[pc - 1] == 0) 602 pc--; 603 partsCount[n] = pc; 604 } 605 606 if (power & 1) { 607 APFloatBase::integerPart *tmp; 608 609 APInt::tcFullMultiply(p2, p1, pow5, result, pc); 610 result += pc; 611 if (p2[result - 1] == 0) 612 result--; 613 614 /* Now result is in p1 with partsCount parts and p2 is scratch 615 space. */ 616 tmp = p1; 617 p1 = p2; 618 p2 = tmp; 619 } 620 621 pow5 += pc; 622 } 623 624 if (p1 != dst) 625 APInt::tcAssign(dst, p1, result); 626 627 return result; 628 } 629 630 /* Zero at the end to avoid modular arithmetic when adding one; used 631 when rounding up during hexadecimal output. */ 632 static const char hexDigitsLower[] = "0123456789abcdef0"; 633 static const char hexDigitsUpper[] = "0123456789ABCDEF0"; 634 static const char infinityL[] = "infinity"; 635 static const char infinityU[] = "INFINITY"; 636 static const char NaNL[] = "nan"; 637 static const char NaNU[] = "NAN"; 638 639 /* Write out an integerPart in hexadecimal, starting with the most 640 significant nibble. Write out exactly COUNT hexdigits, return 641 COUNT. */ 642 static unsigned int 643 partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, 644 const char *hexDigitChars) 645 { 646 unsigned int result = count; 647 648 assert(count != 0 && count <= APFloatBase::integerPartWidth / 4); 649 650 part >>= (APFloatBase::integerPartWidth - 4 * count); 651 while (count--) { 652 dst[count] = hexDigitChars[part & 0xf]; 653 part >>= 4; 654 } 655 656 return result; 657 } 658 659 /* Write out an unsigned decimal integer. */ 660 static char * 661 writeUnsignedDecimal (char *dst, unsigned int n) 662 { 663 char buff[40], *p; 664 665 p = buff; 666 do 667 *p++ = '0' + n % 10; 668 while (n /= 10); 669 670 do 671 *dst++ = *--p; 672 while (p != buff); 673 674 return dst; 675 } 676 677 /* Write out a signed decimal integer. */ 678 static char * 679 writeSignedDecimal (char *dst, int value) 680 { 681 if (value < 0) { 682 *dst++ = '-'; 683 dst = writeUnsignedDecimal(dst, -(unsigned) value); 684 } else 685 dst = writeUnsignedDecimal(dst, value); 686 687 return dst; 688 } 689 690 namespace detail { 691 /* Constructors. */ 692 void IEEEFloat::initialize(const fltSemantics *ourSemantics) { 693 unsigned int count; 694 695 semantics = ourSemantics; 696 count = partCount(); 697 if (count > 1) 698 significand.parts = new integerPart[count]; 699 } 700 701 void IEEEFloat::freeSignificand() { 702 if (needsCleanup()) 703 delete [] significand.parts; 704 } 705 706 void IEEEFloat::assign(const IEEEFloat &rhs) { 707 assert(semantics == rhs.semantics); 708 709 sign = rhs.sign; 710 category = rhs.category; 711 exponent = rhs.exponent; 712 if (isFiniteNonZero() || category == fcNaN) 713 copySignificand(rhs); 714 } 715 716 void IEEEFloat::copySignificand(const IEEEFloat &rhs) { 717 assert(isFiniteNonZero() || category == fcNaN); 718 assert(rhs.partCount() >= partCount()); 719 720 APInt::tcAssign(significandParts(), rhs.significandParts(), 721 partCount()); 722 } 723 724 /* Make this number a NaN, with an arbitrary but deterministic value 725 for the significand. If double or longer, this is a signalling NaN, 726 which may not be ideal. If float, this is QNaN(0). */ 727 void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { 728 category = fcNaN; 729 sign = Negative; 730 731 integerPart *significand = significandParts(); 732 unsigned numParts = partCount(); 733 734 // Set the significand bits to the fill. 735 if (!fill || fill->getNumWords() < numParts) 736 APInt::tcSet(significand, 0, numParts); 737 if (fill) { 738 APInt::tcAssign(significand, fill->getRawData(), 739 std::min(fill->getNumWords(), numParts)); 740 741 // Zero out the excess bits of the significand. 742 unsigned bitsToPreserve = semantics->precision - 1; 743 unsigned part = bitsToPreserve / 64; 744 bitsToPreserve %= 64; 745 significand[part] &= ((1ULL << bitsToPreserve) - 1); 746 for (part++; part != numParts; ++part) 747 significand[part] = 0; 748 } 749 750 unsigned QNaNBit = semantics->precision - 2; 751 752 if (SNaN) { 753 // We always have to clear the QNaN bit to make it an SNaN. 754 APInt::tcClearBit(significand, QNaNBit); 755 756 // If there are no bits set in the payload, we have to set 757 // *something* to make it a NaN instead of an infinity; 758 // conventionally, this is the next bit down from the QNaN bit. 759 if (APInt::tcIsZero(significand, numParts)) 760 APInt::tcSetBit(significand, QNaNBit - 1); 761 } else { 762 // We always have to set the QNaN bit to make it a QNaN. 763 APInt::tcSetBit(significand, QNaNBit); 764 } 765 766 // For x87 extended precision, we want to make a NaN, not a 767 // pseudo-NaN. Maybe we should expose the ability to make 768 // pseudo-NaNs? 769 if (semantics == &semX87DoubleExtended) 770 APInt::tcSetBit(significand, QNaNBit + 1); 771 } 772 773 IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { 774 if (this != &rhs) { 775 if (semantics != rhs.semantics) { 776 freeSignificand(); 777 initialize(rhs.semantics); 778 } 779 assign(rhs); 780 } 781 782 return *this; 783 } 784 785 IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { 786 freeSignificand(); 787 788 semantics = rhs.semantics; 789 significand = rhs.significand; 790 exponent = rhs.exponent; 791 category = rhs.category; 792 sign = rhs.sign; 793 794 rhs.semantics = &semBogus; 795 return *this; 796 } 797 798 bool IEEEFloat::isDenormal() const { 799 return isFiniteNonZero() && (exponent == semantics->minExponent) && 800 (APInt::tcExtractBit(significandParts(), 801 semantics->precision - 1) == 0); 802 } 803 804 bool IEEEFloat::isSmallest() const { 805 // The smallest number by magnitude in our format will be the smallest 806 // denormal, i.e. the floating point number with exponent being minimum 807 // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). 808 return isFiniteNonZero() && exponent == semantics->minExponent && 809 significandMSB() == 0; 810 } 811 812 bool IEEEFloat::isSignificandAllOnes() const { 813 // Test if the significand excluding the integral bit is all ones. This allows 814 // us to test for binade boundaries. 815 const integerPart *Parts = significandParts(); 816 const unsigned PartCount = partCount(); 817 for (unsigned i = 0; i < PartCount - 1; i++) 818 if (~Parts[i]) 819 return false; 820 821 // Set the unused high bits to all ones when we compare. 822 const unsigned NumHighBits = 823 PartCount*integerPartWidth - semantics->precision + 1; 824 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " 825 "fill than integerPartWidth"); 826 const integerPart HighBitFill = 827 ~integerPart(0) << (integerPartWidth - NumHighBits); 828 if (~(Parts[PartCount - 1] | HighBitFill)) 829 return false; 830 831 return true; 832 } 833 834 bool IEEEFloat::isSignificandAllZeros() const { 835 // Test if the significand excluding the integral bit is all zeros. This 836 // allows us to test for binade boundaries. 837 const integerPart *Parts = significandParts(); 838 const unsigned PartCount = partCount(); 839 840 for (unsigned i = 0; i < PartCount - 1; i++) 841 if (Parts[i]) 842 return false; 843 844 const unsigned NumHighBits = 845 PartCount*integerPartWidth - semantics->precision + 1; 846 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " 847 "clear than integerPartWidth"); 848 const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; 849 850 if (Parts[PartCount - 1] & HighBitMask) 851 return false; 852 853 return true; 854 } 855 856 bool IEEEFloat::isLargest() const { 857 // The largest number by magnitude in our format will be the floating point 858 // number with maximum exponent and with significand that is all ones. 859 return isFiniteNonZero() && exponent == semantics->maxExponent 860 && isSignificandAllOnes(); 861 } 862 863 bool IEEEFloat::isInteger() const { 864 // This could be made more efficient; I'm going for obviously correct. 865 if (!isFinite()) return false; 866 IEEEFloat truncated = *this; 867 truncated.roundToIntegral(rmTowardZero); 868 return compare(truncated) == cmpEqual; 869 } 870 871 bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { 872 if (this == &rhs) 873 return true; 874 if (semantics != rhs.semantics || 875 category != rhs.category || 876 sign != rhs.sign) 877 return false; 878 if (category==fcZero || category==fcInfinity) 879 return true; 880 881 if (isFiniteNonZero() && exponent != rhs.exponent) 882 return false; 883 884 return std::equal(significandParts(), significandParts() + partCount(), 885 rhs.significandParts()); 886 } 887 888 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { 889 initialize(&ourSemantics); 890 sign = 0; 891 category = fcNormal; 892 zeroSignificand(); 893 exponent = ourSemantics.precision - 1; 894 significandParts()[0] = value; 895 normalize(rmNearestTiesToEven, lfExactlyZero); 896 } 897 898 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { 899 initialize(&ourSemantics); 900 category = fcZero; 901 sign = false; 902 } 903 904 // Delegate to the previous constructor, because later copy constructor may 905 // actually inspects category, which can't be garbage. 906 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) 907 : IEEEFloat(ourSemantics) {} 908 909 IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { 910 initialize(rhs.semantics); 911 assign(rhs); 912 } 913 914 IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { 915 *this = std::move(rhs); 916 } 917 918 IEEEFloat::~IEEEFloat() { freeSignificand(); } 919 920 unsigned int IEEEFloat::partCount() const { 921 return partCountForBits(semantics->precision + 1); 922 } 923 924 const IEEEFloat::integerPart *IEEEFloat::significandParts() const { 925 return const_cast<IEEEFloat *>(this)->significandParts(); 926 } 927 928 IEEEFloat::integerPart *IEEEFloat::significandParts() { 929 if (partCount() > 1) 930 return significand.parts; 931 else 932 return &significand.part; 933 } 934 935 void IEEEFloat::zeroSignificand() { 936 APInt::tcSet(significandParts(), 0, partCount()); 937 } 938 939 /* Increment an fcNormal floating point number's significand. */ 940 void IEEEFloat::incrementSignificand() { 941 integerPart carry; 942 943 carry = APInt::tcIncrement(significandParts(), partCount()); 944 945 /* Our callers should never cause us to overflow. */ 946 assert(carry == 0); 947 (void)carry; 948 } 949 950 /* Add the significand of the RHS. Returns the carry flag. */ 951 IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { 952 integerPart *parts; 953 954 parts = significandParts(); 955 956 assert(semantics == rhs.semantics); 957 assert(exponent == rhs.exponent); 958 959 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); 960 } 961 962 /* Subtract the significand of the RHS with a borrow flag. Returns 963 the borrow flag. */ 964 IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, 965 integerPart borrow) { 966 integerPart *parts; 967 968 parts = significandParts(); 969 970 assert(semantics == rhs.semantics); 971 assert(exponent == rhs.exponent); 972 973 return APInt::tcSubtract(parts, rhs.significandParts(), borrow, 974 partCount()); 975 } 976 977 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it 978 on to the full-precision result of the multiplication. Returns the 979 lost fraction. */ 980 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, 981 const IEEEFloat *addend) { 982 unsigned int omsb; // One, not zero, based MSB. 983 unsigned int partsCount, newPartsCount, precision; 984 integerPart *lhsSignificand; 985 integerPart scratch[4]; 986 integerPart *fullSignificand; 987 lostFraction lost_fraction; 988 bool ignored; 989 990 assert(semantics == rhs.semantics); 991 992 precision = semantics->precision; 993 994 // Allocate space for twice as many bits as the original significand, plus one 995 // extra bit for the addition to overflow into. 996 newPartsCount = partCountForBits(precision * 2 + 1); 997 998 if (newPartsCount > 4) 999 fullSignificand = new integerPart[newPartsCount]; 1000 else 1001 fullSignificand = scratch; 1002 1003 lhsSignificand = significandParts(); 1004 partsCount = partCount(); 1005 1006 APInt::tcFullMultiply(fullSignificand, lhsSignificand, 1007 rhs.significandParts(), partsCount, partsCount); 1008 1009 lost_fraction = lfExactlyZero; 1010 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 1011 exponent += rhs.exponent; 1012 1013 // Assume the operands involved in the multiplication are single-precision 1014 // FP, and the two multiplicants are: 1015 // *this = a23 . a22 ... a0 * 2^e1 1016 // rhs = b23 . b22 ... b0 * 2^e2 1017 // the result of multiplication is: 1018 // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) 1019 // Note that there are three significant bits at the left-hand side of the 1020 // radix point: two for the multiplication, and an overflow bit for the 1021 // addition (that will always be zero at this point). Move the radix point 1022 // toward left by two bits, and adjust exponent accordingly. 1023 exponent += 2; 1024 1025 if (addend && addend->isNonZero()) { 1026 // The intermediate result of the multiplication has "2 * precision" 1027 // signicant bit; adjust the addend to be consistent with mul result. 1028 // 1029 Significand savedSignificand = significand; 1030 const fltSemantics *savedSemantics = semantics; 1031 fltSemantics extendedSemantics; 1032 opStatus status; 1033 unsigned int extendedPrecision; 1034 1035 // Normalize our MSB to one below the top bit to allow for overflow. 1036 extendedPrecision = 2 * precision + 1; 1037 if (omsb != extendedPrecision - 1) { 1038 assert(extendedPrecision > omsb); 1039 APInt::tcShiftLeft(fullSignificand, newPartsCount, 1040 (extendedPrecision - 1) - omsb); 1041 exponent -= (extendedPrecision - 1) - omsb; 1042 } 1043 1044 /* Create new semantics. */ 1045 extendedSemantics = *semantics; 1046 extendedSemantics.precision = extendedPrecision; 1047 1048 if (newPartsCount == 1) 1049 significand.part = fullSignificand[0]; 1050 else 1051 significand.parts = fullSignificand; 1052 semantics = &extendedSemantics; 1053 1054 IEEEFloat extendedAddend(*addend); 1055 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); 1056 assert(status == opOK); 1057 (void)status; 1058 1059 // Shift the significand of the addend right by one bit. This guarantees 1060 // that the high bit of the significand is zero (same as fullSignificand), 1061 // so the addition will overflow (if it does overflow at all) into the top bit. 1062 lost_fraction = extendedAddend.shiftSignificandRight(1); 1063 assert(lost_fraction == lfExactlyZero && 1064 "Lost precision while shifting addend for fused-multiply-add."); 1065 1066 lost_fraction = addOrSubtractSignificand(extendedAddend, false); 1067 1068 /* Restore our state. */ 1069 if (newPartsCount == 1) 1070 fullSignificand[0] = significand.part; 1071 significand = savedSignificand; 1072 semantics = savedSemantics; 1073 1074 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 1075 } 1076 1077 // Convert the result having "2 * precision" significant-bits back to the one 1078 // having "precision" significant-bits. First, move the radix point from 1079 // poision "2*precision - 1" to "precision - 1". The exponent need to be 1080 // adjusted by "2*precision - 1" - "precision - 1" = "precision". 1081 exponent -= precision + 1; 1082 1083 // In case MSB resides at the left-hand side of radix point, shift the 1084 // mantissa right by some amount to make sure the MSB reside right before 1085 // the radix point (i.e. "MSB . rest-significant-bits"). 1086 // 1087 // Note that the result is not normalized when "omsb < precision". So, the 1088 // caller needs to call IEEEFloat::normalize() if normalized value is 1089 // expected. 1090 if (omsb > precision) { 1091 unsigned int bits, significantParts; 1092 lostFraction lf; 1093 1094 bits = omsb - precision; 1095 significantParts = partCountForBits(omsb); 1096 lf = shiftRight(fullSignificand, significantParts, bits); 1097 lost_fraction = combineLostFractions(lf, lost_fraction); 1098 exponent += bits; 1099 } 1100 1101 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); 1102 1103 if (newPartsCount > 4) 1104 delete [] fullSignificand; 1105 1106 return lost_fraction; 1107 } 1108 1109 /* Multiply the significands of LHS and RHS to DST. */ 1110 lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { 1111 unsigned int bit, i, partsCount; 1112 const integerPart *rhsSignificand; 1113 integerPart *lhsSignificand, *dividend, *divisor; 1114 integerPart scratch[4]; 1115 lostFraction lost_fraction; 1116 1117 assert(semantics == rhs.semantics); 1118 1119 lhsSignificand = significandParts(); 1120 rhsSignificand = rhs.significandParts(); 1121 partsCount = partCount(); 1122 1123 if (partsCount > 2) 1124 dividend = new integerPart[partsCount * 2]; 1125 else 1126 dividend = scratch; 1127 1128 divisor = dividend + partsCount; 1129 1130 /* Copy the dividend and divisor as they will be modified in-place. */ 1131 for (i = 0; i < partsCount; i++) { 1132 dividend[i] = lhsSignificand[i]; 1133 divisor[i] = rhsSignificand[i]; 1134 lhsSignificand[i] = 0; 1135 } 1136 1137 exponent -= rhs.exponent; 1138 1139 unsigned int precision = semantics->precision; 1140 1141 /* Normalize the divisor. */ 1142 bit = precision - APInt::tcMSB(divisor, partsCount) - 1; 1143 if (bit) { 1144 exponent += bit; 1145 APInt::tcShiftLeft(divisor, partsCount, bit); 1146 } 1147 1148 /* Normalize the dividend. */ 1149 bit = precision - APInt::tcMSB(dividend, partsCount) - 1; 1150 if (bit) { 1151 exponent -= bit; 1152 APInt::tcShiftLeft(dividend, partsCount, bit); 1153 } 1154 1155 /* Ensure the dividend >= divisor initially for the loop below. 1156 Incidentally, this means that the division loop below is 1157 guaranteed to set the integer bit to one. */ 1158 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { 1159 exponent--; 1160 APInt::tcShiftLeft(dividend, partsCount, 1); 1161 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); 1162 } 1163 1164 /* Long division. */ 1165 for (bit = precision; bit; bit -= 1) { 1166 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { 1167 APInt::tcSubtract(dividend, divisor, 0, partsCount); 1168 APInt::tcSetBit(lhsSignificand, bit - 1); 1169 } 1170 1171 APInt::tcShiftLeft(dividend, partsCount, 1); 1172 } 1173 1174 /* Figure out the lost fraction. */ 1175 int cmp = APInt::tcCompare(dividend, divisor, partsCount); 1176 1177 if (cmp > 0) 1178 lost_fraction = lfMoreThanHalf; 1179 else if (cmp == 0) 1180 lost_fraction = lfExactlyHalf; 1181 else if (APInt::tcIsZero(dividend, partsCount)) 1182 lost_fraction = lfExactlyZero; 1183 else 1184 lost_fraction = lfLessThanHalf; 1185 1186 if (partsCount > 2) 1187 delete [] dividend; 1188 1189 return lost_fraction; 1190 } 1191 1192 unsigned int IEEEFloat::significandMSB() const { 1193 return APInt::tcMSB(significandParts(), partCount()); 1194 } 1195 1196 unsigned int IEEEFloat::significandLSB() const { 1197 return APInt::tcLSB(significandParts(), partCount()); 1198 } 1199 1200 /* Note that a zero result is NOT normalized to fcZero. */ 1201 lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { 1202 /* Our exponent should not overflow. */ 1203 assert((ExponentType) (exponent + bits) >= exponent); 1204 1205 exponent += bits; 1206 1207 return shiftRight(significandParts(), partCount(), bits); 1208 } 1209 1210 /* Shift the significand left BITS bits, subtract BITS from its exponent. */ 1211 void IEEEFloat::shiftSignificandLeft(unsigned int bits) { 1212 assert(bits < semantics->precision); 1213 1214 if (bits) { 1215 unsigned int partsCount = partCount(); 1216 1217 APInt::tcShiftLeft(significandParts(), partsCount, bits); 1218 exponent -= bits; 1219 1220 assert(!APInt::tcIsZero(significandParts(), partsCount)); 1221 } 1222 } 1223 1224 IEEEFloat::cmpResult 1225 IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { 1226 int compare; 1227 1228 assert(semantics == rhs.semantics); 1229 assert(isFiniteNonZero()); 1230 assert(rhs.isFiniteNonZero()); 1231 1232 compare = exponent - rhs.exponent; 1233 1234 /* If exponents are equal, do an unsigned bignum comparison of the 1235 significands. */ 1236 if (compare == 0) 1237 compare = APInt::tcCompare(significandParts(), rhs.significandParts(), 1238 partCount()); 1239 1240 if (compare > 0) 1241 return cmpGreaterThan; 1242 else if (compare < 0) 1243 return cmpLessThan; 1244 else 1245 return cmpEqual; 1246 } 1247 1248 /* Handle overflow. Sign is preserved. We either become infinity or 1249 the largest finite number. */ 1250 IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { 1251 /* Infinity? */ 1252 if (rounding_mode == rmNearestTiesToEven || 1253 rounding_mode == rmNearestTiesToAway || 1254 (rounding_mode == rmTowardPositive && !sign) || 1255 (rounding_mode == rmTowardNegative && sign)) { 1256 category = fcInfinity; 1257 return (opStatus) (opOverflow | opInexact); 1258 } 1259 1260 /* Otherwise we become the largest finite number. */ 1261 category = fcNormal; 1262 exponent = semantics->maxExponent; 1263 APInt::tcSetLeastSignificantBits(significandParts(), partCount(), 1264 semantics->precision); 1265 1266 return opInexact; 1267 } 1268 1269 /* Returns TRUE if, when truncating the current number, with BIT the 1270 new LSB, with the given lost fraction and rounding mode, the result 1271 would need to be rounded away from zero (i.e., by increasing the 1272 signficand). This routine must work for fcZero of both signs, and 1273 fcNormal numbers. */ 1274 bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, 1275 lostFraction lost_fraction, 1276 unsigned int bit) const { 1277 /* NaNs and infinities should not have lost fractions. */ 1278 assert(isFiniteNonZero() || category == fcZero); 1279 1280 /* Current callers never pass this so we don't handle it. */ 1281 assert(lost_fraction != lfExactlyZero); 1282 1283 switch (rounding_mode) { 1284 case rmNearestTiesToAway: 1285 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; 1286 1287 case rmNearestTiesToEven: 1288 if (lost_fraction == lfMoreThanHalf) 1289 return true; 1290 1291 /* Our zeroes don't have a significand to test. */ 1292 if (lost_fraction == lfExactlyHalf && category != fcZero) 1293 return APInt::tcExtractBit(significandParts(), bit); 1294 1295 return false; 1296 1297 case rmTowardZero: 1298 return false; 1299 1300 case rmTowardPositive: 1301 return !sign; 1302 1303 case rmTowardNegative: 1304 return sign; 1305 } 1306 llvm_unreachable("Invalid rounding mode found"); 1307 } 1308 1309 IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, 1310 lostFraction lost_fraction) { 1311 unsigned int omsb; /* One, not zero, based MSB. */ 1312 int exponentChange; 1313 1314 if (!isFiniteNonZero()) 1315 return opOK; 1316 1317 /* Before rounding normalize the exponent of fcNormal numbers. */ 1318 omsb = significandMSB() + 1; 1319 1320 if (omsb) { 1321 /* OMSB is numbered from 1. We want to place it in the integer 1322 bit numbered PRECISION if possible, with a compensating change in 1323 the exponent. */ 1324 exponentChange = omsb - semantics->precision; 1325 1326 /* If the resulting exponent is too high, overflow according to 1327 the rounding mode. */ 1328 if (exponent + exponentChange > semantics->maxExponent) 1329 return handleOverflow(rounding_mode); 1330 1331 /* Subnormal numbers have exponent minExponent, and their MSB 1332 is forced based on that. */ 1333 if (exponent + exponentChange < semantics->minExponent) 1334 exponentChange = semantics->minExponent - exponent; 1335 1336 /* Shifting left is easy as we don't lose precision. */ 1337 if (exponentChange < 0) { 1338 assert(lost_fraction == lfExactlyZero); 1339 1340 shiftSignificandLeft(-exponentChange); 1341 1342 return opOK; 1343 } 1344 1345 if (exponentChange > 0) { 1346 lostFraction lf; 1347 1348 /* Shift right and capture any new lost fraction. */ 1349 lf = shiftSignificandRight(exponentChange); 1350 1351 lost_fraction = combineLostFractions(lf, lost_fraction); 1352 1353 /* Keep OMSB up-to-date. */ 1354 if (omsb > (unsigned) exponentChange) 1355 omsb -= exponentChange; 1356 else 1357 omsb = 0; 1358 } 1359 } 1360 1361 /* Now round the number according to rounding_mode given the lost 1362 fraction. */ 1363 1364 /* As specified in IEEE 754, since we do not trap we do not report 1365 underflow for exact results. */ 1366 if (lost_fraction == lfExactlyZero) { 1367 /* Canonicalize zeroes. */ 1368 if (omsb == 0) 1369 category = fcZero; 1370 1371 return opOK; 1372 } 1373 1374 /* Increment the significand if we're rounding away from zero. */ 1375 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { 1376 if (omsb == 0) 1377 exponent = semantics->minExponent; 1378 1379 incrementSignificand(); 1380 omsb = significandMSB() + 1; 1381 1382 /* Did the significand increment overflow? */ 1383 if (omsb == (unsigned) semantics->precision + 1) { 1384 /* Renormalize by incrementing the exponent and shifting our 1385 significand right one. However if we already have the 1386 maximum exponent we overflow to infinity. */ 1387 if (exponent == semantics->maxExponent) { 1388 category = fcInfinity; 1389 1390 return (opStatus) (opOverflow | opInexact); 1391 } 1392 1393 shiftSignificandRight(1); 1394 1395 return opInexact; 1396 } 1397 } 1398 1399 /* The normal case - we were and are not denormal, and any 1400 significand increment above didn't overflow. */ 1401 if (omsb == semantics->precision) 1402 return opInexact; 1403 1404 /* We have a non-zero denormal. */ 1405 assert(omsb < semantics->precision); 1406 1407 /* Canonicalize zeroes. */ 1408 if (omsb == 0) 1409 category = fcZero; 1410 1411 /* The fcZero case is a denormal that underflowed to zero. */ 1412 return (opStatus) (opUnderflow | opInexact); 1413 } 1414 1415 IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, 1416 bool subtract) { 1417 switch (PackCategoriesIntoKey(category, rhs.category)) { 1418 default: 1419 llvm_unreachable(nullptr); 1420 1421 case PackCategoriesIntoKey(fcNaN, fcZero): 1422 case PackCategoriesIntoKey(fcNaN, fcNormal): 1423 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1424 case PackCategoriesIntoKey(fcNaN, fcNaN): 1425 case PackCategoriesIntoKey(fcNormal, fcZero): 1426 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1427 case PackCategoriesIntoKey(fcInfinity, fcZero): 1428 return opOK; 1429 1430 case PackCategoriesIntoKey(fcZero, fcNaN): 1431 case PackCategoriesIntoKey(fcNormal, fcNaN): 1432 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1433 // We need to be sure to flip the sign here for subtraction because we 1434 // don't have a separate negate operation so -NaN becomes 0 - NaN here. 1435 sign = rhs.sign ^ subtract; 1436 category = fcNaN; 1437 copySignificand(rhs); 1438 return opOK; 1439 1440 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1441 case PackCategoriesIntoKey(fcZero, fcInfinity): 1442 category = fcInfinity; 1443 sign = rhs.sign ^ subtract; 1444 return opOK; 1445 1446 case PackCategoriesIntoKey(fcZero, fcNormal): 1447 assign(rhs); 1448 sign = rhs.sign ^ subtract; 1449 return opOK; 1450 1451 case PackCategoriesIntoKey(fcZero, fcZero): 1452 /* Sign depends on rounding mode; handled by caller. */ 1453 return opOK; 1454 1455 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1456 /* Differently signed infinities can only be validly 1457 subtracted. */ 1458 if (((sign ^ rhs.sign)!=0) != subtract) { 1459 makeNaN(); 1460 return opInvalidOp; 1461 } 1462 1463 return opOK; 1464 1465 case PackCategoriesIntoKey(fcNormal, fcNormal): 1466 return opDivByZero; 1467 } 1468 } 1469 1470 /* Add or subtract two normal numbers. */ 1471 lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, 1472 bool subtract) { 1473 integerPart carry; 1474 lostFraction lost_fraction; 1475 int bits; 1476 1477 /* Determine if the operation on the absolute values is effectively 1478 an addition or subtraction. */ 1479 subtract ^= static_cast<bool>(sign ^ rhs.sign); 1480 1481 /* Are we bigger exponent-wise than the RHS? */ 1482 bits = exponent - rhs.exponent; 1483 1484 /* Subtraction is more subtle than one might naively expect. */ 1485 if (subtract) { 1486 IEEEFloat temp_rhs(rhs); 1487 bool reverse; 1488 1489 if (bits == 0) { 1490 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; 1491 lost_fraction = lfExactlyZero; 1492 } else if (bits > 0) { 1493 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); 1494 shiftSignificandLeft(1); 1495 reverse = false; 1496 } else { 1497 lost_fraction = shiftSignificandRight(-bits - 1); 1498 temp_rhs.shiftSignificandLeft(1); 1499 reverse = true; 1500 } 1501 1502 if (reverse) { 1503 carry = temp_rhs.subtractSignificand 1504 (*this, lost_fraction != lfExactlyZero); 1505 copySignificand(temp_rhs); 1506 sign = !sign; 1507 } else { 1508 carry = subtractSignificand 1509 (temp_rhs, lost_fraction != lfExactlyZero); 1510 } 1511 1512 /* Invert the lost fraction - it was on the RHS and 1513 subtracted. */ 1514 if (lost_fraction == lfLessThanHalf) 1515 lost_fraction = lfMoreThanHalf; 1516 else if (lost_fraction == lfMoreThanHalf) 1517 lost_fraction = lfLessThanHalf; 1518 1519 /* The code above is intended to ensure that no borrow is 1520 necessary. */ 1521 assert(!carry); 1522 (void)carry; 1523 } else { 1524 if (bits > 0) { 1525 IEEEFloat temp_rhs(rhs); 1526 1527 lost_fraction = temp_rhs.shiftSignificandRight(bits); 1528 carry = addSignificand(temp_rhs); 1529 } else { 1530 lost_fraction = shiftSignificandRight(-bits); 1531 carry = addSignificand(rhs); 1532 } 1533 1534 /* We have a guard bit; generating a carry cannot happen. */ 1535 assert(!carry); 1536 (void)carry; 1537 } 1538 1539 return lost_fraction; 1540 } 1541 1542 IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { 1543 switch (PackCategoriesIntoKey(category, rhs.category)) { 1544 default: 1545 llvm_unreachable(nullptr); 1546 1547 case PackCategoriesIntoKey(fcNaN, fcZero): 1548 case PackCategoriesIntoKey(fcNaN, fcNormal): 1549 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1550 case PackCategoriesIntoKey(fcNaN, fcNaN): 1551 sign = false; 1552 return opOK; 1553 1554 case PackCategoriesIntoKey(fcZero, fcNaN): 1555 case PackCategoriesIntoKey(fcNormal, fcNaN): 1556 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1557 sign = false; 1558 category = fcNaN; 1559 copySignificand(rhs); 1560 return opOK; 1561 1562 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1563 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1564 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1565 category = fcInfinity; 1566 return opOK; 1567 1568 case PackCategoriesIntoKey(fcZero, fcNormal): 1569 case PackCategoriesIntoKey(fcNormal, fcZero): 1570 case PackCategoriesIntoKey(fcZero, fcZero): 1571 category = fcZero; 1572 return opOK; 1573 1574 case PackCategoriesIntoKey(fcZero, fcInfinity): 1575 case PackCategoriesIntoKey(fcInfinity, fcZero): 1576 makeNaN(); 1577 return opInvalidOp; 1578 1579 case PackCategoriesIntoKey(fcNormal, fcNormal): 1580 return opOK; 1581 } 1582 } 1583 1584 IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { 1585 switch (PackCategoriesIntoKey(category, rhs.category)) { 1586 default: 1587 llvm_unreachable(nullptr); 1588 1589 case PackCategoriesIntoKey(fcZero, fcNaN): 1590 case PackCategoriesIntoKey(fcNormal, fcNaN): 1591 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1592 category = fcNaN; 1593 copySignificand(rhs); 1594 LLVM_FALLTHROUGH; 1595 case PackCategoriesIntoKey(fcNaN, fcZero): 1596 case PackCategoriesIntoKey(fcNaN, fcNormal): 1597 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1598 case PackCategoriesIntoKey(fcNaN, fcNaN): 1599 sign = false; 1600 LLVM_FALLTHROUGH; 1601 case PackCategoriesIntoKey(fcInfinity, fcZero): 1602 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1603 case PackCategoriesIntoKey(fcZero, fcInfinity): 1604 case PackCategoriesIntoKey(fcZero, fcNormal): 1605 return opOK; 1606 1607 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1608 category = fcZero; 1609 return opOK; 1610 1611 case PackCategoriesIntoKey(fcNormal, fcZero): 1612 category = fcInfinity; 1613 return opDivByZero; 1614 1615 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1616 case PackCategoriesIntoKey(fcZero, fcZero): 1617 makeNaN(); 1618 return opInvalidOp; 1619 1620 case PackCategoriesIntoKey(fcNormal, fcNormal): 1621 return opOK; 1622 } 1623 } 1624 1625 IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { 1626 switch (PackCategoriesIntoKey(category, rhs.category)) { 1627 default: 1628 llvm_unreachable(nullptr); 1629 1630 case PackCategoriesIntoKey(fcNaN, fcZero): 1631 case PackCategoriesIntoKey(fcNaN, fcNormal): 1632 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1633 case PackCategoriesIntoKey(fcNaN, fcNaN): 1634 case PackCategoriesIntoKey(fcZero, fcInfinity): 1635 case PackCategoriesIntoKey(fcZero, fcNormal): 1636 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1637 return opOK; 1638 1639 case PackCategoriesIntoKey(fcZero, fcNaN): 1640 case PackCategoriesIntoKey(fcNormal, fcNaN): 1641 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1642 sign = false; 1643 category = fcNaN; 1644 copySignificand(rhs); 1645 return opOK; 1646 1647 case PackCategoriesIntoKey(fcNormal, fcZero): 1648 case PackCategoriesIntoKey(fcInfinity, fcZero): 1649 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1650 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1651 case PackCategoriesIntoKey(fcZero, fcZero): 1652 makeNaN(); 1653 return opInvalidOp; 1654 1655 case PackCategoriesIntoKey(fcNormal, fcNormal): 1656 return opOK; 1657 } 1658 } 1659 1660 /* Change sign. */ 1661 void IEEEFloat::changeSign() { 1662 /* Look mummy, this one's easy. */ 1663 sign = !sign; 1664 } 1665 1666 /* Normalized addition or subtraction. */ 1667 IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, 1668 roundingMode rounding_mode, 1669 bool subtract) { 1670 opStatus fs; 1671 1672 fs = addOrSubtractSpecials(rhs, subtract); 1673 1674 /* This return code means it was not a simple case. */ 1675 if (fs == opDivByZero) { 1676 lostFraction lost_fraction; 1677 1678 lost_fraction = addOrSubtractSignificand(rhs, subtract); 1679 fs = normalize(rounding_mode, lost_fraction); 1680 1681 /* Can only be zero if we lost no fraction. */ 1682 assert(category != fcZero || lost_fraction == lfExactlyZero); 1683 } 1684 1685 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1686 positive zero unless rounding to minus infinity, except that 1687 adding two like-signed zeroes gives that zero. */ 1688 if (category == fcZero) { 1689 if (rhs.category != fcZero || (sign == rhs.sign) == subtract) 1690 sign = (rounding_mode == rmTowardNegative); 1691 } 1692 1693 return fs; 1694 } 1695 1696 /* Normalized addition. */ 1697 IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, 1698 roundingMode rounding_mode) { 1699 return addOrSubtract(rhs, rounding_mode, false); 1700 } 1701 1702 /* Normalized subtraction. */ 1703 IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, 1704 roundingMode rounding_mode) { 1705 return addOrSubtract(rhs, rounding_mode, true); 1706 } 1707 1708 /* Normalized multiply. */ 1709 IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, 1710 roundingMode rounding_mode) { 1711 opStatus fs; 1712 1713 sign ^= rhs.sign; 1714 fs = multiplySpecials(rhs); 1715 1716 if (isFiniteNonZero()) { 1717 lostFraction lost_fraction = multiplySignificand(rhs, nullptr); 1718 fs = normalize(rounding_mode, lost_fraction); 1719 if (lost_fraction != lfExactlyZero) 1720 fs = (opStatus) (fs | opInexact); 1721 } 1722 1723 return fs; 1724 } 1725 1726 /* Normalized divide. */ 1727 IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, 1728 roundingMode rounding_mode) { 1729 opStatus fs; 1730 1731 sign ^= rhs.sign; 1732 fs = divideSpecials(rhs); 1733 1734 if (isFiniteNonZero()) { 1735 lostFraction lost_fraction = divideSignificand(rhs); 1736 fs = normalize(rounding_mode, lost_fraction); 1737 if (lost_fraction != lfExactlyZero) 1738 fs = (opStatus) (fs | opInexact); 1739 } 1740 1741 return fs; 1742 } 1743 1744 /* Normalized remainder. This is not currently correct in all cases. */ 1745 IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { 1746 opStatus fs; 1747 IEEEFloat V = *this; 1748 unsigned int origSign = sign; 1749 1750 fs = V.divide(rhs, rmNearestTiesToEven); 1751 if (fs == opDivByZero) 1752 return fs; 1753 1754 int parts = partCount(); 1755 integerPart *x = new integerPart[parts]; 1756 bool ignored; 1757 fs = V.convertToInteger(makeMutableArrayRef(x, parts), 1758 parts * integerPartWidth, true, rmNearestTiesToEven, 1759 &ignored); 1760 if (fs == opInvalidOp) { 1761 delete[] x; 1762 return fs; 1763 } 1764 1765 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1766 rmNearestTiesToEven); 1767 assert(fs==opOK); // should always work 1768 1769 fs = V.multiply(rhs, rmNearestTiesToEven); 1770 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1771 1772 fs = subtract(V, rmNearestTiesToEven); 1773 assert(fs==opOK || fs==opInexact); // likewise 1774 1775 if (isZero()) 1776 sign = origSign; // IEEE754 requires this 1777 delete[] x; 1778 return fs; 1779 } 1780 1781 /* Normalized llvm frem (C fmod). */ 1782 IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { 1783 opStatus fs; 1784 fs = modSpecials(rhs); 1785 unsigned int origSign = sign; 1786 1787 while (isFiniteNonZero() && rhs.isFiniteNonZero() && 1788 compareAbsoluteValue(rhs) != cmpLessThan) { 1789 IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); 1790 if (compareAbsoluteValue(V) == cmpLessThan) 1791 V = scalbn(V, -1, rmNearestTiesToEven); 1792 V.sign = sign; 1793 1794 fs = subtract(V, rmNearestTiesToEven); 1795 assert(fs==opOK); 1796 } 1797 if (isZero()) 1798 sign = origSign; // fmod requires this 1799 return fs; 1800 } 1801 1802 /* Normalized fused-multiply-add. */ 1803 IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, 1804 const IEEEFloat &addend, 1805 roundingMode rounding_mode) { 1806 opStatus fs; 1807 1808 /* Post-multiplication sign, before addition. */ 1809 sign ^= multiplicand.sign; 1810 1811 /* If and only if all arguments are normal do we need to do an 1812 extended-precision calculation. */ 1813 if (isFiniteNonZero() && 1814 multiplicand.isFiniteNonZero() && 1815 addend.isFinite()) { 1816 lostFraction lost_fraction; 1817 1818 lost_fraction = multiplySignificand(multiplicand, &addend); 1819 fs = normalize(rounding_mode, lost_fraction); 1820 if (lost_fraction != lfExactlyZero) 1821 fs = (opStatus) (fs | opInexact); 1822 1823 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1824 positive zero unless rounding to minus infinity, except that 1825 adding two like-signed zeroes gives that zero. */ 1826 if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) 1827 sign = (rounding_mode == rmTowardNegative); 1828 } else { 1829 fs = multiplySpecials(multiplicand); 1830 1831 /* FS can only be opOK or opInvalidOp. There is no more work 1832 to do in the latter case. The IEEE-754R standard says it is 1833 implementation-defined in this case whether, if ADDEND is a 1834 quiet NaN, we raise invalid op; this implementation does so. 1835 1836 If we need to do the addition we can do so with normal 1837 precision. */ 1838 if (fs == opOK) 1839 fs = addOrSubtract(addend, rounding_mode, false); 1840 } 1841 1842 return fs; 1843 } 1844 1845 /* Rounding-mode corrrect round to integral value. */ 1846 IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { 1847 opStatus fs; 1848 1849 // If the exponent is large enough, we know that this value is already 1850 // integral, and the arithmetic below would potentially cause it to saturate 1851 // to +/-Inf. Bail out early instead. 1852 if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics)) 1853 return opOK; 1854 1855 // The algorithm here is quite simple: we add 2^(p-1), where p is the 1856 // precision of our format, and then subtract it back off again. The choice 1857 // of rounding modes for the addition/subtraction determines the rounding mode 1858 // for our integral rounding as well. 1859 // NOTE: When the input value is negative, we do subtraction followed by 1860 // addition instead. 1861 APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); 1862 IntegerConstant <<= semanticsPrecision(*semantics)-1; 1863 IEEEFloat MagicConstant(*semantics); 1864 fs = MagicConstant.convertFromAPInt(IntegerConstant, false, 1865 rmNearestTiesToEven); 1866 MagicConstant.sign = sign; 1867 1868 if (fs != opOK) 1869 return fs; 1870 1871 // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly. 1872 bool inputSign = isNegative(); 1873 1874 fs = add(MagicConstant, rounding_mode); 1875 if (fs != opOK && fs != opInexact) 1876 return fs; 1877 1878 fs = subtract(MagicConstant, rounding_mode); 1879 1880 // Restore the input sign. 1881 if (inputSign != isNegative()) 1882 changeSign(); 1883 1884 return fs; 1885 } 1886 1887 1888 /* Comparison requires normalized numbers. */ 1889 IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { 1890 cmpResult result; 1891 1892 assert(semantics == rhs.semantics); 1893 1894 switch (PackCategoriesIntoKey(category, rhs.category)) { 1895 default: 1896 llvm_unreachable(nullptr); 1897 1898 case PackCategoriesIntoKey(fcNaN, fcZero): 1899 case PackCategoriesIntoKey(fcNaN, fcNormal): 1900 case PackCategoriesIntoKey(fcNaN, fcInfinity): 1901 case PackCategoriesIntoKey(fcNaN, fcNaN): 1902 case PackCategoriesIntoKey(fcZero, fcNaN): 1903 case PackCategoriesIntoKey(fcNormal, fcNaN): 1904 case PackCategoriesIntoKey(fcInfinity, fcNaN): 1905 return cmpUnordered; 1906 1907 case PackCategoriesIntoKey(fcInfinity, fcNormal): 1908 case PackCategoriesIntoKey(fcInfinity, fcZero): 1909 case PackCategoriesIntoKey(fcNormal, fcZero): 1910 if (sign) 1911 return cmpLessThan; 1912 else 1913 return cmpGreaterThan; 1914 1915 case PackCategoriesIntoKey(fcNormal, fcInfinity): 1916 case PackCategoriesIntoKey(fcZero, fcInfinity): 1917 case PackCategoriesIntoKey(fcZero, fcNormal): 1918 if (rhs.sign) 1919 return cmpGreaterThan; 1920 else 1921 return cmpLessThan; 1922 1923 case PackCategoriesIntoKey(fcInfinity, fcInfinity): 1924 if (sign == rhs.sign) 1925 return cmpEqual; 1926 else if (sign) 1927 return cmpLessThan; 1928 else 1929 return cmpGreaterThan; 1930 1931 case PackCategoriesIntoKey(fcZero, fcZero): 1932 return cmpEqual; 1933 1934 case PackCategoriesIntoKey(fcNormal, fcNormal): 1935 break; 1936 } 1937 1938 /* Two normal numbers. Do they have the same sign? */ 1939 if (sign != rhs.sign) { 1940 if (sign) 1941 result = cmpLessThan; 1942 else 1943 result = cmpGreaterThan; 1944 } else { 1945 /* Compare absolute values; invert result if negative. */ 1946 result = compareAbsoluteValue(rhs); 1947 1948 if (sign) { 1949 if (result == cmpLessThan) 1950 result = cmpGreaterThan; 1951 else if (result == cmpGreaterThan) 1952 result = cmpLessThan; 1953 } 1954 } 1955 1956 return result; 1957 } 1958 1959 /// IEEEFloat::convert - convert a value of one floating point type to another. 1960 /// The return value corresponds to the IEEE754 exceptions. *losesInfo 1961 /// records whether the transformation lost information, i.e. whether 1962 /// converting the result back to the original type will produce the 1963 /// original value (this is almost the same as return value==fsOK, but there 1964 /// are edge cases where this is not so). 1965 1966 IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, 1967 roundingMode rounding_mode, 1968 bool *losesInfo) { 1969 lostFraction lostFraction; 1970 unsigned int newPartCount, oldPartCount; 1971 opStatus fs; 1972 int shift; 1973 const fltSemantics &fromSemantics = *semantics; 1974 1975 lostFraction = lfExactlyZero; 1976 newPartCount = partCountForBits(toSemantics.precision + 1); 1977 oldPartCount = partCount(); 1978 shift = toSemantics.precision - fromSemantics.precision; 1979 1980 bool X86SpecialNan = false; 1981 if (&fromSemantics == &semX87DoubleExtended && 1982 &toSemantics != &semX87DoubleExtended && category == fcNaN && 1983 (!(*significandParts() & 0x8000000000000000ULL) || 1984 !(*significandParts() & 0x4000000000000000ULL))) { 1985 // x86 has some unusual NaNs which cannot be represented in any other 1986 // format; note them here. 1987 X86SpecialNan = true; 1988 } 1989 1990 // If this is a truncation of a denormal number, and the target semantics 1991 // has larger exponent range than the source semantics (this can happen 1992 // when truncating from PowerPC double-double to double format), the 1993 // right shift could lose result mantissa bits. Adjust exponent instead 1994 // of performing excessive shift. 1995 if (shift < 0 && isFiniteNonZero()) { 1996 int exponentChange = significandMSB() + 1 - fromSemantics.precision; 1997 if (exponent + exponentChange < toSemantics.minExponent) 1998 exponentChange = toSemantics.minExponent - exponent; 1999 if (exponentChange < shift) 2000 exponentChange = shift; 2001 if (exponentChange < 0) { 2002 shift -= exponentChange; 2003 exponent += exponentChange; 2004 } 2005 } 2006 2007 // If this is a truncation, perform the shift before we narrow the storage. 2008 if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) 2009 lostFraction = shiftRight(significandParts(), oldPartCount, -shift); 2010 2011 // Fix the storage so it can hold to new value. 2012 if (newPartCount > oldPartCount) { 2013 // The new type requires more storage; make it available. 2014 integerPart *newParts; 2015 newParts = new integerPart[newPartCount]; 2016 APInt::tcSet(newParts, 0, newPartCount); 2017 if (isFiniteNonZero() || category==fcNaN) 2018 APInt::tcAssign(newParts, significandParts(), oldPartCount); 2019 freeSignificand(); 2020 significand.parts = newParts; 2021 } else if (newPartCount == 1 && oldPartCount != 1) { 2022 // Switch to built-in storage for a single part. 2023 integerPart newPart = 0; 2024 if (isFiniteNonZero() || category==fcNaN) 2025 newPart = significandParts()[0]; 2026 freeSignificand(); 2027 significand.part = newPart; 2028 } 2029 2030 // Now that we have the right storage, switch the semantics. 2031 semantics = &toSemantics; 2032 2033 // If this is an extension, perform the shift now that the storage is 2034 // available. 2035 if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) 2036 APInt::tcShiftLeft(significandParts(), newPartCount, shift); 2037 2038 if (isFiniteNonZero()) { 2039 fs = normalize(rounding_mode, lostFraction); 2040 *losesInfo = (fs != opOK); 2041 } else if (category == fcNaN) { 2042 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; 2043 2044 // For x87 extended precision, we want to make a NaN, not a special NaN if 2045 // the input wasn't special either. 2046 if (!X86SpecialNan && semantics == &semX87DoubleExtended) 2047 APInt::tcSetBit(significandParts(), semantics->precision - 1); 2048 2049 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) 2050 // does not give you back the same bits. This is dubious, and we 2051 // don't currently do it. You're really supposed to get 2052 // an invalid operation signal at runtime, but nobody does that. 2053 fs = opOK; 2054 } else { 2055 *losesInfo = false; 2056 fs = opOK; 2057 } 2058 2059 return fs; 2060 } 2061 2062 /* Convert a floating point number to an integer according to the 2063 rounding mode. If the rounded integer value is out of range this 2064 returns an invalid operation exception and the contents of the 2065 destination parts are unspecified. If the rounded value is in 2066 range but the floating point number is not the exact integer, the C 2067 standard doesn't require an inexact exception to be raised. IEEE 2068 854 does require it so we do that. 2069 2070 Note that for conversions to integer type the C standard requires 2071 round-to-zero to always be used. */ 2072 IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( 2073 MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, 2074 roundingMode rounding_mode, bool *isExact) const { 2075 lostFraction lost_fraction; 2076 const integerPart *src; 2077 unsigned int dstPartsCount, truncatedBits; 2078 2079 *isExact = false; 2080 2081 /* Handle the three special cases first. */ 2082 if (category == fcInfinity || category == fcNaN) 2083 return opInvalidOp; 2084 2085 dstPartsCount = partCountForBits(width); 2086 assert(dstPartsCount <= parts.size() && "Integer too big"); 2087 2088 if (category == fcZero) { 2089 APInt::tcSet(parts.data(), 0, dstPartsCount); 2090 // Negative zero can't be represented as an int. 2091 *isExact = !sign; 2092 return opOK; 2093 } 2094 2095 src = significandParts(); 2096 2097 /* Step 1: place our absolute value, with any fraction truncated, in 2098 the destination. */ 2099 if (exponent < 0) { 2100 /* Our absolute value is less than one; truncate everything. */ 2101 APInt::tcSet(parts.data(), 0, dstPartsCount); 2102 /* For exponent -1 the integer bit represents .5, look at that. 2103 For smaller exponents leftmost truncated bit is 0. */ 2104 truncatedBits = semantics->precision -1U - exponent; 2105 } else { 2106 /* We want the most significant (exponent + 1) bits; the rest are 2107 truncated. */ 2108 unsigned int bits = exponent + 1U; 2109 2110 /* Hopelessly large in magnitude? */ 2111 if (bits > width) 2112 return opInvalidOp; 2113 2114 if (bits < semantics->precision) { 2115 /* We truncate (semantics->precision - bits) bits. */ 2116 truncatedBits = semantics->precision - bits; 2117 APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); 2118 } else { 2119 /* We want at least as many bits as are available. */ 2120 APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, 2121 0); 2122 APInt::tcShiftLeft(parts.data(), dstPartsCount, 2123 bits - semantics->precision); 2124 truncatedBits = 0; 2125 } 2126 } 2127 2128 /* Step 2: work out any lost fraction, and increment the absolute 2129 value if we would round away from zero. */ 2130 if (truncatedBits) { 2131 lost_fraction = lostFractionThroughTruncation(src, partCount(), 2132 truncatedBits); 2133 if (lost_fraction != lfExactlyZero && 2134 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { 2135 if (APInt::tcIncrement(parts.data(), dstPartsCount)) 2136 return opInvalidOp; /* Overflow. */ 2137 } 2138 } else { 2139 lost_fraction = lfExactlyZero; 2140 } 2141 2142 /* Step 3: check if we fit in the destination. */ 2143 unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; 2144 2145 if (sign) { 2146 if (!isSigned) { 2147 /* Negative numbers cannot be represented as unsigned. */ 2148 if (omsb != 0) 2149 return opInvalidOp; 2150 } else { 2151 /* It takes omsb bits to represent the unsigned integer value. 2152 We lose a bit for the sign, but care is needed as the 2153 maximally negative integer is a special case. */ 2154 if (omsb == width && 2155 APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) 2156 return opInvalidOp; 2157 2158 /* This case can happen because of rounding. */ 2159 if (omsb > width) 2160 return opInvalidOp; 2161 } 2162 2163 APInt::tcNegate (parts.data(), dstPartsCount); 2164 } else { 2165 if (omsb >= width + !isSigned) 2166 return opInvalidOp; 2167 } 2168 2169 if (lost_fraction == lfExactlyZero) { 2170 *isExact = true; 2171 return opOK; 2172 } else 2173 return opInexact; 2174 } 2175 2176 /* Same as convertToSignExtendedInteger, except we provide 2177 deterministic values in case of an invalid operation exception, 2178 namely zero for NaNs and the minimal or maximal value respectively 2179 for underflow or overflow. 2180 The *isExact output tells whether the result is exact, in the sense 2181 that converting it back to the original floating point type produces 2182 the original value. This is almost equivalent to result==opOK, 2183 except for negative zeroes. 2184 */ 2185 IEEEFloat::opStatus 2186 IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, 2187 unsigned int width, bool isSigned, 2188 roundingMode rounding_mode, bool *isExact) const { 2189 opStatus fs; 2190 2191 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 2192 isExact); 2193 2194 if (fs == opInvalidOp) { 2195 unsigned int bits, dstPartsCount; 2196 2197 dstPartsCount = partCountForBits(width); 2198 assert(dstPartsCount <= parts.size() && "Integer too big"); 2199 2200 if (category == fcNaN) 2201 bits = 0; 2202 else if (sign) 2203 bits = isSigned; 2204 else 2205 bits = width - isSigned; 2206 2207 APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); 2208 if (sign && isSigned) 2209 APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); 2210 } 2211 2212 return fs; 2213 } 2214 2215 /* Convert an unsigned integer SRC to a floating point number, 2216 rounding according to ROUNDING_MODE. The sign of the floating 2217 point number is not modified. */ 2218 IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( 2219 const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { 2220 unsigned int omsb, precision, dstCount; 2221 integerPart *dst; 2222 lostFraction lost_fraction; 2223 2224 category = fcNormal; 2225 omsb = APInt::tcMSB(src, srcCount) + 1; 2226 dst = significandParts(); 2227 dstCount = partCount(); 2228 precision = semantics->precision; 2229 2230 /* We want the most significant PRECISION bits of SRC. There may not 2231 be that many; extract what we can. */ 2232 if (precision <= omsb) { 2233 exponent = omsb - 1; 2234 lost_fraction = lostFractionThroughTruncation(src, srcCount, 2235 omsb - precision); 2236 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); 2237 } else { 2238 exponent = precision - 1; 2239 lost_fraction = lfExactlyZero; 2240 APInt::tcExtract(dst, dstCount, src, omsb, 0); 2241 } 2242 2243 return normalize(rounding_mode, lost_fraction); 2244 } 2245 2246 IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, 2247 roundingMode rounding_mode) { 2248 unsigned int partCount = Val.getNumWords(); 2249 APInt api = Val; 2250 2251 sign = false; 2252 if (isSigned && api.isNegative()) { 2253 sign = true; 2254 api = -api; 2255 } 2256 2257 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2258 } 2259 2260 /* Convert a two's complement integer SRC to a floating point number, 2261 rounding according to ROUNDING_MODE. ISSIGNED is true if the 2262 integer is signed, in which case it must be sign-extended. */ 2263 IEEEFloat::opStatus 2264 IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, 2265 unsigned int srcCount, bool isSigned, 2266 roundingMode rounding_mode) { 2267 opStatus status; 2268 2269 if (isSigned && 2270 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { 2271 integerPart *copy; 2272 2273 /* If we're signed and negative negate a copy. */ 2274 sign = true; 2275 copy = new integerPart[srcCount]; 2276 APInt::tcAssign(copy, src, srcCount); 2277 APInt::tcNegate(copy, srcCount); 2278 status = convertFromUnsignedParts(copy, srcCount, rounding_mode); 2279 delete [] copy; 2280 } else { 2281 sign = false; 2282 status = convertFromUnsignedParts(src, srcCount, rounding_mode); 2283 } 2284 2285 return status; 2286 } 2287 2288 /* FIXME: should this just take a const APInt reference? */ 2289 IEEEFloat::opStatus 2290 IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, 2291 unsigned int width, bool isSigned, 2292 roundingMode rounding_mode) { 2293 unsigned int partCount = partCountForBits(width); 2294 APInt api = APInt(width, makeArrayRef(parts, partCount)); 2295 2296 sign = false; 2297 if (isSigned && APInt::tcExtractBit(parts, width - 1)) { 2298 sign = true; 2299 api = -api; 2300 } 2301 2302 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2303 } 2304 2305 IEEEFloat::opStatus 2306 IEEEFloat::convertFromHexadecimalString(StringRef s, 2307 roundingMode rounding_mode) { 2308 lostFraction lost_fraction = lfExactlyZero; 2309 2310 category = fcNormal; 2311 zeroSignificand(); 2312 exponent = 0; 2313 2314 integerPart *significand = significandParts(); 2315 unsigned partsCount = partCount(); 2316 unsigned bitPos = partsCount * integerPartWidth; 2317 bool computedTrailingFraction = false; 2318 2319 // Skip leading zeroes and any (hexa)decimal point. 2320 StringRef::iterator begin = s.begin(); 2321 StringRef::iterator end = s.end(); 2322 StringRef::iterator dot; 2323 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); 2324 StringRef::iterator firstSignificantDigit = p; 2325 2326 while (p != end) { 2327 integerPart hex_value; 2328 2329 if (*p == '.') { 2330 assert(dot == end && "String contains multiple dots"); 2331 dot = p++; 2332 continue; 2333 } 2334 2335 hex_value = hexDigitValue(*p); 2336 if (hex_value == -1U) 2337 break; 2338 2339 p++; 2340 2341 // Store the number while we have space. 2342 if (bitPos) { 2343 bitPos -= 4; 2344 hex_value <<= bitPos % integerPartWidth; 2345 significand[bitPos / integerPartWidth] |= hex_value; 2346 } else if (!computedTrailingFraction) { 2347 lost_fraction = trailingHexadecimalFraction(p, end, hex_value); 2348 computedTrailingFraction = true; 2349 } 2350 } 2351 2352 /* Hex floats require an exponent but not a hexadecimal point. */ 2353 assert(p != end && "Hex strings require an exponent"); 2354 assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); 2355 assert(p != begin && "Significand has no digits"); 2356 assert((dot == end || p - begin != 1) && "Significand has no digits"); 2357 2358 /* Ignore the exponent if we are zero. */ 2359 if (p != firstSignificantDigit) { 2360 int expAdjustment; 2361 2362 /* Implicit hexadecimal point? */ 2363 if (dot == end) 2364 dot = p; 2365 2366 /* Calculate the exponent adjustment implicit in the number of 2367 significant digits. */ 2368 expAdjustment = static_cast<int>(dot - firstSignificantDigit); 2369 if (expAdjustment < 0) 2370 expAdjustment++; 2371 expAdjustment = expAdjustment * 4 - 1; 2372 2373 /* Adjust for writing the significand starting at the most 2374 significant nibble. */ 2375 expAdjustment += semantics->precision; 2376 expAdjustment -= partsCount * integerPartWidth; 2377 2378 /* Adjust for the given exponent. */ 2379 exponent = totalExponent(p + 1, end, expAdjustment); 2380 } 2381 2382 return normalize(rounding_mode, lost_fraction); 2383 } 2384 2385 IEEEFloat::opStatus 2386 IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, 2387 unsigned sigPartCount, int exp, 2388 roundingMode rounding_mode) { 2389 unsigned int parts, pow5PartCount; 2390 fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; 2391 integerPart pow5Parts[maxPowerOfFiveParts]; 2392 bool isNearest; 2393 2394 isNearest = (rounding_mode == rmNearestTiesToEven || 2395 rounding_mode == rmNearestTiesToAway); 2396 2397 parts = partCountForBits(semantics->precision + 11); 2398 2399 /* Calculate pow(5, abs(exp)). */ 2400 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); 2401 2402 for (;; parts *= 2) { 2403 opStatus sigStatus, powStatus; 2404 unsigned int excessPrecision, truncatedBits; 2405 2406 calcSemantics.precision = parts * integerPartWidth - 1; 2407 excessPrecision = calcSemantics.precision - semantics->precision; 2408 truncatedBits = excessPrecision; 2409 2410 IEEEFloat decSig(calcSemantics, uninitialized); 2411 decSig.makeZero(sign); 2412 IEEEFloat pow5(calcSemantics); 2413 2414 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, 2415 rmNearestTiesToEven); 2416 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, 2417 rmNearestTiesToEven); 2418 /* Add exp, as 10^n = 5^n * 2^n. */ 2419 decSig.exponent += exp; 2420 2421 lostFraction calcLostFraction; 2422 integerPart HUerr, HUdistance; 2423 unsigned int powHUerr; 2424 2425 if (exp >= 0) { 2426 /* multiplySignificand leaves the precision-th bit set to 1. */ 2427 calcLostFraction = decSig.multiplySignificand(pow5, nullptr); 2428 powHUerr = powStatus != opOK; 2429 } else { 2430 calcLostFraction = decSig.divideSignificand(pow5); 2431 /* Denormal numbers have less precision. */ 2432 if (decSig.exponent < semantics->minExponent) { 2433 excessPrecision += (semantics->minExponent - decSig.exponent); 2434 truncatedBits = excessPrecision; 2435 if (excessPrecision > calcSemantics.precision) 2436 excessPrecision = calcSemantics.precision; 2437 } 2438 /* Extra half-ulp lost in reciprocal of exponent. */ 2439 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; 2440 } 2441 2442 /* Both multiplySignificand and divideSignificand return the 2443 result with the integer bit set. */ 2444 assert(APInt::tcExtractBit 2445 (decSig.significandParts(), calcSemantics.precision - 1) == 1); 2446 2447 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, 2448 powHUerr); 2449 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), 2450 excessPrecision, isNearest); 2451 2452 /* Are we guaranteed to round correctly if we truncate? */ 2453 if (HUdistance >= HUerr) { 2454 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), 2455 calcSemantics.precision - excessPrecision, 2456 excessPrecision); 2457 /* Take the exponent of decSig. If we tcExtract-ed less bits 2458 above we must adjust our exponent to compensate for the 2459 implicit right shift. */ 2460 exponent = (decSig.exponent + semantics->precision 2461 - (calcSemantics.precision - excessPrecision)); 2462 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), 2463 decSig.partCount(), 2464 truncatedBits); 2465 return normalize(rounding_mode, calcLostFraction); 2466 } 2467 } 2468 } 2469 2470 IEEEFloat::opStatus 2471 IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { 2472 decimalInfo D; 2473 opStatus fs; 2474 2475 /* Scan the text. */ 2476 StringRef::iterator p = str.begin(); 2477 interpretDecimal(p, str.end(), &D); 2478 2479 /* Handle the quick cases. First the case of no significant digits, 2480 i.e. zero, and then exponents that are obviously too large or too 2481 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp 2482 definitely overflows if 2483 2484 (exp - 1) * L >= maxExponent 2485 2486 and definitely underflows to zero where 2487 2488 (exp + 1) * L <= minExponent - precision 2489 2490 With integer arithmetic the tightest bounds for L are 2491 2492 93/28 < L < 196/59 [ numerator <= 256 ] 2493 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] 2494 */ 2495 2496 // Test if we have a zero number allowing for strings with no null terminators 2497 // and zero decimals with non-zero exponents. 2498 // 2499 // We computed firstSigDigit by ignoring all zeros and dots. Thus if 2500 // D->firstSigDigit equals str.end(), every digit must be a zero and there can 2501 // be at most one dot. On the other hand, if we have a zero with a non-zero 2502 // exponent, then we know that D.firstSigDigit will be non-numeric. 2503 if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { 2504 category = fcZero; 2505 fs = opOK; 2506 2507 /* Check whether the normalized exponent is high enough to overflow 2508 max during the log-rebasing in the max-exponent check below. */ 2509 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { 2510 fs = handleOverflow(rounding_mode); 2511 2512 /* If it wasn't, then it also wasn't high enough to overflow max 2513 during the log-rebasing in the min-exponent check. Check that it 2514 won't overflow min in either check, then perform the min-exponent 2515 check. */ 2516 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || 2517 (D.normalizedExponent + 1) * 28738 <= 2518 8651 * (semantics->minExponent - (int) semantics->precision)) { 2519 /* Underflow to zero and round. */ 2520 category = fcNormal; 2521 zeroSignificand(); 2522 fs = normalize(rounding_mode, lfLessThanHalf); 2523 2524 /* We can finally safely perform the max-exponent check. */ 2525 } else if ((D.normalizedExponent - 1) * 42039 2526 >= 12655 * semantics->maxExponent) { 2527 /* Overflow and round. */ 2528 fs = handleOverflow(rounding_mode); 2529 } else { 2530 integerPart *decSignificand; 2531 unsigned int partCount; 2532 2533 /* A tight upper bound on number of bits required to hold an 2534 N-digit decimal integer is N * 196 / 59. Allocate enough space 2535 to hold the full significand, and an extra part required by 2536 tcMultiplyPart. */ 2537 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; 2538 partCount = partCountForBits(1 + 196 * partCount / 59); 2539 decSignificand = new integerPart[partCount + 1]; 2540 partCount = 0; 2541 2542 /* Convert to binary efficiently - we do almost all multiplication 2543 in an integerPart. When this would overflow do we do a single 2544 bignum multiplication, and then revert again to multiplication 2545 in an integerPart. */ 2546 do { 2547 integerPart decValue, val, multiplier; 2548 2549 val = 0; 2550 multiplier = 1; 2551 2552 do { 2553 if (*p == '.') { 2554 p++; 2555 if (p == str.end()) { 2556 break; 2557 } 2558 } 2559 decValue = decDigitValue(*p++); 2560 assert(decValue < 10U && "Invalid character in significand"); 2561 multiplier *= 10; 2562 val = val * 10 + decValue; 2563 /* The maximum number that can be multiplied by ten with any 2564 digit added without overflowing an integerPart. */ 2565 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); 2566 2567 /* Multiply out the current part. */ 2568 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, 2569 partCount, partCount + 1, false); 2570 2571 /* If we used another part (likely but not guaranteed), increase 2572 the count. */ 2573 if (decSignificand[partCount]) 2574 partCount++; 2575 } while (p <= D.lastSigDigit); 2576 2577 category = fcNormal; 2578 fs = roundSignificandWithExponent(decSignificand, partCount, 2579 D.exponent, rounding_mode); 2580 2581 delete [] decSignificand; 2582 } 2583 2584 return fs; 2585 } 2586 2587 bool IEEEFloat::convertFromStringSpecials(StringRef str) { 2588 if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { 2589 makeInf(false); 2590 return true; 2591 } 2592 2593 if (str.equals("-inf") || str.equals("-INFINITY") || str.equals("-Inf")) { 2594 makeInf(true); 2595 return true; 2596 } 2597 2598 if (str.equals("nan") || str.equals("NaN")) { 2599 makeNaN(false, false); 2600 return true; 2601 } 2602 2603 if (str.equals("-nan") || str.equals("-NaN")) { 2604 makeNaN(false, true); 2605 return true; 2606 } 2607 2608 return false; 2609 } 2610 2611 IEEEFloat::opStatus IEEEFloat::convertFromString(StringRef str, 2612 roundingMode rounding_mode) { 2613 assert(!str.empty() && "Invalid string length"); 2614 2615 // Handle special cases. 2616 if (convertFromStringSpecials(str)) 2617 return opOK; 2618 2619 /* Handle a leading minus sign. */ 2620 StringRef::iterator p = str.begin(); 2621 size_t slen = str.size(); 2622 sign = *p == '-' ? 1 : 0; 2623 if (*p == '-' || *p == '+') { 2624 p++; 2625 slen--; 2626 assert(slen && "String has no digits"); 2627 } 2628 2629 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { 2630 assert(slen - 2 && "Invalid string"); 2631 return convertFromHexadecimalString(StringRef(p + 2, slen - 2), 2632 rounding_mode); 2633 } 2634 2635 return convertFromDecimalString(StringRef(p, slen), rounding_mode); 2636 } 2637 2638 /* Write out a hexadecimal representation of the floating point value 2639 to DST, which must be of sufficient size, in the C99 form 2640 [-]0xh.hhhhp[+-]d. Return the number of characters written, 2641 excluding the terminating NUL. 2642 2643 If UPPERCASE, the output is in upper case, otherwise in lower case. 2644 2645 HEXDIGITS digits appear altogether, rounding the value if 2646 necessary. If HEXDIGITS is 0, the minimal precision to display the 2647 number precisely is used instead. If nothing would appear after 2648 the decimal point it is suppressed. 2649 2650 The decimal exponent is always printed and has at least one digit. 2651 Zero values display an exponent of zero. Infinities and NaNs 2652 appear as "infinity" or "nan" respectively. 2653 2654 The above rules are as specified by C99. There is ambiguity about 2655 what the leading hexadecimal digit should be. This implementation 2656 uses whatever is necessary so that the exponent is displayed as 2657 stored. This implies the exponent will fall within the IEEE format 2658 range, and the leading hexadecimal digit will be 0 (for denormals), 2659 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with 2660 any other digits zero). 2661 */ 2662 unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, 2663 bool upperCase, 2664 roundingMode rounding_mode) const { 2665 char *p; 2666 2667 p = dst; 2668 if (sign) 2669 *dst++ = '-'; 2670 2671 switch (category) { 2672 case fcInfinity: 2673 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); 2674 dst += sizeof infinityL - 1; 2675 break; 2676 2677 case fcNaN: 2678 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); 2679 dst += sizeof NaNU - 1; 2680 break; 2681 2682 case fcZero: 2683 *dst++ = '0'; 2684 *dst++ = upperCase ? 'X': 'x'; 2685 *dst++ = '0'; 2686 if (hexDigits > 1) { 2687 *dst++ = '.'; 2688 memset (dst, '0', hexDigits - 1); 2689 dst += hexDigits - 1; 2690 } 2691 *dst++ = upperCase ? 'P': 'p'; 2692 *dst++ = '0'; 2693 break; 2694 2695 case fcNormal: 2696 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); 2697 break; 2698 } 2699 2700 *dst = 0; 2701 2702 return static_cast<unsigned int>(dst - p); 2703 } 2704 2705 /* Does the hard work of outputting the correctly rounded hexadecimal 2706 form of a normal floating point number with the specified number of 2707 hexadecimal digits. If HEXDIGITS is zero the minimum number of 2708 digits necessary to print the value precisely is output. */ 2709 char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, 2710 bool upperCase, 2711 roundingMode rounding_mode) const { 2712 unsigned int count, valueBits, shift, partsCount, outputDigits; 2713 const char *hexDigitChars; 2714 const integerPart *significand; 2715 char *p; 2716 bool roundUp; 2717 2718 *dst++ = '0'; 2719 *dst++ = upperCase ? 'X': 'x'; 2720 2721 roundUp = false; 2722 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; 2723 2724 significand = significandParts(); 2725 partsCount = partCount(); 2726 2727 /* +3 because the first digit only uses the single integer bit, so 2728 we have 3 virtual zero most-significant-bits. */ 2729 valueBits = semantics->precision + 3; 2730 shift = integerPartWidth - valueBits % integerPartWidth; 2731 2732 /* The natural number of digits required ignoring trailing 2733 insignificant zeroes. */ 2734 outputDigits = (valueBits - significandLSB () + 3) / 4; 2735 2736 /* hexDigits of zero means use the required number for the 2737 precision. Otherwise, see if we are truncating. If we are, 2738 find out if we need to round away from zero. */ 2739 if (hexDigits) { 2740 if (hexDigits < outputDigits) { 2741 /* We are dropping non-zero bits, so need to check how to round. 2742 "bits" is the number of dropped bits. */ 2743 unsigned int bits; 2744 lostFraction fraction; 2745 2746 bits = valueBits - hexDigits * 4; 2747 fraction = lostFractionThroughTruncation (significand, partsCount, bits); 2748 roundUp = roundAwayFromZero(rounding_mode, fraction, bits); 2749 } 2750 outputDigits = hexDigits; 2751 } 2752 2753 /* Write the digits consecutively, and start writing in the location 2754 of the hexadecimal point. We move the most significant digit 2755 left and add the hexadecimal point later. */ 2756 p = ++dst; 2757 2758 count = (valueBits + integerPartWidth - 1) / integerPartWidth; 2759 2760 while (outputDigits && count) { 2761 integerPart part; 2762 2763 /* Put the most significant integerPartWidth bits in "part". */ 2764 if (--count == partsCount) 2765 part = 0; /* An imaginary higher zero part. */ 2766 else 2767 part = significand[count] << shift; 2768 2769 if (count && shift) 2770 part |= significand[count - 1] >> (integerPartWidth - shift); 2771 2772 /* Convert as much of "part" to hexdigits as we can. */ 2773 unsigned int curDigits = integerPartWidth / 4; 2774 2775 if (curDigits > outputDigits) 2776 curDigits = outputDigits; 2777 dst += partAsHex (dst, part, curDigits, hexDigitChars); 2778 outputDigits -= curDigits; 2779 } 2780 2781 if (roundUp) { 2782 char *q = dst; 2783 2784 /* Note that hexDigitChars has a trailing '0'. */ 2785 do { 2786 q--; 2787 *q = hexDigitChars[hexDigitValue (*q) + 1]; 2788 } while (*q == '0'); 2789 assert(q >= p); 2790 } else { 2791 /* Add trailing zeroes. */ 2792 memset (dst, '0', outputDigits); 2793 dst += outputDigits; 2794 } 2795 2796 /* Move the most significant digit to before the point, and if there 2797 is something after the decimal point add it. This must come 2798 after rounding above. */ 2799 p[-1] = p[0]; 2800 if (dst -1 == p) 2801 dst--; 2802 else 2803 p[0] = '.'; 2804 2805 /* Finally output the exponent. */ 2806 *dst++ = upperCase ? 'P': 'p'; 2807 2808 return writeSignedDecimal (dst, exponent); 2809 } 2810 2811 hash_code hash_value(const IEEEFloat &Arg) { 2812 if (!Arg.isFiniteNonZero()) 2813 return hash_combine((uint8_t)Arg.category, 2814 // NaN has no sign, fix it at zero. 2815 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, 2816 Arg.semantics->precision); 2817 2818 // Normal floats need their exponent and significand hashed. 2819 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, 2820 Arg.semantics->precision, Arg.exponent, 2821 hash_combine_range( 2822 Arg.significandParts(), 2823 Arg.significandParts() + Arg.partCount())); 2824 } 2825 2826 // Conversion from APFloat to/from host float/double. It may eventually be 2827 // possible to eliminate these and have everybody deal with APFloats, but that 2828 // will take a while. This approach will not easily extend to long double. 2829 // Current implementation requires integerPartWidth==64, which is correct at 2830 // the moment but could be made more general. 2831 2832 // Denormals have exponent minExponent in APFloat, but minExponent-1 in 2833 // the actual IEEE respresentations. We compensate for that here. 2834 2835 APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { 2836 assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended); 2837 assert(partCount()==2); 2838 2839 uint64_t myexponent, mysignificand; 2840 2841 if (isFiniteNonZero()) { 2842 myexponent = exponent+16383; //bias 2843 mysignificand = significandParts()[0]; 2844 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) 2845 myexponent = 0; // denormal 2846 } else if (category==fcZero) { 2847 myexponent = 0; 2848 mysignificand = 0; 2849 } else if (category==fcInfinity) { 2850 myexponent = 0x7fff; 2851 mysignificand = 0x8000000000000000ULL; 2852 } else { 2853 assert(category == fcNaN && "Unknown category"); 2854 myexponent = 0x7fff; 2855 mysignificand = significandParts()[0]; 2856 } 2857 2858 uint64_t words[2]; 2859 words[0] = mysignificand; 2860 words[1] = ((uint64_t)(sign & 1) << 15) | 2861 (myexponent & 0x7fffLL); 2862 return APInt(80, words); 2863 } 2864 2865 APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { 2866 assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy); 2867 assert(partCount()==2); 2868 2869 uint64_t words[2]; 2870 opStatus fs; 2871 bool losesInfo; 2872 2873 // Convert number to double. To avoid spurious underflows, we re- 2874 // normalize against the "double" minExponent first, and only *then* 2875 // truncate the mantissa. The result of that second conversion 2876 // may be inexact, but should never underflow. 2877 // Declare fltSemantics before APFloat that uses it (and 2878 // saves pointer to it) to ensure correct destruction order. 2879 fltSemantics extendedSemantics = *semantics; 2880 extendedSemantics.minExponent = semIEEEdouble.minExponent; 2881 IEEEFloat extended(*this); 2882 fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 2883 assert(fs == opOK && !losesInfo); 2884 (void)fs; 2885 2886 IEEEFloat u(extended); 2887 fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); 2888 assert(fs == opOK || fs == opInexact); 2889 (void)fs; 2890 words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); 2891 2892 // If conversion was exact or resulted in a special case, we're done; 2893 // just set the second double to zero. Otherwise, re-convert back to 2894 // the extended format and compute the difference. This now should 2895 // convert exactly to double. 2896 if (u.isFiniteNonZero() && losesInfo) { 2897 fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); 2898 assert(fs == opOK && !losesInfo); 2899 (void)fs; 2900 2901 IEEEFloat v(extended); 2902 v.subtract(u, rmNearestTiesToEven); 2903 fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); 2904 assert(fs == opOK && !losesInfo); 2905 (void)fs; 2906 words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); 2907 } else { 2908 words[1] = 0; 2909 } 2910 2911 return APInt(128, words); 2912 } 2913 2914 APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { 2915 assert(semantics == (const llvm::fltSemantics*)&semIEEEquad); 2916 assert(partCount()==2); 2917 2918 uint64_t myexponent, mysignificand, mysignificand2; 2919 2920 if (isFiniteNonZero()) { 2921 myexponent = exponent+16383; //bias 2922 mysignificand = significandParts()[0]; 2923 mysignificand2 = significandParts()[1]; 2924 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) 2925 myexponent = 0; // denormal 2926 } else if (category==fcZero) { 2927 myexponent = 0; 2928 mysignificand = mysignificand2 = 0; 2929 } else if (category==fcInfinity) { 2930 myexponent = 0x7fff; 2931 mysignificand = mysignificand2 = 0; 2932 } else { 2933 assert(category == fcNaN && "Unknown category!"); 2934 myexponent = 0x7fff; 2935 mysignificand = significandParts()[0]; 2936 mysignificand2 = significandParts()[1]; 2937 } 2938 2939 uint64_t words[2]; 2940 words[0] = mysignificand; 2941 words[1] = ((uint64_t)(sign & 1) << 63) | 2942 ((myexponent & 0x7fff) << 48) | 2943 (mysignificand2 & 0xffffffffffffLL); 2944 2945 return APInt(128, words); 2946 } 2947 2948 APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { 2949 assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble); 2950 assert(partCount()==1); 2951 2952 uint64_t myexponent, mysignificand; 2953 2954 if (isFiniteNonZero()) { 2955 myexponent = exponent+1023; //bias 2956 mysignificand = *significandParts(); 2957 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 2958 myexponent = 0; // denormal 2959 } else if (category==fcZero) { 2960 myexponent = 0; 2961 mysignificand = 0; 2962 } else if (category==fcInfinity) { 2963 myexponent = 0x7ff; 2964 mysignificand = 0; 2965 } else { 2966 assert(category == fcNaN && "Unknown category!"); 2967 myexponent = 0x7ff; 2968 mysignificand = *significandParts(); 2969 } 2970 2971 return APInt(64, ((((uint64_t)(sign & 1) << 63) | 2972 ((myexponent & 0x7ff) << 52) | 2973 (mysignificand & 0xfffffffffffffLL)))); 2974 } 2975 2976 APInt IEEEFloat::convertFloatAPFloatToAPInt() const { 2977 assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle); 2978 assert(partCount()==1); 2979 2980 uint32_t myexponent, mysignificand; 2981 2982 if (isFiniteNonZero()) { 2983 myexponent = exponent+127; //bias 2984 mysignificand = (uint32_t)*significandParts(); 2985 if (myexponent == 1 && !(mysignificand & 0x800000)) 2986 myexponent = 0; // denormal 2987 } else if (category==fcZero) { 2988 myexponent = 0; 2989 mysignificand = 0; 2990 } else if (category==fcInfinity) { 2991 myexponent = 0xff; 2992 mysignificand = 0; 2993 } else { 2994 assert(category == fcNaN && "Unknown category!"); 2995 myexponent = 0xff; 2996 mysignificand = (uint32_t)*significandParts(); 2997 } 2998 2999 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | 3000 (mysignificand & 0x7fffff))); 3001 } 3002 3003 APInt IEEEFloat::convertHalfAPFloatToAPInt() const { 3004 assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf); 3005 assert(partCount()==1); 3006 3007 uint32_t myexponent, mysignificand; 3008 3009 if (isFiniteNonZero()) { 3010 myexponent = exponent+15; //bias 3011 mysignificand = (uint32_t)*significandParts(); 3012 if (myexponent == 1 && !(mysignificand & 0x400)) 3013 myexponent = 0; // denormal 3014 } else if (category==fcZero) { 3015 myexponent = 0; 3016 mysignificand = 0; 3017 } else if (category==fcInfinity) { 3018 myexponent = 0x1f; 3019 mysignificand = 0; 3020 } else { 3021 assert(category == fcNaN && "Unknown category!"); 3022 myexponent = 0x1f; 3023 mysignificand = (uint32_t)*significandParts(); 3024 } 3025 3026 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | 3027 (mysignificand & 0x3ff))); 3028 } 3029 3030 // This function creates an APInt that is just a bit map of the floating 3031 // point constant as it would appear in memory. It is not a conversion, 3032 // and treating the result as a normal integer is unlikely to be useful. 3033 3034 APInt IEEEFloat::bitcastToAPInt() const { 3035 if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) 3036 return convertHalfAPFloatToAPInt(); 3037 3038 if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) 3039 return convertFloatAPFloatToAPInt(); 3040 3041 if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) 3042 return convertDoubleAPFloatToAPInt(); 3043 3044 if (semantics == (const llvm::fltSemantics*)&semIEEEquad) 3045 return convertQuadrupleAPFloatToAPInt(); 3046 3047 if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) 3048 return convertPPCDoubleDoubleAPFloatToAPInt(); 3049 3050 assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && 3051 "unknown format!"); 3052 return convertF80LongDoubleAPFloatToAPInt(); 3053 } 3054 3055 float IEEEFloat::convertToFloat() const { 3056 assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle && 3057 "Float semantics are not IEEEsingle"); 3058 APInt api = bitcastToAPInt(); 3059 return api.bitsToFloat(); 3060 } 3061 3062 double IEEEFloat::convertToDouble() const { 3063 assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble && 3064 "Float semantics are not IEEEdouble"); 3065 APInt api = bitcastToAPInt(); 3066 return api.bitsToDouble(); 3067 } 3068 3069 /// Integer bit is explicit in this format. Intel hardware (387 and later) 3070 /// does not support these bit patterns: 3071 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") 3072 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") 3073 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") 3074 /// exponent = 0, integer bit 1 ("pseudodenormal") 3075 /// At the moment, the first three are treated as NaNs, the last one as Normal. 3076 void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { 3077 assert(api.getBitWidth()==80); 3078 uint64_t i1 = api.getRawData()[0]; 3079 uint64_t i2 = api.getRawData()[1]; 3080 uint64_t myexponent = (i2 & 0x7fff); 3081 uint64_t mysignificand = i1; 3082 uint8_t myintegerbit = mysignificand >> 63; 3083 3084 initialize(&semX87DoubleExtended); 3085 assert(partCount()==2); 3086 3087 sign = static_cast<unsigned int>(i2>>15); 3088 if (myexponent == 0 && mysignificand == 0) { 3089 // exponent, significand meaningless 3090 category = fcZero; 3091 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { 3092 // exponent, significand meaningless 3093 category = fcInfinity; 3094 } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || 3095 (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { 3096 // exponent meaningless 3097 category = fcNaN; 3098 significandParts()[0] = mysignificand; 3099 significandParts()[1] = 0; 3100 } else { 3101 category = fcNormal; 3102 exponent = myexponent - 16383; 3103 significandParts()[0] = mysignificand; 3104 significandParts()[1] = 0; 3105 if (myexponent==0) // denormal 3106 exponent = -16382; 3107 } 3108 } 3109 3110 void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { 3111 assert(api.getBitWidth()==128); 3112 uint64_t i1 = api.getRawData()[0]; 3113 uint64_t i2 = api.getRawData()[1]; 3114 opStatus fs; 3115 bool losesInfo; 3116 3117 // Get the first double and convert to our format. 3118 initFromDoubleAPInt(APInt(64, i1)); 3119 fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); 3120 assert(fs == opOK && !losesInfo); 3121 (void)fs; 3122 3123 // Unless we have a special case, add in second double. 3124 if (isFiniteNonZero()) { 3125 IEEEFloat v(semIEEEdouble, APInt(64, i2)); 3126 fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); 3127 assert(fs == opOK && !losesInfo); 3128 (void)fs; 3129 3130 add(v, rmNearestTiesToEven); 3131 } 3132 } 3133 3134 void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { 3135 assert(api.getBitWidth()==128); 3136 uint64_t i1 = api.getRawData()[0]; 3137 uint64_t i2 = api.getRawData()[1]; 3138 uint64_t myexponent = (i2 >> 48) & 0x7fff; 3139 uint64_t mysignificand = i1; 3140 uint64_t mysignificand2 = i2 & 0xffffffffffffLL; 3141 3142 initialize(&semIEEEquad); 3143 assert(partCount()==2); 3144 3145 sign = static_cast<unsigned int>(i2>>63); 3146 if (myexponent==0 && 3147 (mysignificand==0 && mysignificand2==0)) { 3148 // exponent, significand meaningless 3149 category = fcZero; 3150 } else if (myexponent==0x7fff && 3151 (mysignificand==0 && mysignificand2==0)) { 3152 // exponent, significand meaningless 3153 category = fcInfinity; 3154 } else if (myexponent==0x7fff && 3155 (mysignificand!=0 || mysignificand2 !=0)) { 3156 // exponent meaningless 3157 category = fcNaN; 3158 significandParts()[0] = mysignificand; 3159 significandParts()[1] = mysignificand2; 3160 } else { 3161 category = fcNormal; 3162 exponent = myexponent - 16383; 3163 significandParts()[0] = mysignificand; 3164 significandParts()[1] = mysignificand2; 3165 if (myexponent==0) // denormal 3166 exponent = -16382; 3167 else 3168 significandParts()[1] |= 0x1000000000000LL; // integer bit 3169 } 3170 } 3171 3172 void IEEEFloat::initFromDoubleAPInt(const APInt &api) { 3173 assert(api.getBitWidth()==64); 3174 uint64_t i = *api.getRawData(); 3175 uint64_t myexponent = (i >> 52) & 0x7ff; 3176 uint64_t mysignificand = i & 0xfffffffffffffLL; 3177 3178 initialize(&semIEEEdouble); 3179 assert(partCount()==1); 3180 3181 sign = static_cast<unsigned int>(i>>63); 3182 if (myexponent==0 && mysignificand==0) { 3183 // exponent, significand meaningless 3184 category = fcZero; 3185 } else if (myexponent==0x7ff && mysignificand==0) { 3186 // exponent, significand meaningless 3187 category = fcInfinity; 3188 } else if (myexponent==0x7ff && mysignificand!=0) { 3189 // exponent meaningless 3190 category = fcNaN; 3191 *significandParts() = mysignificand; 3192 } else { 3193 category = fcNormal; 3194 exponent = myexponent - 1023; 3195 *significandParts() = mysignificand; 3196 if (myexponent==0) // denormal 3197 exponent = -1022; 3198 else 3199 *significandParts() |= 0x10000000000000LL; // integer bit 3200 } 3201 } 3202 3203 void IEEEFloat::initFromFloatAPInt(const APInt &api) { 3204 assert(api.getBitWidth()==32); 3205 uint32_t i = (uint32_t)*api.getRawData(); 3206 uint32_t myexponent = (i >> 23) & 0xff; 3207 uint32_t mysignificand = i & 0x7fffff; 3208 3209 initialize(&semIEEEsingle); 3210 assert(partCount()==1); 3211 3212 sign = i >> 31; 3213 if (myexponent==0 && mysignificand==0) { 3214 // exponent, significand meaningless 3215 category = fcZero; 3216 } else if (myexponent==0xff && mysignificand==0) { 3217 // exponent, significand meaningless 3218 category = fcInfinity; 3219 } else if (myexponent==0xff && mysignificand!=0) { 3220 // sign, exponent, significand meaningless 3221 category = fcNaN; 3222 *significandParts() = mysignificand; 3223 } else { 3224 category = fcNormal; 3225 exponent = myexponent - 127; //bias 3226 *significandParts() = mysignificand; 3227 if (myexponent==0) // denormal 3228 exponent = -126; 3229 else 3230 *significandParts() |= 0x800000; // integer bit 3231 } 3232 } 3233 3234 void IEEEFloat::initFromHalfAPInt(const APInt &api) { 3235 assert(api.getBitWidth()==16); 3236 uint32_t i = (uint32_t)*api.getRawData(); 3237 uint32_t myexponent = (i >> 10) & 0x1f; 3238 uint32_t mysignificand = i & 0x3ff; 3239 3240 initialize(&semIEEEhalf); 3241 assert(partCount()==1); 3242 3243 sign = i >> 15; 3244 if (myexponent==0 && mysignificand==0) { 3245 // exponent, significand meaningless 3246 category = fcZero; 3247 } else if (myexponent==0x1f && mysignificand==0) { 3248 // exponent, significand meaningless 3249 category = fcInfinity; 3250 } else if (myexponent==0x1f && mysignificand!=0) { 3251 // sign, exponent, significand meaningless 3252 category = fcNaN; 3253 *significandParts() = mysignificand; 3254 } else { 3255 category = fcNormal; 3256 exponent = myexponent - 15; //bias 3257 *significandParts() = mysignificand; 3258 if (myexponent==0) // denormal 3259 exponent = -14; 3260 else 3261 *significandParts() |= 0x400; // integer bit 3262 } 3263 } 3264 3265 /// Treat api as containing the bits of a floating point number. Currently 3266 /// we infer the floating point type from the size of the APInt. The 3267 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful 3268 /// when the size is anything else). 3269 void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { 3270 if (Sem == &semIEEEhalf) 3271 return initFromHalfAPInt(api); 3272 if (Sem == &semIEEEsingle) 3273 return initFromFloatAPInt(api); 3274 if (Sem == &semIEEEdouble) 3275 return initFromDoubleAPInt(api); 3276 if (Sem == &semX87DoubleExtended) 3277 return initFromF80LongDoubleAPInt(api); 3278 if (Sem == &semIEEEquad) 3279 return initFromQuadrupleAPInt(api); 3280 if (Sem == &semPPCDoubleDoubleLegacy) 3281 return initFromPPCDoubleDoubleAPInt(api); 3282 3283 llvm_unreachable(nullptr); 3284 } 3285 3286 /// Make this number the largest magnitude normal number in the given 3287 /// semantics. 3288 void IEEEFloat::makeLargest(bool Negative) { 3289 // We want (in interchange format): 3290 // sign = {Negative} 3291 // exponent = 1..10 3292 // significand = 1..1 3293 category = fcNormal; 3294 sign = Negative; 3295 exponent = semantics->maxExponent; 3296 3297 // Use memset to set all but the highest integerPart to all ones. 3298 integerPart *significand = significandParts(); 3299 unsigned PartCount = partCount(); 3300 memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); 3301 3302 // Set the high integerPart especially setting all unused top bits for 3303 // internal consistency. 3304 const unsigned NumUnusedHighBits = 3305 PartCount*integerPartWidth - semantics->precision; 3306 significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) 3307 ? (~integerPart(0) >> NumUnusedHighBits) 3308 : 0; 3309 } 3310 3311 /// Make this number the smallest magnitude denormal number in the given 3312 /// semantics. 3313 void IEEEFloat::makeSmallest(bool Negative) { 3314 // We want (in interchange format): 3315 // sign = {Negative} 3316 // exponent = 0..0 3317 // significand = 0..01 3318 category = fcNormal; 3319 sign = Negative; 3320 exponent = semantics->minExponent; 3321 APInt::tcSet(significandParts(), 1, partCount()); 3322 } 3323 3324 void IEEEFloat::makeSmallestNormalized(bool Negative) { 3325 // We want (in interchange format): 3326 // sign = {Negative} 3327 // exponent = 0..0 3328 // significand = 10..0 3329 3330 category = fcNormal; 3331 zeroSignificand(); 3332 sign = Negative; 3333 exponent = semantics->minExponent; 3334 significandParts()[partCountForBits(semantics->precision) - 1] |= 3335 (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); 3336 } 3337 3338 IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { 3339 initFromAPInt(&Sem, API); 3340 } 3341 3342 IEEEFloat::IEEEFloat(float f) { 3343 initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); 3344 } 3345 3346 IEEEFloat::IEEEFloat(double d) { 3347 initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); 3348 } 3349 3350 namespace { 3351 void append(SmallVectorImpl<char> &Buffer, StringRef Str) { 3352 Buffer.append(Str.begin(), Str.end()); 3353 } 3354 3355 /// Removes data from the given significand until it is no more 3356 /// precise than is required for the desired precision. 3357 void AdjustToPrecision(APInt &significand, 3358 int &exp, unsigned FormatPrecision) { 3359 unsigned bits = significand.getActiveBits(); 3360 3361 // 196/59 is a very slight overestimate of lg_2(10). 3362 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; 3363 3364 if (bits <= bitsRequired) return; 3365 3366 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; 3367 if (!tensRemovable) return; 3368 3369 exp += tensRemovable; 3370 3371 APInt divisor(significand.getBitWidth(), 1); 3372 APInt powten(significand.getBitWidth(), 10); 3373 while (true) { 3374 if (tensRemovable & 1) 3375 divisor *= powten; 3376 tensRemovable >>= 1; 3377 if (!tensRemovable) break; 3378 powten *= powten; 3379 } 3380 3381 significand = significand.udiv(divisor); 3382 3383 // Truncate the significand down to its active bit count. 3384 significand = significand.trunc(significand.getActiveBits()); 3385 } 3386 3387 3388 void AdjustToPrecision(SmallVectorImpl<char> &buffer, 3389 int &exp, unsigned FormatPrecision) { 3390 unsigned N = buffer.size(); 3391 if (N <= FormatPrecision) return; 3392 3393 // The most significant figures are the last ones in the buffer. 3394 unsigned FirstSignificant = N - FormatPrecision; 3395 3396 // Round. 3397 // FIXME: this probably shouldn't use 'round half up'. 3398 3399 // Rounding down is just a truncation, except we also want to drop 3400 // trailing zeros from the new result. 3401 if (buffer[FirstSignificant - 1] < '5') { 3402 while (FirstSignificant < N && buffer[FirstSignificant] == '0') 3403 FirstSignificant++; 3404 3405 exp += FirstSignificant; 3406 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3407 return; 3408 } 3409 3410 // Rounding up requires a decimal add-with-carry. If we continue 3411 // the carry, the newly-introduced zeros will just be truncated. 3412 for (unsigned I = FirstSignificant; I != N; ++I) { 3413 if (buffer[I] == '9') { 3414 FirstSignificant++; 3415 } else { 3416 buffer[I]++; 3417 break; 3418 } 3419 } 3420 3421 // If we carried through, we have exactly one digit of precision. 3422 if (FirstSignificant == N) { 3423 exp += FirstSignificant; 3424 buffer.clear(); 3425 buffer.push_back('1'); 3426 return; 3427 } 3428 3429 exp += FirstSignificant; 3430 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3431 } 3432 } 3433 3434 void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, 3435 unsigned FormatMaxPadding, bool TruncateZero) const { 3436 switch (category) { 3437 case fcInfinity: 3438 if (isNegative()) 3439 return append(Str, "-Inf"); 3440 else 3441 return append(Str, "+Inf"); 3442 3443 case fcNaN: return append(Str, "NaN"); 3444 3445 case fcZero: 3446 if (isNegative()) 3447 Str.push_back('-'); 3448 3449 if (!FormatMaxPadding) { 3450 if (TruncateZero) 3451 append(Str, "0.0E+0"); 3452 else { 3453 append(Str, "0.0"); 3454 if (FormatPrecision > 1) 3455 Str.append(FormatPrecision - 1, '0'); 3456 append(Str, "e+00"); 3457 } 3458 } else 3459 Str.push_back('0'); 3460 return; 3461 3462 case fcNormal: 3463 break; 3464 } 3465 3466 if (isNegative()) 3467 Str.push_back('-'); 3468 3469 // Decompose the number into an APInt and an exponent. 3470 int exp = exponent - ((int) semantics->precision - 1); 3471 APInt significand(semantics->precision, 3472 makeArrayRef(significandParts(), 3473 partCountForBits(semantics->precision))); 3474 3475 // Set FormatPrecision if zero. We want to do this before we 3476 // truncate trailing zeros, as those are part of the precision. 3477 if (!FormatPrecision) { 3478 // We use enough digits so the number can be round-tripped back to an 3479 // APFloat. The formula comes from "How to Print Floating-Point Numbers 3480 // Accurately" by Steele and White. 3481 // FIXME: Using a formula based purely on the precision is conservative; 3482 // we can print fewer digits depending on the actual value being printed. 3483 3484 // FormatPrecision = 2 + floor(significandBits / lg_2(10)) 3485 FormatPrecision = 2 + semantics->precision * 59 / 196; 3486 } 3487 3488 // Ignore trailing binary zeros. 3489 int trailingZeros = significand.countTrailingZeros(); 3490 exp += trailingZeros; 3491 significand.lshrInPlace(trailingZeros); 3492 3493 // Change the exponent from 2^e to 10^e. 3494 if (exp == 0) { 3495 // Nothing to do. 3496 } else if (exp > 0) { 3497 // Just shift left. 3498 significand = significand.zext(semantics->precision + exp); 3499 significand <<= exp; 3500 exp = 0; 3501 } else { /* exp < 0 */ 3502 int texp = -exp; 3503 3504 // We transform this using the identity: 3505 // (N)(2^-e) == (N)(5^e)(10^-e) 3506 // This means we have to multiply N (the significand) by 5^e. 3507 // To avoid overflow, we have to operate on numbers large 3508 // enough to store N * 5^e: 3509 // log2(N * 5^e) == log2(N) + e * log2(5) 3510 // <= semantics->precision + e * 137 / 59 3511 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) 3512 3513 unsigned precision = semantics->precision + (137 * texp + 136) / 59; 3514 3515 // Multiply significand by 5^e. 3516 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) 3517 significand = significand.zext(precision); 3518 APInt five_to_the_i(precision, 5); 3519 while (true) { 3520 if (texp & 1) significand *= five_to_the_i; 3521 3522 texp >>= 1; 3523 if (!texp) break; 3524 five_to_the_i *= five_to_the_i; 3525 } 3526 } 3527 3528 AdjustToPrecision(significand, exp, FormatPrecision); 3529 3530 SmallVector<char, 256> buffer; 3531 3532 // Fill the buffer. 3533 unsigned precision = significand.getBitWidth(); 3534 APInt ten(precision, 10); 3535 APInt digit(precision, 0); 3536 3537 bool inTrail = true; 3538 while (significand != 0) { 3539 // digit <- significand % 10 3540 // significand <- significand / 10 3541 APInt::udivrem(significand, ten, significand, digit); 3542 3543 unsigned d = digit.getZExtValue(); 3544 3545 // Drop trailing zeros. 3546 if (inTrail && !d) exp++; 3547 else { 3548 buffer.push_back((char) ('0' + d)); 3549 inTrail = false; 3550 } 3551 } 3552 3553 assert(!buffer.empty() && "no characters in buffer!"); 3554 3555 // Drop down to FormatPrecision. 3556 // TODO: don't do more precise calculations above than are required. 3557 AdjustToPrecision(buffer, exp, FormatPrecision); 3558 3559 unsigned NDigits = buffer.size(); 3560 3561 // Check whether we should use scientific notation. 3562 bool FormatScientific; 3563 if (!FormatMaxPadding) 3564 FormatScientific = true; 3565 else { 3566 if (exp >= 0) { 3567 // 765e3 --> 765000 3568 // ^^^ 3569 // But we shouldn't make the number look more precise than it is. 3570 FormatScientific = ((unsigned) exp > FormatMaxPadding || 3571 NDigits + (unsigned) exp > FormatPrecision); 3572 } else { 3573 // Power of the most significant digit. 3574 int MSD = exp + (int) (NDigits - 1); 3575 if (MSD >= 0) { 3576 // 765e-2 == 7.65 3577 FormatScientific = false; 3578 } else { 3579 // 765e-5 == 0.00765 3580 // ^ ^^ 3581 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; 3582 } 3583 } 3584 } 3585 3586 // Scientific formatting is pretty straightforward. 3587 if (FormatScientific) { 3588 exp += (NDigits - 1); 3589 3590 Str.push_back(buffer[NDigits-1]); 3591 Str.push_back('.'); 3592 if (NDigits == 1 && TruncateZero) 3593 Str.push_back('0'); 3594 else 3595 for (unsigned I = 1; I != NDigits; ++I) 3596 Str.push_back(buffer[NDigits-1-I]); 3597 // Fill with zeros up to FormatPrecision. 3598 if (!TruncateZero && FormatPrecision > NDigits - 1) 3599 Str.append(FormatPrecision - NDigits + 1, '0'); 3600 // For !TruncateZero we use lower 'e'. 3601 Str.push_back(TruncateZero ? 'E' : 'e'); 3602 3603 Str.push_back(exp >= 0 ? '+' : '-'); 3604 if (exp < 0) exp = -exp; 3605 SmallVector<char, 6> expbuf; 3606 do { 3607 expbuf.push_back((char) ('0' + (exp % 10))); 3608 exp /= 10; 3609 } while (exp); 3610 // Exponent always at least two digits if we do not truncate zeros. 3611 if (!TruncateZero && expbuf.size() < 2) 3612 expbuf.push_back('0'); 3613 for (unsigned I = 0, E = expbuf.size(); I != E; ++I) 3614 Str.push_back(expbuf[E-1-I]); 3615 return; 3616 } 3617 3618 // Non-scientific, positive exponents. 3619 if (exp >= 0) { 3620 for (unsigned I = 0; I != NDigits; ++I) 3621 Str.push_back(buffer[NDigits-1-I]); 3622 for (unsigned I = 0; I != (unsigned) exp; ++I) 3623 Str.push_back('0'); 3624 return; 3625 } 3626 3627 // Non-scientific, negative exponents. 3628 3629 // The number of digits to the left of the decimal point. 3630 int NWholeDigits = exp + (int) NDigits; 3631 3632 unsigned I = 0; 3633 if (NWholeDigits > 0) { 3634 for (; I != (unsigned) NWholeDigits; ++I) 3635 Str.push_back(buffer[NDigits-I-1]); 3636 Str.push_back('.'); 3637 } else { 3638 unsigned NZeros = 1 + (unsigned) -NWholeDigits; 3639 3640 Str.push_back('0'); 3641 Str.push_back('.'); 3642 for (unsigned Z = 1; Z != NZeros; ++Z) 3643 Str.push_back('0'); 3644 } 3645 3646 for (; I != NDigits; ++I) 3647 Str.push_back(buffer[NDigits-I-1]); 3648 } 3649 3650 bool IEEEFloat::getExactInverse(APFloat *inv) const { 3651 // Special floats and denormals have no exact inverse. 3652 if (!isFiniteNonZero()) 3653 return false; 3654 3655 // Check that the number is a power of two by making sure that only the 3656 // integer bit is set in the significand. 3657 if (significandLSB() != semantics->precision - 1) 3658 return false; 3659 3660 // Get the inverse. 3661 IEEEFloat reciprocal(*semantics, 1ULL); 3662 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) 3663 return false; 3664 3665 // Avoid multiplication with a denormal, it is not safe on all platforms and 3666 // may be slower than a normal division. 3667 if (reciprocal.isDenormal()) 3668 return false; 3669 3670 assert(reciprocal.isFiniteNonZero() && 3671 reciprocal.significandLSB() == reciprocal.semantics->precision - 1); 3672 3673 if (inv) 3674 *inv = APFloat(reciprocal, *semantics); 3675 3676 return true; 3677 } 3678 3679 bool IEEEFloat::isSignaling() const { 3680 if (!isNaN()) 3681 return false; 3682 3683 // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the 3684 // first bit of the trailing significand being 0. 3685 return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); 3686 } 3687 3688 /// IEEE-754R 2008 5.3.1: nextUp/nextDown. 3689 /// 3690 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with 3691 /// appropriate sign switching before/after the computation. 3692 IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { 3693 // If we are performing nextDown, swap sign so we have -x. 3694 if (nextDown) 3695 changeSign(); 3696 3697 // Compute nextUp(x) 3698 opStatus result = opOK; 3699 3700 // Handle each float category separately. 3701 switch (category) { 3702 case fcInfinity: 3703 // nextUp(+inf) = +inf 3704 if (!isNegative()) 3705 break; 3706 // nextUp(-inf) = -getLargest() 3707 makeLargest(true); 3708 break; 3709 case fcNaN: 3710 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. 3711 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not 3712 // change the payload. 3713 if (isSignaling()) { 3714 result = opInvalidOp; 3715 // For consistency, propagate the sign of the sNaN to the qNaN. 3716 makeNaN(false, isNegative(), nullptr); 3717 } 3718 break; 3719 case fcZero: 3720 // nextUp(pm 0) = +getSmallest() 3721 makeSmallest(false); 3722 break; 3723 case fcNormal: 3724 // nextUp(-getSmallest()) = -0 3725 if (isSmallest() && isNegative()) { 3726 APInt::tcSet(significandParts(), 0, partCount()); 3727 category = fcZero; 3728 exponent = 0; 3729 break; 3730 } 3731 3732 // nextUp(getLargest()) == INFINITY 3733 if (isLargest() && !isNegative()) { 3734 APInt::tcSet(significandParts(), 0, partCount()); 3735 category = fcInfinity; 3736 exponent = semantics->maxExponent + 1; 3737 break; 3738 } 3739 3740 // nextUp(normal) == normal + inc. 3741 if (isNegative()) { 3742 // If we are negative, we need to decrement the significand. 3743 3744 // We only cross a binade boundary that requires adjusting the exponent 3745 // if: 3746 // 1. exponent != semantics->minExponent. This implies we are not in the 3747 // smallest binade or are dealing with denormals. 3748 // 2. Our significand excluding the integral bit is all zeros. 3749 bool WillCrossBinadeBoundary = 3750 exponent != semantics->minExponent && isSignificandAllZeros(); 3751 3752 // Decrement the significand. 3753 // 3754 // We always do this since: 3755 // 1. If we are dealing with a non-binade decrement, by definition we 3756 // just decrement the significand. 3757 // 2. If we are dealing with a normal -> normal binade decrement, since 3758 // we have an explicit integral bit the fact that all bits but the 3759 // integral bit are zero implies that subtracting one will yield a 3760 // significand with 0 integral bit and 1 in all other spots. Thus we 3761 // must just adjust the exponent and set the integral bit to 1. 3762 // 3. If we are dealing with a normal -> denormal binade decrement, 3763 // since we set the integral bit to 0 when we represent denormals, we 3764 // just decrement the significand. 3765 integerPart *Parts = significandParts(); 3766 APInt::tcDecrement(Parts, partCount()); 3767 3768 if (WillCrossBinadeBoundary) { 3769 // Our result is a normal number. Do the following: 3770 // 1. Set the integral bit to 1. 3771 // 2. Decrement the exponent. 3772 APInt::tcSetBit(Parts, semantics->precision - 1); 3773 exponent--; 3774 } 3775 } else { 3776 // If we are positive, we need to increment the significand. 3777 3778 // We only cross a binade boundary that requires adjusting the exponent if 3779 // the input is not a denormal and all of said input's significand bits 3780 // are set. If all of said conditions are true: clear the significand, set 3781 // the integral bit to 1, and increment the exponent. If we have a 3782 // denormal always increment since moving denormals and the numbers in the 3783 // smallest normal binade have the same exponent in our representation. 3784 bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); 3785 3786 if (WillCrossBinadeBoundary) { 3787 integerPart *Parts = significandParts(); 3788 APInt::tcSet(Parts, 0, partCount()); 3789 APInt::tcSetBit(Parts, semantics->precision - 1); 3790 assert(exponent != semantics->maxExponent && 3791 "We can not increment an exponent beyond the maxExponent allowed" 3792 " by the given floating point semantics."); 3793 exponent++; 3794 } else { 3795 incrementSignificand(); 3796 } 3797 } 3798 break; 3799 } 3800 3801 // If we are performing nextDown, swap sign so we have -nextUp(-x) 3802 if (nextDown) 3803 changeSign(); 3804 3805 return result; 3806 } 3807 3808 void IEEEFloat::makeInf(bool Negative) { 3809 category = fcInfinity; 3810 sign = Negative; 3811 exponent = semantics->maxExponent + 1; 3812 APInt::tcSet(significandParts(), 0, partCount()); 3813 } 3814 3815 void IEEEFloat::makeZero(bool Negative) { 3816 category = fcZero; 3817 sign = Negative; 3818 exponent = semantics->minExponent-1; 3819 APInt::tcSet(significandParts(), 0, partCount()); 3820 } 3821 3822 void IEEEFloat::makeQuiet() { 3823 assert(isNaN()); 3824 APInt::tcSetBit(significandParts(), semantics->precision - 2); 3825 } 3826 3827 int ilogb(const IEEEFloat &Arg) { 3828 if (Arg.isNaN()) 3829 return IEEEFloat::IEK_NaN; 3830 if (Arg.isZero()) 3831 return IEEEFloat::IEK_Zero; 3832 if (Arg.isInfinity()) 3833 return IEEEFloat::IEK_Inf; 3834 if (!Arg.isDenormal()) 3835 return Arg.exponent; 3836 3837 IEEEFloat Normalized(Arg); 3838 int SignificandBits = Arg.getSemantics().precision - 1; 3839 3840 Normalized.exponent += SignificandBits; 3841 Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); 3842 return Normalized.exponent - SignificandBits; 3843 } 3844 3845 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { 3846 auto MaxExp = X.getSemantics().maxExponent; 3847 auto MinExp = X.getSemantics().minExponent; 3848 3849 // If Exp is wildly out-of-scale, simply adding it to X.exponent will 3850 // overflow; clamp it to a safe range before adding, but ensure that the range 3851 // is large enough that the clamp does not change the result. The range we 3852 // need to support is the difference between the largest possible exponent and 3853 // the normalized exponent of half the smallest denormal. 3854 3855 int SignificandBits = X.getSemantics().precision - 1; 3856 int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; 3857 3858 // Clamp to one past the range ends to let normalize handle overlflow. 3859 X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); 3860 X.normalize(RoundingMode, lfExactlyZero); 3861 if (X.isNaN()) 3862 X.makeQuiet(); 3863 return X; 3864 } 3865 3866 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { 3867 Exp = ilogb(Val); 3868 3869 // Quiet signalling nans. 3870 if (Exp == IEEEFloat::IEK_NaN) { 3871 IEEEFloat Quiet(Val); 3872 Quiet.makeQuiet(); 3873 return Quiet; 3874 } 3875 3876 if (Exp == IEEEFloat::IEK_Inf) 3877 return Val; 3878 3879 // 1 is added because frexp is defined to return a normalized fraction in 3880 // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). 3881 Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; 3882 return scalbn(Val, -Exp, RM); 3883 } 3884 3885 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) 3886 : Semantics(&S), 3887 Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { 3888 assert(Semantics == &semPPCDoubleDouble); 3889 } 3890 3891 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) 3892 : Semantics(&S), 3893 Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), 3894 APFloat(semIEEEdouble, uninitialized)}) { 3895 assert(Semantics == &semPPCDoubleDouble); 3896 } 3897 3898 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) 3899 : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), 3900 APFloat(semIEEEdouble)}) { 3901 assert(Semantics == &semPPCDoubleDouble); 3902 } 3903 3904 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) 3905 : Semantics(&S), 3906 Floats(new APFloat[2]{ 3907 APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), 3908 APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { 3909 assert(Semantics == &semPPCDoubleDouble); 3910 } 3911 3912 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, 3913 APFloat &&Second) 3914 : Semantics(&S), 3915 Floats(new APFloat[2]{std::move(First), std::move(Second)}) { 3916 assert(Semantics == &semPPCDoubleDouble); 3917 assert(&Floats[0].getSemantics() == &semIEEEdouble); 3918 assert(&Floats[1].getSemantics() == &semIEEEdouble); 3919 } 3920 3921 DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) 3922 : Semantics(RHS.Semantics), 3923 Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), 3924 APFloat(RHS.Floats[1])} 3925 : nullptr) { 3926 assert(Semantics == &semPPCDoubleDouble); 3927 } 3928 3929 DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) 3930 : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { 3931 RHS.Semantics = &semBogus; 3932 assert(Semantics == &semPPCDoubleDouble); 3933 } 3934 3935 DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { 3936 if (Semantics == RHS.Semantics && RHS.Floats) { 3937 Floats[0] = RHS.Floats[0]; 3938 Floats[1] = RHS.Floats[1]; 3939 } else if (this != &RHS) { 3940 this->~DoubleAPFloat(); 3941 new (this) DoubleAPFloat(RHS); 3942 } 3943 return *this; 3944 } 3945 3946 // Implement addition, subtraction, multiplication and division based on: 3947 // "Software for Doubled-Precision Floating-Point Computations", 3948 // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. 3949 APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, 3950 const APFloat &c, const APFloat &cc, 3951 roundingMode RM) { 3952 int Status = opOK; 3953 APFloat z = a; 3954 Status |= z.add(c, RM); 3955 if (!z.isFinite()) { 3956 if (!z.isInfinity()) { 3957 Floats[0] = std::move(z); 3958 Floats[1].makeZero(/* Neg = */ false); 3959 return (opStatus)Status; 3960 } 3961 Status = opOK; 3962 auto AComparedToC = a.compareAbsoluteValue(c); 3963 z = cc; 3964 Status |= z.add(aa, RM); 3965 if (AComparedToC == APFloat::cmpGreaterThan) { 3966 // z = cc + aa + c + a; 3967 Status |= z.add(c, RM); 3968 Status |= z.add(a, RM); 3969 } else { 3970 // z = cc + aa + a + c; 3971 Status |= z.add(a, RM); 3972 Status |= z.add(c, RM); 3973 } 3974 if (!z.isFinite()) { 3975 Floats[0] = std::move(z); 3976 Floats[1].makeZero(/* Neg = */ false); 3977 return (opStatus)Status; 3978 } 3979 Floats[0] = z; 3980 APFloat zz = aa; 3981 Status |= zz.add(cc, RM); 3982 if (AComparedToC == APFloat::cmpGreaterThan) { 3983 // Floats[1] = a - z + c + zz; 3984 Floats[1] = a; 3985 Status |= Floats[1].subtract(z, RM); 3986 Status |= Floats[1].add(c, RM); 3987 Status |= Floats[1].add(zz, RM); 3988 } else { 3989 // Floats[1] = c - z + a + zz; 3990 Floats[1] = c; 3991 Status |= Floats[1].subtract(z, RM); 3992 Status |= Floats[1].add(a, RM); 3993 Status |= Floats[1].add(zz, RM); 3994 } 3995 } else { 3996 // q = a - z; 3997 APFloat q = a; 3998 Status |= q.subtract(z, RM); 3999 4000 // zz = q + c + (a - (q + z)) + aa + cc; 4001 // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. 4002 auto zz = q; 4003 Status |= zz.add(c, RM); 4004 Status |= q.add(z, RM); 4005 Status |= q.subtract(a, RM); 4006 q.changeSign(); 4007 Status |= zz.add(q, RM); 4008 Status |= zz.add(aa, RM); 4009 Status |= zz.add(cc, RM); 4010 if (zz.isZero() && !zz.isNegative()) { 4011 Floats[0] = std::move(z); 4012 Floats[1].makeZero(/* Neg = */ false); 4013 return opOK; 4014 } 4015 Floats[0] = z; 4016 Status |= Floats[0].add(zz, RM); 4017 if (!Floats[0].isFinite()) { 4018 Floats[1].makeZero(/* Neg = */ false); 4019 return (opStatus)Status; 4020 } 4021 Floats[1] = std::move(z); 4022 Status |= Floats[1].subtract(Floats[0], RM); 4023 Status |= Floats[1].add(zz, RM); 4024 } 4025 return (opStatus)Status; 4026 } 4027 4028 APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, 4029 const DoubleAPFloat &RHS, 4030 DoubleAPFloat &Out, 4031 roundingMode RM) { 4032 if (LHS.getCategory() == fcNaN) { 4033 Out = LHS; 4034 return opOK; 4035 } 4036 if (RHS.getCategory() == fcNaN) { 4037 Out = RHS; 4038 return opOK; 4039 } 4040 if (LHS.getCategory() == fcZero) { 4041 Out = RHS; 4042 return opOK; 4043 } 4044 if (RHS.getCategory() == fcZero) { 4045 Out = LHS; 4046 return opOK; 4047 } 4048 if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && 4049 LHS.isNegative() != RHS.isNegative()) { 4050 Out.makeNaN(false, Out.isNegative(), nullptr); 4051 return opInvalidOp; 4052 } 4053 if (LHS.getCategory() == fcInfinity) { 4054 Out = LHS; 4055 return opOK; 4056 } 4057 if (RHS.getCategory() == fcInfinity) { 4058 Out = RHS; 4059 return opOK; 4060 } 4061 assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal); 4062 4063 APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), 4064 CC(RHS.Floats[1]); 4065 assert(&A.getSemantics() == &semIEEEdouble); 4066 assert(&AA.getSemantics() == &semIEEEdouble); 4067 assert(&C.getSemantics() == &semIEEEdouble); 4068 assert(&CC.getSemantics() == &semIEEEdouble); 4069 assert(&Out.Floats[0].getSemantics() == &semIEEEdouble); 4070 assert(&Out.Floats[1].getSemantics() == &semIEEEdouble); 4071 return Out.addImpl(A, AA, C, CC, RM); 4072 } 4073 4074 APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, 4075 roundingMode RM) { 4076 return addWithSpecial(*this, RHS, *this, RM); 4077 } 4078 4079 APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, 4080 roundingMode RM) { 4081 changeSign(); 4082 auto Ret = add(RHS, RM); 4083 changeSign(); 4084 return Ret; 4085 } 4086 4087 APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, 4088 APFloat::roundingMode RM) { 4089 const auto &LHS = *this; 4090 auto &Out = *this; 4091 /* Interesting observation: For special categories, finding the lowest 4092 common ancestor of the following layered graph gives the correct 4093 return category: 4094 4095 NaN 4096 / \ 4097 Zero Inf 4098 \ / 4099 Normal 4100 4101 e.g. NaN * NaN = NaN 4102 Zero * Inf = NaN 4103 Normal * Zero = Zero 4104 Normal * Inf = Inf 4105 */ 4106 if (LHS.getCategory() == fcNaN) { 4107 Out = LHS; 4108 return opOK; 4109 } 4110 if (RHS.getCategory() == fcNaN) { 4111 Out = RHS; 4112 return opOK; 4113 } 4114 if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || 4115 (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { 4116 Out.makeNaN(false, false, nullptr); 4117 return opOK; 4118 } 4119 if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { 4120 Out = LHS; 4121 return opOK; 4122 } 4123 if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { 4124 Out = RHS; 4125 return opOK; 4126 } 4127 assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && 4128 "Special cases not handled exhaustively"); 4129 4130 int Status = opOK; 4131 APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; 4132 // t = a * c 4133 APFloat T = A; 4134 Status |= T.multiply(C, RM); 4135 if (!T.isFiniteNonZero()) { 4136 Floats[0] = T; 4137 Floats[1].makeZero(/* Neg = */ false); 4138 return (opStatus)Status; 4139 } 4140 4141 // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). 4142 APFloat Tau = A; 4143 T.changeSign(); 4144 Status |= Tau.fusedMultiplyAdd(C, T, RM); 4145 T.changeSign(); 4146 { 4147 // v = a * d 4148 APFloat V = A; 4149 Status |= V.multiply(D, RM); 4150 // w = b * c 4151 APFloat W = B; 4152 Status |= W.multiply(C, RM); 4153 Status |= V.add(W, RM); 4154 // tau += v + w 4155 Status |= Tau.add(V, RM); 4156 } 4157 // u = t + tau 4158 APFloat U = T; 4159 Status |= U.add(Tau, RM); 4160 4161 Floats[0] = U; 4162 if (!U.isFinite()) { 4163 Floats[1].makeZero(/* Neg = */ false); 4164 } else { 4165 // Floats[1] = (t - u) + tau 4166 Status |= T.subtract(U, RM); 4167 Status |= T.add(Tau, RM); 4168 Floats[1] = T; 4169 } 4170 return (opStatus)Status; 4171 } 4172 4173 APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, 4174 APFloat::roundingMode RM) { 4175 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4176 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4177 auto Ret = 4178 Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); 4179 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4180 return Ret; 4181 } 4182 4183 APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { 4184 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4185 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4186 auto Ret = 4187 Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); 4188 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4189 return Ret; 4190 } 4191 4192 APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { 4193 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4194 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4195 auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); 4196 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4197 return Ret; 4198 } 4199 4200 APFloat::opStatus 4201 DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, 4202 const DoubleAPFloat &Addend, 4203 APFloat::roundingMode RM) { 4204 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4205 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4206 auto Ret = Tmp.fusedMultiplyAdd( 4207 APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), 4208 APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); 4209 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4210 return Ret; 4211 } 4212 4213 APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { 4214 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4215 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4216 auto Ret = Tmp.roundToIntegral(RM); 4217 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4218 return Ret; 4219 } 4220 4221 void DoubleAPFloat::changeSign() { 4222 Floats[0].changeSign(); 4223 Floats[1].changeSign(); 4224 } 4225 4226 APFloat::cmpResult 4227 DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { 4228 auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); 4229 if (Result != cmpEqual) 4230 return Result; 4231 Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); 4232 if (Result == cmpLessThan || Result == cmpGreaterThan) { 4233 auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); 4234 auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); 4235 if (Against && !RHSAgainst) 4236 return cmpLessThan; 4237 if (!Against && RHSAgainst) 4238 return cmpGreaterThan; 4239 if (!Against && !RHSAgainst) 4240 return Result; 4241 if (Against && RHSAgainst) 4242 return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); 4243 } 4244 return Result; 4245 } 4246 4247 APFloat::fltCategory DoubleAPFloat::getCategory() const { 4248 return Floats[0].getCategory(); 4249 } 4250 4251 bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } 4252 4253 void DoubleAPFloat::makeInf(bool Neg) { 4254 Floats[0].makeInf(Neg); 4255 Floats[1].makeZero(/* Neg = */ false); 4256 } 4257 4258 void DoubleAPFloat::makeZero(bool Neg) { 4259 Floats[0].makeZero(Neg); 4260 Floats[1].makeZero(/* Neg = */ false); 4261 } 4262 4263 void DoubleAPFloat::makeLargest(bool Neg) { 4264 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4265 Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); 4266 Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); 4267 if (Neg) 4268 changeSign(); 4269 } 4270 4271 void DoubleAPFloat::makeSmallest(bool Neg) { 4272 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4273 Floats[0].makeSmallest(Neg); 4274 Floats[1].makeZero(/* Neg = */ false); 4275 } 4276 4277 void DoubleAPFloat::makeSmallestNormalized(bool Neg) { 4278 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4279 Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); 4280 if (Neg) 4281 Floats[0].changeSign(); 4282 Floats[1].makeZero(/* Neg = */ false); 4283 } 4284 4285 void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { 4286 Floats[0].makeNaN(SNaN, Neg, fill); 4287 Floats[1].makeZero(/* Neg = */ false); 4288 } 4289 4290 APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { 4291 auto Result = Floats[0].compare(RHS.Floats[0]); 4292 // |Float[0]| > |Float[1]| 4293 if (Result == APFloat::cmpEqual) 4294 return Floats[1].compare(RHS.Floats[1]); 4295 return Result; 4296 } 4297 4298 bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { 4299 return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && 4300 Floats[1].bitwiseIsEqual(RHS.Floats[1]); 4301 } 4302 4303 hash_code hash_value(const DoubleAPFloat &Arg) { 4304 if (Arg.Floats) 4305 return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); 4306 return hash_combine(Arg.Semantics); 4307 } 4308 4309 APInt DoubleAPFloat::bitcastToAPInt() const { 4310 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4311 uint64_t Data[] = { 4312 Floats[0].bitcastToAPInt().getRawData()[0], 4313 Floats[1].bitcastToAPInt().getRawData()[0], 4314 }; 4315 return APInt(128, 2, Data); 4316 } 4317 4318 APFloat::opStatus DoubleAPFloat::convertFromString(StringRef S, 4319 roundingMode RM) { 4320 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4321 APFloat Tmp(semPPCDoubleDoubleLegacy); 4322 auto Ret = Tmp.convertFromString(S, RM); 4323 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4324 return Ret; 4325 } 4326 4327 APFloat::opStatus DoubleAPFloat::next(bool nextDown) { 4328 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4329 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4330 auto Ret = Tmp.next(nextDown); 4331 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4332 return Ret; 4333 } 4334 4335 APFloat::opStatus 4336 DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, 4337 unsigned int Width, bool IsSigned, 4338 roundingMode RM, bool *IsExact) const { 4339 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4340 return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) 4341 .convertToInteger(Input, Width, IsSigned, RM, IsExact); 4342 } 4343 4344 APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, 4345 bool IsSigned, 4346 roundingMode RM) { 4347 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4348 APFloat Tmp(semPPCDoubleDoubleLegacy); 4349 auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); 4350 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4351 return Ret; 4352 } 4353 4354 APFloat::opStatus 4355 DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, 4356 unsigned int InputSize, 4357 bool IsSigned, roundingMode RM) { 4358 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4359 APFloat Tmp(semPPCDoubleDoubleLegacy); 4360 auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); 4361 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4362 return Ret; 4363 } 4364 4365 APFloat::opStatus 4366 DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, 4367 unsigned int InputSize, 4368 bool IsSigned, roundingMode RM) { 4369 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4370 APFloat Tmp(semPPCDoubleDoubleLegacy); 4371 auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); 4372 *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); 4373 return Ret; 4374 } 4375 4376 unsigned int DoubleAPFloat::convertToHexString(char *DST, 4377 unsigned int HexDigits, 4378 bool UpperCase, 4379 roundingMode RM) const { 4380 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4381 return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) 4382 .convertToHexString(DST, HexDigits, UpperCase, RM); 4383 } 4384 4385 bool DoubleAPFloat::isDenormal() const { 4386 return getCategory() == fcNormal && 4387 (Floats[0].isDenormal() || Floats[1].isDenormal() || 4388 // (double)(Hi + Lo) == Hi defines a normal number. 4389 Floats[0].compare(Floats[0] + Floats[1]) != cmpEqual); 4390 } 4391 4392 bool DoubleAPFloat::isSmallest() const { 4393 if (getCategory() != fcNormal) 4394 return false; 4395 DoubleAPFloat Tmp(*this); 4396 Tmp.makeSmallest(this->isNegative()); 4397 return Tmp.compare(*this) == cmpEqual; 4398 } 4399 4400 bool DoubleAPFloat::isLargest() const { 4401 if (getCategory() != fcNormal) 4402 return false; 4403 DoubleAPFloat Tmp(*this); 4404 Tmp.makeLargest(this->isNegative()); 4405 return Tmp.compare(*this) == cmpEqual; 4406 } 4407 4408 bool DoubleAPFloat::isInteger() const { 4409 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4410 return Floats[0].isInteger() && Floats[1].isInteger(); 4411 } 4412 4413 void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, 4414 unsigned FormatPrecision, 4415 unsigned FormatMaxPadding, 4416 bool TruncateZero) const { 4417 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4418 APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) 4419 .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); 4420 } 4421 4422 bool DoubleAPFloat::getExactInverse(APFloat *inv) const { 4423 assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4424 APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); 4425 if (!inv) 4426 return Tmp.getExactInverse(nullptr); 4427 APFloat Inv(semPPCDoubleDoubleLegacy); 4428 auto Ret = Tmp.getExactInverse(&Inv); 4429 *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); 4430 return Ret; 4431 } 4432 4433 DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) { 4434 assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4435 return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), 4436 scalbn(Arg.Floats[1], Exp, RM)); 4437 } 4438 4439 DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, 4440 APFloat::roundingMode RM) { 4441 assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); 4442 APFloat First = frexp(Arg.Floats[0], Exp, RM); 4443 APFloat Second = Arg.Floats[1]; 4444 if (Arg.getCategory() == APFloat::fcNormal) 4445 Second = scalbn(Second, -Exp, RM); 4446 return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); 4447 } 4448 4449 } // End detail namespace 4450 4451 APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { 4452 if (usesLayout<IEEEFloat>(Semantics)) { 4453 new (&IEEE) IEEEFloat(std::move(F)); 4454 return; 4455 } 4456 if (usesLayout<DoubleAPFloat>(Semantics)) { 4457 const fltSemantics& S = F.getSemantics(); 4458 new (&Double) 4459 DoubleAPFloat(Semantics, APFloat(std::move(F), S), 4460 APFloat(semIEEEdouble)); 4461 return; 4462 } 4463 llvm_unreachable("Unexpected semantics"); 4464 } 4465 4466 APFloat::opStatus APFloat::convertFromString(StringRef Str, roundingMode RM) { 4467 APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); 4468 } 4469 4470 hash_code hash_value(const APFloat &Arg) { 4471 if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) 4472 return hash_value(Arg.U.IEEE); 4473 if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) 4474 return hash_value(Arg.U.Double); 4475 llvm_unreachable("Unexpected semantics"); 4476 } 4477 4478 APFloat::APFloat(const fltSemantics &Semantics, StringRef S) 4479 : APFloat(Semantics) { 4480 convertFromString(S, rmNearestTiesToEven); 4481 } 4482 4483 APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, 4484 roundingMode RM, bool *losesInfo) { 4485 if (&getSemantics() == &ToSemantics) { 4486 *losesInfo = false; 4487 return opOK; 4488 } 4489 if (usesLayout<IEEEFloat>(getSemantics()) && 4490 usesLayout<IEEEFloat>(ToSemantics)) 4491 return U.IEEE.convert(ToSemantics, RM, losesInfo); 4492 if (usesLayout<IEEEFloat>(getSemantics()) && 4493 usesLayout<DoubleAPFloat>(ToSemantics)) { 4494 assert(&ToSemantics == &semPPCDoubleDouble); 4495 auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); 4496 *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); 4497 return Ret; 4498 } 4499 if (usesLayout<DoubleAPFloat>(getSemantics()) && 4500 usesLayout<IEEEFloat>(ToSemantics)) { 4501 auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); 4502 *this = APFloat(std::move(getIEEE()), ToSemantics); 4503 return Ret; 4504 } 4505 llvm_unreachable("Unexpected semantics"); 4506 } 4507 4508 APFloat APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) { 4509 if (isIEEE) { 4510 switch (BitWidth) { 4511 case 16: 4512 return APFloat(semIEEEhalf, APInt::getAllOnesValue(BitWidth)); 4513 case 32: 4514 return APFloat(semIEEEsingle, APInt::getAllOnesValue(BitWidth)); 4515 case 64: 4516 return APFloat(semIEEEdouble, APInt::getAllOnesValue(BitWidth)); 4517 case 80: 4518 return APFloat(semX87DoubleExtended, APInt::getAllOnesValue(BitWidth)); 4519 case 128: 4520 return APFloat(semIEEEquad, APInt::getAllOnesValue(BitWidth)); 4521 default: 4522 llvm_unreachable("Unknown floating bit width"); 4523 } 4524 } else { 4525 assert(BitWidth == 128); 4526 return APFloat(semPPCDoubleDouble, APInt::getAllOnesValue(BitWidth)); 4527 } 4528 } 4529 4530 void APFloat::print(raw_ostream &OS) const { 4531 SmallVector<char, 16> Buffer; 4532 toString(Buffer); 4533 OS << Buffer << "\n"; 4534 } 4535 4536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4537 LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); } 4538 #endif 4539 4540 void APFloat::Profile(FoldingSetNodeID &NID) const { 4541 NID.Add(bitcastToAPInt()); 4542 } 4543 4544 /* Same as convertToInteger(integerPart*, ...), except the result is returned in 4545 an APSInt, whose initial bit-width and signed-ness are used to determine the 4546 precision of the conversion. 4547 */ 4548 APFloat::opStatus APFloat::convertToInteger(APSInt &result, 4549 roundingMode rounding_mode, 4550 bool *isExact) const { 4551 unsigned bitWidth = result.getBitWidth(); 4552 SmallVector<uint64_t, 4> parts(result.getNumWords()); 4553 opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), 4554 rounding_mode, isExact); 4555 // Keeps the original signed-ness. 4556 result = APInt(bitWidth, parts); 4557 return status; 4558 } 4559 4560 } // End llvm namespace 4561 4562 #undef APFLOAT_DISPATCH_ON_SEMANTICS 4563