1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/ProfileSummary.h" 28 #include "llvm/ProfileData/ProfileCommon.h" 29 #include "llvm/ProfileData/SampleProf.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Compression.h" 32 #include "llvm/Support/ErrorOr.h" 33 #include "llvm/Support/JSON.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/LineIterator.h" 36 #include "llvm/Support/MD5.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/VirtualFileSystem.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <cstddef> 42 #include <cstdint> 43 #include <limits> 44 #include <memory> 45 #include <system_error> 46 #include <vector> 47 48 using namespace llvm; 49 using namespace sampleprof; 50 51 #define DEBUG_TYPE "samplepgo-reader" 52 53 // This internal option specifies if the profile uses FS discriminators. 54 // It only applies to text, and binary format profiles. 55 // For ext-binary format profiles, the flag is set in the summary. 56 static cl::opt<bool> ProfileIsFSDisciminator( 57 "profile-isfs", cl::Hidden, cl::init(false), 58 cl::desc("Profile uses flow sensitive discriminators")); 59 60 /// Dump the function profile for \p FName. 61 /// 62 /// \param FContext Name + context of the function to print. 63 /// \param OS Stream to emit the output to. 64 void SampleProfileReader::dumpFunctionProfile(SampleContext FContext, 65 raw_ostream &OS) { 66 OS << "Function: " << FContext.toString() << ": " << Profiles[FContext]; 67 } 68 69 /// Dump all the function profiles found on stream \p OS. 70 void SampleProfileReader::dump(raw_ostream &OS) { 71 std::vector<NameFunctionSamples> V; 72 sortFuncProfiles(Profiles, V); 73 for (const auto &I : V) 74 dumpFunctionProfile(I.first, OS); 75 } 76 77 static void dumpFunctionProfileJson(const FunctionSamples &S, 78 json::OStream &JOS, bool TopLevel = false) { 79 auto DumpBody = [&](const BodySampleMap &BodySamples) { 80 for (const auto &I : BodySamples) { 81 const LineLocation &Loc = I.first; 82 const SampleRecord &Sample = I.second; 83 JOS.object([&] { 84 JOS.attribute("line", Loc.LineOffset); 85 if (Loc.Discriminator) 86 JOS.attribute("discriminator", Loc.Discriminator); 87 JOS.attribute("samples", Sample.getSamples()); 88 89 auto CallTargets = Sample.getSortedCallTargets(); 90 if (!CallTargets.empty()) { 91 JOS.attributeArray("calls", [&] { 92 for (const auto &J : CallTargets) { 93 JOS.object([&] { 94 JOS.attribute("function", J.first); 95 JOS.attribute("samples", J.second); 96 }); 97 } 98 }); 99 } 100 }); 101 } 102 }; 103 104 auto DumpCallsiteSamples = [&](const CallsiteSampleMap &CallsiteSamples) { 105 for (const auto &I : CallsiteSamples) 106 for (const auto &FS : I.second) { 107 const LineLocation &Loc = I.first; 108 const FunctionSamples &CalleeSamples = FS.second; 109 JOS.object([&] { 110 JOS.attribute("line", Loc.LineOffset); 111 if (Loc.Discriminator) 112 JOS.attribute("discriminator", Loc.Discriminator); 113 JOS.attributeArray( 114 "samples", [&] { dumpFunctionProfileJson(CalleeSamples, JOS); }); 115 }); 116 } 117 }; 118 119 JOS.object([&] { 120 JOS.attribute("name", S.getName()); 121 JOS.attribute("total", S.getTotalSamples()); 122 if (TopLevel) 123 JOS.attribute("head", S.getHeadSamples()); 124 125 const auto &BodySamples = S.getBodySamples(); 126 if (!BodySamples.empty()) 127 JOS.attributeArray("body", [&] { DumpBody(BodySamples); }); 128 129 const auto &CallsiteSamples = S.getCallsiteSamples(); 130 if (!CallsiteSamples.empty()) 131 JOS.attributeArray("callsites", 132 [&] { DumpCallsiteSamples(CallsiteSamples); }); 133 }); 134 } 135 136 /// Dump all the function profiles found on stream \p OS in the JSON format. 137 void SampleProfileReader::dumpJson(raw_ostream &OS) { 138 std::vector<NameFunctionSamples> V; 139 sortFuncProfiles(Profiles, V); 140 json::OStream JOS(OS, 2); 141 JOS.arrayBegin(); 142 for (const auto &F : V) 143 dumpFunctionProfileJson(*F.second, JOS, true); 144 JOS.arrayEnd(); 145 146 // Emit a newline character at the end as json::OStream doesn't emit one. 147 OS << "\n"; 148 } 149 150 /// Parse \p Input as function head. 151 /// 152 /// Parse one line of \p Input, and update function name in \p FName, 153 /// function's total sample count in \p NumSamples, function's entry 154 /// count in \p NumHeadSamples. 155 /// 156 /// \returns true if parsing is successful. 157 static bool ParseHead(const StringRef &Input, StringRef &FName, 158 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 159 if (Input[0] == ' ') 160 return false; 161 size_t n2 = Input.rfind(':'); 162 size_t n1 = Input.rfind(':', n2 - 1); 163 FName = Input.substr(0, n1); 164 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 165 return false; 166 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 167 return false; 168 return true; 169 } 170 171 /// Returns true if line offset \p L is legal (only has 16 bits). 172 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 173 174 /// Parse \p Input that contains metadata. 175 /// Possible metadata: 176 /// - CFG Checksum information: 177 /// !CFGChecksum: 12345 178 /// - CFG Checksum information: 179 /// !Attributes: 1 180 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 181 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 182 uint32_t &Attributes) { 183 if (Input.startswith("!CFGChecksum:")) { 184 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 185 return !CFGInfo.getAsInteger(10, FunctionHash); 186 } 187 188 if (Input.startswith("!Attributes:")) { 189 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 190 return !Attrib.getAsInteger(10, Attributes); 191 } 192 193 return false; 194 } 195 196 enum class LineType { 197 CallSiteProfile, 198 BodyProfile, 199 Metadata, 200 }; 201 202 /// Parse \p Input as line sample. 203 /// 204 /// \param Input input line. 205 /// \param LineTy Type of this line. 206 /// \param Depth the depth of the inline stack. 207 /// \param NumSamples total samples of the line/inlined callsite. 208 /// \param LineOffset line offset to the start of the function. 209 /// \param Discriminator discriminator of the line. 210 /// \param TargetCountMap map from indirect call target to count. 211 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 212 /// 213 /// returns true if parsing is successful. 214 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 215 uint64_t &NumSamples, uint32_t &LineOffset, 216 uint32_t &Discriminator, StringRef &CalleeName, 217 DenseMap<StringRef, uint64_t> &TargetCountMap, 218 uint64_t &FunctionHash, uint32_t &Attributes) { 219 for (Depth = 0; Input[Depth] == ' '; Depth++) 220 ; 221 if (Depth == 0) 222 return false; 223 224 if (Input[Depth] == '!') { 225 LineTy = LineType::Metadata; 226 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 227 } 228 229 size_t n1 = Input.find(':'); 230 StringRef Loc = Input.substr(Depth, n1 - Depth); 231 size_t n2 = Loc.find('.'); 232 if (n2 == StringRef::npos) { 233 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 234 return false; 235 Discriminator = 0; 236 } else { 237 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 238 return false; 239 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 240 return false; 241 } 242 243 StringRef Rest = Input.substr(n1 + 2); 244 if (isDigit(Rest[0])) { 245 LineTy = LineType::BodyProfile; 246 size_t n3 = Rest.find(' '); 247 if (n3 == StringRef::npos) { 248 if (Rest.getAsInteger(10, NumSamples)) 249 return false; 250 } else { 251 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 252 return false; 253 } 254 // Find call targets and their sample counts. 255 // Note: In some cases, there are symbols in the profile which are not 256 // mangled. To accommodate such cases, use colon + integer pairs as the 257 // anchor points. 258 // An example: 259 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 260 // ":1000" and ":437" are used as anchor points so the string above will 261 // be interpreted as 262 // target: _M_construct<char *> 263 // count: 1000 264 // target: string_view<std::allocator<char> > 265 // count: 437 266 while (n3 != StringRef::npos) { 267 n3 += Rest.substr(n3).find_first_not_of(' '); 268 Rest = Rest.substr(n3); 269 n3 = Rest.find_first_of(':'); 270 if (n3 == StringRef::npos || n3 == 0) 271 return false; 272 273 StringRef Target; 274 uint64_t count, n4; 275 while (true) { 276 // Get the segment after the current colon. 277 StringRef AfterColon = Rest.substr(n3 + 1); 278 // Get the target symbol before the current colon. 279 Target = Rest.substr(0, n3); 280 // Check if the word after the current colon is an integer. 281 n4 = AfterColon.find_first_of(' '); 282 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 283 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 284 if (!WordAfterColon.getAsInteger(10, count)) 285 break; 286 287 // Try to find the next colon. 288 uint64_t n5 = AfterColon.find_first_of(':'); 289 if (n5 == StringRef::npos) 290 return false; 291 n3 += n5 + 1; 292 } 293 294 // An anchor point is found. Save the {target, count} pair 295 TargetCountMap[Target] = count; 296 if (n4 == Rest.size()) 297 break; 298 // Change n3 to the next blank space after colon + integer pair. 299 n3 = n4; 300 } 301 } else { 302 LineTy = LineType::CallSiteProfile; 303 size_t n3 = Rest.find_last_of(':'); 304 CalleeName = Rest.substr(0, n3); 305 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 306 return false; 307 } 308 return true; 309 } 310 311 /// Load samples from a text file. 312 /// 313 /// See the documentation at the top of the file for an explanation of 314 /// the expected format. 315 /// 316 /// \returns true if the file was loaded successfully, false otherwise. 317 std::error_code SampleProfileReaderText::readImpl() { 318 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 319 sampleprof_error Result = sampleprof_error::success; 320 321 InlineCallStack InlineStack; 322 uint32_t TopLevelProbeProfileCount = 0; 323 324 // DepthMetadata tracks whether we have processed metadata for the current 325 // top-level or nested function profile. 326 uint32_t DepthMetadata = 0; 327 328 ProfileIsFS = ProfileIsFSDisciminator; 329 FunctionSamples::ProfileIsFS = ProfileIsFS; 330 for (; !LineIt.is_at_eof(); ++LineIt) { 331 size_t pos = LineIt->find_first_not_of(' '); 332 if (pos == LineIt->npos || (*LineIt)[pos] == '#') 333 continue; 334 // Read the header of each function. 335 // 336 // Note that for function identifiers we are actually expecting 337 // mangled names, but we may not always get them. This happens when 338 // the compiler decides not to emit the function (e.g., it was inlined 339 // and removed). In this case, the binary will not have the linkage 340 // name for the function, so the profiler will emit the function's 341 // unmangled name, which may contain characters like ':' and '>' in its 342 // name (member functions, templates, etc). 343 // 344 // The only requirement we place on the identifier, then, is that it 345 // should not begin with a number. 346 if ((*LineIt)[0] != ' ') { 347 uint64_t NumSamples, NumHeadSamples; 348 StringRef FName; 349 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 350 reportError(LineIt.line_number(), 351 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 352 return sampleprof_error::malformed; 353 } 354 DepthMetadata = 0; 355 SampleContext FContext(FName, CSNameTable); 356 if (FContext.hasContext()) 357 ++CSProfileCount; 358 Profiles[FContext] = FunctionSamples(); 359 FunctionSamples &FProfile = Profiles[FContext]; 360 FProfile.setContext(FContext); 361 MergeResult(Result, FProfile.addTotalSamples(NumSamples)); 362 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); 363 InlineStack.clear(); 364 InlineStack.push_back(&FProfile); 365 } else { 366 uint64_t NumSamples; 367 StringRef FName; 368 DenseMap<StringRef, uint64_t> TargetCountMap; 369 uint32_t Depth, LineOffset, Discriminator; 370 LineType LineTy; 371 uint64_t FunctionHash = 0; 372 uint32_t Attributes = 0; 373 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 374 Discriminator, FName, TargetCountMap, FunctionHash, 375 Attributes)) { 376 reportError(LineIt.line_number(), 377 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 378 *LineIt); 379 return sampleprof_error::malformed; 380 } 381 if (LineTy != LineType::Metadata && Depth == DepthMetadata) { 382 // Metadata must be put at the end of a function profile. 383 reportError(LineIt.line_number(), 384 "Found non-metadata after metadata: " + *LineIt); 385 return sampleprof_error::malformed; 386 } 387 388 // Here we handle FS discriminators. 389 Discriminator &= getDiscriminatorMask(); 390 391 while (InlineStack.size() > Depth) { 392 InlineStack.pop_back(); 393 } 394 switch (LineTy) { 395 case LineType::CallSiteProfile: { 396 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 397 LineLocation(LineOffset, Discriminator))[std::string(FName)]; 398 FSamples.setName(FName); 399 MergeResult(Result, FSamples.addTotalSamples(NumSamples)); 400 InlineStack.push_back(&FSamples); 401 DepthMetadata = 0; 402 break; 403 } 404 case LineType::BodyProfile: { 405 while (InlineStack.size() > Depth) { 406 InlineStack.pop_back(); 407 } 408 FunctionSamples &FProfile = *InlineStack.back(); 409 for (const auto &name_count : TargetCountMap) { 410 MergeResult(Result, FProfile.addCalledTargetSamples( 411 LineOffset, Discriminator, name_count.first, 412 name_count.second)); 413 } 414 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, 415 NumSamples)); 416 break; 417 } 418 case LineType::Metadata: { 419 FunctionSamples &FProfile = *InlineStack.back(); 420 if (FunctionHash) { 421 FProfile.setFunctionHash(FunctionHash); 422 if (Depth == 1) 423 ++TopLevelProbeProfileCount; 424 } 425 FProfile.getContext().setAllAttributes(Attributes); 426 if (Attributes & (uint32_t)ContextShouldBeInlined) 427 ProfileIsPreInlined = true; 428 DepthMetadata = Depth; 429 break; 430 } 431 } 432 } 433 } 434 435 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 436 "Cannot have both context-sensitive and regular profile"); 437 ProfileIsCS = (CSProfileCount > 0); 438 assert((TopLevelProbeProfileCount == 0 || 439 TopLevelProbeProfileCount == Profiles.size()) && 440 "Cannot have both probe-based profiles and regular profiles"); 441 ProfileIsProbeBased = (TopLevelProbeProfileCount > 0); 442 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 443 FunctionSamples::ProfileIsCS = ProfileIsCS; 444 FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined; 445 446 if (Result == sampleprof_error::success) 447 computeSummary(); 448 449 return Result; 450 } 451 452 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 453 bool result = false; 454 455 // Check that the first non-comment line is a valid function header. 456 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 457 if (!LineIt.is_at_eof()) { 458 if ((*LineIt)[0] != ' ') { 459 uint64_t NumSamples, NumHeadSamples; 460 StringRef FName; 461 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 462 } 463 } 464 465 return result; 466 } 467 468 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 469 unsigned NumBytesRead = 0; 470 std::error_code EC; 471 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 472 473 if (Val > std::numeric_limits<T>::max()) 474 EC = sampleprof_error::malformed; 475 else if (Data + NumBytesRead > End) 476 EC = sampleprof_error::truncated; 477 else 478 EC = sampleprof_error::success; 479 480 if (EC) { 481 reportError(0, EC.message()); 482 return EC; 483 } 484 485 Data += NumBytesRead; 486 return static_cast<T>(Val); 487 } 488 489 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 490 std::error_code EC; 491 StringRef Str(reinterpret_cast<const char *>(Data)); 492 if (Data + Str.size() + 1 > End) { 493 EC = sampleprof_error::truncated; 494 reportError(0, EC.message()); 495 return EC; 496 } 497 498 Data += Str.size() + 1; 499 return Str; 500 } 501 502 template <typename T> 503 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 504 std::error_code EC; 505 506 if (Data + sizeof(T) > End) { 507 EC = sampleprof_error::truncated; 508 reportError(0, EC.message()); 509 return EC; 510 } 511 512 using namespace support; 513 T Val = endian::readNext<T, little, unaligned>(Data); 514 return Val; 515 } 516 517 template <typename T> 518 inline ErrorOr<size_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 519 std::error_code EC; 520 auto Idx = readNumber<size_t>(); 521 if (std::error_code EC = Idx.getError()) 522 return EC; 523 if (*Idx >= Table.size()) 524 return sampleprof_error::truncated_name_table; 525 return *Idx; 526 } 527 528 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() { 529 auto Idx = readStringIndex(NameTable); 530 if (std::error_code EC = Idx.getError()) 531 return EC; 532 533 // Lazy loading, if the string has not been materialized from memory storing 534 // MD5 values, then it is default initialized with the null pointer. This can 535 // only happen when using fixed length MD5, that bounds check is performed 536 // while parsing the name table to ensure MD5NameMemStart points to an array 537 // with enough MD5 entries. 538 StringRef &SR = NameTable[*Idx]; 539 if (!SR.data()) { 540 assert(MD5NameMemStart); 541 using namespace support; 542 uint64_t FID = endian::read<uint64_t, little, unaligned>( 543 MD5NameMemStart + (*Idx) * sizeof(uint64_t)); 544 SR = MD5StringBuf.emplace_back(std::to_string(FID)); 545 } 546 return SR; 547 } 548 549 ErrorOr<SampleContextFrames> SampleProfileReaderBinary::readContextFromTable() { 550 auto ContextIdx = readNumber<size_t>(); 551 if (std::error_code EC = ContextIdx.getError()) 552 return EC; 553 if (*ContextIdx >= CSNameTable.size()) 554 return sampleprof_error::truncated_name_table; 555 return CSNameTable[*ContextIdx]; 556 } 557 558 ErrorOr<SampleContext> SampleProfileReaderBinary::readSampleContextFromTable() { 559 if (ProfileIsCS) { 560 auto FContext(readContextFromTable()); 561 if (std::error_code EC = FContext.getError()) 562 return EC; 563 return SampleContext(*FContext); 564 } else { 565 auto FName(readStringFromTable()); 566 if (std::error_code EC = FName.getError()) 567 return EC; 568 return SampleContext(*FName); 569 } 570 } 571 572 std::error_code 573 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 574 auto NumSamples = readNumber<uint64_t>(); 575 if (std::error_code EC = NumSamples.getError()) 576 return EC; 577 FProfile.addTotalSamples(*NumSamples); 578 579 // Read the samples in the body. 580 auto NumRecords = readNumber<uint32_t>(); 581 if (std::error_code EC = NumRecords.getError()) 582 return EC; 583 584 for (uint32_t I = 0; I < *NumRecords; ++I) { 585 auto LineOffset = readNumber<uint64_t>(); 586 if (std::error_code EC = LineOffset.getError()) 587 return EC; 588 589 if (!isOffsetLegal(*LineOffset)) { 590 return std::error_code(); 591 } 592 593 auto Discriminator = readNumber<uint64_t>(); 594 if (std::error_code EC = Discriminator.getError()) 595 return EC; 596 597 auto NumSamples = readNumber<uint64_t>(); 598 if (std::error_code EC = NumSamples.getError()) 599 return EC; 600 601 auto NumCalls = readNumber<uint32_t>(); 602 if (std::error_code EC = NumCalls.getError()) 603 return EC; 604 605 // Here we handle FS discriminators: 606 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 607 608 for (uint32_t J = 0; J < *NumCalls; ++J) { 609 auto CalledFunction(readStringFromTable()); 610 if (std::error_code EC = CalledFunction.getError()) 611 return EC; 612 613 auto CalledFunctionSamples = readNumber<uint64_t>(); 614 if (std::error_code EC = CalledFunctionSamples.getError()) 615 return EC; 616 617 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 618 *CalledFunction, *CalledFunctionSamples); 619 } 620 621 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 622 } 623 624 // Read all the samples for inlined function calls. 625 auto NumCallsites = readNumber<uint32_t>(); 626 if (std::error_code EC = NumCallsites.getError()) 627 return EC; 628 629 for (uint32_t J = 0; J < *NumCallsites; ++J) { 630 auto LineOffset = readNumber<uint64_t>(); 631 if (std::error_code EC = LineOffset.getError()) 632 return EC; 633 634 auto Discriminator = readNumber<uint64_t>(); 635 if (std::error_code EC = Discriminator.getError()) 636 return EC; 637 638 auto FName(readStringFromTable()); 639 if (std::error_code EC = FName.getError()) 640 return EC; 641 642 // Here we handle FS discriminators: 643 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 644 645 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 646 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)]; 647 CalleeProfile.setName(*FName); 648 if (std::error_code EC = readProfile(CalleeProfile)) 649 return EC; 650 } 651 652 return sampleprof_error::success; 653 } 654 655 std::error_code 656 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 657 Data = Start; 658 auto NumHeadSamples = readNumber<uint64_t>(); 659 if (std::error_code EC = NumHeadSamples.getError()) 660 return EC; 661 662 ErrorOr<SampleContext> FContext(readSampleContextFromTable()); 663 if (std::error_code EC = FContext.getError()) 664 return EC; 665 666 Profiles[*FContext] = FunctionSamples(); 667 FunctionSamples &FProfile = Profiles[*FContext]; 668 FProfile.setContext(*FContext); 669 FProfile.addHeadSamples(*NumHeadSamples); 670 671 if (FContext->hasContext()) 672 CSProfileCount++; 673 674 if (std::error_code EC = readProfile(FProfile)) 675 return EC; 676 return sampleprof_error::success; 677 } 678 679 std::error_code SampleProfileReaderBinary::readImpl() { 680 ProfileIsFS = ProfileIsFSDisciminator; 681 FunctionSamples::ProfileIsFS = ProfileIsFS; 682 while (Data < End) { 683 if (std::error_code EC = readFuncProfile(Data)) 684 return EC; 685 } 686 687 return sampleprof_error::success; 688 } 689 690 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 691 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 692 Data = Start; 693 End = Start + Size; 694 switch (Entry.Type) { 695 case SecProfSummary: 696 if (std::error_code EC = readSummary()) 697 return EC; 698 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 699 Summary->setPartialProfile(true); 700 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 701 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 702 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined)) 703 FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined = true; 704 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 705 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 706 break; 707 case SecNameTable: { 708 bool FixedLengthMD5 = 709 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 710 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 711 // UseMD5 means if THIS section uses MD5, ProfileIsMD5 means if the entire 712 // profile uses MD5 for function name matching in IPO passes. 713 ProfileIsMD5 = ProfileIsMD5 || UseMD5; 714 FunctionSamples::HasUniqSuffix = 715 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 716 if (std::error_code EC = readNameTableSec(UseMD5, FixedLengthMD5)) 717 return EC; 718 break; 719 } 720 case SecCSNameTable: { 721 if (std::error_code EC = readCSNameTableSec()) 722 return EC; 723 break; 724 } 725 case SecLBRProfile: 726 if (std::error_code EC = readFuncProfiles()) 727 return EC; 728 break; 729 case SecFuncOffsetTable: 730 // If module is absent, we are using LLVM tools, and need to read all 731 // profiles, so skip reading the function offset table. 732 if (!M) { 733 Data = End; 734 } else { 735 assert((!ProfileIsCS || 736 hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) && 737 "func offset table should always be sorted in CS profile"); 738 if (std::error_code EC = readFuncOffsetTable()) 739 return EC; 740 } 741 break; 742 case SecFuncMetadata: { 743 ProfileIsProbeBased = 744 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 745 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 746 bool HasAttribute = 747 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 748 if (std::error_code EC = readFuncMetadata(HasAttribute)) 749 return EC; 750 break; 751 } 752 case SecProfileSymbolList: 753 if (std::error_code EC = readProfileSymbolList()) 754 return EC; 755 break; 756 default: 757 if (std::error_code EC = readCustomSection(Entry)) 758 return EC; 759 break; 760 } 761 return sampleprof_error::success; 762 } 763 764 bool SampleProfileReaderExtBinaryBase::useFuncOffsetList() const { 765 // If profile is CS, the function offset section is expected to consist of 766 // sequences of contexts in pre-order layout 767 // (e.g. [A, A:1 @ B, A:1 @ B:2.3 @ C] [D, D:1 @ E]), so that when a matched 768 // context in the module is found, the profiles of all its callees are 769 // recursively loaded. A list is needed since the order of profiles matters. 770 if (ProfileIsCS) 771 return true; 772 773 // If the profile is MD5, use the map container to lookup functions in 774 // the module. A remapper has no use on MD5 names. 775 if (useMD5()) 776 return false; 777 778 // Profile is not MD5 and if a remapper is present, the remapped name of 779 // every function needed to be matched against the module, so use the list 780 // container since each entry is accessed. 781 if (Remapper) 782 return true; 783 784 // Otherwise use the map container for faster lookup. 785 // TODO: If the cardinality of the function offset section is much smaller 786 // than the number of functions in the module, using the list container can 787 // be always faster, but we need to figure out the constant factor to 788 // determine the cutoff. 789 return false; 790 } 791 792 793 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 794 if (!M) 795 return false; 796 FuncsToUse.clear(); 797 for (auto &F : *M) 798 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 799 return true; 800 } 801 802 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 803 // If there are more than one function offset section, the profile associated 804 // with the previous section has to be done reading before next one is read. 805 FuncOffsetTable.clear(); 806 FuncOffsetList.clear(); 807 808 auto Size = readNumber<uint64_t>(); 809 if (std::error_code EC = Size.getError()) 810 return EC; 811 812 bool UseFuncOffsetList = useFuncOffsetList(); 813 if (UseFuncOffsetList) 814 FuncOffsetList.reserve(*Size); 815 else 816 FuncOffsetTable.reserve(*Size); 817 818 for (uint64_t I = 0; I < *Size; ++I) { 819 auto FContext(readSampleContextFromTable()); 820 if (std::error_code EC = FContext.getError()) 821 return EC; 822 823 auto Offset = readNumber<uint64_t>(); 824 if (std::error_code EC = Offset.getError()) 825 return EC; 826 827 if (UseFuncOffsetList) 828 FuncOffsetList.emplace_back(*FContext, *Offset); 829 else 830 FuncOffsetTable[*FContext] = *Offset; 831 } 832 833 return sampleprof_error::success; 834 } 835 836 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 837 // Collect functions used by current module if the Reader has been 838 // given a module. 839 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 840 // which will query FunctionSamples::HasUniqSuffix, so it has to be 841 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 842 // NameTable section is read. 843 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 844 845 // When LoadFuncsToBeUsed is false, we are using LLVM tool, need to read all 846 // profiles. 847 const uint8_t *Start = Data; 848 if (!LoadFuncsToBeUsed) { 849 while (Data < End) { 850 if (std::error_code EC = readFuncProfile(Data)) 851 return EC; 852 } 853 assert(Data == End && "More data is read than expected"); 854 } else { 855 // Load function profiles on demand. 856 if (Remapper) { 857 for (auto Name : FuncsToUse) { 858 Remapper->insert(Name); 859 } 860 } 861 862 if (ProfileIsCS) { 863 assert(useFuncOffsetList()); 864 DenseSet<uint64_t> FuncGuidsToUse; 865 if (useMD5()) { 866 for (auto Name : FuncsToUse) 867 FuncGuidsToUse.insert(Function::getGUID(Name)); 868 } 869 870 // For each function in current module, load all context profiles for 871 // the function as well as their callee contexts which can help profile 872 // guided importing for ThinLTO. This can be achieved by walking 873 // through an ordered context container, where contexts are laid out 874 // as if they were walked in preorder of a context trie. While 875 // traversing the trie, a link to the highest common ancestor node is 876 // kept so that all of its decendants will be loaded. 877 const SampleContext *CommonContext = nullptr; 878 for (const auto &NameOffset : FuncOffsetList) { 879 const auto &FContext = NameOffset.first; 880 auto FName = FContext.getName(); 881 // For function in the current module, keep its farthest ancestor 882 // context. This can be used to load itself and its child and 883 // sibling contexts. 884 if ((useMD5() && FuncGuidsToUse.count(std::stoull(FName.data()))) || 885 (!useMD5() && (FuncsToUse.count(FName) || 886 (Remapper && Remapper->exist(FName))))) { 887 if (!CommonContext || !CommonContext->IsPrefixOf(FContext)) 888 CommonContext = &FContext; 889 } 890 891 if (CommonContext == &FContext || 892 (CommonContext && CommonContext->IsPrefixOf(FContext))) { 893 // Load profile for the current context which originated from 894 // the common ancestor. 895 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 896 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 897 return EC; 898 } 899 } 900 } else if (useMD5()) { 901 assert(!useFuncOffsetList()); 902 for (auto Name : FuncsToUse) { 903 auto GUID = std::to_string(MD5Hash(Name)); 904 auto iter = FuncOffsetTable.find(StringRef(GUID)); 905 if (iter == FuncOffsetTable.end()) 906 continue; 907 const uint8_t *FuncProfileAddr = Start + iter->second; 908 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 909 return EC; 910 } 911 } else if (Remapper) { 912 assert(useFuncOffsetList()); 913 for (auto NameOffset : FuncOffsetList) { 914 SampleContext FContext(NameOffset.first); 915 auto FuncName = FContext.getName(); 916 if (!FuncsToUse.count(FuncName) && !Remapper->exist(FuncName)) 917 continue; 918 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 919 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 920 return EC; 921 } 922 } else { 923 assert(!useFuncOffsetList()); 924 for (auto Name : FuncsToUse) { 925 auto iter = FuncOffsetTable.find(Name); 926 if (iter == FuncOffsetTable.end()) 927 continue; 928 const uint8_t *FuncProfileAddr = Start + iter->second; 929 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 930 return EC; 931 } 932 } 933 Data = End; 934 } 935 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 936 "Cannot have both context-sensitive and regular profile"); 937 assert((!CSProfileCount || ProfileIsCS) && 938 "Section flag should be consistent with actual profile"); 939 return sampleprof_error::success; 940 } 941 942 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 943 if (!ProfSymList) 944 ProfSymList = std::make_unique<ProfileSymbolList>(); 945 946 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 947 return EC; 948 949 Data = End; 950 return sampleprof_error::success; 951 } 952 953 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 954 const uint8_t *SecStart, const uint64_t SecSize, 955 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 956 Data = SecStart; 957 End = SecStart + SecSize; 958 auto DecompressSize = readNumber<uint64_t>(); 959 if (std::error_code EC = DecompressSize.getError()) 960 return EC; 961 DecompressBufSize = *DecompressSize; 962 963 auto CompressSize = readNumber<uint64_t>(); 964 if (std::error_code EC = CompressSize.getError()) 965 return EC; 966 967 if (!llvm::compression::zlib::isAvailable()) 968 return sampleprof_error::zlib_unavailable; 969 970 uint8_t *Buffer = Allocator.Allocate<uint8_t>(DecompressBufSize); 971 size_t UCSize = DecompressBufSize; 972 llvm::Error E = compression::zlib::decompress(ArrayRef(Data, *CompressSize), 973 Buffer, UCSize); 974 if (E) 975 return sampleprof_error::uncompress_failed; 976 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 977 return sampleprof_error::success; 978 } 979 980 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 981 const uint8_t *BufStart = 982 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 983 984 for (auto &Entry : SecHdrTable) { 985 // Skip empty section. 986 if (!Entry.Size) 987 continue; 988 989 // Skip sections without context when SkipFlatProf is true. 990 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 991 continue; 992 993 const uint8_t *SecStart = BufStart + Entry.Offset; 994 uint64_t SecSize = Entry.Size; 995 996 // If the section is compressed, decompress it into a buffer 997 // DecompressBuf before reading the actual data. The pointee of 998 // 'Data' will be changed to buffer hold by DecompressBuf 999 // temporarily when reading the actual data. 1000 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 1001 if (isCompressed) { 1002 const uint8_t *DecompressBuf; 1003 uint64_t DecompressBufSize; 1004 if (std::error_code EC = decompressSection( 1005 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 1006 return EC; 1007 SecStart = DecompressBuf; 1008 SecSize = DecompressBufSize; 1009 } 1010 1011 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 1012 return EC; 1013 if (Data != SecStart + SecSize) 1014 return sampleprof_error::malformed; 1015 1016 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 1017 if (isCompressed) { 1018 Data = BufStart + Entry.Offset; 1019 End = BufStart + Buffer->getBufferSize(); 1020 } 1021 } 1022 1023 return sampleprof_error::success; 1024 } 1025 1026 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 1027 if (Magic == SPMagic()) 1028 return sampleprof_error::success; 1029 return sampleprof_error::bad_magic; 1030 } 1031 1032 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 1033 if (Magic == SPMagic(SPF_Ext_Binary)) 1034 return sampleprof_error::success; 1035 return sampleprof_error::bad_magic; 1036 } 1037 1038 std::error_code SampleProfileReaderBinary::readNameTable() { 1039 auto Size = readNumber<size_t>(); 1040 if (std::error_code EC = Size.getError()) 1041 return EC; 1042 1043 // Normally if useMD5 is true, the name table should have MD5 values, not 1044 // strings, however in the case that ExtBinary profile has multiple name 1045 // tables mixing string and MD5, all of them have to be normalized to use MD5, 1046 // because optimization passes can only handle either type. 1047 bool UseMD5 = useMD5(); 1048 if (UseMD5) 1049 MD5StringBuf.reserve(MD5StringBuf.size() + *Size); 1050 1051 NameTable.clear(); 1052 NameTable.reserve(*Size); 1053 for (size_t I = 0; I < *Size; ++I) { 1054 auto Name(readString()); 1055 if (std::error_code EC = Name.getError()) 1056 return EC; 1057 if (UseMD5) { 1058 uint64_t FID = MD5Hash(*Name); 1059 NameTable.emplace_back(MD5StringBuf.emplace_back(std::to_string(FID))); 1060 } else 1061 NameTable.push_back(*Name); 1062 } 1063 1064 return sampleprof_error::success; 1065 } 1066 1067 std::error_code 1068 SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5, 1069 bool FixedLengthMD5) { 1070 if (FixedLengthMD5) { 1071 if (!IsMD5) 1072 errs() << "If FixedLengthMD5 is true, UseMD5 has to be true"; 1073 auto Size = readNumber<size_t>(); 1074 if (std::error_code EC = Size.getError()) 1075 return EC; 1076 1077 assert(Data + (*Size) * sizeof(uint64_t) == End && 1078 "Fixed length MD5 name table does not contain specified number of " 1079 "entries"); 1080 if (Data + (*Size) * sizeof(uint64_t) > End) 1081 return sampleprof_error::truncated; 1082 1083 // Preallocate and initialize NameTable so we can check whether a name 1084 // index has been read before by checking whether the element in the 1085 // NameTable is empty, meanwhile readStringIndex can do the boundary 1086 // check using the size of NameTable. 1087 MD5StringBuf.reserve(MD5StringBuf.size() + *Size); 1088 NameTable.clear(); 1089 NameTable.resize(*Size); 1090 MD5NameMemStart = Data; 1091 Data = Data + (*Size) * sizeof(uint64_t); 1092 return sampleprof_error::success; 1093 } 1094 1095 if (IsMD5) { 1096 assert(!FixedLengthMD5 && "FixedLengthMD5 should be unreachable here"); 1097 auto Size = readNumber<size_t>(); 1098 if (std::error_code EC = Size.getError()) 1099 return EC; 1100 1101 MD5StringBuf.reserve(MD5StringBuf.size() + *Size); 1102 NameTable.clear(); 1103 NameTable.reserve(*Size); 1104 for (size_t I = 0; I < *Size; ++I) { 1105 auto FID = readNumber<uint64_t>(); 1106 if (std::error_code EC = FID.getError()) 1107 return EC; 1108 NameTable.emplace_back(MD5StringBuf.emplace_back(std::to_string(*FID))); 1109 } 1110 return sampleprof_error::success; 1111 } 1112 1113 return SampleProfileReaderBinary::readNameTable(); 1114 } 1115 1116 // Read in the CS name table section, which basically contains a list of context 1117 // vectors. Each element of a context vector, aka a frame, refers to the 1118 // underlying raw function names that are stored in the name table, as well as 1119 // a callsite identifier that only makes sense for non-leaf frames. 1120 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() { 1121 auto Size = readNumber<size_t>(); 1122 if (std::error_code EC = Size.getError()) 1123 return EC; 1124 1125 CSNameTable.clear(); 1126 CSNameTable.reserve(*Size); 1127 for (size_t I = 0; I < *Size; ++I) { 1128 CSNameTable.emplace_back(SampleContextFrameVector()); 1129 auto ContextSize = readNumber<uint32_t>(); 1130 if (std::error_code EC = ContextSize.getError()) 1131 return EC; 1132 for (uint32_t J = 0; J < *ContextSize; ++J) { 1133 auto FName(readStringFromTable()); 1134 if (std::error_code EC = FName.getError()) 1135 return EC; 1136 auto LineOffset = readNumber<uint64_t>(); 1137 if (std::error_code EC = LineOffset.getError()) 1138 return EC; 1139 1140 if (!isOffsetLegal(*LineOffset)) 1141 return std::error_code(); 1142 1143 auto Discriminator = readNumber<uint64_t>(); 1144 if (std::error_code EC = Discriminator.getError()) 1145 return EC; 1146 1147 CSNameTable.back().emplace_back( 1148 FName.get(), LineLocation(LineOffset.get(), Discriminator.get())); 1149 } 1150 } 1151 1152 return sampleprof_error::success; 1153 } 1154 1155 std::error_code 1156 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute, 1157 FunctionSamples *FProfile) { 1158 if (Data < End) { 1159 if (ProfileIsProbeBased) { 1160 auto Checksum = readNumber<uint64_t>(); 1161 if (std::error_code EC = Checksum.getError()) 1162 return EC; 1163 if (FProfile) 1164 FProfile->setFunctionHash(*Checksum); 1165 } 1166 1167 if (ProfileHasAttribute) { 1168 auto Attributes = readNumber<uint32_t>(); 1169 if (std::error_code EC = Attributes.getError()) 1170 return EC; 1171 if (FProfile) 1172 FProfile->getContext().setAllAttributes(*Attributes); 1173 } 1174 1175 if (!ProfileIsCS) { 1176 // Read all the attributes for inlined function calls. 1177 auto NumCallsites = readNumber<uint32_t>(); 1178 if (std::error_code EC = NumCallsites.getError()) 1179 return EC; 1180 1181 for (uint32_t J = 0; J < *NumCallsites; ++J) { 1182 auto LineOffset = readNumber<uint64_t>(); 1183 if (std::error_code EC = LineOffset.getError()) 1184 return EC; 1185 1186 auto Discriminator = readNumber<uint64_t>(); 1187 if (std::error_code EC = Discriminator.getError()) 1188 return EC; 1189 1190 auto FContext(readSampleContextFromTable()); 1191 if (std::error_code EC = FContext.getError()) 1192 return EC; 1193 1194 FunctionSamples *CalleeProfile = nullptr; 1195 if (FProfile) { 1196 CalleeProfile = const_cast<FunctionSamples *>( 1197 &FProfile->functionSamplesAt(LineLocation( 1198 *LineOffset, 1199 *Discriminator))[std::string(FContext.get().getName())]); 1200 } 1201 if (std::error_code EC = 1202 readFuncMetadata(ProfileHasAttribute, CalleeProfile)) 1203 return EC; 1204 } 1205 } 1206 } 1207 1208 return sampleprof_error::success; 1209 } 1210 1211 std::error_code 1212 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 1213 while (Data < End) { 1214 auto FContext(readSampleContextFromTable()); 1215 if (std::error_code EC = FContext.getError()) 1216 return EC; 1217 FunctionSamples *FProfile = nullptr; 1218 auto It = Profiles.find(*FContext); 1219 if (It != Profiles.end()) 1220 FProfile = &It->second; 1221 1222 if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile)) 1223 return EC; 1224 } 1225 1226 assert(Data == End && "More data is read than expected"); 1227 return sampleprof_error::success; 1228 } 1229 1230 std::error_code 1231 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint64_t Idx) { 1232 SecHdrTableEntry Entry; 1233 auto Type = readUnencodedNumber<uint64_t>(); 1234 if (std::error_code EC = Type.getError()) 1235 return EC; 1236 Entry.Type = static_cast<SecType>(*Type); 1237 1238 auto Flags = readUnencodedNumber<uint64_t>(); 1239 if (std::error_code EC = Flags.getError()) 1240 return EC; 1241 Entry.Flags = *Flags; 1242 1243 auto Offset = readUnencodedNumber<uint64_t>(); 1244 if (std::error_code EC = Offset.getError()) 1245 return EC; 1246 Entry.Offset = *Offset; 1247 1248 auto Size = readUnencodedNumber<uint64_t>(); 1249 if (std::error_code EC = Size.getError()) 1250 return EC; 1251 Entry.Size = *Size; 1252 1253 Entry.LayoutIndex = Idx; 1254 SecHdrTable.push_back(std::move(Entry)); 1255 return sampleprof_error::success; 1256 } 1257 1258 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1259 auto EntryNum = readUnencodedNumber<uint64_t>(); 1260 if (std::error_code EC = EntryNum.getError()) 1261 return EC; 1262 1263 for (uint64_t i = 0; i < (*EntryNum); i++) 1264 if (std::error_code EC = readSecHdrTableEntry(i)) 1265 return EC; 1266 1267 return sampleprof_error::success; 1268 } 1269 1270 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1271 const uint8_t *BufStart = 1272 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1273 Data = BufStart; 1274 End = BufStart + Buffer->getBufferSize(); 1275 1276 if (std::error_code EC = readMagicIdent()) 1277 return EC; 1278 1279 if (std::error_code EC = readSecHdrTable()) 1280 return EC; 1281 1282 return sampleprof_error::success; 1283 } 1284 1285 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1286 uint64_t Size = 0; 1287 for (auto &Entry : SecHdrTable) { 1288 if (Entry.Type == Type) 1289 Size += Entry.Size; 1290 } 1291 return Size; 1292 } 1293 1294 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1295 // Sections in SecHdrTable is not necessarily in the same order as 1296 // sections in the profile because section like FuncOffsetTable needs 1297 // to be written after section LBRProfile but needs to be read before 1298 // section LBRProfile, so we cannot simply use the last entry in 1299 // SecHdrTable to calculate the file size. 1300 uint64_t FileSize = 0; 1301 for (auto &Entry : SecHdrTable) { 1302 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1303 } 1304 return FileSize; 1305 } 1306 1307 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1308 std::string Flags; 1309 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1310 Flags.append("{compressed,"); 1311 else 1312 Flags.append("{"); 1313 1314 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1315 Flags.append("flat,"); 1316 1317 switch (Entry.Type) { 1318 case SecNameTable: 1319 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1320 Flags.append("fixlenmd5,"); 1321 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1322 Flags.append("md5,"); 1323 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1324 Flags.append("uniq,"); 1325 break; 1326 case SecProfSummary: 1327 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1328 Flags.append("partial,"); 1329 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1330 Flags.append("context,"); 1331 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined)) 1332 Flags.append("preInlined,"); 1333 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1334 Flags.append("fs-discriminator,"); 1335 break; 1336 case SecFuncOffsetTable: 1337 if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) 1338 Flags.append("ordered,"); 1339 break; 1340 case SecFuncMetadata: 1341 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased)) 1342 Flags.append("probe,"); 1343 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute)) 1344 Flags.append("attr,"); 1345 break; 1346 default: 1347 break; 1348 } 1349 char &last = Flags.back(); 1350 if (last == ',') 1351 last = '}'; 1352 else 1353 Flags.append("}"); 1354 return Flags; 1355 } 1356 1357 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1358 uint64_t TotalSecsSize = 0; 1359 for (auto &Entry : SecHdrTable) { 1360 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1361 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1362 << "\n"; 1363 ; 1364 TotalSecsSize += Entry.Size; 1365 } 1366 uint64_t HeaderSize = SecHdrTable.front().Offset; 1367 assert(HeaderSize + TotalSecsSize == getFileSize() && 1368 "Size of 'header + sections' doesn't match the total size of profile"); 1369 1370 OS << "Header Size: " << HeaderSize << "\n"; 1371 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1372 OS << "File Size: " << getFileSize() << "\n"; 1373 return true; 1374 } 1375 1376 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1377 // Read and check the magic identifier. 1378 auto Magic = readNumber<uint64_t>(); 1379 if (std::error_code EC = Magic.getError()) 1380 return EC; 1381 else if (std::error_code EC = verifySPMagic(*Magic)) 1382 return EC; 1383 1384 // Read the version number. 1385 auto Version = readNumber<uint64_t>(); 1386 if (std::error_code EC = Version.getError()) 1387 return EC; 1388 else if (*Version != SPVersion()) 1389 return sampleprof_error::unsupported_version; 1390 1391 return sampleprof_error::success; 1392 } 1393 1394 std::error_code SampleProfileReaderBinary::readHeader() { 1395 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1396 End = Data + Buffer->getBufferSize(); 1397 1398 if (std::error_code EC = readMagicIdent()) 1399 return EC; 1400 1401 if (std::error_code EC = readSummary()) 1402 return EC; 1403 1404 if (std::error_code EC = readNameTable()) 1405 return EC; 1406 return sampleprof_error::success; 1407 } 1408 1409 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1410 std::vector<ProfileSummaryEntry> &Entries) { 1411 auto Cutoff = readNumber<uint64_t>(); 1412 if (std::error_code EC = Cutoff.getError()) 1413 return EC; 1414 1415 auto MinBlockCount = readNumber<uint64_t>(); 1416 if (std::error_code EC = MinBlockCount.getError()) 1417 return EC; 1418 1419 auto NumBlocks = readNumber<uint64_t>(); 1420 if (std::error_code EC = NumBlocks.getError()) 1421 return EC; 1422 1423 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1424 return sampleprof_error::success; 1425 } 1426 1427 std::error_code SampleProfileReaderBinary::readSummary() { 1428 auto TotalCount = readNumber<uint64_t>(); 1429 if (std::error_code EC = TotalCount.getError()) 1430 return EC; 1431 1432 auto MaxBlockCount = readNumber<uint64_t>(); 1433 if (std::error_code EC = MaxBlockCount.getError()) 1434 return EC; 1435 1436 auto MaxFunctionCount = readNumber<uint64_t>(); 1437 if (std::error_code EC = MaxFunctionCount.getError()) 1438 return EC; 1439 1440 auto NumBlocks = readNumber<uint64_t>(); 1441 if (std::error_code EC = NumBlocks.getError()) 1442 return EC; 1443 1444 auto NumFunctions = readNumber<uint64_t>(); 1445 if (std::error_code EC = NumFunctions.getError()) 1446 return EC; 1447 1448 auto NumSummaryEntries = readNumber<uint64_t>(); 1449 if (std::error_code EC = NumSummaryEntries.getError()) 1450 return EC; 1451 1452 std::vector<ProfileSummaryEntry> Entries; 1453 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1454 std::error_code EC = readSummaryEntry(Entries); 1455 if (EC != sampleprof_error::success) 1456 return EC; 1457 } 1458 Summary = std::make_unique<ProfileSummary>( 1459 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1460 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1461 1462 return sampleprof_error::success; 1463 } 1464 1465 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1466 const uint8_t *Data = 1467 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1468 uint64_t Magic = decodeULEB128(Data); 1469 return Magic == SPMagic(); 1470 } 1471 1472 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1473 const uint8_t *Data = 1474 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1475 uint64_t Magic = decodeULEB128(Data); 1476 return Magic == SPMagic(SPF_Ext_Binary); 1477 } 1478 1479 std::error_code SampleProfileReaderGCC::skipNextWord() { 1480 uint32_t dummy; 1481 if (!GcovBuffer.readInt(dummy)) 1482 return sampleprof_error::truncated; 1483 return sampleprof_error::success; 1484 } 1485 1486 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1487 if (sizeof(T) <= sizeof(uint32_t)) { 1488 uint32_t Val; 1489 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1490 return static_cast<T>(Val); 1491 } else if (sizeof(T) <= sizeof(uint64_t)) { 1492 uint64_t Val; 1493 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1494 return static_cast<T>(Val); 1495 } 1496 1497 std::error_code EC = sampleprof_error::malformed; 1498 reportError(0, EC.message()); 1499 return EC; 1500 } 1501 1502 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1503 StringRef Str; 1504 if (!GcovBuffer.readString(Str)) 1505 return sampleprof_error::truncated; 1506 return Str; 1507 } 1508 1509 std::error_code SampleProfileReaderGCC::readHeader() { 1510 // Read the magic identifier. 1511 if (!GcovBuffer.readGCDAFormat()) 1512 return sampleprof_error::unrecognized_format; 1513 1514 // Read the version number. Note - the GCC reader does not validate this 1515 // version, but the profile creator generates v704. 1516 GCOV::GCOVVersion version; 1517 if (!GcovBuffer.readGCOVVersion(version)) 1518 return sampleprof_error::unrecognized_format; 1519 1520 if (version != GCOV::V407) 1521 return sampleprof_error::unsupported_version; 1522 1523 // Skip the empty integer. 1524 if (std::error_code EC = skipNextWord()) 1525 return EC; 1526 1527 return sampleprof_error::success; 1528 } 1529 1530 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1531 uint32_t Tag; 1532 if (!GcovBuffer.readInt(Tag)) 1533 return sampleprof_error::truncated; 1534 1535 if (Tag != Expected) 1536 return sampleprof_error::malformed; 1537 1538 if (std::error_code EC = skipNextWord()) 1539 return EC; 1540 1541 return sampleprof_error::success; 1542 } 1543 1544 std::error_code SampleProfileReaderGCC::readNameTable() { 1545 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1546 return EC; 1547 1548 uint32_t Size; 1549 if (!GcovBuffer.readInt(Size)) 1550 return sampleprof_error::truncated; 1551 1552 for (uint32_t I = 0; I < Size; ++I) { 1553 StringRef Str; 1554 if (!GcovBuffer.readString(Str)) 1555 return sampleprof_error::truncated; 1556 Names.push_back(std::string(Str)); 1557 } 1558 1559 return sampleprof_error::success; 1560 } 1561 1562 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1563 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1564 return EC; 1565 1566 uint32_t NumFunctions; 1567 if (!GcovBuffer.readInt(NumFunctions)) 1568 return sampleprof_error::truncated; 1569 1570 InlineCallStack Stack; 1571 for (uint32_t I = 0; I < NumFunctions; ++I) 1572 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1573 return EC; 1574 1575 computeSummary(); 1576 return sampleprof_error::success; 1577 } 1578 1579 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1580 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1581 uint64_t HeadCount = 0; 1582 if (InlineStack.size() == 0) 1583 if (!GcovBuffer.readInt64(HeadCount)) 1584 return sampleprof_error::truncated; 1585 1586 uint32_t NameIdx; 1587 if (!GcovBuffer.readInt(NameIdx)) 1588 return sampleprof_error::truncated; 1589 1590 StringRef Name(Names[NameIdx]); 1591 1592 uint32_t NumPosCounts; 1593 if (!GcovBuffer.readInt(NumPosCounts)) 1594 return sampleprof_error::truncated; 1595 1596 uint32_t NumCallsites; 1597 if (!GcovBuffer.readInt(NumCallsites)) 1598 return sampleprof_error::truncated; 1599 1600 FunctionSamples *FProfile = nullptr; 1601 if (InlineStack.size() == 0) { 1602 // If this is a top function that we have already processed, do not 1603 // update its profile again. This happens in the presence of 1604 // function aliases. Since these aliases share the same function 1605 // body, there will be identical replicated profiles for the 1606 // original function. In this case, we simply not bother updating 1607 // the profile of the original function. 1608 FProfile = &Profiles[Name]; 1609 FProfile->addHeadSamples(HeadCount); 1610 if (FProfile->getTotalSamples() > 0) 1611 Update = false; 1612 } else { 1613 // Otherwise, we are reading an inlined instance. The top of the 1614 // inline stack contains the profile of the caller. Insert this 1615 // callee in the caller's CallsiteMap. 1616 FunctionSamples *CallerProfile = InlineStack.front(); 1617 uint32_t LineOffset = Offset >> 16; 1618 uint32_t Discriminator = Offset & 0xffff; 1619 FProfile = &CallerProfile->functionSamplesAt( 1620 LineLocation(LineOffset, Discriminator))[std::string(Name)]; 1621 } 1622 FProfile->setName(Name); 1623 1624 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1625 uint32_t Offset; 1626 if (!GcovBuffer.readInt(Offset)) 1627 return sampleprof_error::truncated; 1628 1629 uint32_t NumTargets; 1630 if (!GcovBuffer.readInt(NumTargets)) 1631 return sampleprof_error::truncated; 1632 1633 uint64_t Count; 1634 if (!GcovBuffer.readInt64(Count)) 1635 return sampleprof_error::truncated; 1636 1637 // The line location is encoded in the offset as: 1638 // high 16 bits: line offset to the start of the function. 1639 // low 16 bits: discriminator. 1640 uint32_t LineOffset = Offset >> 16; 1641 uint32_t Discriminator = Offset & 0xffff; 1642 1643 InlineCallStack NewStack; 1644 NewStack.push_back(FProfile); 1645 llvm::append_range(NewStack, InlineStack); 1646 if (Update) { 1647 // Walk up the inline stack, adding the samples on this line to 1648 // the total sample count of the callers in the chain. 1649 for (auto *CallerProfile : NewStack) 1650 CallerProfile->addTotalSamples(Count); 1651 1652 // Update the body samples for the current profile. 1653 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1654 } 1655 1656 // Process the list of functions called at an indirect call site. 1657 // These are all the targets that a function pointer (or virtual 1658 // function) resolved at runtime. 1659 for (uint32_t J = 0; J < NumTargets; J++) { 1660 uint32_t HistVal; 1661 if (!GcovBuffer.readInt(HistVal)) 1662 return sampleprof_error::truncated; 1663 1664 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1665 return sampleprof_error::malformed; 1666 1667 uint64_t TargetIdx; 1668 if (!GcovBuffer.readInt64(TargetIdx)) 1669 return sampleprof_error::truncated; 1670 StringRef TargetName(Names[TargetIdx]); 1671 1672 uint64_t TargetCount; 1673 if (!GcovBuffer.readInt64(TargetCount)) 1674 return sampleprof_error::truncated; 1675 1676 if (Update) 1677 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1678 TargetName, TargetCount); 1679 } 1680 } 1681 1682 // Process all the inlined callers into the current function. These 1683 // are all the callsites that were inlined into this function. 1684 for (uint32_t I = 0; I < NumCallsites; I++) { 1685 // The offset is encoded as: 1686 // high 16 bits: line offset to the start of the function. 1687 // low 16 bits: discriminator. 1688 uint32_t Offset; 1689 if (!GcovBuffer.readInt(Offset)) 1690 return sampleprof_error::truncated; 1691 InlineCallStack NewStack; 1692 NewStack.push_back(FProfile); 1693 llvm::append_range(NewStack, InlineStack); 1694 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1695 return EC; 1696 } 1697 1698 return sampleprof_error::success; 1699 } 1700 1701 /// Read a GCC AutoFDO profile. 1702 /// 1703 /// This format is generated by the Linux Perf conversion tool at 1704 /// https://github.com/google/autofdo. 1705 std::error_code SampleProfileReaderGCC::readImpl() { 1706 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1707 // Read the string table. 1708 if (std::error_code EC = readNameTable()) 1709 return EC; 1710 1711 // Read the source profile. 1712 if (std::error_code EC = readFunctionProfiles()) 1713 return EC; 1714 1715 return sampleprof_error::success; 1716 } 1717 1718 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1719 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1720 return Magic == "adcg*704"; 1721 } 1722 1723 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1724 // If the reader uses MD5 to represent string, we can't remap it because 1725 // we don't know what the original function names were. 1726 if (Reader.useMD5()) { 1727 Ctx.diagnose(DiagnosticInfoSampleProfile( 1728 Reader.getBuffer()->getBufferIdentifier(), 1729 "Profile data remapping cannot be applied to profile data " 1730 "using MD5 names (original mangled names are not available).", 1731 DS_Warning)); 1732 return; 1733 } 1734 1735 // CSSPGO-TODO: Remapper is not yet supported. 1736 // We will need to remap the entire context string. 1737 assert(Remappings && "should be initialized while creating remapper"); 1738 for (auto &Sample : Reader.getProfiles()) { 1739 DenseSet<StringRef> NamesInSample; 1740 Sample.second.findAllNames(NamesInSample); 1741 for (auto &Name : NamesInSample) 1742 if (auto Key = Remappings->insert(Name)) 1743 NameMap.insert({Key, Name}); 1744 } 1745 1746 RemappingApplied = true; 1747 } 1748 1749 std::optional<StringRef> 1750 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1751 if (auto Key = Remappings->lookup(Fname)) 1752 return NameMap.lookup(Key); 1753 return std::nullopt; 1754 } 1755 1756 /// Prepare a memory buffer for the contents of \p Filename. 1757 /// 1758 /// \returns an error code indicating the status of the buffer. 1759 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1760 setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) { 1761 auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN() 1762 : FS.getBufferForFile(Filename); 1763 if (std::error_code EC = BufferOrErr.getError()) 1764 return EC; 1765 auto Buffer = std::move(BufferOrErr.get()); 1766 1767 return std::move(Buffer); 1768 } 1769 1770 /// Create a sample profile reader based on the format of the input file. 1771 /// 1772 /// \param Filename The file to open. 1773 /// 1774 /// \param C The LLVM context to use to emit diagnostics. 1775 /// 1776 /// \param P The FSDiscriminatorPass. 1777 /// 1778 /// \param RemapFilename The file used for profile remapping. 1779 /// 1780 /// \returns an error code indicating the status of the created reader. 1781 ErrorOr<std::unique_ptr<SampleProfileReader>> 1782 SampleProfileReader::create(const std::string Filename, LLVMContext &C, 1783 vfs::FileSystem &FS, FSDiscriminatorPass P, 1784 const std::string RemapFilename) { 1785 auto BufferOrError = setupMemoryBuffer(Filename, FS); 1786 if (std::error_code EC = BufferOrError.getError()) 1787 return EC; 1788 return create(BufferOrError.get(), C, FS, P, RemapFilename); 1789 } 1790 1791 /// Create a sample profile remapper from the given input, to remap the 1792 /// function names in the given profile data. 1793 /// 1794 /// \param Filename The file to open. 1795 /// 1796 /// \param Reader The profile reader the remapper is going to be applied to. 1797 /// 1798 /// \param C The LLVM context to use to emit diagnostics. 1799 /// 1800 /// \returns an error code indicating the status of the created reader. 1801 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1802 SampleProfileReaderItaniumRemapper::create(const std::string Filename, 1803 vfs::FileSystem &FS, 1804 SampleProfileReader &Reader, 1805 LLVMContext &C) { 1806 auto BufferOrError = setupMemoryBuffer(Filename, FS); 1807 if (std::error_code EC = BufferOrError.getError()) 1808 return EC; 1809 return create(BufferOrError.get(), Reader, C); 1810 } 1811 1812 /// Create a sample profile remapper from the given input, to remap the 1813 /// function names in the given profile data. 1814 /// 1815 /// \param B The memory buffer to create the reader from (assumes ownership). 1816 /// 1817 /// \param C The LLVM context to use to emit diagnostics. 1818 /// 1819 /// \param Reader The profile reader the remapper is going to be applied to. 1820 /// 1821 /// \returns an error code indicating the status of the created reader. 1822 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1823 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1824 SampleProfileReader &Reader, 1825 LLVMContext &C) { 1826 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1827 if (Error E = Remappings->read(*B)) { 1828 handleAllErrors( 1829 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1830 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1831 ParseError.getLineNum(), 1832 ParseError.getMessage())); 1833 }); 1834 return sampleprof_error::malformed; 1835 } 1836 1837 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1838 std::move(B), std::move(Remappings), Reader); 1839 } 1840 1841 /// Create a sample profile reader based on the format of the input data. 1842 /// 1843 /// \param B The memory buffer to create the reader from (assumes ownership). 1844 /// 1845 /// \param C The LLVM context to use to emit diagnostics. 1846 /// 1847 /// \param P The FSDiscriminatorPass. 1848 /// 1849 /// \param RemapFilename The file used for profile remapping. 1850 /// 1851 /// \returns an error code indicating the status of the created reader. 1852 ErrorOr<std::unique_ptr<SampleProfileReader>> 1853 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1854 vfs::FileSystem &FS, FSDiscriminatorPass P, 1855 const std::string RemapFilename) { 1856 std::unique_ptr<SampleProfileReader> Reader; 1857 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1858 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1859 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1860 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1861 else if (SampleProfileReaderGCC::hasFormat(*B)) 1862 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1863 else if (SampleProfileReaderText::hasFormat(*B)) 1864 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1865 else 1866 return sampleprof_error::unrecognized_format; 1867 1868 if (!RemapFilename.empty()) { 1869 auto ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1870 RemapFilename, FS, *Reader, C); 1871 if (std::error_code EC = ReaderOrErr.getError()) { 1872 std::string Msg = "Could not create remapper: " + EC.message(); 1873 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1874 return EC; 1875 } 1876 Reader->Remapper = std::move(ReaderOrErr.get()); 1877 } 1878 1879 if (std::error_code EC = Reader->readHeader()) { 1880 return EC; 1881 } 1882 1883 Reader->setDiscriminatorMaskedBitFrom(P); 1884 1885 return std::move(Reader); 1886 } 1887 1888 // For text and GCC file formats, we compute the summary after reading the 1889 // profile. Binary format has the profile summary in its header. 1890 void SampleProfileReader::computeSummary() { 1891 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1892 Summary = Builder.computeSummaryForProfiles(Profiles); 1893 } 1894