1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/ProfileSummary.h" 28 #include "llvm/ProfileData/ProfileCommon.h" 29 #include "llvm/ProfileData/SampleProf.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Compression.h" 32 #include "llvm/Support/ErrorOr.h" 33 #include "llvm/Support/JSON.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/LineIterator.h" 36 #include "llvm/Support/MD5.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/VirtualFileSystem.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <cstddef> 42 #include <cstdint> 43 #include <limits> 44 #include <memory> 45 #include <system_error> 46 #include <vector> 47 48 using namespace llvm; 49 using namespace sampleprof; 50 51 #define DEBUG_TYPE "samplepgo-reader" 52 53 // This internal option specifies if the profile uses FS discriminators. 54 // It only applies to text, and binary format profiles. 55 // For ext-binary format profiles, the flag is set in the summary. 56 static cl::opt<bool> ProfileIsFSDisciminator( 57 "profile-isfs", cl::Hidden, cl::init(false), 58 cl::desc("Profile uses flow sensitive discriminators")); 59 60 /// Dump the function profile for \p FName. 61 /// 62 /// \param FContext Name + context of the function to print. 63 /// \param OS Stream to emit the output to. 64 void SampleProfileReader::dumpFunctionProfile(const FunctionSamples &FS, 65 raw_ostream &OS) { 66 OS << "Function: " << FS.getContext().toString() << ": " << FS; 67 } 68 69 /// Dump all the function profiles found on stream \p OS. 70 void SampleProfileReader::dump(raw_ostream &OS) { 71 std::vector<NameFunctionSamples> V; 72 sortFuncProfiles(Profiles, V); 73 for (const auto &I : V) 74 dumpFunctionProfile(*I.second, OS); 75 } 76 77 static void dumpFunctionProfileJson(const FunctionSamples &S, 78 json::OStream &JOS, bool TopLevel = false) { 79 auto DumpBody = [&](const BodySampleMap &BodySamples) { 80 for (const auto &I : BodySamples) { 81 const LineLocation &Loc = I.first; 82 const SampleRecord &Sample = I.second; 83 JOS.object([&] { 84 JOS.attribute("line", Loc.LineOffset); 85 if (Loc.Discriminator) 86 JOS.attribute("discriminator", Loc.Discriminator); 87 JOS.attribute("samples", Sample.getSamples()); 88 89 auto CallTargets = Sample.getSortedCallTargets(); 90 if (!CallTargets.empty()) { 91 JOS.attributeArray("calls", [&] { 92 for (const auto &J : CallTargets) { 93 JOS.object([&] { 94 JOS.attribute("function", J.first.str()); 95 JOS.attribute("samples", J.second); 96 }); 97 } 98 }); 99 } 100 }); 101 } 102 }; 103 104 auto DumpCallsiteSamples = [&](const CallsiteSampleMap &CallsiteSamples) { 105 for (const auto &I : CallsiteSamples) 106 for (const auto &FS : I.second) { 107 const LineLocation &Loc = I.first; 108 const FunctionSamples &CalleeSamples = FS.second; 109 JOS.object([&] { 110 JOS.attribute("line", Loc.LineOffset); 111 if (Loc.Discriminator) 112 JOS.attribute("discriminator", Loc.Discriminator); 113 JOS.attributeArray( 114 "samples", [&] { dumpFunctionProfileJson(CalleeSamples, JOS); }); 115 }); 116 } 117 }; 118 119 JOS.object([&] { 120 JOS.attribute("name", S.getFunction().str()); 121 JOS.attribute("total", S.getTotalSamples()); 122 if (TopLevel) 123 JOS.attribute("head", S.getHeadSamples()); 124 125 const auto &BodySamples = S.getBodySamples(); 126 if (!BodySamples.empty()) 127 JOS.attributeArray("body", [&] { DumpBody(BodySamples); }); 128 129 const auto &CallsiteSamples = S.getCallsiteSamples(); 130 if (!CallsiteSamples.empty()) 131 JOS.attributeArray("callsites", 132 [&] { DumpCallsiteSamples(CallsiteSamples); }); 133 }); 134 } 135 136 /// Dump all the function profiles found on stream \p OS in the JSON format. 137 void SampleProfileReader::dumpJson(raw_ostream &OS) { 138 std::vector<NameFunctionSamples> V; 139 sortFuncProfiles(Profiles, V); 140 json::OStream JOS(OS, 2); 141 JOS.arrayBegin(); 142 for (const auto &F : V) 143 dumpFunctionProfileJson(*F.second, JOS, true); 144 JOS.arrayEnd(); 145 146 // Emit a newline character at the end as json::OStream doesn't emit one. 147 OS << "\n"; 148 } 149 150 /// Parse \p Input as function head. 151 /// 152 /// Parse one line of \p Input, and update function name in \p FName, 153 /// function's total sample count in \p NumSamples, function's entry 154 /// count in \p NumHeadSamples. 155 /// 156 /// \returns true if parsing is successful. 157 static bool ParseHead(const StringRef &Input, StringRef &FName, 158 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 159 if (Input[0] == ' ') 160 return false; 161 size_t n2 = Input.rfind(':'); 162 size_t n1 = Input.rfind(':', n2 - 1); 163 FName = Input.substr(0, n1); 164 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 165 return false; 166 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 167 return false; 168 return true; 169 } 170 171 /// Returns true if line offset \p L is legal (only has 16 bits). 172 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 173 174 /// Parse \p Input that contains metadata. 175 /// Possible metadata: 176 /// - CFG Checksum information: 177 /// !CFGChecksum: 12345 178 /// - CFG Checksum information: 179 /// !Attributes: 1 180 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 181 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 182 uint32_t &Attributes) { 183 if (Input.starts_with("!CFGChecksum:")) { 184 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 185 return !CFGInfo.getAsInteger(10, FunctionHash); 186 } 187 188 if (Input.starts_with("!Attributes:")) { 189 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 190 return !Attrib.getAsInteger(10, Attributes); 191 } 192 193 return false; 194 } 195 196 enum class LineType { 197 CallSiteProfile, 198 BodyProfile, 199 Metadata, 200 }; 201 202 /// Parse \p Input as line sample. 203 /// 204 /// \param Input input line. 205 /// \param LineTy Type of this line. 206 /// \param Depth the depth of the inline stack. 207 /// \param NumSamples total samples of the line/inlined callsite. 208 /// \param LineOffset line offset to the start of the function. 209 /// \param Discriminator discriminator of the line. 210 /// \param TargetCountMap map from indirect call target to count. 211 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 212 /// 213 /// returns true if parsing is successful. 214 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 215 uint64_t &NumSamples, uint32_t &LineOffset, 216 uint32_t &Discriminator, StringRef &CalleeName, 217 DenseMap<StringRef, uint64_t> &TargetCountMap, 218 uint64_t &FunctionHash, uint32_t &Attributes) { 219 for (Depth = 0; Input[Depth] == ' '; Depth++) 220 ; 221 if (Depth == 0) 222 return false; 223 224 if (Input[Depth] == '!') { 225 LineTy = LineType::Metadata; 226 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 227 } 228 229 size_t n1 = Input.find(':'); 230 StringRef Loc = Input.substr(Depth, n1 - Depth); 231 size_t n2 = Loc.find('.'); 232 if (n2 == StringRef::npos) { 233 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 234 return false; 235 Discriminator = 0; 236 } else { 237 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 238 return false; 239 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 240 return false; 241 } 242 243 StringRef Rest = Input.substr(n1 + 2); 244 if (isDigit(Rest[0])) { 245 LineTy = LineType::BodyProfile; 246 size_t n3 = Rest.find(' '); 247 if (n3 == StringRef::npos) { 248 if (Rest.getAsInteger(10, NumSamples)) 249 return false; 250 } else { 251 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 252 return false; 253 } 254 // Find call targets and their sample counts. 255 // Note: In some cases, there are symbols in the profile which are not 256 // mangled. To accommodate such cases, use colon + integer pairs as the 257 // anchor points. 258 // An example: 259 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 260 // ":1000" and ":437" are used as anchor points so the string above will 261 // be interpreted as 262 // target: _M_construct<char *> 263 // count: 1000 264 // target: string_view<std::allocator<char> > 265 // count: 437 266 while (n3 != StringRef::npos) { 267 n3 += Rest.substr(n3).find_first_not_of(' '); 268 Rest = Rest.substr(n3); 269 n3 = Rest.find_first_of(':'); 270 if (n3 == StringRef::npos || n3 == 0) 271 return false; 272 273 StringRef Target; 274 uint64_t count, n4; 275 while (true) { 276 // Get the segment after the current colon. 277 StringRef AfterColon = Rest.substr(n3 + 1); 278 // Get the target symbol before the current colon. 279 Target = Rest.substr(0, n3); 280 // Check if the word after the current colon is an integer. 281 n4 = AfterColon.find_first_of(' '); 282 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 283 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 284 if (!WordAfterColon.getAsInteger(10, count)) 285 break; 286 287 // Try to find the next colon. 288 uint64_t n5 = AfterColon.find_first_of(':'); 289 if (n5 == StringRef::npos) 290 return false; 291 n3 += n5 + 1; 292 } 293 294 // An anchor point is found. Save the {target, count} pair 295 TargetCountMap[Target] = count; 296 if (n4 == Rest.size()) 297 break; 298 // Change n3 to the next blank space after colon + integer pair. 299 n3 = n4; 300 } 301 } else { 302 LineTy = LineType::CallSiteProfile; 303 size_t n3 = Rest.find_last_of(':'); 304 CalleeName = Rest.substr(0, n3); 305 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 306 return false; 307 } 308 return true; 309 } 310 311 /// Load samples from a text file. 312 /// 313 /// See the documentation at the top of the file for an explanation of 314 /// the expected format. 315 /// 316 /// \returns true if the file was loaded successfully, false otherwise. 317 std::error_code SampleProfileReaderText::readImpl() { 318 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 319 sampleprof_error Result = sampleprof_error::success; 320 321 InlineCallStack InlineStack; 322 uint32_t TopLevelProbeProfileCount = 0; 323 324 // DepthMetadata tracks whether we have processed metadata for the current 325 // top-level or nested function profile. 326 uint32_t DepthMetadata = 0; 327 328 ProfileIsFS = ProfileIsFSDisciminator; 329 FunctionSamples::ProfileIsFS = ProfileIsFS; 330 for (; !LineIt.is_at_eof(); ++LineIt) { 331 size_t pos = LineIt->find_first_not_of(' '); 332 if (pos == LineIt->npos || (*LineIt)[pos] == '#') 333 continue; 334 // Read the header of each function. 335 // 336 // Note that for function identifiers we are actually expecting 337 // mangled names, but we may not always get them. This happens when 338 // the compiler decides not to emit the function (e.g., it was inlined 339 // and removed). In this case, the binary will not have the linkage 340 // name for the function, so the profiler will emit the function's 341 // unmangled name, which may contain characters like ':' and '>' in its 342 // name (member functions, templates, etc). 343 // 344 // The only requirement we place on the identifier, then, is that it 345 // should not begin with a number. 346 if ((*LineIt)[0] != ' ') { 347 uint64_t NumSamples, NumHeadSamples; 348 StringRef FName; 349 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 350 reportError(LineIt.line_number(), 351 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 352 return sampleprof_error::malformed; 353 } 354 DepthMetadata = 0; 355 SampleContext FContext(FName, CSNameTable); 356 if (FContext.hasContext()) 357 ++CSProfileCount; 358 FunctionSamples &FProfile = Profiles.create(FContext); 359 mergeSampleProfErrors(Result, FProfile.addTotalSamples(NumSamples)); 360 mergeSampleProfErrors(Result, FProfile.addHeadSamples(NumHeadSamples)); 361 InlineStack.clear(); 362 InlineStack.push_back(&FProfile); 363 } else { 364 uint64_t NumSamples; 365 StringRef FName; 366 DenseMap<StringRef, uint64_t> TargetCountMap; 367 uint32_t Depth, LineOffset, Discriminator; 368 LineType LineTy; 369 uint64_t FunctionHash = 0; 370 uint32_t Attributes = 0; 371 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 372 Discriminator, FName, TargetCountMap, FunctionHash, 373 Attributes)) { 374 reportError(LineIt.line_number(), 375 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 376 *LineIt); 377 return sampleprof_error::malformed; 378 } 379 if (LineTy != LineType::Metadata && Depth == DepthMetadata) { 380 // Metadata must be put at the end of a function profile. 381 reportError(LineIt.line_number(), 382 "Found non-metadata after metadata: " + *LineIt); 383 return sampleprof_error::malformed; 384 } 385 386 // Here we handle FS discriminators. 387 Discriminator &= getDiscriminatorMask(); 388 389 while (InlineStack.size() > Depth) { 390 InlineStack.pop_back(); 391 } 392 switch (LineTy) { 393 case LineType::CallSiteProfile: { 394 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 395 LineLocation(LineOffset, Discriminator))[FunctionId(FName)]; 396 FSamples.setFunction(FunctionId(FName)); 397 mergeSampleProfErrors(Result, FSamples.addTotalSamples(NumSamples)); 398 InlineStack.push_back(&FSamples); 399 DepthMetadata = 0; 400 break; 401 } 402 case LineType::BodyProfile: { 403 while (InlineStack.size() > Depth) { 404 InlineStack.pop_back(); 405 } 406 FunctionSamples &FProfile = *InlineStack.back(); 407 for (const auto &name_count : TargetCountMap) { 408 mergeSampleProfErrors(Result, FProfile.addCalledTargetSamples( 409 LineOffset, Discriminator, 410 FunctionId(name_count.first), 411 name_count.second)); 412 } 413 mergeSampleProfErrors( 414 Result, 415 FProfile.addBodySamples(LineOffset, Discriminator, NumSamples)); 416 break; 417 } 418 case LineType::Metadata: { 419 FunctionSamples &FProfile = *InlineStack.back(); 420 if (FunctionHash) { 421 FProfile.setFunctionHash(FunctionHash); 422 if (Depth == 1) 423 ++TopLevelProbeProfileCount; 424 } 425 FProfile.getContext().setAllAttributes(Attributes); 426 if (Attributes & (uint32_t)ContextShouldBeInlined) 427 ProfileIsPreInlined = true; 428 DepthMetadata = Depth; 429 break; 430 } 431 } 432 } 433 } 434 435 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 436 "Cannot have both context-sensitive and regular profile"); 437 ProfileIsCS = (CSProfileCount > 0); 438 assert((TopLevelProbeProfileCount == 0 || 439 TopLevelProbeProfileCount == Profiles.size()) && 440 "Cannot have both probe-based profiles and regular profiles"); 441 ProfileIsProbeBased = (TopLevelProbeProfileCount > 0); 442 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 443 FunctionSamples::ProfileIsCS = ProfileIsCS; 444 FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined; 445 446 if (Result == sampleprof_error::success) 447 computeSummary(); 448 449 return Result; 450 } 451 452 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 453 bool result = false; 454 455 // Check that the first non-comment line is a valid function header. 456 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 457 if (!LineIt.is_at_eof()) { 458 if ((*LineIt)[0] != ' ') { 459 uint64_t NumSamples, NumHeadSamples; 460 StringRef FName; 461 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 462 } 463 } 464 465 return result; 466 } 467 468 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 469 unsigned NumBytesRead = 0; 470 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 471 472 if (Val > std::numeric_limits<T>::max()) { 473 std::error_code EC = sampleprof_error::malformed; 474 reportError(0, EC.message()); 475 return EC; 476 } else if (Data + NumBytesRead > End) { 477 std::error_code EC = sampleprof_error::truncated; 478 reportError(0, EC.message()); 479 return EC; 480 } 481 482 Data += NumBytesRead; 483 return static_cast<T>(Val); 484 } 485 486 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 487 StringRef Str(reinterpret_cast<const char *>(Data)); 488 if (Data + Str.size() + 1 > End) { 489 std::error_code EC = sampleprof_error::truncated; 490 reportError(0, EC.message()); 491 return EC; 492 } 493 494 Data += Str.size() + 1; 495 return Str; 496 } 497 498 template <typename T> 499 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 500 if (Data + sizeof(T) > End) { 501 std::error_code EC = sampleprof_error::truncated; 502 reportError(0, EC.message()); 503 return EC; 504 } 505 506 using namespace support; 507 T Val = endian::readNext<T, llvm::endianness::little>(Data); 508 return Val; 509 } 510 511 template <typename T> 512 inline ErrorOr<size_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 513 auto Idx = readNumber<size_t>(); 514 if (std::error_code EC = Idx.getError()) 515 return EC; 516 if (*Idx >= Table.size()) 517 return sampleprof_error::truncated_name_table; 518 return *Idx; 519 } 520 521 ErrorOr<FunctionId> 522 SampleProfileReaderBinary::readStringFromTable(size_t *RetIdx) { 523 auto Idx = readStringIndex(NameTable); 524 if (std::error_code EC = Idx.getError()) 525 return EC; 526 if (RetIdx) 527 *RetIdx = *Idx; 528 return NameTable[*Idx]; 529 } 530 531 ErrorOr<SampleContextFrames> 532 SampleProfileReaderBinary::readContextFromTable(size_t *RetIdx) { 533 auto ContextIdx = readNumber<size_t>(); 534 if (std::error_code EC = ContextIdx.getError()) 535 return EC; 536 if (*ContextIdx >= CSNameTable.size()) 537 return sampleprof_error::truncated_name_table; 538 if (RetIdx) 539 *RetIdx = *ContextIdx; 540 return CSNameTable[*ContextIdx]; 541 } 542 543 ErrorOr<std::pair<SampleContext, uint64_t>> 544 SampleProfileReaderBinary::readSampleContextFromTable() { 545 SampleContext Context; 546 size_t Idx; 547 if (ProfileIsCS) { 548 auto FContext(readContextFromTable(&Idx)); 549 if (std::error_code EC = FContext.getError()) 550 return EC; 551 Context = SampleContext(*FContext); 552 } else { 553 auto FName(readStringFromTable(&Idx)); 554 if (std::error_code EC = FName.getError()) 555 return EC; 556 Context = SampleContext(*FName); 557 } 558 // Since MD5SampleContextStart may point to the profile's file data, need to 559 // make sure it is reading the same value on big endian CPU. 560 uint64_t Hash = support::endian::read64le(MD5SampleContextStart + Idx); 561 // Lazy computing of hash value, write back to the table to cache it. Only 562 // compute the context's hash value if it is being referenced for the first 563 // time. 564 if (Hash == 0) { 565 assert(MD5SampleContextStart == MD5SampleContextTable.data()); 566 Hash = Context.getHashCode(); 567 support::endian::write64le(&MD5SampleContextTable[Idx], Hash); 568 } 569 return std::make_pair(Context, Hash); 570 } 571 572 std::error_code 573 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 574 auto NumSamples = readNumber<uint64_t>(); 575 if (std::error_code EC = NumSamples.getError()) 576 return EC; 577 FProfile.addTotalSamples(*NumSamples); 578 579 // Read the samples in the body. 580 auto NumRecords = readNumber<uint32_t>(); 581 if (std::error_code EC = NumRecords.getError()) 582 return EC; 583 584 for (uint32_t I = 0; I < *NumRecords; ++I) { 585 auto LineOffset = readNumber<uint64_t>(); 586 if (std::error_code EC = LineOffset.getError()) 587 return EC; 588 589 if (!isOffsetLegal(*LineOffset)) { 590 return std::error_code(); 591 } 592 593 auto Discriminator = readNumber<uint64_t>(); 594 if (std::error_code EC = Discriminator.getError()) 595 return EC; 596 597 auto NumSamples = readNumber<uint64_t>(); 598 if (std::error_code EC = NumSamples.getError()) 599 return EC; 600 601 auto NumCalls = readNumber<uint32_t>(); 602 if (std::error_code EC = NumCalls.getError()) 603 return EC; 604 605 // Here we handle FS discriminators: 606 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 607 608 for (uint32_t J = 0; J < *NumCalls; ++J) { 609 auto CalledFunction(readStringFromTable()); 610 if (std::error_code EC = CalledFunction.getError()) 611 return EC; 612 613 auto CalledFunctionSamples = readNumber<uint64_t>(); 614 if (std::error_code EC = CalledFunctionSamples.getError()) 615 return EC; 616 617 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 618 *CalledFunction, *CalledFunctionSamples); 619 } 620 621 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 622 } 623 624 // Read all the samples for inlined function calls. 625 auto NumCallsites = readNumber<uint32_t>(); 626 if (std::error_code EC = NumCallsites.getError()) 627 return EC; 628 629 for (uint32_t J = 0; J < *NumCallsites; ++J) { 630 auto LineOffset = readNumber<uint64_t>(); 631 if (std::error_code EC = LineOffset.getError()) 632 return EC; 633 634 auto Discriminator = readNumber<uint64_t>(); 635 if (std::error_code EC = Discriminator.getError()) 636 return EC; 637 638 auto FName(readStringFromTable()); 639 if (std::error_code EC = FName.getError()) 640 return EC; 641 642 // Here we handle FS discriminators: 643 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 644 645 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 646 LineLocation(*LineOffset, DiscriminatorVal))[*FName]; 647 CalleeProfile.setFunction(*FName); 648 if (std::error_code EC = readProfile(CalleeProfile)) 649 return EC; 650 } 651 652 return sampleprof_error::success; 653 } 654 655 std::error_code 656 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 657 Data = Start; 658 auto NumHeadSamples = readNumber<uint64_t>(); 659 if (std::error_code EC = NumHeadSamples.getError()) 660 return EC; 661 662 auto FContextHash(readSampleContextFromTable()); 663 if (std::error_code EC = FContextHash.getError()) 664 return EC; 665 666 auto &[FContext, Hash] = *FContextHash; 667 // Use the cached hash value for insertion instead of recalculating it. 668 auto Res = Profiles.try_emplace(Hash, FContext, FunctionSamples()); 669 FunctionSamples &FProfile = Res.first->second; 670 FProfile.setContext(FContext); 671 FProfile.addHeadSamples(*NumHeadSamples); 672 673 if (FContext.hasContext()) 674 CSProfileCount++; 675 676 if (std::error_code EC = readProfile(FProfile)) 677 return EC; 678 return sampleprof_error::success; 679 } 680 681 std::error_code SampleProfileReaderBinary::readImpl() { 682 ProfileIsFS = ProfileIsFSDisciminator; 683 FunctionSamples::ProfileIsFS = ProfileIsFS; 684 while (Data < End) { 685 if (std::error_code EC = readFuncProfile(Data)) 686 return EC; 687 } 688 689 return sampleprof_error::success; 690 } 691 692 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 693 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 694 Data = Start; 695 End = Start + Size; 696 switch (Entry.Type) { 697 case SecProfSummary: 698 if (std::error_code EC = readSummary()) 699 return EC; 700 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 701 Summary->setPartialProfile(true); 702 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 703 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 704 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined)) 705 FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined = true; 706 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 707 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 708 break; 709 case SecNameTable: { 710 bool FixedLengthMD5 = 711 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 712 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 713 // UseMD5 means if THIS section uses MD5, ProfileIsMD5 means if the entire 714 // profile uses MD5 for function name matching in IPO passes. 715 ProfileIsMD5 = ProfileIsMD5 || UseMD5; 716 FunctionSamples::HasUniqSuffix = 717 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 718 if (std::error_code EC = readNameTableSec(UseMD5, FixedLengthMD5)) 719 return EC; 720 break; 721 } 722 case SecCSNameTable: { 723 if (std::error_code EC = readCSNameTableSec()) 724 return EC; 725 break; 726 } 727 case SecLBRProfile: 728 if (std::error_code EC = readFuncProfiles()) 729 return EC; 730 break; 731 case SecFuncOffsetTable: 732 // If module is absent, we are using LLVM tools, and need to read all 733 // profiles, so skip reading the function offset table. 734 if (!M) { 735 Data = End; 736 } else { 737 assert((!ProfileIsCS || 738 hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) && 739 "func offset table should always be sorted in CS profile"); 740 if (std::error_code EC = readFuncOffsetTable()) 741 return EC; 742 } 743 break; 744 case SecFuncMetadata: { 745 ProfileIsProbeBased = 746 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 747 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 748 bool HasAttribute = 749 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 750 if (std::error_code EC = readFuncMetadata(HasAttribute)) 751 return EC; 752 break; 753 } 754 case SecProfileSymbolList: 755 if (std::error_code EC = readProfileSymbolList()) 756 return EC; 757 break; 758 default: 759 if (std::error_code EC = readCustomSection(Entry)) 760 return EC; 761 break; 762 } 763 return sampleprof_error::success; 764 } 765 766 bool SampleProfileReaderExtBinaryBase::useFuncOffsetList() const { 767 // If profile is CS, the function offset section is expected to consist of 768 // sequences of contexts in pre-order layout 769 // (e.g. [A, A:1 @ B, A:1 @ B:2.3 @ C] [D, D:1 @ E]), so that when a matched 770 // context in the module is found, the profiles of all its callees are 771 // recursively loaded. A list is needed since the order of profiles matters. 772 if (ProfileIsCS) 773 return true; 774 775 // If the profile is MD5, use the map container to lookup functions in 776 // the module. A remapper has no use on MD5 names. 777 if (useMD5()) 778 return false; 779 780 // Profile is not MD5 and if a remapper is present, the remapped name of 781 // every function needed to be matched against the module, so use the list 782 // container since each entry is accessed. 783 if (Remapper) 784 return true; 785 786 // Otherwise use the map container for faster lookup. 787 // TODO: If the cardinality of the function offset section is much smaller 788 // than the number of functions in the module, using the list container can 789 // be always faster, but we need to figure out the constant factor to 790 // determine the cutoff. 791 return false; 792 } 793 794 795 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 796 if (!M) 797 return false; 798 FuncsToUse.clear(); 799 for (auto &F : *M) 800 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 801 return true; 802 } 803 804 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 805 // If there are more than one function offset section, the profile associated 806 // with the previous section has to be done reading before next one is read. 807 FuncOffsetTable.clear(); 808 FuncOffsetList.clear(); 809 810 auto Size = readNumber<uint64_t>(); 811 if (std::error_code EC = Size.getError()) 812 return EC; 813 814 bool UseFuncOffsetList = useFuncOffsetList(); 815 if (UseFuncOffsetList) 816 FuncOffsetList.reserve(*Size); 817 else 818 FuncOffsetTable.reserve(*Size); 819 820 for (uint64_t I = 0; I < *Size; ++I) { 821 auto FContextHash(readSampleContextFromTable()); 822 if (std::error_code EC = FContextHash.getError()) 823 return EC; 824 825 auto &[FContext, Hash] = *FContextHash; 826 auto Offset = readNumber<uint64_t>(); 827 if (std::error_code EC = Offset.getError()) 828 return EC; 829 830 if (UseFuncOffsetList) 831 FuncOffsetList.emplace_back(FContext, *Offset); 832 else 833 // Because Porfiles replace existing value with new value if collision 834 // happens, we also use the latest offset so that they are consistent. 835 FuncOffsetTable[Hash] = *Offset; 836 } 837 838 return sampleprof_error::success; 839 } 840 841 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 842 // Collect functions used by current module if the Reader has been 843 // given a module. 844 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 845 // which will query FunctionSamples::HasUniqSuffix, so it has to be 846 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 847 // NameTable section is read. 848 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 849 850 // When LoadFuncsToBeUsed is false, we are using LLVM tool, need to read all 851 // profiles. 852 const uint8_t *Start = Data; 853 if (!LoadFuncsToBeUsed) { 854 while (Data < End) { 855 if (std::error_code EC = readFuncProfile(Data)) 856 return EC; 857 } 858 assert(Data == End && "More data is read than expected"); 859 } else { 860 // Load function profiles on demand. 861 if (Remapper) { 862 for (auto Name : FuncsToUse) { 863 Remapper->insert(Name); 864 } 865 } 866 867 if (ProfileIsCS) { 868 assert(useFuncOffsetList()); 869 DenseSet<uint64_t> FuncGuidsToUse; 870 if (useMD5()) { 871 for (auto Name : FuncsToUse) 872 FuncGuidsToUse.insert(Function::getGUID(Name)); 873 } 874 875 // For each function in current module, load all context profiles for 876 // the function as well as their callee contexts which can help profile 877 // guided importing for ThinLTO. This can be achieved by walking 878 // through an ordered context container, where contexts are laid out 879 // as if they were walked in preorder of a context trie. While 880 // traversing the trie, a link to the highest common ancestor node is 881 // kept so that all of its decendants will be loaded. 882 const SampleContext *CommonContext = nullptr; 883 for (const auto &NameOffset : FuncOffsetList) { 884 const auto &FContext = NameOffset.first; 885 FunctionId FName = FContext.getFunction(); 886 StringRef FNameString; 887 if (!useMD5()) 888 FNameString = FName.stringRef(); 889 890 // For function in the current module, keep its farthest ancestor 891 // context. This can be used to load itself and its child and 892 // sibling contexts. 893 if ((useMD5() && FuncGuidsToUse.count(FName.getHashCode())) || 894 (!useMD5() && (FuncsToUse.count(FNameString) || 895 (Remapper && Remapper->exist(FNameString))))) { 896 if (!CommonContext || !CommonContext->isPrefixOf(FContext)) 897 CommonContext = &FContext; 898 } 899 900 if (CommonContext == &FContext || 901 (CommonContext && CommonContext->isPrefixOf(FContext))) { 902 // Load profile for the current context which originated from 903 // the common ancestor. 904 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 905 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 906 return EC; 907 } 908 } 909 } else if (useMD5()) { 910 assert(!useFuncOffsetList()); 911 for (auto Name : FuncsToUse) { 912 auto GUID = MD5Hash(Name); 913 auto iter = FuncOffsetTable.find(GUID); 914 if (iter == FuncOffsetTable.end()) 915 continue; 916 const uint8_t *FuncProfileAddr = Start + iter->second; 917 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 918 return EC; 919 } 920 } else if (Remapper) { 921 assert(useFuncOffsetList()); 922 for (auto NameOffset : FuncOffsetList) { 923 SampleContext FContext(NameOffset.first); 924 auto FuncName = FContext.getFunction(); 925 StringRef FuncNameStr = FuncName.stringRef(); 926 if (!FuncsToUse.count(FuncNameStr) && !Remapper->exist(FuncNameStr)) 927 continue; 928 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 929 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 930 return EC; 931 } 932 } else { 933 assert(!useFuncOffsetList()); 934 for (auto Name : FuncsToUse) { 935 auto iter = FuncOffsetTable.find(MD5Hash(Name)); 936 if (iter == FuncOffsetTable.end()) 937 continue; 938 const uint8_t *FuncProfileAddr = Start + iter->second; 939 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 940 return EC; 941 } 942 } 943 Data = End; 944 } 945 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 946 "Cannot have both context-sensitive and regular profile"); 947 assert((!CSProfileCount || ProfileIsCS) && 948 "Section flag should be consistent with actual profile"); 949 return sampleprof_error::success; 950 } 951 952 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 953 if (!ProfSymList) 954 ProfSymList = std::make_unique<ProfileSymbolList>(); 955 956 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 957 return EC; 958 959 Data = End; 960 return sampleprof_error::success; 961 } 962 963 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 964 const uint8_t *SecStart, const uint64_t SecSize, 965 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 966 Data = SecStart; 967 End = SecStart + SecSize; 968 auto DecompressSize = readNumber<uint64_t>(); 969 if (std::error_code EC = DecompressSize.getError()) 970 return EC; 971 DecompressBufSize = *DecompressSize; 972 973 auto CompressSize = readNumber<uint64_t>(); 974 if (std::error_code EC = CompressSize.getError()) 975 return EC; 976 977 if (!llvm::compression::zlib::isAvailable()) 978 return sampleprof_error::zlib_unavailable; 979 980 uint8_t *Buffer = Allocator.Allocate<uint8_t>(DecompressBufSize); 981 size_t UCSize = DecompressBufSize; 982 llvm::Error E = compression::zlib::decompress(ArrayRef(Data, *CompressSize), 983 Buffer, UCSize); 984 if (E) 985 return sampleprof_error::uncompress_failed; 986 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 987 return sampleprof_error::success; 988 } 989 990 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 991 const uint8_t *BufStart = 992 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 993 994 for (auto &Entry : SecHdrTable) { 995 // Skip empty section. 996 if (!Entry.Size) 997 continue; 998 999 // Skip sections without context when SkipFlatProf is true. 1000 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1001 continue; 1002 1003 const uint8_t *SecStart = BufStart + Entry.Offset; 1004 uint64_t SecSize = Entry.Size; 1005 1006 // If the section is compressed, decompress it into a buffer 1007 // DecompressBuf before reading the actual data. The pointee of 1008 // 'Data' will be changed to buffer hold by DecompressBuf 1009 // temporarily when reading the actual data. 1010 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 1011 if (isCompressed) { 1012 const uint8_t *DecompressBuf; 1013 uint64_t DecompressBufSize; 1014 if (std::error_code EC = decompressSection( 1015 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 1016 return EC; 1017 SecStart = DecompressBuf; 1018 SecSize = DecompressBufSize; 1019 } 1020 1021 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 1022 return EC; 1023 if (Data != SecStart + SecSize) 1024 return sampleprof_error::malformed; 1025 1026 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 1027 if (isCompressed) { 1028 Data = BufStart + Entry.Offset; 1029 End = BufStart + Buffer->getBufferSize(); 1030 } 1031 } 1032 1033 return sampleprof_error::success; 1034 } 1035 1036 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 1037 if (Magic == SPMagic()) 1038 return sampleprof_error::success; 1039 return sampleprof_error::bad_magic; 1040 } 1041 1042 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 1043 if (Magic == SPMagic(SPF_Ext_Binary)) 1044 return sampleprof_error::success; 1045 return sampleprof_error::bad_magic; 1046 } 1047 1048 std::error_code SampleProfileReaderBinary::readNameTable() { 1049 auto Size = readNumber<size_t>(); 1050 if (std::error_code EC = Size.getError()) 1051 return EC; 1052 1053 // Normally if useMD5 is true, the name table should have MD5 values, not 1054 // strings, however in the case that ExtBinary profile has multiple name 1055 // tables mixing string and MD5, all of them have to be normalized to use MD5, 1056 // because optimization passes can only handle either type. 1057 bool UseMD5 = useMD5(); 1058 1059 NameTable.clear(); 1060 NameTable.reserve(*Size); 1061 if (!ProfileIsCS) { 1062 MD5SampleContextTable.clear(); 1063 if (UseMD5) 1064 MD5SampleContextTable.reserve(*Size); 1065 else 1066 // If we are using strings, delay MD5 computation since only a portion of 1067 // names are used by top level functions. Use 0 to indicate MD5 value is 1068 // to be calculated as no known string has a MD5 value of 0. 1069 MD5SampleContextTable.resize(*Size); 1070 } 1071 for (size_t I = 0; I < *Size; ++I) { 1072 auto Name(readString()); 1073 if (std::error_code EC = Name.getError()) 1074 return EC; 1075 if (UseMD5) { 1076 FunctionId FID(*Name); 1077 if (!ProfileIsCS) 1078 MD5SampleContextTable.emplace_back(FID.getHashCode()); 1079 NameTable.emplace_back(FID); 1080 } else 1081 NameTable.push_back(FunctionId(*Name)); 1082 } 1083 if (!ProfileIsCS) 1084 MD5SampleContextStart = MD5SampleContextTable.data(); 1085 return sampleprof_error::success; 1086 } 1087 1088 std::error_code 1089 SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5, 1090 bool FixedLengthMD5) { 1091 if (FixedLengthMD5) { 1092 if (!IsMD5) 1093 errs() << "If FixedLengthMD5 is true, UseMD5 has to be true"; 1094 auto Size = readNumber<size_t>(); 1095 if (std::error_code EC = Size.getError()) 1096 return EC; 1097 1098 assert(Data + (*Size) * sizeof(uint64_t) == End && 1099 "Fixed length MD5 name table does not contain specified number of " 1100 "entries"); 1101 if (Data + (*Size) * sizeof(uint64_t) > End) 1102 return sampleprof_error::truncated; 1103 1104 NameTable.clear(); 1105 NameTable.reserve(*Size); 1106 for (size_t I = 0; I < *Size; ++I) { 1107 using namespace support; 1108 uint64_t FID = endian::read<uint64_t, endianness::little, unaligned>( 1109 Data + I * sizeof(uint64_t)); 1110 NameTable.emplace_back(FunctionId(FID)); 1111 } 1112 if (!ProfileIsCS) 1113 MD5SampleContextStart = reinterpret_cast<const uint64_t *>(Data); 1114 Data = Data + (*Size) * sizeof(uint64_t); 1115 return sampleprof_error::success; 1116 } 1117 1118 if (IsMD5) { 1119 assert(!FixedLengthMD5 && "FixedLengthMD5 should be unreachable here"); 1120 auto Size = readNumber<size_t>(); 1121 if (std::error_code EC = Size.getError()) 1122 return EC; 1123 1124 NameTable.clear(); 1125 NameTable.reserve(*Size); 1126 if (!ProfileIsCS) 1127 MD5SampleContextTable.resize(*Size); 1128 for (size_t I = 0; I < *Size; ++I) { 1129 auto FID = readNumber<uint64_t>(); 1130 if (std::error_code EC = FID.getError()) 1131 return EC; 1132 if (!ProfileIsCS) 1133 support::endian::write64le(&MD5SampleContextTable[I], *FID); 1134 NameTable.emplace_back(FunctionId(*FID)); 1135 } 1136 if (!ProfileIsCS) 1137 MD5SampleContextStart = MD5SampleContextTable.data(); 1138 return sampleprof_error::success; 1139 } 1140 1141 return SampleProfileReaderBinary::readNameTable(); 1142 } 1143 1144 // Read in the CS name table section, which basically contains a list of context 1145 // vectors. Each element of a context vector, aka a frame, refers to the 1146 // underlying raw function names that are stored in the name table, as well as 1147 // a callsite identifier that only makes sense for non-leaf frames. 1148 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() { 1149 auto Size = readNumber<size_t>(); 1150 if (std::error_code EC = Size.getError()) 1151 return EC; 1152 1153 CSNameTable.clear(); 1154 CSNameTable.reserve(*Size); 1155 if (ProfileIsCS) { 1156 // Delay MD5 computation of CS context until they are needed. Use 0 to 1157 // indicate MD5 value is to be calculated as no known string has a MD5 1158 // value of 0. 1159 MD5SampleContextTable.clear(); 1160 MD5SampleContextTable.resize(*Size); 1161 MD5SampleContextStart = MD5SampleContextTable.data(); 1162 } 1163 for (size_t I = 0; I < *Size; ++I) { 1164 CSNameTable.emplace_back(SampleContextFrameVector()); 1165 auto ContextSize = readNumber<uint32_t>(); 1166 if (std::error_code EC = ContextSize.getError()) 1167 return EC; 1168 for (uint32_t J = 0; J < *ContextSize; ++J) { 1169 auto FName(readStringFromTable()); 1170 if (std::error_code EC = FName.getError()) 1171 return EC; 1172 auto LineOffset = readNumber<uint64_t>(); 1173 if (std::error_code EC = LineOffset.getError()) 1174 return EC; 1175 1176 if (!isOffsetLegal(*LineOffset)) 1177 return std::error_code(); 1178 1179 auto Discriminator = readNumber<uint64_t>(); 1180 if (std::error_code EC = Discriminator.getError()) 1181 return EC; 1182 1183 CSNameTable.back().emplace_back( 1184 FName.get(), LineLocation(LineOffset.get(), Discriminator.get())); 1185 } 1186 } 1187 1188 return sampleprof_error::success; 1189 } 1190 1191 std::error_code 1192 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute, 1193 FunctionSamples *FProfile) { 1194 if (Data < End) { 1195 if (ProfileIsProbeBased) { 1196 auto Checksum = readNumber<uint64_t>(); 1197 if (std::error_code EC = Checksum.getError()) 1198 return EC; 1199 if (FProfile) 1200 FProfile->setFunctionHash(*Checksum); 1201 } 1202 1203 if (ProfileHasAttribute) { 1204 auto Attributes = readNumber<uint32_t>(); 1205 if (std::error_code EC = Attributes.getError()) 1206 return EC; 1207 if (FProfile) 1208 FProfile->getContext().setAllAttributes(*Attributes); 1209 } 1210 1211 if (!ProfileIsCS) { 1212 // Read all the attributes for inlined function calls. 1213 auto NumCallsites = readNumber<uint32_t>(); 1214 if (std::error_code EC = NumCallsites.getError()) 1215 return EC; 1216 1217 for (uint32_t J = 0; J < *NumCallsites; ++J) { 1218 auto LineOffset = readNumber<uint64_t>(); 1219 if (std::error_code EC = LineOffset.getError()) 1220 return EC; 1221 1222 auto Discriminator = readNumber<uint64_t>(); 1223 if (std::error_code EC = Discriminator.getError()) 1224 return EC; 1225 1226 auto FContextHash(readSampleContextFromTable()); 1227 if (std::error_code EC = FContextHash.getError()) 1228 return EC; 1229 1230 auto &[FContext, Hash] = *FContextHash; 1231 FunctionSamples *CalleeProfile = nullptr; 1232 if (FProfile) { 1233 CalleeProfile = const_cast<FunctionSamples *>( 1234 &FProfile->functionSamplesAt(LineLocation( 1235 *LineOffset, 1236 *Discriminator))[FContext.getFunction()]); 1237 } 1238 if (std::error_code EC = 1239 readFuncMetadata(ProfileHasAttribute, CalleeProfile)) 1240 return EC; 1241 } 1242 } 1243 } 1244 1245 return sampleprof_error::success; 1246 } 1247 1248 std::error_code 1249 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 1250 while (Data < End) { 1251 auto FContextHash(readSampleContextFromTable()); 1252 if (std::error_code EC = FContextHash.getError()) 1253 return EC; 1254 auto &[FContext, Hash] = *FContextHash; 1255 FunctionSamples *FProfile = nullptr; 1256 auto It = Profiles.find(FContext); 1257 if (It != Profiles.end()) 1258 FProfile = &It->second; 1259 1260 if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile)) 1261 return EC; 1262 } 1263 1264 assert(Data == End && "More data is read than expected"); 1265 return sampleprof_error::success; 1266 } 1267 1268 std::error_code 1269 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint64_t Idx) { 1270 SecHdrTableEntry Entry; 1271 auto Type = readUnencodedNumber<uint64_t>(); 1272 if (std::error_code EC = Type.getError()) 1273 return EC; 1274 Entry.Type = static_cast<SecType>(*Type); 1275 1276 auto Flags = readUnencodedNumber<uint64_t>(); 1277 if (std::error_code EC = Flags.getError()) 1278 return EC; 1279 Entry.Flags = *Flags; 1280 1281 auto Offset = readUnencodedNumber<uint64_t>(); 1282 if (std::error_code EC = Offset.getError()) 1283 return EC; 1284 Entry.Offset = *Offset; 1285 1286 auto Size = readUnencodedNumber<uint64_t>(); 1287 if (std::error_code EC = Size.getError()) 1288 return EC; 1289 Entry.Size = *Size; 1290 1291 Entry.LayoutIndex = Idx; 1292 SecHdrTable.push_back(std::move(Entry)); 1293 return sampleprof_error::success; 1294 } 1295 1296 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1297 auto EntryNum = readUnencodedNumber<uint64_t>(); 1298 if (std::error_code EC = EntryNum.getError()) 1299 return EC; 1300 1301 for (uint64_t i = 0; i < (*EntryNum); i++) 1302 if (std::error_code EC = readSecHdrTableEntry(i)) 1303 return EC; 1304 1305 return sampleprof_error::success; 1306 } 1307 1308 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1309 const uint8_t *BufStart = 1310 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1311 Data = BufStart; 1312 End = BufStart + Buffer->getBufferSize(); 1313 1314 if (std::error_code EC = readMagicIdent()) 1315 return EC; 1316 1317 if (std::error_code EC = readSecHdrTable()) 1318 return EC; 1319 1320 return sampleprof_error::success; 1321 } 1322 1323 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1324 uint64_t Size = 0; 1325 for (auto &Entry : SecHdrTable) { 1326 if (Entry.Type == Type) 1327 Size += Entry.Size; 1328 } 1329 return Size; 1330 } 1331 1332 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1333 // Sections in SecHdrTable is not necessarily in the same order as 1334 // sections in the profile because section like FuncOffsetTable needs 1335 // to be written after section LBRProfile but needs to be read before 1336 // section LBRProfile, so we cannot simply use the last entry in 1337 // SecHdrTable to calculate the file size. 1338 uint64_t FileSize = 0; 1339 for (auto &Entry : SecHdrTable) { 1340 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1341 } 1342 return FileSize; 1343 } 1344 1345 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1346 std::string Flags; 1347 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1348 Flags.append("{compressed,"); 1349 else 1350 Flags.append("{"); 1351 1352 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1353 Flags.append("flat,"); 1354 1355 switch (Entry.Type) { 1356 case SecNameTable: 1357 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1358 Flags.append("fixlenmd5,"); 1359 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1360 Flags.append("md5,"); 1361 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1362 Flags.append("uniq,"); 1363 break; 1364 case SecProfSummary: 1365 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1366 Flags.append("partial,"); 1367 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1368 Flags.append("context,"); 1369 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined)) 1370 Flags.append("preInlined,"); 1371 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1372 Flags.append("fs-discriminator,"); 1373 break; 1374 case SecFuncOffsetTable: 1375 if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) 1376 Flags.append("ordered,"); 1377 break; 1378 case SecFuncMetadata: 1379 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased)) 1380 Flags.append("probe,"); 1381 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute)) 1382 Flags.append("attr,"); 1383 break; 1384 default: 1385 break; 1386 } 1387 char &last = Flags.back(); 1388 if (last == ',') 1389 last = '}'; 1390 else 1391 Flags.append("}"); 1392 return Flags; 1393 } 1394 1395 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1396 uint64_t TotalSecsSize = 0; 1397 for (auto &Entry : SecHdrTable) { 1398 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1399 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1400 << "\n"; 1401 ; 1402 TotalSecsSize += Entry.Size; 1403 } 1404 uint64_t HeaderSize = SecHdrTable.front().Offset; 1405 assert(HeaderSize + TotalSecsSize == getFileSize() && 1406 "Size of 'header + sections' doesn't match the total size of profile"); 1407 1408 OS << "Header Size: " << HeaderSize << "\n"; 1409 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1410 OS << "File Size: " << getFileSize() << "\n"; 1411 return true; 1412 } 1413 1414 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1415 // Read and check the magic identifier. 1416 auto Magic = readNumber<uint64_t>(); 1417 if (std::error_code EC = Magic.getError()) 1418 return EC; 1419 else if (std::error_code EC = verifySPMagic(*Magic)) 1420 return EC; 1421 1422 // Read the version number. 1423 auto Version = readNumber<uint64_t>(); 1424 if (std::error_code EC = Version.getError()) 1425 return EC; 1426 else if (*Version != SPVersion()) 1427 return sampleprof_error::unsupported_version; 1428 1429 return sampleprof_error::success; 1430 } 1431 1432 std::error_code SampleProfileReaderBinary::readHeader() { 1433 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1434 End = Data + Buffer->getBufferSize(); 1435 1436 if (std::error_code EC = readMagicIdent()) 1437 return EC; 1438 1439 if (std::error_code EC = readSummary()) 1440 return EC; 1441 1442 if (std::error_code EC = readNameTable()) 1443 return EC; 1444 return sampleprof_error::success; 1445 } 1446 1447 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1448 std::vector<ProfileSummaryEntry> &Entries) { 1449 auto Cutoff = readNumber<uint64_t>(); 1450 if (std::error_code EC = Cutoff.getError()) 1451 return EC; 1452 1453 auto MinBlockCount = readNumber<uint64_t>(); 1454 if (std::error_code EC = MinBlockCount.getError()) 1455 return EC; 1456 1457 auto NumBlocks = readNumber<uint64_t>(); 1458 if (std::error_code EC = NumBlocks.getError()) 1459 return EC; 1460 1461 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1462 return sampleprof_error::success; 1463 } 1464 1465 std::error_code SampleProfileReaderBinary::readSummary() { 1466 auto TotalCount = readNumber<uint64_t>(); 1467 if (std::error_code EC = TotalCount.getError()) 1468 return EC; 1469 1470 auto MaxBlockCount = readNumber<uint64_t>(); 1471 if (std::error_code EC = MaxBlockCount.getError()) 1472 return EC; 1473 1474 auto MaxFunctionCount = readNumber<uint64_t>(); 1475 if (std::error_code EC = MaxFunctionCount.getError()) 1476 return EC; 1477 1478 auto NumBlocks = readNumber<uint64_t>(); 1479 if (std::error_code EC = NumBlocks.getError()) 1480 return EC; 1481 1482 auto NumFunctions = readNumber<uint64_t>(); 1483 if (std::error_code EC = NumFunctions.getError()) 1484 return EC; 1485 1486 auto NumSummaryEntries = readNumber<uint64_t>(); 1487 if (std::error_code EC = NumSummaryEntries.getError()) 1488 return EC; 1489 1490 std::vector<ProfileSummaryEntry> Entries; 1491 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1492 std::error_code EC = readSummaryEntry(Entries); 1493 if (EC != sampleprof_error::success) 1494 return EC; 1495 } 1496 Summary = std::make_unique<ProfileSummary>( 1497 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1498 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1499 1500 return sampleprof_error::success; 1501 } 1502 1503 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1504 const uint8_t *Data = 1505 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1506 uint64_t Magic = decodeULEB128(Data); 1507 return Magic == SPMagic(); 1508 } 1509 1510 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1511 const uint8_t *Data = 1512 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1513 uint64_t Magic = decodeULEB128(Data); 1514 return Magic == SPMagic(SPF_Ext_Binary); 1515 } 1516 1517 std::error_code SampleProfileReaderGCC::skipNextWord() { 1518 uint32_t dummy; 1519 if (!GcovBuffer.readInt(dummy)) 1520 return sampleprof_error::truncated; 1521 return sampleprof_error::success; 1522 } 1523 1524 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1525 if (sizeof(T) <= sizeof(uint32_t)) { 1526 uint32_t Val; 1527 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1528 return static_cast<T>(Val); 1529 } else if (sizeof(T) <= sizeof(uint64_t)) { 1530 uint64_t Val; 1531 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1532 return static_cast<T>(Val); 1533 } 1534 1535 std::error_code EC = sampleprof_error::malformed; 1536 reportError(0, EC.message()); 1537 return EC; 1538 } 1539 1540 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1541 StringRef Str; 1542 if (!GcovBuffer.readString(Str)) 1543 return sampleprof_error::truncated; 1544 return Str; 1545 } 1546 1547 std::error_code SampleProfileReaderGCC::readHeader() { 1548 // Read the magic identifier. 1549 if (!GcovBuffer.readGCDAFormat()) 1550 return sampleprof_error::unrecognized_format; 1551 1552 // Read the version number. Note - the GCC reader does not validate this 1553 // version, but the profile creator generates v704. 1554 GCOV::GCOVVersion version; 1555 if (!GcovBuffer.readGCOVVersion(version)) 1556 return sampleprof_error::unrecognized_format; 1557 1558 if (version != GCOV::V407) 1559 return sampleprof_error::unsupported_version; 1560 1561 // Skip the empty integer. 1562 if (std::error_code EC = skipNextWord()) 1563 return EC; 1564 1565 return sampleprof_error::success; 1566 } 1567 1568 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1569 uint32_t Tag; 1570 if (!GcovBuffer.readInt(Tag)) 1571 return sampleprof_error::truncated; 1572 1573 if (Tag != Expected) 1574 return sampleprof_error::malformed; 1575 1576 if (std::error_code EC = skipNextWord()) 1577 return EC; 1578 1579 return sampleprof_error::success; 1580 } 1581 1582 std::error_code SampleProfileReaderGCC::readNameTable() { 1583 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1584 return EC; 1585 1586 uint32_t Size; 1587 if (!GcovBuffer.readInt(Size)) 1588 return sampleprof_error::truncated; 1589 1590 for (uint32_t I = 0; I < Size; ++I) { 1591 StringRef Str; 1592 if (!GcovBuffer.readString(Str)) 1593 return sampleprof_error::truncated; 1594 Names.push_back(std::string(Str)); 1595 } 1596 1597 return sampleprof_error::success; 1598 } 1599 1600 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1601 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1602 return EC; 1603 1604 uint32_t NumFunctions; 1605 if (!GcovBuffer.readInt(NumFunctions)) 1606 return sampleprof_error::truncated; 1607 1608 InlineCallStack Stack; 1609 for (uint32_t I = 0; I < NumFunctions; ++I) 1610 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1611 return EC; 1612 1613 computeSummary(); 1614 return sampleprof_error::success; 1615 } 1616 1617 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1618 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1619 uint64_t HeadCount = 0; 1620 if (InlineStack.size() == 0) 1621 if (!GcovBuffer.readInt64(HeadCount)) 1622 return sampleprof_error::truncated; 1623 1624 uint32_t NameIdx; 1625 if (!GcovBuffer.readInt(NameIdx)) 1626 return sampleprof_error::truncated; 1627 1628 StringRef Name(Names[NameIdx]); 1629 1630 uint32_t NumPosCounts; 1631 if (!GcovBuffer.readInt(NumPosCounts)) 1632 return sampleprof_error::truncated; 1633 1634 uint32_t NumCallsites; 1635 if (!GcovBuffer.readInt(NumCallsites)) 1636 return sampleprof_error::truncated; 1637 1638 FunctionSamples *FProfile = nullptr; 1639 if (InlineStack.size() == 0) { 1640 // If this is a top function that we have already processed, do not 1641 // update its profile again. This happens in the presence of 1642 // function aliases. Since these aliases share the same function 1643 // body, there will be identical replicated profiles for the 1644 // original function. In this case, we simply not bother updating 1645 // the profile of the original function. 1646 FProfile = &Profiles[FunctionId(Name)]; 1647 FProfile->addHeadSamples(HeadCount); 1648 if (FProfile->getTotalSamples() > 0) 1649 Update = false; 1650 } else { 1651 // Otherwise, we are reading an inlined instance. The top of the 1652 // inline stack contains the profile of the caller. Insert this 1653 // callee in the caller's CallsiteMap. 1654 FunctionSamples *CallerProfile = InlineStack.front(); 1655 uint32_t LineOffset = Offset >> 16; 1656 uint32_t Discriminator = Offset & 0xffff; 1657 FProfile = &CallerProfile->functionSamplesAt( 1658 LineLocation(LineOffset, Discriminator))[FunctionId(Name)]; 1659 } 1660 FProfile->setFunction(FunctionId(Name)); 1661 1662 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1663 uint32_t Offset; 1664 if (!GcovBuffer.readInt(Offset)) 1665 return sampleprof_error::truncated; 1666 1667 uint32_t NumTargets; 1668 if (!GcovBuffer.readInt(NumTargets)) 1669 return sampleprof_error::truncated; 1670 1671 uint64_t Count; 1672 if (!GcovBuffer.readInt64(Count)) 1673 return sampleprof_error::truncated; 1674 1675 // The line location is encoded in the offset as: 1676 // high 16 bits: line offset to the start of the function. 1677 // low 16 bits: discriminator. 1678 uint32_t LineOffset = Offset >> 16; 1679 uint32_t Discriminator = Offset & 0xffff; 1680 1681 InlineCallStack NewStack; 1682 NewStack.push_back(FProfile); 1683 llvm::append_range(NewStack, InlineStack); 1684 if (Update) { 1685 // Walk up the inline stack, adding the samples on this line to 1686 // the total sample count of the callers in the chain. 1687 for (auto *CallerProfile : NewStack) 1688 CallerProfile->addTotalSamples(Count); 1689 1690 // Update the body samples for the current profile. 1691 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1692 } 1693 1694 // Process the list of functions called at an indirect call site. 1695 // These are all the targets that a function pointer (or virtual 1696 // function) resolved at runtime. 1697 for (uint32_t J = 0; J < NumTargets; J++) { 1698 uint32_t HistVal; 1699 if (!GcovBuffer.readInt(HistVal)) 1700 return sampleprof_error::truncated; 1701 1702 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1703 return sampleprof_error::malformed; 1704 1705 uint64_t TargetIdx; 1706 if (!GcovBuffer.readInt64(TargetIdx)) 1707 return sampleprof_error::truncated; 1708 StringRef TargetName(Names[TargetIdx]); 1709 1710 uint64_t TargetCount; 1711 if (!GcovBuffer.readInt64(TargetCount)) 1712 return sampleprof_error::truncated; 1713 1714 if (Update) 1715 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1716 FunctionId(TargetName), 1717 TargetCount); 1718 } 1719 } 1720 1721 // Process all the inlined callers into the current function. These 1722 // are all the callsites that were inlined into this function. 1723 for (uint32_t I = 0; I < NumCallsites; I++) { 1724 // The offset is encoded as: 1725 // high 16 bits: line offset to the start of the function. 1726 // low 16 bits: discriminator. 1727 uint32_t Offset; 1728 if (!GcovBuffer.readInt(Offset)) 1729 return sampleprof_error::truncated; 1730 InlineCallStack NewStack; 1731 NewStack.push_back(FProfile); 1732 llvm::append_range(NewStack, InlineStack); 1733 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1734 return EC; 1735 } 1736 1737 return sampleprof_error::success; 1738 } 1739 1740 /// Read a GCC AutoFDO profile. 1741 /// 1742 /// This format is generated by the Linux Perf conversion tool at 1743 /// https://github.com/google/autofdo. 1744 std::error_code SampleProfileReaderGCC::readImpl() { 1745 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1746 // Read the string table. 1747 if (std::error_code EC = readNameTable()) 1748 return EC; 1749 1750 // Read the source profile. 1751 if (std::error_code EC = readFunctionProfiles()) 1752 return EC; 1753 1754 return sampleprof_error::success; 1755 } 1756 1757 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1758 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1759 return Magic == "adcg*704"; 1760 } 1761 1762 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1763 // If the reader uses MD5 to represent string, we can't remap it because 1764 // we don't know what the original function names were. 1765 if (Reader.useMD5()) { 1766 Ctx.diagnose(DiagnosticInfoSampleProfile( 1767 Reader.getBuffer()->getBufferIdentifier(), 1768 "Profile data remapping cannot be applied to profile data " 1769 "using MD5 names (original mangled names are not available).", 1770 DS_Warning)); 1771 return; 1772 } 1773 1774 // CSSPGO-TODO: Remapper is not yet supported. 1775 // We will need to remap the entire context string. 1776 assert(Remappings && "should be initialized while creating remapper"); 1777 for (auto &Sample : Reader.getProfiles()) { 1778 DenseSet<FunctionId> NamesInSample; 1779 Sample.second.findAllNames(NamesInSample); 1780 for (auto &Name : NamesInSample) { 1781 StringRef NameStr = Name.stringRef(); 1782 if (auto Key = Remappings->insert(NameStr)) 1783 NameMap.insert({Key, NameStr}); 1784 } 1785 } 1786 1787 RemappingApplied = true; 1788 } 1789 1790 std::optional<StringRef> 1791 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1792 if (auto Key = Remappings->lookup(Fname)) { 1793 StringRef Result = NameMap.lookup(Key); 1794 if (!Result.empty()) 1795 return Result; 1796 } 1797 return std::nullopt; 1798 } 1799 1800 /// Prepare a memory buffer for the contents of \p Filename. 1801 /// 1802 /// \returns an error code indicating the status of the buffer. 1803 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1804 setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) { 1805 auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN() 1806 : FS.getBufferForFile(Filename); 1807 if (std::error_code EC = BufferOrErr.getError()) 1808 return EC; 1809 auto Buffer = std::move(BufferOrErr.get()); 1810 1811 return std::move(Buffer); 1812 } 1813 1814 /// Create a sample profile reader based on the format of the input file. 1815 /// 1816 /// \param Filename The file to open. 1817 /// 1818 /// \param C The LLVM context to use to emit diagnostics. 1819 /// 1820 /// \param P The FSDiscriminatorPass. 1821 /// 1822 /// \param RemapFilename The file used for profile remapping. 1823 /// 1824 /// \returns an error code indicating the status of the created reader. 1825 ErrorOr<std::unique_ptr<SampleProfileReader>> 1826 SampleProfileReader::create(StringRef Filename, LLVMContext &C, 1827 vfs::FileSystem &FS, FSDiscriminatorPass P, 1828 StringRef RemapFilename) { 1829 auto BufferOrError = setupMemoryBuffer(Filename, FS); 1830 if (std::error_code EC = BufferOrError.getError()) 1831 return EC; 1832 return create(BufferOrError.get(), C, FS, P, RemapFilename); 1833 } 1834 1835 /// Create a sample profile remapper from the given input, to remap the 1836 /// function names in the given profile data. 1837 /// 1838 /// \param Filename The file to open. 1839 /// 1840 /// \param Reader The profile reader the remapper is going to be applied to. 1841 /// 1842 /// \param C The LLVM context to use to emit diagnostics. 1843 /// 1844 /// \returns an error code indicating the status of the created reader. 1845 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1846 SampleProfileReaderItaniumRemapper::create(StringRef Filename, 1847 vfs::FileSystem &FS, 1848 SampleProfileReader &Reader, 1849 LLVMContext &C) { 1850 auto BufferOrError = setupMemoryBuffer(Filename, FS); 1851 if (std::error_code EC = BufferOrError.getError()) 1852 return EC; 1853 return create(BufferOrError.get(), Reader, C); 1854 } 1855 1856 /// Create a sample profile remapper from the given input, to remap the 1857 /// function names in the given profile data. 1858 /// 1859 /// \param B The memory buffer to create the reader from (assumes ownership). 1860 /// 1861 /// \param C The LLVM context to use to emit diagnostics. 1862 /// 1863 /// \param Reader The profile reader the remapper is going to be applied to. 1864 /// 1865 /// \returns an error code indicating the status of the created reader. 1866 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1867 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1868 SampleProfileReader &Reader, 1869 LLVMContext &C) { 1870 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1871 if (Error E = Remappings->read(*B)) { 1872 handleAllErrors( 1873 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1874 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1875 ParseError.getLineNum(), 1876 ParseError.getMessage())); 1877 }); 1878 return sampleprof_error::malformed; 1879 } 1880 1881 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1882 std::move(B), std::move(Remappings), Reader); 1883 } 1884 1885 /// Create a sample profile reader based on the format of the input data. 1886 /// 1887 /// \param B The memory buffer to create the reader from (assumes ownership). 1888 /// 1889 /// \param C The LLVM context to use to emit diagnostics. 1890 /// 1891 /// \param P The FSDiscriminatorPass. 1892 /// 1893 /// \param RemapFilename The file used for profile remapping. 1894 /// 1895 /// \returns an error code indicating the status of the created reader. 1896 ErrorOr<std::unique_ptr<SampleProfileReader>> 1897 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1898 vfs::FileSystem &FS, FSDiscriminatorPass P, 1899 StringRef RemapFilename) { 1900 std::unique_ptr<SampleProfileReader> Reader; 1901 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1902 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1903 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1904 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1905 else if (SampleProfileReaderGCC::hasFormat(*B)) 1906 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1907 else if (SampleProfileReaderText::hasFormat(*B)) 1908 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1909 else 1910 return sampleprof_error::unrecognized_format; 1911 1912 if (!RemapFilename.empty()) { 1913 auto ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1914 RemapFilename, FS, *Reader, C); 1915 if (std::error_code EC = ReaderOrErr.getError()) { 1916 std::string Msg = "Could not create remapper: " + EC.message(); 1917 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1918 return EC; 1919 } 1920 Reader->Remapper = std::move(ReaderOrErr.get()); 1921 } 1922 1923 if (std::error_code EC = Reader->readHeader()) { 1924 return EC; 1925 } 1926 1927 Reader->setDiscriminatorMaskedBitFrom(P); 1928 1929 return std::move(Reader); 1930 } 1931 1932 // For text and GCC file formats, we compute the summary after reading the 1933 // profile. Binary format has the profile summary in its header. 1934 void SampleProfileReader::computeSummary() { 1935 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1936 Summary = Builder.computeSummaryForProfiles(Profiles); 1937 } 1938