1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/ProfileSummary.h" 27 #include "llvm/ProfileData/ProfileCommon.h" 28 #include "llvm/ProfileData/SampleProf.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Compression.h" 31 #include "llvm/Support/ErrorOr.h" 32 #include "llvm/Support/LEB128.h" 33 #include "llvm/Support/LineIterator.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstddef> 39 #include <cstdint> 40 #include <limits> 41 #include <memory> 42 #include <set> 43 #include <system_error> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace sampleprof; 48 49 #define DEBUG_TYPE "samplepgo-reader" 50 51 // This internal option specifies if the profile uses FS discriminators. 52 // It only applies to text, binary and compact binary format profiles. 53 // For ext-binary format profiles, the flag is set in the summary. 54 static cl::opt<bool> ProfileIsFSDisciminator( 55 "profile-isfs", cl::Hidden, cl::init(false), 56 cl::desc("Profile uses flow sensitive discriminators")); 57 58 /// Dump the function profile for \p FName. 59 /// 60 /// \param FContext Name + context of the function to print. 61 /// \param OS Stream to emit the output to. 62 void SampleProfileReader::dumpFunctionProfile(SampleContext FContext, 63 raw_ostream &OS) { 64 OS << "Function: " << FContext.toString() << ": " << Profiles[FContext]; 65 } 66 67 /// Dump all the function profiles found on stream \p OS. 68 void SampleProfileReader::dump(raw_ostream &OS) { 69 std::vector<NameFunctionSamples> V; 70 sortFuncProfiles(Profiles, V); 71 for (const auto &I : V) 72 dumpFunctionProfile(I.first, OS); 73 } 74 75 /// Parse \p Input as function head. 76 /// 77 /// Parse one line of \p Input, and update function name in \p FName, 78 /// function's total sample count in \p NumSamples, function's entry 79 /// count in \p NumHeadSamples. 80 /// 81 /// \returns true if parsing is successful. 82 static bool ParseHead(const StringRef &Input, StringRef &FName, 83 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 84 if (Input[0] == ' ') 85 return false; 86 size_t n2 = Input.rfind(':'); 87 size_t n1 = Input.rfind(':', n2 - 1); 88 FName = Input.substr(0, n1); 89 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 90 return false; 91 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 92 return false; 93 return true; 94 } 95 96 /// Returns true if line offset \p L is legal (only has 16 bits). 97 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 98 99 /// Parse \p Input that contains metadata. 100 /// Possible metadata: 101 /// - CFG Checksum information: 102 /// !CFGChecksum: 12345 103 /// - CFG Checksum information: 104 /// !Attributes: 1 105 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 106 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 107 uint32_t &Attributes) { 108 if (Input.startswith("!CFGChecksum:")) { 109 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 110 return !CFGInfo.getAsInteger(10, FunctionHash); 111 } 112 113 if (Input.startswith("!Attributes:")) { 114 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 115 return !Attrib.getAsInteger(10, Attributes); 116 } 117 118 return false; 119 } 120 121 enum class LineType { 122 CallSiteProfile, 123 BodyProfile, 124 Metadata, 125 }; 126 127 /// Parse \p Input as line sample. 128 /// 129 /// \param Input input line. 130 /// \param LineTy Type of this line. 131 /// \param Depth the depth of the inline stack. 132 /// \param NumSamples total samples of the line/inlined callsite. 133 /// \param LineOffset line offset to the start of the function. 134 /// \param Discriminator discriminator of the line. 135 /// \param TargetCountMap map from indirect call target to count. 136 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 137 /// 138 /// returns true if parsing is successful. 139 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 140 uint64_t &NumSamples, uint32_t &LineOffset, 141 uint32_t &Discriminator, StringRef &CalleeName, 142 DenseMap<StringRef, uint64_t> &TargetCountMap, 143 uint64_t &FunctionHash, uint32_t &Attributes) { 144 for (Depth = 0; Input[Depth] == ' '; Depth++) 145 ; 146 if (Depth == 0) 147 return false; 148 149 if (Depth == 1 && Input[Depth] == '!') { 150 LineTy = LineType::Metadata; 151 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 152 } 153 154 size_t n1 = Input.find(':'); 155 StringRef Loc = Input.substr(Depth, n1 - Depth); 156 size_t n2 = Loc.find('.'); 157 if (n2 == StringRef::npos) { 158 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 159 return false; 160 Discriminator = 0; 161 } else { 162 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 163 return false; 164 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 165 return false; 166 } 167 168 StringRef Rest = Input.substr(n1 + 2); 169 if (isDigit(Rest[0])) { 170 LineTy = LineType::BodyProfile; 171 size_t n3 = Rest.find(' '); 172 if (n3 == StringRef::npos) { 173 if (Rest.getAsInteger(10, NumSamples)) 174 return false; 175 } else { 176 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 177 return false; 178 } 179 // Find call targets and their sample counts. 180 // Note: In some cases, there are symbols in the profile which are not 181 // mangled. To accommodate such cases, use colon + integer pairs as the 182 // anchor points. 183 // An example: 184 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 185 // ":1000" and ":437" are used as anchor points so the string above will 186 // be interpreted as 187 // target: _M_construct<char *> 188 // count: 1000 189 // target: string_view<std::allocator<char> > 190 // count: 437 191 while (n3 != StringRef::npos) { 192 n3 += Rest.substr(n3).find_first_not_of(' '); 193 Rest = Rest.substr(n3); 194 n3 = Rest.find_first_of(':'); 195 if (n3 == StringRef::npos || n3 == 0) 196 return false; 197 198 StringRef Target; 199 uint64_t count, n4; 200 while (true) { 201 // Get the segment after the current colon. 202 StringRef AfterColon = Rest.substr(n3 + 1); 203 // Get the target symbol before the current colon. 204 Target = Rest.substr(0, n3); 205 // Check if the word after the current colon is an integer. 206 n4 = AfterColon.find_first_of(' '); 207 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 208 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 209 if (!WordAfterColon.getAsInteger(10, count)) 210 break; 211 212 // Try to find the next colon. 213 uint64_t n5 = AfterColon.find_first_of(':'); 214 if (n5 == StringRef::npos) 215 return false; 216 n3 += n5 + 1; 217 } 218 219 // An anchor point is found. Save the {target, count} pair 220 TargetCountMap[Target] = count; 221 if (n4 == Rest.size()) 222 break; 223 // Change n3 to the next blank space after colon + integer pair. 224 n3 = n4; 225 } 226 } else { 227 LineTy = LineType::CallSiteProfile; 228 size_t n3 = Rest.find_last_of(':'); 229 CalleeName = Rest.substr(0, n3); 230 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 231 return false; 232 } 233 return true; 234 } 235 236 /// Load samples from a text file. 237 /// 238 /// See the documentation at the top of the file for an explanation of 239 /// the expected format. 240 /// 241 /// \returns true if the file was loaded successfully, false otherwise. 242 std::error_code SampleProfileReaderText::readImpl() { 243 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 244 sampleprof_error Result = sampleprof_error::success; 245 246 InlineCallStack InlineStack; 247 uint32_t ProbeProfileCount = 0; 248 249 // SeenMetadata tracks whether we have processed metadata for the current 250 // top-level function profile. 251 bool SeenMetadata = false; 252 253 ProfileIsFS = ProfileIsFSDisciminator; 254 FunctionSamples::ProfileIsFS = ProfileIsFS; 255 for (; !LineIt.is_at_eof(); ++LineIt) { 256 if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#') 257 continue; 258 // Read the header of each function. 259 // 260 // Note that for function identifiers we are actually expecting 261 // mangled names, but we may not always get them. This happens when 262 // the compiler decides not to emit the function (e.g., it was inlined 263 // and removed). In this case, the binary will not have the linkage 264 // name for the function, so the profiler will emit the function's 265 // unmangled name, which may contain characters like ':' and '>' in its 266 // name (member functions, templates, etc). 267 // 268 // The only requirement we place on the identifier, then, is that it 269 // should not begin with a number. 270 if ((*LineIt)[0] != ' ') { 271 uint64_t NumSamples, NumHeadSamples; 272 StringRef FName; 273 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 274 reportError(LineIt.line_number(), 275 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 276 return sampleprof_error::malformed; 277 } 278 SeenMetadata = false; 279 SampleContext FContext(FName, CSNameTable); 280 if (FContext.hasContext()) 281 ++CSProfileCount; 282 Profiles[FContext] = FunctionSamples(); 283 FunctionSamples &FProfile = Profiles[FContext]; 284 FProfile.setContext(FContext); 285 MergeResult(Result, FProfile.addTotalSamples(NumSamples)); 286 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); 287 InlineStack.clear(); 288 InlineStack.push_back(&FProfile); 289 } else { 290 uint64_t NumSamples; 291 StringRef FName; 292 DenseMap<StringRef, uint64_t> TargetCountMap; 293 uint32_t Depth, LineOffset, Discriminator; 294 LineType LineTy; 295 uint64_t FunctionHash = 0; 296 uint32_t Attributes = 0; 297 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 298 Discriminator, FName, TargetCountMap, FunctionHash, 299 Attributes)) { 300 reportError(LineIt.line_number(), 301 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 302 *LineIt); 303 return sampleprof_error::malformed; 304 } 305 if (SeenMetadata && LineTy != LineType::Metadata) { 306 // Metadata must be put at the end of a function profile. 307 reportError(LineIt.line_number(), 308 "Found non-metadata after metadata: " + *LineIt); 309 return sampleprof_error::malformed; 310 } 311 312 // Here we handle FS discriminators. 313 Discriminator &= getDiscriminatorMask(); 314 315 while (InlineStack.size() > Depth) { 316 InlineStack.pop_back(); 317 } 318 switch (LineTy) { 319 case LineType::CallSiteProfile: { 320 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 321 LineLocation(LineOffset, Discriminator))[std::string(FName)]; 322 FSamples.setName(FName); 323 MergeResult(Result, FSamples.addTotalSamples(NumSamples)); 324 InlineStack.push_back(&FSamples); 325 break; 326 } 327 case LineType::BodyProfile: { 328 while (InlineStack.size() > Depth) { 329 InlineStack.pop_back(); 330 } 331 FunctionSamples &FProfile = *InlineStack.back(); 332 for (const auto &name_count : TargetCountMap) { 333 MergeResult(Result, FProfile.addCalledTargetSamples( 334 LineOffset, Discriminator, name_count.first, 335 name_count.second)); 336 } 337 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, 338 NumSamples)); 339 break; 340 } 341 case LineType::Metadata: { 342 FunctionSamples &FProfile = *InlineStack.back(); 343 if (FunctionHash) { 344 FProfile.setFunctionHash(FunctionHash); 345 ++ProbeProfileCount; 346 } 347 if (Attributes) 348 FProfile.getContext().setAllAttributes(Attributes); 349 SeenMetadata = true; 350 break; 351 } 352 } 353 } 354 } 355 356 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 357 "Cannot have both context-sensitive and regular profile"); 358 ProfileIsCS = (CSProfileCount > 0); 359 assert((ProbeProfileCount == 0 || ProbeProfileCount == Profiles.size()) && 360 "Cannot have both probe-based profiles and regular profiles"); 361 ProfileIsProbeBased = (ProbeProfileCount > 0); 362 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 363 FunctionSamples::ProfileIsCS = ProfileIsCS; 364 365 if (Result == sampleprof_error::success) 366 computeSummary(); 367 368 return Result; 369 } 370 371 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 372 bool result = false; 373 374 // Check that the first non-comment line is a valid function header. 375 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 376 if (!LineIt.is_at_eof()) { 377 if ((*LineIt)[0] != ' ') { 378 uint64_t NumSamples, NumHeadSamples; 379 StringRef FName; 380 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 381 } 382 } 383 384 return result; 385 } 386 387 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 388 unsigned NumBytesRead = 0; 389 std::error_code EC; 390 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 391 392 if (Val > std::numeric_limits<T>::max()) 393 EC = sampleprof_error::malformed; 394 else if (Data + NumBytesRead > End) 395 EC = sampleprof_error::truncated; 396 else 397 EC = sampleprof_error::success; 398 399 if (EC) { 400 reportError(0, EC.message()); 401 return EC; 402 } 403 404 Data += NumBytesRead; 405 return static_cast<T>(Val); 406 } 407 408 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 409 std::error_code EC; 410 StringRef Str(reinterpret_cast<const char *>(Data)); 411 if (Data + Str.size() + 1 > End) { 412 EC = sampleprof_error::truncated; 413 reportError(0, EC.message()); 414 return EC; 415 } 416 417 Data += Str.size() + 1; 418 return Str; 419 } 420 421 template <typename T> 422 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 423 std::error_code EC; 424 425 if (Data + sizeof(T) > End) { 426 EC = sampleprof_error::truncated; 427 reportError(0, EC.message()); 428 return EC; 429 } 430 431 using namespace support; 432 T Val = endian::readNext<T, little, unaligned>(Data); 433 return Val; 434 } 435 436 template <typename T> 437 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 438 std::error_code EC; 439 auto Idx = readNumber<uint32_t>(); 440 if (std::error_code EC = Idx.getError()) 441 return EC; 442 if (*Idx >= Table.size()) 443 return sampleprof_error::truncated_name_table; 444 return *Idx; 445 } 446 447 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() { 448 auto Idx = readStringIndex(NameTable); 449 if (std::error_code EC = Idx.getError()) 450 return EC; 451 452 return NameTable[*Idx]; 453 } 454 455 ErrorOr<SampleContext> SampleProfileReaderBinary::readSampleContextFromTable() { 456 auto FName(readStringFromTable()); 457 if (std::error_code EC = FName.getError()) 458 return EC; 459 return SampleContext(*FName); 460 } 461 462 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() { 463 if (!FixedLengthMD5) 464 return SampleProfileReaderBinary::readStringFromTable(); 465 466 // read NameTable index. 467 auto Idx = readStringIndex(NameTable); 468 if (std::error_code EC = Idx.getError()) 469 return EC; 470 471 // Check whether the name to be accessed has been accessed before, 472 // if not, read it from memory directly. 473 StringRef &SR = NameTable[*Idx]; 474 if (SR.empty()) { 475 const uint8_t *SavedData = Data; 476 Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t)); 477 auto FID = readUnencodedNumber<uint64_t>(); 478 if (std::error_code EC = FID.getError()) 479 return EC; 480 // Save the string converted from uint64_t in MD5StringBuf. All the 481 // references to the name are all StringRefs refering to the string 482 // in MD5StringBuf. 483 MD5StringBuf->push_back(std::to_string(*FID)); 484 SR = MD5StringBuf->back(); 485 Data = SavedData; 486 } 487 return SR; 488 } 489 490 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() { 491 auto Idx = readStringIndex(NameTable); 492 if (std::error_code EC = Idx.getError()) 493 return EC; 494 495 return StringRef(NameTable[*Idx]); 496 } 497 498 std::error_code 499 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 500 auto NumSamples = readNumber<uint64_t>(); 501 if (std::error_code EC = NumSamples.getError()) 502 return EC; 503 FProfile.addTotalSamples(*NumSamples); 504 505 // Read the samples in the body. 506 auto NumRecords = readNumber<uint32_t>(); 507 if (std::error_code EC = NumRecords.getError()) 508 return EC; 509 510 for (uint32_t I = 0; I < *NumRecords; ++I) { 511 auto LineOffset = readNumber<uint64_t>(); 512 if (std::error_code EC = LineOffset.getError()) 513 return EC; 514 515 if (!isOffsetLegal(*LineOffset)) { 516 return std::error_code(); 517 } 518 519 auto Discriminator = readNumber<uint64_t>(); 520 if (std::error_code EC = Discriminator.getError()) 521 return EC; 522 523 auto NumSamples = readNumber<uint64_t>(); 524 if (std::error_code EC = NumSamples.getError()) 525 return EC; 526 527 auto NumCalls = readNumber<uint32_t>(); 528 if (std::error_code EC = NumCalls.getError()) 529 return EC; 530 531 // Here we handle FS discriminators: 532 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 533 534 for (uint32_t J = 0; J < *NumCalls; ++J) { 535 auto CalledFunction(readStringFromTable()); 536 if (std::error_code EC = CalledFunction.getError()) 537 return EC; 538 539 auto CalledFunctionSamples = readNumber<uint64_t>(); 540 if (std::error_code EC = CalledFunctionSamples.getError()) 541 return EC; 542 543 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 544 *CalledFunction, *CalledFunctionSamples); 545 } 546 547 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 548 } 549 550 // Read all the samples for inlined function calls. 551 auto NumCallsites = readNumber<uint32_t>(); 552 if (std::error_code EC = NumCallsites.getError()) 553 return EC; 554 555 for (uint32_t J = 0; J < *NumCallsites; ++J) { 556 auto LineOffset = readNumber<uint64_t>(); 557 if (std::error_code EC = LineOffset.getError()) 558 return EC; 559 560 auto Discriminator = readNumber<uint64_t>(); 561 if (std::error_code EC = Discriminator.getError()) 562 return EC; 563 564 auto FName(readStringFromTable()); 565 if (std::error_code EC = FName.getError()) 566 return EC; 567 568 // Here we handle FS discriminators: 569 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 570 571 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 572 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)]; 573 CalleeProfile.setName(*FName); 574 if (std::error_code EC = readProfile(CalleeProfile)) 575 return EC; 576 } 577 578 return sampleprof_error::success; 579 } 580 581 std::error_code 582 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 583 Data = Start; 584 auto NumHeadSamples = readNumber<uint64_t>(); 585 if (std::error_code EC = NumHeadSamples.getError()) 586 return EC; 587 588 ErrorOr<SampleContext> FContext(readSampleContextFromTable()); 589 if (std::error_code EC = FContext.getError()) 590 return EC; 591 592 Profiles[*FContext] = FunctionSamples(); 593 FunctionSamples &FProfile = Profiles[*FContext]; 594 FProfile.setContext(*FContext); 595 FProfile.addHeadSamples(*NumHeadSamples); 596 597 if (FContext->hasContext()) 598 CSProfileCount++; 599 600 if (std::error_code EC = readProfile(FProfile)) 601 return EC; 602 return sampleprof_error::success; 603 } 604 605 std::error_code SampleProfileReaderBinary::readImpl() { 606 ProfileIsFS = ProfileIsFSDisciminator; 607 FunctionSamples::ProfileIsFS = ProfileIsFS; 608 while (!at_eof()) { 609 if (std::error_code EC = readFuncProfile(Data)) 610 return EC; 611 } 612 613 return sampleprof_error::success; 614 } 615 616 ErrorOr<SampleContextFrames> 617 SampleProfileReaderExtBinaryBase::readContextFromTable() { 618 auto ContextIdx = readNumber<uint32_t>(); 619 if (std::error_code EC = ContextIdx.getError()) 620 return EC; 621 if (*ContextIdx >= CSNameTable->size()) 622 return sampleprof_error::truncated_name_table; 623 return (*CSNameTable)[*ContextIdx]; 624 } 625 626 ErrorOr<SampleContext> 627 SampleProfileReaderExtBinaryBase::readSampleContextFromTable() { 628 if (ProfileIsCS) { 629 auto FContext(readContextFromTable()); 630 if (std::error_code EC = FContext.getError()) 631 return EC; 632 return SampleContext(*FContext); 633 } else { 634 auto FName(readStringFromTable()); 635 if (std::error_code EC = FName.getError()) 636 return EC; 637 return SampleContext(*FName); 638 } 639 } 640 641 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 642 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 643 Data = Start; 644 End = Start + Size; 645 switch (Entry.Type) { 646 case SecProfSummary: 647 if (std::error_code EC = readSummary()) 648 return EC; 649 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 650 Summary->setPartialProfile(true); 651 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 652 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 653 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 654 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 655 break; 656 case SecNameTable: { 657 FixedLengthMD5 = 658 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 659 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 660 assert((!FixedLengthMD5 || UseMD5) && 661 "If FixedLengthMD5 is true, UseMD5 has to be true"); 662 FunctionSamples::HasUniqSuffix = 663 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 664 if (std::error_code EC = readNameTableSec(UseMD5)) 665 return EC; 666 break; 667 } 668 case SecCSNameTable: { 669 if (std::error_code EC = readCSNameTableSec()) 670 return EC; 671 break; 672 } 673 case SecLBRProfile: 674 if (std::error_code EC = readFuncProfiles()) 675 return EC; 676 break; 677 case SecFuncOffsetTable: 678 FuncOffsetsOrdered = hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered); 679 if (std::error_code EC = readFuncOffsetTable()) 680 return EC; 681 break; 682 case SecFuncMetadata: { 683 ProfileIsProbeBased = 684 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 685 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 686 bool HasAttribute = 687 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 688 if (std::error_code EC = readFuncMetadata(HasAttribute)) 689 return EC; 690 break; 691 } 692 case SecProfileSymbolList: 693 if (std::error_code EC = readProfileSymbolList()) 694 return EC; 695 break; 696 default: 697 if (std::error_code EC = readCustomSection(Entry)) 698 return EC; 699 break; 700 } 701 return sampleprof_error::success; 702 } 703 704 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 705 if (!M) 706 return false; 707 FuncsToUse.clear(); 708 for (auto &F : *M) 709 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 710 return true; 711 } 712 713 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 714 // If there are more than one FuncOffsetTable, the profile read associated 715 // with previous FuncOffsetTable has to be done before next FuncOffsetTable 716 // is read. 717 FuncOffsetTable.clear(); 718 719 auto Size = readNumber<uint64_t>(); 720 if (std::error_code EC = Size.getError()) 721 return EC; 722 723 FuncOffsetTable.reserve(*Size); 724 725 if (FuncOffsetsOrdered) { 726 OrderedFuncOffsets = 727 std::make_unique<std::vector<std::pair<SampleContext, uint64_t>>>(); 728 OrderedFuncOffsets->reserve(*Size); 729 } 730 731 for (uint32_t I = 0; I < *Size; ++I) { 732 auto FContext(readSampleContextFromTable()); 733 if (std::error_code EC = FContext.getError()) 734 return EC; 735 736 auto Offset = readNumber<uint64_t>(); 737 if (std::error_code EC = Offset.getError()) 738 return EC; 739 740 FuncOffsetTable[*FContext] = *Offset; 741 if (FuncOffsetsOrdered) 742 OrderedFuncOffsets->emplace_back(*FContext, *Offset); 743 } 744 745 return sampleprof_error::success; 746 } 747 748 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 749 // Collect functions used by current module if the Reader has been 750 // given a module. 751 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 752 // which will query FunctionSamples::HasUniqSuffix, so it has to be 753 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 754 // NameTable section is read. 755 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 756 757 // When LoadFuncsToBeUsed is false, load all the function profiles. 758 const uint8_t *Start = Data; 759 if (!LoadFuncsToBeUsed) { 760 while (Data < End) { 761 if (std::error_code EC = readFuncProfile(Data)) 762 return EC; 763 } 764 assert(Data == End && "More data is read than expected"); 765 } else { 766 // Load function profiles on demand. 767 if (Remapper) { 768 for (auto Name : FuncsToUse) { 769 Remapper->insert(Name); 770 } 771 } 772 773 if (ProfileIsCS) { 774 DenseSet<uint64_t> FuncGuidsToUse; 775 if (useMD5()) { 776 for (auto Name : FuncsToUse) 777 FuncGuidsToUse.insert(Function::getGUID(Name)); 778 } 779 780 // For each function in current module, load all context profiles for 781 // the function as well as their callee contexts which can help profile 782 // guided importing for ThinLTO. This can be achieved by walking 783 // through an ordered context container, where contexts are laid out 784 // as if they were walked in preorder of a context trie. While 785 // traversing the trie, a link to the highest common ancestor node is 786 // kept so that all of its decendants will be loaded. 787 assert(OrderedFuncOffsets.get() && 788 "func offset table should always be sorted in CS profile"); 789 const SampleContext *CommonContext = nullptr; 790 for (const auto &NameOffset : *OrderedFuncOffsets) { 791 const auto &FContext = NameOffset.first; 792 auto FName = FContext.getName(); 793 // For function in the current module, keep its farthest ancestor 794 // context. This can be used to load itself and its child and 795 // sibling contexts. 796 if ((useMD5() && FuncGuidsToUse.count(std::stoull(FName.data()))) || 797 (!useMD5() && (FuncsToUse.count(FName) || 798 (Remapper && Remapper->exist(FName))))) { 799 if (!CommonContext || !CommonContext->IsPrefixOf(FContext)) 800 CommonContext = &FContext; 801 } 802 803 if (CommonContext == &FContext || 804 (CommonContext && CommonContext->IsPrefixOf(FContext))) { 805 // Load profile for the current context which originated from 806 // the common ancestor. 807 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 808 assert(FuncProfileAddr < End && "out of LBRProfile section"); 809 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 810 return EC; 811 } 812 } 813 } else { 814 if (useMD5()) { 815 for (auto Name : FuncsToUse) { 816 auto GUID = std::to_string(MD5Hash(Name)); 817 auto iter = FuncOffsetTable.find(StringRef(GUID)); 818 if (iter == FuncOffsetTable.end()) 819 continue; 820 const uint8_t *FuncProfileAddr = Start + iter->second; 821 assert(FuncProfileAddr < End && "out of LBRProfile section"); 822 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 823 return EC; 824 } 825 } else { 826 for (auto NameOffset : FuncOffsetTable) { 827 SampleContext FContext(NameOffset.first); 828 auto FuncName = FContext.getName(); 829 if (!FuncsToUse.count(FuncName) && 830 (!Remapper || !Remapper->exist(FuncName))) 831 continue; 832 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 833 assert(FuncProfileAddr < End && "out of LBRProfile section"); 834 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 835 return EC; 836 } 837 } 838 } 839 Data = End; 840 } 841 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 842 "Cannot have both context-sensitive and regular profile"); 843 assert((!CSProfileCount || ProfileIsCS) && 844 "Section flag should be consistent with actual profile"); 845 return sampleprof_error::success; 846 } 847 848 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 849 if (!ProfSymList) 850 ProfSymList = std::make_unique<ProfileSymbolList>(); 851 852 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 853 return EC; 854 855 Data = End; 856 return sampleprof_error::success; 857 } 858 859 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 860 const uint8_t *SecStart, const uint64_t SecSize, 861 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 862 Data = SecStart; 863 End = SecStart + SecSize; 864 auto DecompressSize = readNumber<uint64_t>(); 865 if (std::error_code EC = DecompressSize.getError()) 866 return EC; 867 DecompressBufSize = *DecompressSize; 868 869 auto CompressSize = readNumber<uint64_t>(); 870 if (std::error_code EC = CompressSize.getError()) 871 return EC; 872 873 if (!llvm::zlib::isAvailable()) 874 return sampleprof_error::zlib_unavailable; 875 876 StringRef CompressedStrings(reinterpret_cast<const char *>(Data), 877 *CompressSize); 878 char *Buffer = Allocator.Allocate<char>(DecompressBufSize); 879 size_t UCSize = DecompressBufSize; 880 llvm::Error E = 881 zlib::uncompress(CompressedStrings, Buffer, UCSize); 882 if (E) 883 return sampleprof_error::uncompress_failed; 884 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 885 return sampleprof_error::success; 886 } 887 888 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 889 const uint8_t *BufStart = 890 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 891 892 for (auto &Entry : SecHdrTable) { 893 // Skip empty section. 894 if (!Entry.Size) 895 continue; 896 897 // Skip sections without context when SkipFlatProf is true. 898 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 899 continue; 900 901 const uint8_t *SecStart = BufStart + Entry.Offset; 902 uint64_t SecSize = Entry.Size; 903 904 // If the section is compressed, decompress it into a buffer 905 // DecompressBuf before reading the actual data. The pointee of 906 // 'Data' will be changed to buffer hold by DecompressBuf 907 // temporarily when reading the actual data. 908 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 909 if (isCompressed) { 910 const uint8_t *DecompressBuf; 911 uint64_t DecompressBufSize; 912 if (std::error_code EC = decompressSection( 913 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 914 return EC; 915 SecStart = DecompressBuf; 916 SecSize = DecompressBufSize; 917 } 918 919 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 920 return EC; 921 if (Data != SecStart + SecSize) 922 return sampleprof_error::malformed; 923 924 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 925 if (isCompressed) { 926 Data = BufStart + Entry.Offset; 927 End = BufStart + Buffer->getBufferSize(); 928 } 929 } 930 931 return sampleprof_error::success; 932 } 933 934 std::error_code SampleProfileReaderCompactBinary::readImpl() { 935 // Collect functions used by current module if the Reader has been 936 // given a module. 937 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 938 ProfileIsFS = ProfileIsFSDisciminator; 939 FunctionSamples::ProfileIsFS = ProfileIsFS; 940 std::vector<uint64_t> OffsetsToUse; 941 if (!LoadFuncsToBeUsed) { 942 // load all the function profiles. 943 for (auto FuncEntry : FuncOffsetTable) { 944 OffsetsToUse.push_back(FuncEntry.second); 945 } 946 } else { 947 // load function profiles on demand. 948 for (auto Name : FuncsToUse) { 949 auto GUID = std::to_string(MD5Hash(Name)); 950 auto iter = FuncOffsetTable.find(StringRef(GUID)); 951 if (iter == FuncOffsetTable.end()) 952 continue; 953 OffsetsToUse.push_back(iter->second); 954 } 955 } 956 957 for (auto Offset : OffsetsToUse) { 958 const uint8_t *SavedData = Data; 959 if (std::error_code EC = readFuncProfile( 960 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 961 Offset)) 962 return EC; 963 Data = SavedData; 964 } 965 return sampleprof_error::success; 966 } 967 968 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 969 if (Magic == SPMagic()) 970 return sampleprof_error::success; 971 return sampleprof_error::bad_magic; 972 } 973 974 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 975 if (Magic == SPMagic(SPF_Ext_Binary)) 976 return sampleprof_error::success; 977 return sampleprof_error::bad_magic; 978 } 979 980 std::error_code 981 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) { 982 if (Magic == SPMagic(SPF_Compact_Binary)) 983 return sampleprof_error::success; 984 return sampleprof_error::bad_magic; 985 } 986 987 std::error_code SampleProfileReaderBinary::readNameTable() { 988 auto Size = readNumber<uint32_t>(); 989 if (std::error_code EC = Size.getError()) 990 return EC; 991 NameTable.reserve(*Size + NameTable.size()); 992 for (uint32_t I = 0; I < *Size; ++I) { 993 auto Name(readString()); 994 if (std::error_code EC = Name.getError()) 995 return EC; 996 NameTable.push_back(*Name); 997 } 998 999 return sampleprof_error::success; 1000 } 1001 1002 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() { 1003 auto Size = readNumber<uint64_t>(); 1004 if (std::error_code EC = Size.getError()) 1005 return EC; 1006 MD5StringBuf = std::make_unique<std::vector<std::string>>(); 1007 MD5StringBuf->reserve(*Size); 1008 if (FixedLengthMD5) { 1009 // Preallocate and initialize NameTable so we can check whether a name 1010 // index has been read before by checking whether the element in the 1011 // NameTable is empty, meanwhile readStringIndex can do the boundary 1012 // check using the size of NameTable. 1013 NameTable.resize(*Size + NameTable.size()); 1014 1015 MD5NameMemStart = Data; 1016 Data = Data + (*Size) * sizeof(uint64_t); 1017 return sampleprof_error::success; 1018 } 1019 NameTable.reserve(*Size); 1020 for (uint32_t I = 0; I < *Size; ++I) { 1021 auto FID = readNumber<uint64_t>(); 1022 if (std::error_code EC = FID.getError()) 1023 return EC; 1024 MD5StringBuf->push_back(std::to_string(*FID)); 1025 // NameTable is a vector of StringRef. Here it is pushing back a 1026 // StringRef initialized with the last string in MD5stringBuf. 1027 NameTable.push_back(MD5StringBuf->back()); 1028 } 1029 return sampleprof_error::success; 1030 } 1031 1032 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) { 1033 if (IsMD5) 1034 return readMD5NameTable(); 1035 return SampleProfileReaderBinary::readNameTable(); 1036 } 1037 1038 // Read in the CS name table section, which basically contains a list of context 1039 // vectors. Each element of a context vector, aka a frame, refers to the 1040 // underlying raw function names that are stored in the name table, as well as 1041 // a callsite identifier that only makes sense for non-leaf frames. 1042 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() { 1043 auto Size = readNumber<uint32_t>(); 1044 if (std::error_code EC = Size.getError()) 1045 return EC; 1046 1047 std::vector<SampleContextFrameVector> *PNameVec = 1048 new std::vector<SampleContextFrameVector>(); 1049 PNameVec->reserve(*Size); 1050 for (uint32_t I = 0; I < *Size; ++I) { 1051 PNameVec->emplace_back(SampleContextFrameVector()); 1052 auto ContextSize = readNumber<uint32_t>(); 1053 if (std::error_code EC = ContextSize.getError()) 1054 return EC; 1055 for (uint32_t J = 0; J < *ContextSize; ++J) { 1056 auto FName(readStringFromTable()); 1057 if (std::error_code EC = FName.getError()) 1058 return EC; 1059 auto LineOffset = readNumber<uint64_t>(); 1060 if (std::error_code EC = LineOffset.getError()) 1061 return EC; 1062 1063 if (!isOffsetLegal(*LineOffset)) 1064 return std::error_code(); 1065 1066 auto Discriminator = readNumber<uint64_t>(); 1067 if (std::error_code EC = Discriminator.getError()) 1068 return EC; 1069 1070 PNameVec->back().emplace_back( 1071 FName.get(), LineLocation(LineOffset.get(), Discriminator.get())); 1072 } 1073 } 1074 1075 // From this point the underlying object of CSNameTable should be immutable. 1076 CSNameTable.reset(PNameVec); 1077 return sampleprof_error::success; 1078 } 1079 1080 std::error_code 1081 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 1082 while (Data < End) { 1083 auto FContext(readSampleContextFromTable()); 1084 if (std::error_code EC = FContext.getError()) 1085 return EC; 1086 1087 bool ProfileInMap = Profiles.count(*FContext); 1088 if (ProfileIsProbeBased) { 1089 auto Checksum = readNumber<uint64_t>(); 1090 if (std::error_code EC = Checksum.getError()) 1091 return EC; 1092 if (ProfileInMap) 1093 Profiles[*FContext].setFunctionHash(*Checksum); 1094 } 1095 1096 if (ProfileHasAttribute) { 1097 auto Attributes = readNumber<uint32_t>(); 1098 if (std::error_code EC = Attributes.getError()) 1099 return EC; 1100 if (ProfileInMap) 1101 Profiles[*FContext].getContext().setAllAttributes(*Attributes); 1102 } 1103 } 1104 1105 assert(Data == End && "More data is read than expected"); 1106 return sampleprof_error::success; 1107 } 1108 1109 std::error_code SampleProfileReaderCompactBinary::readNameTable() { 1110 auto Size = readNumber<uint64_t>(); 1111 if (std::error_code EC = Size.getError()) 1112 return EC; 1113 NameTable.reserve(*Size); 1114 for (uint32_t I = 0; I < *Size; ++I) { 1115 auto FID = readNumber<uint64_t>(); 1116 if (std::error_code EC = FID.getError()) 1117 return EC; 1118 NameTable.push_back(std::to_string(*FID)); 1119 } 1120 return sampleprof_error::success; 1121 } 1122 1123 std::error_code 1124 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) { 1125 SecHdrTableEntry Entry; 1126 auto Type = readUnencodedNumber<uint64_t>(); 1127 if (std::error_code EC = Type.getError()) 1128 return EC; 1129 Entry.Type = static_cast<SecType>(*Type); 1130 1131 auto Flags = readUnencodedNumber<uint64_t>(); 1132 if (std::error_code EC = Flags.getError()) 1133 return EC; 1134 Entry.Flags = *Flags; 1135 1136 auto Offset = readUnencodedNumber<uint64_t>(); 1137 if (std::error_code EC = Offset.getError()) 1138 return EC; 1139 Entry.Offset = *Offset; 1140 1141 auto Size = readUnencodedNumber<uint64_t>(); 1142 if (std::error_code EC = Size.getError()) 1143 return EC; 1144 Entry.Size = *Size; 1145 1146 Entry.LayoutIndex = Idx; 1147 SecHdrTable.push_back(std::move(Entry)); 1148 return sampleprof_error::success; 1149 } 1150 1151 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1152 auto EntryNum = readUnencodedNumber<uint64_t>(); 1153 if (std::error_code EC = EntryNum.getError()) 1154 return EC; 1155 1156 for (uint32_t i = 0; i < (*EntryNum); i++) 1157 if (std::error_code EC = readSecHdrTableEntry(i)) 1158 return EC; 1159 1160 return sampleprof_error::success; 1161 } 1162 1163 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1164 const uint8_t *BufStart = 1165 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1166 Data = BufStart; 1167 End = BufStart + Buffer->getBufferSize(); 1168 1169 if (std::error_code EC = readMagicIdent()) 1170 return EC; 1171 1172 if (std::error_code EC = readSecHdrTable()) 1173 return EC; 1174 1175 return sampleprof_error::success; 1176 } 1177 1178 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1179 uint64_t Size = 0; 1180 for (auto &Entry : SecHdrTable) { 1181 if (Entry.Type == Type) 1182 Size += Entry.Size; 1183 } 1184 return Size; 1185 } 1186 1187 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1188 // Sections in SecHdrTable is not necessarily in the same order as 1189 // sections in the profile because section like FuncOffsetTable needs 1190 // to be written after section LBRProfile but needs to be read before 1191 // section LBRProfile, so we cannot simply use the last entry in 1192 // SecHdrTable to calculate the file size. 1193 uint64_t FileSize = 0; 1194 for (auto &Entry : SecHdrTable) { 1195 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1196 } 1197 return FileSize; 1198 } 1199 1200 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1201 std::string Flags; 1202 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1203 Flags.append("{compressed,"); 1204 else 1205 Flags.append("{"); 1206 1207 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1208 Flags.append("flat,"); 1209 1210 switch (Entry.Type) { 1211 case SecNameTable: 1212 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1213 Flags.append("fixlenmd5,"); 1214 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1215 Flags.append("md5,"); 1216 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1217 Flags.append("uniq,"); 1218 break; 1219 case SecProfSummary: 1220 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1221 Flags.append("partial,"); 1222 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1223 Flags.append("context,"); 1224 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1225 Flags.append("fs-discriminator,"); 1226 break; 1227 case SecFuncOffsetTable: 1228 if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) 1229 Flags.append("ordered,"); 1230 break; 1231 case SecFuncMetadata: 1232 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased)) 1233 Flags.append("probe,"); 1234 if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute)) 1235 Flags.append("attr,"); 1236 break; 1237 default: 1238 break; 1239 } 1240 char &last = Flags.back(); 1241 if (last == ',') 1242 last = '}'; 1243 else 1244 Flags.append("}"); 1245 return Flags; 1246 } 1247 1248 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1249 uint64_t TotalSecsSize = 0; 1250 for (auto &Entry : SecHdrTable) { 1251 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1252 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1253 << "\n"; 1254 ; 1255 TotalSecsSize += Entry.Size; 1256 } 1257 uint64_t HeaderSize = SecHdrTable.front().Offset; 1258 assert(HeaderSize + TotalSecsSize == getFileSize() && 1259 "Size of 'header + sections' doesn't match the total size of profile"); 1260 1261 OS << "Header Size: " << HeaderSize << "\n"; 1262 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1263 OS << "File Size: " << getFileSize() << "\n"; 1264 return true; 1265 } 1266 1267 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1268 // Read and check the magic identifier. 1269 auto Magic = readNumber<uint64_t>(); 1270 if (std::error_code EC = Magic.getError()) 1271 return EC; 1272 else if (std::error_code EC = verifySPMagic(*Magic)) 1273 return EC; 1274 1275 // Read the version number. 1276 auto Version = readNumber<uint64_t>(); 1277 if (std::error_code EC = Version.getError()) 1278 return EC; 1279 else if (*Version != SPVersion()) 1280 return sampleprof_error::unsupported_version; 1281 1282 return sampleprof_error::success; 1283 } 1284 1285 std::error_code SampleProfileReaderBinary::readHeader() { 1286 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1287 End = Data + Buffer->getBufferSize(); 1288 1289 if (std::error_code EC = readMagicIdent()) 1290 return EC; 1291 1292 if (std::error_code EC = readSummary()) 1293 return EC; 1294 1295 if (std::error_code EC = readNameTable()) 1296 return EC; 1297 return sampleprof_error::success; 1298 } 1299 1300 std::error_code SampleProfileReaderCompactBinary::readHeader() { 1301 SampleProfileReaderBinary::readHeader(); 1302 if (std::error_code EC = readFuncOffsetTable()) 1303 return EC; 1304 return sampleprof_error::success; 1305 } 1306 1307 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() { 1308 auto TableOffset = readUnencodedNumber<uint64_t>(); 1309 if (std::error_code EC = TableOffset.getError()) 1310 return EC; 1311 1312 const uint8_t *SavedData = Data; 1313 const uint8_t *TableStart = 1314 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 1315 *TableOffset; 1316 Data = TableStart; 1317 1318 auto Size = readNumber<uint64_t>(); 1319 if (std::error_code EC = Size.getError()) 1320 return EC; 1321 1322 FuncOffsetTable.reserve(*Size); 1323 for (uint32_t I = 0; I < *Size; ++I) { 1324 auto FName(readStringFromTable()); 1325 if (std::error_code EC = FName.getError()) 1326 return EC; 1327 1328 auto Offset = readNumber<uint64_t>(); 1329 if (std::error_code EC = Offset.getError()) 1330 return EC; 1331 1332 FuncOffsetTable[*FName] = *Offset; 1333 } 1334 End = TableStart; 1335 Data = SavedData; 1336 return sampleprof_error::success; 1337 } 1338 1339 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() { 1340 if (!M) 1341 return false; 1342 FuncsToUse.clear(); 1343 for (auto &F : *M) 1344 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 1345 return true; 1346 } 1347 1348 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1349 std::vector<ProfileSummaryEntry> &Entries) { 1350 auto Cutoff = readNumber<uint64_t>(); 1351 if (std::error_code EC = Cutoff.getError()) 1352 return EC; 1353 1354 auto MinBlockCount = readNumber<uint64_t>(); 1355 if (std::error_code EC = MinBlockCount.getError()) 1356 return EC; 1357 1358 auto NumBlocks = readNumber<uint64_t>(); 1359 if (std::error_code EC = NumBlocks.getError()) 1360 return EC; 1361 1362 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1363 return sampleprof_error::success; 1364 } 1365 1366 std::error_code SampleProfileReaderBinary::readSummary() { 1367 auto TotalCount = readNumber<uint64_t>(); 1368 if (std::error_code EC = TotalCount.getError()) 1369 return EC; 1370 1371 auto MaxBlockCount = readNumber<uint64_t>(); 1372 if (std::error_code EC = MaxBlockCount.getError()) 1373 return EC; 1374 1375 auto MaxFunctionCount = readNumber<uint64_t>(); 1376 if (std::error_code EC = MaxFunctionCount.getError()) 1377 return EC; 1378 1379 auto NumBlocks = readNumber<uint64_t>(); 1380 if (std::error_code EC = NumBlocks.getError()) 1381 return EC; 1382 1383 auto NumFunctions = readNumber<uint64_t>(); 1384 if (std::error_code EC = NumFunctions.getError()) 1385 return EC; 1386 1387 auto NumSummaryEntries = readNumber<uint64_t>(); 1388 if (std::error_code EC = NumSummaryEntries.getError()) 1389 return EC; 1390 1391 std::vector<ProfileSummaryEntry> Entries; 1392 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1393 std::error_code EC = readSummaryEntry(Entries); 1394 if (EC != sampleprof_error::success) 1395 return EC; 1396 } 1397 Summary = std::make_unique<ProfileSummary>( 1398 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1399 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1400 1401 return sampleprof_error::success; 1402 } 1403 1404 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1405 const uint8_t *Data = 1406 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1407 uint64_t Magic = decodeULEB128(Data); 1408 return Magic == SPMagic(); 1409 } 1410 1411 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1412 const uint8_t *Data = 1413 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1414 uint64_t Magic = decodeULEB128(Data); 1415 return Magic == SPMagic(SPF_Ext_Binary); 1416 } 1417 1418 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) { 1419 const uint8_t *Data = 1420 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1421 uint64_t Magic = decodeULEB128(Data); 1422 return Magic == SPMagic(SPF_Compact_Binary); 1423 } 1424 1425 std::error_code SampleProfileReaderGCC::skipNextWord() { 1426 uint32_t dummy; 1427 if (!GcovBuffer.readInt(dummy)) 1428 return sampleprof_error::truncated; 1429 return sampleprof_error::success; 1430 } 1431 1432 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1433 if (sizeof(T) <= sizeof(uint32_t)) { 1434 uint32_t Val; 1435 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1436 return static_cast<T>(Val); 1437 } else if (sizeof(T) <= sizeof(uint64_t)) { 1438 uint64_t Val; 1439 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1440 return static_cast<T>(Val); 1441 } 1442 1443 std::error_code EC = sampleprof_error::malformed; 1444 reportError(0, EC.message()); 1445 return EC; 1446 } 1447 1448 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1449 StringRef Str; 1450 if (!GcovBuffer.readString(Str)) 1451 return sampleprof_error::truncated; 1452 return Str; 1453 } 1454 1455 std::error_code SampleProfileReaderGCC::readHeader() { 1456 // Read the magic identifier. 1457 if (!GcovBuffer.readGCDAFormat()) 1458 return sampleprof_error::unrecognized_format; 1459 1460 // Read the version number. Note - the GCC reader does not validate this 1461 // version, but the profile creator generates v704. 1462 GCOV::GCOVVersion version; 1463 if (!GcovBuffer.readGCOVVersion(version)) 1464 return sampleprof_error::unrecognized_format; 1465 1466 if (version != GCOV::V407) 1467 return sampleprof_error::unsupported_version; 1468 1469 // Skip the empty integer. 1470 if (std::error_code EC = skipNextWord()) 1471 return EC; 1472 1473 return sampleprof_error::success; 1474 } 1475 1476 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1477 uint32_t Tag; 1478 if (!GcovBuffer.readInt(Tag)) 1479 return sampleprof_error::truncated; 1480 1481 if (Tag != Expected) 1482 return sampleprof_error::malformed; 1483 1484 if (std::error_code EC = skipNextWord()) 1485 return EC; 1486 1487 return sampleprof_error::success; 1488 } 1489 1490 std::error_code SampleProfileReaderGCC::readNameTable() { 1491 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1492 return EC; 1493 1494 uint32_t Size; 1495 if (!GcovBuffer.readInt(Size)) 1496 return sampleprof_error::truncated; 1497 1498 for (uint32_t I = 0; I < Size; ++I) { 1499 StringRef Str; 1500 if (!GcovBuffer.readString(Str)) 1501 return sampleprof_error::truncated; 1502 Names.push_back(std::string(Str)); 1503 } 1504 1505 return sampleprof_error::success; 1506 } 1507 1508 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1509 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1510 return EC; 1511 1512 uint32_t NumFunctions; 1513 if (!GcovBuffer.readInt(NumFunctions)) 1514 return sampleprof_error::truncated; 1515 1516 InlineCallStack Stack; 1517 for (uint32_t I = 0; I < NumFunctions; ++I) 1518 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1519 return EC; 1520 1521 computeSummary(); 1522 return sampleprof_error::success; 1523 } 1524 1525 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1526 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1527 uint64_t HeadCount = 0; 1528 if (InlineStack.size() == 0) 1529 if (!GcovBuffer.readInt64(HeadCount)) 1530 return sampleprof_error::truncated; 1531 1532 uint32_t NameIdx; 1533 if (!GcovBuffer.readInt(NameIdx)) 1534 return sampleprof_error::truncated; 1535 1536 StringRef Name(Names[NameIdx]); 1537 1538 uint32_t NumPosCounts; 1539 if (!GcovBuffer.readInt(NumPosCounts)) 1540 return sampleprof_error::truncated; 1541 1542 uint32_t NumCallsites; 1543 if (!GcovBuffer.readInt(NumCallsites)) 1544 return sampleprof_error::truncated; 1545 1546 FunctionSamples *FProfile = nullptr; 1547 if (InlineStack.size() == 0) { 1548 // If this is a top function that we have already processed, do not 1549 // update its profile again. This happens in the presence of 1550 // function aliases. Since these aliases share the same function 1551 // body, there will be identical replicated profiles for the 1552 // original function. In this case, we simply not bother updating 1553 // the profile of the original function. 1554 FProfile = &Profiles[Name]; 1555 FProfile->addHeadSamples(HeadCount); 1556 if (FProfile->getTotalSamples() > 0) 1557 Update = false; 1558 } else { 1559 // Otherwise, we are reading an inlined instance. The top of the 1560 // inline stack contains the profile of the caller. Insert this 1561 // callee in the caller's CallsiteMap. 1562 FunctionSamples *CallerProfile = InlineStack.front(); 1563 uint32_t LineOffset = Offset >> 16; 1564 uint32_t Discriminator = Offset & 0xffff; 1565 FProfile = &CallerProfile->functionSamplesAt( 1566 LineLocation(LineOffset, Discriminator))[std::string(Name)]; 1567 } 1568 FProfile->setName(Name); 1569 1570 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1571 uint32_t Offset; 1572 if (!GcovBuffer.readInt(Offset)) 1573 return sampleprof_error::truncated; 1574 1575 uint32_t NumTargets; 1576 if (!GcovBuffer.readInt(NumTargets)) 1577 return sampleprof_error::truncated; 1578 1579 uint64_t Count; 1580 if (!GcovBuffer.readInt64(Count)) 1581 return sampleprof_error::truncated; 1582 1583 // The line location is encoded in the offset as: 1584 // high 16 bits: line offset to the start of the function. 1585 // low 16 bits: discriminator. 1586 uint32_t LineOffset = Offset >> 16; 1587 uint32_t Discriminator = Offset & 0xffff; 1588 1589 InlineCallStack NewStack; 1590 NewStack.push_back(FProfile); 1591 llvm::append_range(NewStack, InlineStack); 1592 if (Update) { 1593 // Walk up the inline stack, adding the samples on this line to 1594 // the total sample count of the callers in the chain. 1595 for (auto CallerProfile : NewStack) 1596 CallerProfile->addTotalSamples(Count); 1597 1598 // Update the body samples for the current profile. 1599 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1600 } 1601 1602 // Process the list of functions called at an indirect call site. 1603 // These are all the targets that a function pointer (or virtual 1604 // function) resolved at runtime. 1605 for (uint32_t J = 0; J < NumTargets; J++) { 1606 uint32_t HistVal; 1607 if (!GcovBuffer.readInt(HistVal)) 1608 return sampleprof_error::truncated; 1609 1610 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1611 return sampleprof_error::malformed; 1612 1613 uint64_t TargetIdx; 1614 if (!GcovBuffer.readInt64(TargetIdx)) 1615 return sampleprof_error::truncated; 1616 StringRef TargetName(Names[TargetIdx]); 1617 1618 uint64_t TargetCount; 1619 if (!GcovBuffer.readInt64(TargetCount)) 1620 return sampleprof_error::truncated; 1621 1622 if (Update) 1623 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1624 TargetName, TargetCount); 1625 } 1626 } 1627 1628 // Process all the inlined callers into the current function. These 1629 // are all the callsites that were inlined into this function. 1630 for (uint32_t I = 0; I < NumCallsites; I++) { 1631 // The offset is encoded as: 1632 // high 16 bits: line offset to the start of the function. 1633 // low 16 bits: discriminator. 1634 uint32_t Offset; 1635 if (!GcovBuffer.readInt(Offset)) 1636 return sampleprof_error::truncated; 1637 InlineCallStack NewStack; 1638 NewStack.push_back(FProfile); 1639 llvm::append_range(NewStack, InlineStack); 1640 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1641 return EC; 1642 } 1643 1644 return sampleprof_error::success; 1645 } 1646 1647 /// Read a GCC AutoFDO profile. 1648 /// 1649 /// This format is generated by the Linux Perf conversion tool at 1650 /// https://github.com/google/autofdo. 1651 std::error_code SampleProfileReaderGCC::readImpl() { 1652 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1653 // Read the string table. 1654 if (std::error_code EC = readNameTable()) 1655 return EC; 1656 1657 // Read the source profile. 1658 if (std::error_code EC = readFunctionProfiles()) 1659 return EC; 1660 1661 return sampleprof_error::success; 1662 } 1663 1664 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1665 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1666 return Magic == "adcg*704"; 1667 } 1668 1669 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1670 // If the reader uses MD5 to represent string, we can't remap it because 1671 // we don't know what the original function names were. 1672 if (Reader.useMD5()) { 1673 Ctx.diagnose(DiagnosticInfoSampleProfile( 1674 Reader.getBuffer()->getBufferIdentifier(), 1675 "Profile data remapping cannot be applied to profile data " 1676 "in compact format (original mangled names are not available).", 1677 DS_Warning)); 1678 return; 1679 } 1680 1681 // CSSPGO-TODO: Remapper is not yet supported. 1682 // We will need to remap the entire context string. 1683 assert(Remappings && "should be initialized while creating remapper"); 1684 for (auto &Sample : Reader.getProfiles()) { 1685 DenseSet<StringRef> NamesInSample; 1686 Sample.second.findAllNames(NamesInSample); 1687 for (auto &Name : NamesInSample) 1688 if (auto Key = Remappings->insert(Name)) 1689 NameMap.insert({Key, Name}); 1690 } 1691 1692 RemappingApplied = true; 1693 } 1694 1695 Optional<StringRef> 1696 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1697 if (auto Key = Remappings->lookup(Fname)) 1698 return NameMap.lookup(Key); 1699 return None; 1700 } 1701 1702 /// Prepare a memory buffer for the contents of \p Filename. 1703 /// 1704 /// \returns an error code indicating the status of the buffer. 1705 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1706 setupMemoryBuffer(const Twine &Filename) { 1707 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename, /*IsText=*/true); 1708 if (std::error_code EC = BufferOrErr.getError()) 1709 return EC; 1710 auto Buffer = std::move(BufferOrErr.get()); 1711 1712 // Sanity check the file. 1713 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max()) 1714 return sampleprof_error::too_large; 1715 1716 return std::move(Buffer); 1717 } 1718 1719 /// Create a sample profile reader based on the format of the input file. 1720 /// 1721 /// \param Filename The file to open. 1722 /// 1723 /// \param C The LLVM context to use to emit diagnostics. 1724 /// 1725 /// \param P The FSDiscriminatorPass. 1726 /// 1727 /// \param RemapFilename The file used for profile remapping. 1728 /// 1729 /// \returns an error code indicating the status of the created reader. 1730 ErrorOr<std::unique_ptr<SampleProfileReader>> 1731 SampleProfileReader::create(const std::string Filename, LLVMContext &C, 1732 FSDiscriminatorPass P, 1733 const std::string RemapFilename) { 1734 auto BufferOrError = setupMemoryBuffer(Filename); 1735 if (std::error_code EC = BufferOrError.getError()) 1736 return EC; 1737 return create(BufferOrError.get(), C, P, RemapFilename); 1738 } 1739 1740 /// Create a sample profile remapper from the given input, to remap the 1741 /// function names in the given profile data. 1742 /// 1743 /// \param Filename The file to open. 1744 /// 1745 /// \param Reader The profile reader the remapper is going to be applied to. 1746 /// 1747 /// \param C The LLVM context to use to emit diagnostics. 1748 /// 1749 /// \returns an error code indicating the status of the created reader. 1750 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1751 SampleProfileReaderItaniumRemapper::create(const std::string Filename, 1752 SampleProfileReader &Reader, 1753 LLVMContext &C) { 1754 auto BufferOrError = setupMemoryBuffer(Filename); 1755 if (std::error_code EC = BufferOrError.getError()) 1756 return EC; 1757 return create(BufferOrError.get(), Reader, C); 1758 } 1759 1760 /// Create a sample profile remapper from the given input, to remap the 1761 /// function names in the given profile data. 1762 /// 1763 /// \param B The memory buffer to create the reader from (assumes ownership). 1764 /// 1765 /// \param C The LLVM context to use to emit diagnostics. 1766 /// 1767 /// \param Reader The profile reader the remapper is going to be applied to. 1768 /// 1769 /// \returns an error code indicating the status of the created reader. 1770 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1771 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1772 SampleProfileReader &Reader, 1773 LLVMContext &C) { 1774 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1775 if (Error E = Remappings->read(*B.get())) { 1776 handleAllErrors( 1777 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1778 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1779 ParseError.getLineNum(), 1780 ParseError.getMessage())); 1781 }); 1782 return sampleprof_error::malformed; 1783 } 1784 1785 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1786 std::move(B), std::move(Remappings), Reader); 1787 } 1788 1789 /// Create a sample profile reader based on the format of the input data. 1790 /// 1791 /// \param B The memory buffer to create the reader from (assumes ownership). 1792 /// 1793 /// \param C The LLVM context to use to emit diagnostics. 1794 /// 1795 /// \param P The FSDiscriminatorPass. 1796 /// 1797 /// \param RemapFilename The file used for profile remapping. 1798 /// 1799 /// \returns an error code indicating the status of the created reader. 1800 ErrorOr<std::unique_ptr<SampleProfileReader>> 1801 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1802 FSDiscriminatorPass P, 1803 const std::string RemapFilename) { 1804 std::unique_ptr<SampleProfileReader> Reader; 1805 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1806 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1807 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1808 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1809 else if (SampleProfileReaderCompactBinary::hasFormat(*B)) 1810 Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C)); 1811 else if (SampleProfileReaderGCC::hasFormat(*B)) 1812 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1813 else if (SampleProfileReaderText::hasFormat(*B)) 1814 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1815 else 1816 return sampleprof_error::unrecognized_format; 1817 1818 if (!RemapFilename.empty()) { 1819 auto ReaderOrErr = 1820 SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C); 1821 if (std::error_code EC = ReaderOrErr.getError()) { 1822 std::string Msg = "Could not create remapper: " + EC.message(); 1823 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1824 return EC; 1825 } 1826 Reader->Remapper = std::move(ReaderOrErr.get()); 1827 } 1828 1829 FunctionSamples::Format = Reader->getFormat(); 1830 if (std::error_code EC = Reader->readHeader()) { 1831 return EC; 1832 } 1833 1834 Reader->setDiscriminatorMaskedBitFrom(P); 1835 1836 return std::move(Reader); 1837 } 1838 1839 // For text and GCC file formats, we compute the summary after reading the 1840 // profile. Binary format has the profile summary in its header. 1841 void SampleProfileReader::computeSummary() { 1842 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1843 Summary = Builder.computeSummaryForProfiles(Profiles); 1844 } 1845