1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/ProfileSummary.h" 27 #include "llvm/ProfileData/ProfileCommon.h" 28 #include "llvm/ProfileData/SampleProf.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Compression.h" 31 #include "llvm/Support/ErrorOr.h" 32 #include "llvm/Support/LEB128.h" 33 #include "llvm/Support/LineIterator.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstddef> 39 #include <cstdint> 40 #include <limits> 41 #include <memory> 42 #include <set> 43 #include <system_error> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace sampleprof; 48 49 #define DEBUG_TYPE "samplepgo-reader" 50 51 // This internal option specifies if the profile uses FS discriminators. 52 // It only applies to text, binary and compact binary format profiles. 53 // For ext-binary format profiles, the flag is set in the summary. 54 static cl::opt<bool> ProfileIsFSDisciminator( 55 "profile-isfs", cl::Hidden, cl::init(false), 56 cl::desc("Profile uses flow senstive discriminators")); 57 58 /// Dump the function profile for \p FName. 59 /// 60 /// \param FName Name of the function to print. 61 /// \param OS Stream to emit the output to. 62 void SampleProfileReader::dumpFunctionProfile(StringRef FName, 63 raw_ostream &OS) { 64 OS << "Function: " << FName << ": " << Profiles[FName]; 65 } 66 67 /// Dump all the function profiles found on stream \p OS. 68 void SampleProfileReader::dump(raw_ostream &OS) { 69 for (const auto &I : Profiles) 70 dumpFunctionProfile(I.getKey(), OS); 71 } 72 73 /// Parse \p Input as function head. 74 /// 75 /// Parse one line of \p Input, and update function name in \p FName, 76 /// function's total sample count in \p NumSamples, function's entry 77 /// count in \p NumHeadSamples. 78 /// 79 /// \returns true if parsing is successful. 80 static bool ParseHead(const StringRef &Input, StringRef &FName, 81 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 82 if (Input[0] == ' ') 83 return false; 84 size_t n2 = Input.rfind(':'); 85 size_t n1 = Input.rfind(':', n2 - 1); 86 FName = Input.substr(0, n1); 87 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 88 return false; 89 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 90 return false; 91 return true; 92 } 93 94 /// Returns true if line offset \p L is legal (only has 16 bits). 95 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 96 97 /// Parse \p Input that contains metadata. 98 /// Possible metadata: 99 /// - CFG Checksum information: 100 /// !CFGChecksum: 12345 101 /// - CFG Checksum information: 102 /// !Attributes: 1 103 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 104 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 105 uint32_t &Attributes) { 106 if (Input.startswith("!CFGChecksum:")) { 107 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 108 return !CFGInfo.getAsInteger(10, FunctionHash); 109 } 110 111 if (Input.startswith("!Attributes:")) { 112 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 113 return !Attrib.getAsInteger(10, Attributes); 114 } 115 116 return false; 117 } 118 119 enum class LineType { 120 CallSiteProfile, 121 BodyProfile, 122 Metadata, 123 }; 124 125 /// Parse \p Input as line sample. 126 /// 127 /// \param Input input line. 128 /// \param LineTy Type of this line. 129 /// \param Depth the depth of the inline stack. 130 /// \param NumSamples total samples of the line/inlined callsite. 131 /// \param LineOffset line offset to the start of the function. 132 /// \param Discriminator discriminator of the line. 133 /// \param TargetCountMap map from indirect call target to count. 134 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 135 /// 136 /// returns true if parsing is successful. 137 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 138 uint64_t &NumSamples, uint32_t &LineOffset, 139 uint32_t &Discriminator, StringRef &CalleeName, 140 DenseMap<StringRef, uint64_t> &TargetCountMap, 141 uint64_t &FunctionHash, uint32_t &Attributes) { 142 for (Depth = 0; Input[Depth] == ' '; Depth++) 143 ; 144 if (Depth == 0) 145 return false; 146 147 if (Depth == 1 && Input[Depth] == '!') { 148 LineTy = LineType::Metadata; 149 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 150 } 151 152 size_t n1 = Input.find(':'); 153 StringRef Loc = Input.substr(Depth, n1 - Depth); 154 size_t n2 = Loc.find('.'); 155 if (n2 == StringRef::npos) { 156 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 157 return false; 158 Discriminator = 0; 159 } else { 160 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 161 return false; 162 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 163 return false; 164 } 165 166 StringRef Rest = Input.substr(n1 + 2); 167 if (isDigit(Rest[0])) { 168 LineTy = LineType::BodyProfile; 169 size_t n3 = Rest.find(' '); 170 if (n3 == StringRef::npos) { 171 if (Rest.getAsInteger(10, NumSamples)) 172 return false; 173 } else { 174 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 175 return false; 176 } 177 // Find call targets and their sample counts. 178 // Note: In some cases, there are symbols in the profile which are not 179 // mangled. To accommodate such cases, use colon + integer pairs as the 180 // anchor points. 181 // An example: 182 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 183 // ":1000" and ":437" are used as anchor points so the string above will 184 // be interpreted as 185 // target: _M_construct<char *> 186 // count: 1000 187 // target: string_view<std::allocator<char> > 188 // count: 437 189 while (n3 != StringRef::npos) { 190 n3 += Rest.substr(n3).find_first_not_of(' '); 191 Rest = Rest.substr(n3); 192 n3 = Rest.find_first_of(':'); 193 if (n3 == StringRef::npos || n3 == 0) 194 return false; 195 196 StringRef Target; 197 uint64_t count, n4; 198 while (true) { 199 // Get the segment after the current colon. 200 StringRef AfterColon = Rest.substr(n3 + 1); 201 // Get the target symbol before the current colon. 202 Target = Rest.substr(0, n3); 203 // Check if the word after the current colon is an integer. 204 n4 = AfterColon.find_first_of(' '); 205 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 206 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 207 if (!WordAfterColon.getAsInteger(10, count)) 208 break; 209 210 // Try to find the next colon. 211 uint64_t n5 = AfterColon.find_first_of(':'); 212 if (n5 == StringRef::npos) 213 return false; 214 n3 += n5 + 1; 215 } 216 217 // An anchor point is found. Save the {target, count} pair 218 TargetCountMap[Target] = count; 219 if (n4 == Rest.size()) 220 break; 221 // Change n3 to the next blank space after colon + integer pair. 222 n3 = n4; 223 } 224 } else { 225 LineTy = LineType::CallSiteProfile; 226 size_t n3 = Rest.find_last_of(':'); 227 CalleeName = Rest.substr(0, n3); 228 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 229 return false; 230 } 231 return true; 232 } 233 234 /// Load samples from a text file. 235 /// 236 /// See the documentation at the top of the file for an explanation of 237 /// the expected format. 238 /// 239 /// \returns true if the file was loaded successfully, false otherwise. 240 std::error_code SampleProfileReaderText::readImpl() { 241 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 242 sampleprof_error Result = sampleprof_error::success; 243 244 InlineCallStack InlineStack; 245 uint32_t ProbeProfileCount = 0; 246 247 // SeenMetadata tracks whether we have processed metadata for the current 248 // top-level function profile. 249 bool SeenMetadata = false; 250 251 ProfileIsFS = ProfileIsFSDisciminator; 252 for (; !LineIt.is_at_eof(); ++LineIt) { 253 if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#') 254 continue; 255 // Read the header of each function. 256 // 257 // Note that for function identifiers we are actually expecting 258 // mangled names, but we may not always get them. This happens when 259 // the compiler decides not to emit the function (e.g., it was inlined 260 // and removed). In this case, the binary will not have the linkage 261 // name for the function, so the profiler will emit the function's 262 // unmangled name, which may contain characters like ':' and '>' in its 263 // name (member functions, templates, etc). 264 // 265 // The only requirement we place on the identifier, then, is that it 266 // should not begin with a number. 267 if ((*LineIt)[0] != ' ') { 268 uint64_t NumSamples, NumHeadSamples; 269 StringRef FName; 270 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 271 reportError(LineIt.line_number(), 272 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 273 return sampleprof_error::malformed; 274 } 275 SeenMetadata = false; 276 SampleContext FContext(FName); 277 if (FContext.hasContext()) 278 ++CSProfileCount; 279 Profiles[FContext] = FunctionSamples(); 280 FunctionSamples &FProfile = Profiles[FContext]; 281 FProfile.setName(FContext.getNameWithoutContext()); 282 FProfile.setContext(FContext); 283 MergeResult(Result, FProfile.addTotalSamples(NumSamples)); 284 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); 285 InlineStack.clear(); 286 InlineStack.push_back(&FProfile); 287 } else { 288 uint64_t NumSamples; 289 StringRef FName; 290 DenseMap<StringRef, uint64_t> TargetCountMap; 291 uint32_t Depth, LineOffset, Discriminator; 292 LineType LineTy; 293 uint64_t FunctionHash = 0; 294 uint32_t Attributes = 0; 295 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 296 Discriminator, FName, TargetCountMap, FunctionHash, 297 Attributes)) { 298 reportError(LineIt.line_number(), 299 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 300 *LineIt); 301 return sampleprof_error::malformed; 302 } 303 if (SeenMetadata && LineTy != LineType::Metadata) { 304 // Metadata must be put at the end of a function profile. 305 reportError(LineIt.line_number(), 306 "Found non-metadata after metadata: " + *LineIt); 307 return sampleprof_error::malformed; 308 } 309 310 // Here we handle FS discriminators. 311 Discriminator &= getDiscriminatorMask(); 312 313 while (InlineStack.size() > Depth) { 314 InlineStack.pop_back(); 315 } 316 switch (LineTy) { 317 case LineType::CallSiteProfile: { 318 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 319 LineLocation(LineOffset, Discriminator))[std::string(FName)]; 320 FSamples.setName(FName); 321 MergeResult(Result, FSamples.addTotalSamples(NumSamples)); 322 InlineStack.push_back(&FSamples); 323 break; 324 } 325 case LineType::BodyProfile: { 326 while (InlineStack.size() > Depth) { 327 InlineStack.pop_back(); 328 } 329 FunctionSamples &FProfile = *InlineStack.back(); 330 for (const auto &name_count : TargetCountMap) { 331 MergeResult(Result, FProfile.addCalledTargetSamples( 332 LineOffset, Discriminator, name_count.first, 333 name_count.second)); 334 } 335 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, 336 NumSamples)); 337 break; 338 } 339 case LineType::Metadata: { 340 FunctionSamples &FProfile = *InlineStack.back(); 341 if (FunctionHash) { 342 FProfile.setFunctionHash(FunctionHash); 343 ++ProbeProfileCount; 344 } 345 if (Attributes) 346 FProfile.getContext().setAllAttributes(Attributes); 347 SeenMetadata = true; 348 break; 349 } 350 } 351 } 352 } 353 354 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 355 "Cannot have both context-sensitive and regular profile"); 356 ProfileIsCS = (CSProfileCount > 0); 357 assert((ProbeProfileCount == 0 || ProbeProfileCount == Profiles.size()) && 358 "Cannot have both probe-based profiles and regular profiles"); 359 ProfileIsProbeBased = (ProbeProfileCount > 0); 360 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 361 FunctionSamples::ProfileIsCS = ProfileIsCS; 362 363 if (Result == sampleprof_error::success) 364 computeSummary(); 365 366 return Result; 367 } 368 369 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 370 bool result = false; 371 372 // Check that the first non-comment line is a valid function header. 373 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 374 if (!LineIt.is_at_eof()) { 375 if ((*LineIt)[0] != ' ') { 376 uint64_t NumSamples, NumHeadSamples; 377 StringRef FName; 378 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 379 } 380 } 381 382 return result; 383 } 384 385 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 386 unsigned NumBytesRead = 0; 387 std::error_code EC; 388 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 389 390 if (Val > std::numeric_limits<T>::max()) 391 EC = sampleprof_error::malformed; 392 else if (Data + NumBytesRead > End) 393 EC = sampleprof_error::truncated; 394 else 395 EC = sampleprof_error::success; 396 397 if (EC) { 398 reportError(0, EC.message()); 399 return EC; 400 } 401 402 Data += NumBytesRead; 403 return static_cast<T>(Val); 404 } 405 406 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 407 std::error_code EC; 408 StringRef Str(reinterpret_cast<const char *>(Data)); 409 if (Data + Str.size() + 1 > End) { 410 EC = sampleprof_error::truncated; 411 reportError(0, EC.message()); 412 return EC; 413 } 414 415 Data += Str.size() + 1; 416 return Str; 417 } 418 419 template <typename T> 420 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 421 std::error_code EC; 422 423 if (Data + sizeof(T) > End) { 424 EC = sampleprof_error::truncated; 425 reportError(0, EC.message()); 426 return EC; 427 } 428 429 using namespace support; 430 T Val = endian::readNext<T, little, unaligned>(Data); 431 return Val; 432 } 433 434 template <typename T> 435 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 436 std::error_code EC; 437 auto Idx = readNumber<uint32_t>(); 438 if (std::error_code EC = Idx.getError()) 439 return EC; 440 if (*Idx >= Table.size()) 441 return sampleprof_error::truncated_name_table; 442 return *Idx; 443 } 444 445 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() { 446 auto Idx = readStringIndex(NameTable); 447 if (std::error_code EC = Idx.getError()) 448 return EC; 449 450 return NameTable[*Idx]; 451 } 452 453 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() { 454 if (!FixedLengthMD5) 455 return SampleProfileReaderBinary::readStringFromTable(); 456 457 // read NameTable index. 458 auto Idx = readStringIndex(NameTable); 459 if (std::error_code EC = Idx.getError()) 460 return EC; 461 462 // Check whether the name to be accessed has been accessed before, 463 // if not, read it from memory directly. 464 StringRef &SR = NameTable[*Idx]; 465 if (SR.empty()) { 466 const uint8_t *SavedData = Data; 467 Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t)); 468 auto FID = readUnencodedNumber<uint64_t>(); 469 if (std::error_code EC = FID.getError()) 470 return EC; 471 // Save the string converted from uint64_t in MD5StringBuf. All the 472 // references to the name are all StringRefs refering to the string 473 // in MD5StringBuf. 474 MD5StringBuf->push_back(std::to_string(*FID)); 475 SR = MD5StringBuf->back(); 476 Data = SavedData; 477 } 478 return SR; 479 } 480 481 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() { 482 auto Idx = readStringIndex(NameTable); 483 if (std::error_code EC = Idx.getError()) 484 return EC; 485 486 return StringRef(NameTable[*Idx]); 487 } 488 489 std::error_code 490 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 491 auto NumSamples = readNumber<uint64_t>(); 492 if (std::error_code EC = NumSamples.getError()) 493 return EC; 494 FProfile.addTotalSamples(*NumSamples); 495 496 // Read the samples in the body. 497 auto NumRecords = readNumber<uint32_t>(); 498 if (std::error_code EC = NumRecords.getError()) 499 return EC; 500 501 for (uint32_t I = 0; I < *NumRecords; ++I) { 502 auto LineOffset = readNumber<uint64_t>(); 503 if (std::error_code EC = LineOffset.getError()) 504 return EC; 505 506 if (!isOffsetLegal(*LineOffset)) { 507 return std::error_code(); 508 } 509 510 auto Discriminator = readNumber<uint64_t>(); 511 if (std::error_code EC = Discriminator.getError()) 512 return EC; 513 514 auto NumSamples = readNumber<uint64_t>(); 515 if (std::error_code EC = NumSamples.getError()) 516 return EC; 517 518 auto NumCalls = readNumber<uint32_t>(); 519 if (std::error_code EC = NumCalls.getError()) 520 return EC; 521 522 // Here we handle FS discriminators: 523 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 524 525 for (uint32_t J = 0; J < *NumCalls; ++J) { 526 auto CalledFunction(readStringFromTable()); 527 if (std::error_code EC = CalledFunction.getError()) 528 return EC; 529 530 auto CalledFunctionSamples = readNumber<uint64_t>(); 531 if (std::error_code EC = CalledFunctionSamples.getError()) 532 return EC; 533 534 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 535 *CalledFunction, *CalledFunctionSamples); 536 } 537 538 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 539 } 540 541 // Read all the samples for inlined function calls. 542 auto NumCallsites = readNumber<uint32_t>(); 543 if (std::error_code EC = NumCallsites.getError()) 544 return EC; 545 546 for (uint32_t J = 0; J < *NumCallsites; ++J) { 547 auto LineOffset = readNumber<uint64_t>(); 548 if (std::error_code EC = LineOffset.getError()) 549 return EC; 550 551 auto Discriminator = readNumber<uint64_t>(); 552 if (std::error_code EC = Discriminator.getError()) 553 return EC; 554 555 auto FName(readStringFromTable()); 556 if (std::error_code EC = FName.getError()) 557 return EC; 558 559 // Here we handle FS discriminators: 560 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 561 562 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 563 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)]; 564 CalleeProfile.setName(*FName); 565 if (std::error_code EC = readProfile(CalleeProfile)) 566 return EC; 567 } 568 569 return sampleprof_error::success; 570 } 571 572 std::error_code 573 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 574 Data = Start; 575 auto NumHeadSamples = readNumber<uint64_t>(); 576 if (std::error_code EC = NumHeadSamples.getError()) 577 return EC; 578 579 auto FName(readStringFromTable()); 580 if (std::error_code EC = FName.getError()) 581 return EC; 582 583 SampleContext FContext(*FName); 584 Profiles[FContext] = FunctionSamples(); 585 FunctionSamples &FProfile = Profiles[FContext]; 586 FProfile.setName(FContext.getNameWithoutContext()); 587 FProfile.setContext(FContext); 588 FProfile.addHeadSamples(*NumHeadSamples); 589 590 if (FContext.hasContext()) 591 CSProfileCount++; 592 593 if (std::error_code EC = readProfile(FProfile)) 594 return EC; 595 return sampleprof_error::success; 596 } 597 598 std::error_code SampleProfileReaderBinary::readImpl() { 599 ProfileIsFS = ProfileIsFSDisciminator; 600 while (!at_eof()) { 601 if (std::error_code EC = readFuncProfile(Data)) 602 return EC; 603 } 604 605 return sampleprof_error::success; 606 } 607 608 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 609 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 610 Data = Start; 611 End = Start + Size; 612 switch (Entry.Type) { 613 case SecProfSummary: 614 if (std::error_code EC = readSummary()) 615 return EC; 616 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 617 Summary->setPartialProfile(true); 618 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 619 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 620 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 621 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 622 break; 623 case SecNameTable: { 624 FixedLengthMD5 = 625 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 626 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 627 assert((!FixedLengthMD5 || UseMD5) && 628 "If FixedLengthMD5 is true, UseMD5 has to be true"); 629 FunctionSamples::HasUniqSuffix = 630 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 631 if (std::error_code EC = readNameTableSec(UseMD5)) 632 return EC; 633 break; 634 } 635 case SecLBRProfile: 636 if (std::error_code EC = readFuncProfiles()) 637 return EC; 638 break; 639 case SecFuncOffsetTable: 640 if (std::error_code EC = readFuncOffsetTable()) 641 return EC; 642 break; 643 case SecFuncMetadata: { 644 ProfileIsProbeBased = 645 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 646 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 647 bool HasAttribute = 648 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 649 if (std::error_code EC = readFuncMetadata(HasAttribute)) 650 return EC; 651 break; 652 } 653 case SecProfileSymbolList: 654 if (std::error_code EC = readProfileSymbolList()) 655 return EC; 656 break; 657 default: 658 if (std::error_code EC = readCustomSection(Entry)) 659 return EC; 660 break; 661 } 662 return sampleprof_error::success; 663 } 664 665 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 666 if (!M) 667 return false; 668 FuncsToUse.clear(); 669 for (auto &F : *M) 670 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 671 return true; 672 } 673 674 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 675 // If there are more than one FuncOffsetTable, the profile read associated 676 // with previous FuncOffsetTable has to be done before next FuncOffsetTable 677 // is read. 678 FuncOffsetTable.clear(); 679 680 auto Size = readNumber<uint64_t>(); 681 if (std::error_code EC = Size.getError()) 682 return EC; 683 684 FuncOffsetTable.reserve(*Size); 685 for (uint32_t I = 0; I < *Size; ++I) { 686 auto FName(readStringFromTable()); 687 if (std::error_code EC = FName.getError()) 688 return EC; 689 690 auto Offset = readNumber<uint64_t>(); 691 if (std::error_code EC = Offset.getError()) 692 return EC; 693 694 FuncOffsetTable[*FName] = *Offset; 695 } 696 return sampleprof_error::success; 697 } 698 699 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 700 // Collect functions used by current module if the Reader has been 701 // given a module. 702 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 703 // which will query FunctionSamples::HasUniqSuffix, so it has to be 704 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 705 // NameTable section is read. 706 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 707 708 // When LoadFuncsToBeUsed is false, load all the function profiles. 709 const uint8_t *Start = Data; 710 if (!LoadFuncsToBeUsed) { 711 while (Data < End) { 712 if (std::error_code EC = readFuncProfile(Data)) 713 return EC; 714 } 715 assert(Data == End && "More data is read than expected"); 716 } else { 717 // Load function profiles on demand. 718 if (Remapper) { 719 for (auto Name : FuncsToUse) { 720 Remapper->insert(Name); 721 } 722 } 723 724 if (useMD5()) { 725 for (auto Name : FuncsToUse) { 726 auto GUID = std::to_string(MD5Hash(Name)); 727 auto iter = FuncOffsetTable.find(StringRef(GUID)); 728 if (iter == FuncOffsetTable.end()) 729 continue; 730 const uint8_t *FuncProfileAddr = Start + iter->second; 731 assert(FuncProfileAddr < End && "out of LBRProfile section"); 732 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 733 return EC; 734 } 735 } else if (FunctionSamples::ProfileIsCS) { 736 // Compute the ordered set of names, so we can 737 // get all context profiles under a subtree by 738 // iterating through the ordered names. 739 struct Comparer { 740 // Ignore the closing ']' when ordering context 741 bool operator()(const StringRef &L, const StringRef &R) const { 742 return L.substr(0, L.size() - 1) < R.substr(0, R.size() - 1); 743 } 744 }; 745 std::set<StringRef, Comparer> OrderedNames; 746 for (auto Name : FuncOffsetTable) { 747 OrderedNames.insert(Name.first); 748 } 749 750 // For each function in current module, load all 751 // context profiles for the function. 752 for (auto NameOffset : FuncOffsetTable) { 753 StringRef ContextName = NameOffset.first; 754 SampleContext FContext(ContextName); 755 auto FuncName = FContext.getNameWithoutContext(); 756 if (!FuncsToUse.count(FuncName) && 757 (!Remapper || !Remapper->exist(FuncName))) 758 continue; 759 760 // For each context profile we need, try to load 761 // all context profile in the subtree. This can 762 // help profile guided importing for ThinLTO. 763 auto It = OrderedNames.find(ContextName); 764 while (It != OrderedNames.end() && 765 It->startswith(ContextName.substr(0, ContextName.size() - 1))) { 766 const uint8_t *FuncProfileAddr = Start + FuncOffsetTable[*It]; 767 assert(FuncProfileAddr < End && "out of LBRProfile section"); 768 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 769 return EC; 770 // Remove loaded context profile so we won't 771 // load it repeatedly. 772 It = OrderedNames.erase(It); 773 } 774 } 775 } else { 776 for (auto NameOffset : FuncOffsetTable) { 777 SampleContext FContext(NameOffset.first); 778 auto FuncName = FContext.getNameWithoutContext(); 779 if (!FuncsToUse.count(FuncName) && 780 (!Remapper || !Remapper->exist(FuncName))) 781 continue; 782 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 783 assert(FuncProfileAddr < End && "out of LBRProfile section"); 784 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 785 return EC; 786 } 787 } 788 Data = End; 789 } 790 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 791 "Cannot have both context-sensitive and regular profile"); 792 assert(ProfileIsCS == (CSProfileCount > 0) && 793 "Section flag should be consistent with actual profile"); 794 return sampleprof_error::success; 795 } 796 797 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 798 if (!ProfSymList) 799 ProfSymList = std::make_unique<ProfileSymbolList>(); 800 801 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 802 return EC; 803 804 Data = End; 805 return sampleprof_error::success; 806 } 807 808 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 809 const uint8_t *SecStart, const uint64_t SecSize, 810 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 811 Data = SecStart; 812 End = SecStart + SecSize; 813 auto DecompressSize = readNumber<uint64_t>(); 814 if (std::error_code EC = DecompressSize.getError()) 815 return EC; 816 DecompressBufSize = *DecompressSize; 817 818 auto CompressSize = readNumber<uint64_t>(); 819 if (std::error_code EC = CompressSize.getError()) 820 return EC; 821 822 if (!llvm::zlib::isAvailable()) 823 return sampleprof_error::zlib_unavailable; 824 825 StringRef CompressedStrings(reinterpret_cast<const char *>(Data), 826 *CompressSize); 827 char *Buffer = Allocator.Allocate<char>(DecompressBufSize); 828 size_t UCSize = DecompressBufSize; 829 llvm::Error E = 830 zlib::uncompress(CompressedStrings, Buffer, UCSize); 831 if (E) 832 return sampleprof_error::uncompress_failed; 833 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 834 return sampleprof_error::success; 835 } 836 837 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 838 const uint8_t *BufStart = 839 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 840 841 for (auto &Entry : SecHdrTable) { 842 // Skip empty section. 843 if (!Entry.Size) 844 continue; 845 846 // Skip sections without context when SkipFlatProf is true. 847 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 848 continue; 849 850 const uint8_t *SecStart = BufStart + Entry.Offset; 851 uint64_t SecSize = Entry.Size; 852 853 // If the section is compressed, decompress it into a buffer 854 // DecompressBuf before reading the actual data. The pointee of 855 // 'Data' will be changed to buffer hold by DecompressBuf 856 // temporarily when reading the actual data. 857 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 858 if (isCompressed) { 859 const uint8_t *DecompressBuf; 860 uint64_t DecompressBufSize; 861 if (std::error_code EC = decompressSection( 862 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 863 return EC; 864 SecStart = DecompressBuf; 865 SecSize = DecompressBufSize; 866 } 867 868 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 869 return EC; 870 if (Data != SecStart + SecSize) 871 return sampleprof_error::malformed; 872 873 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 874 if (isCompressed) { 875 Data = BufStart + Entry.Offset; 876 End = BufStart + Buffer->getBufferSize(); 877 } 878 } 879 880 return sampleprof_error::success; 881 } 882 883 std::error_code SampleProfileReaderCompactBinary::readImpl() { 884 // Collect functions used by current module if the Reader has been 885 // given a module. 886 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 887 ProfileIsFS = ProfileIsFSDisciminator; 888 std::vector<uint64_t> OffsetsToUse; 889 if (!LoadFuncsToBeUsed) { 890 // load all the function profiles. 891 for (auto FuncEntry : FuncOffsetTable) { 892 OffsetsToUse.push_back(FuncEntry.second); 893 } 894 } else { 895 // load function profiles on demand. 896 for (auto Name : FuncsToUse) { 897 auto GUID = std::to_string(MD5Hash(Name)); 898 auto iter = FuncOffsetTable.find(StringRef(GUID)); 899 if (iter == FuncOffsetTable.end()) 900 continue; 901 OffsetsToUse.push_back(iter->second); 902 } 903 } 904 905 for (auto Offset : OffsetsToUse) { 906 const uint8_t *SavedData = Data; 907 if (std::error_code EC = readFuncProfile( 908 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 909 Offset)) 910 return EC; 911 Data = SavedData; 912 } 913 return sampleprof_error::success; 914 } 915 916 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 917 if (Magic == SPMagic()) 918 return sampleprof_error::success; 919 return sampleprof_error::bad_magic; 920 } 921 922 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 923 if (Magic == SPMagic(SPF_Ext_Binary)) 924 return sampleprof_error::success; 925 return sampleprof_error::bad_magic; 926 } 927 928 std::error_code 929 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) { 930 if (Magic == SPMagic(SPF_Compact_Binary)) 931 return sampleprof_error::success; 932 return sampleprof_error::bad_magic; 933 } 934 935 std::error_code SampleProfileReaderBinary::readNameTable() { 936 auto Size = readNumber<uint32_t>(); 937 if (std::error_code EC = Size.getError()) 938 return EC; 939 NameTable.reserve(*Size + NameTable.size()); 940 for (uint32_t I = 0; I < *Size; ++I) { 941 auto Name(readString()); 942 if (std::error_code EC = Name.getError()) 943 return EC; 944 NameTable.push_back(*Name); 945 } 946 947 return sampleprof_error::success; 948 } 949 950 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() { 951 auto Size = readNumber<uint64_t>(); 952 if (std::error_code EC = Size.getError()) 953 return EC; 954 MD5StringBuf = std::make_unique<std::vector<std::string>>(); 955 MD5StringBuf->reserve(*Size); 956 if (FixedLengthMD5) { 957 // Preallocate and initialize NameTable so we can check whether a name 958 // index has been read before by checking whether the element in the 959 // NameTable is empty, meanwhile readStringIndex can do the boundary 960 // check using the size of NameTable. 961 NameTable.resize(*Size + NameTable.size()); 962 963 MD5NameMemStart = Data; 964 Data = Data + (*Size) * sizeof(uint64_t); 965 return sampleprof_error::success; 966 } 967 NameTable.reserve(*Size); 968 for (uint32_t I = 0; I < *Size; ++I) { 969 auto FID = readNumber<uint64_t>(); 970 if (std::error_code EC = FID.getError()) 971 return EC; 972 MD5StringBuf->push_back(std::to_string(*FID)); 973 // NameTable is a vector of StringRef. Here it is pushing back a 974 // StringRef initialized with the last string in MD5stringBuf. 975 NameTable.push_back(MD5StringBuf->back()); 976 } 977 return sampleprof_error::success; 978 } 979 980 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) { 981 if (IsMD5) 982 return readMD5NameTable(); 983 return SampleProfileReaderBinary::readNameTable(); 984 } 985 986 std::error_code 987 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 988 while (Data < End) { 989 auto FName(readStringFromTable()); 990 if (std::error_code EC = FName.getError()) 991 return EC; 992 993 SampleContext FContext(*FName); 994 bool ProfileInMap = Profiles.count(FContext); 995 996 if (ProfileIsProbeBased) { 997 auto Checksum = readNumber<uint64_t>(); 998 if (std::error_code EC = Checksum.getError()) 999 return EC; 1000 if (ProfileInMap) 1001 Profiles[FContext].setFunctionHash(*Checksum); 1002 } 1003 1004 if (ProfileHasAttribute) { 1005 auto Attributes = readNumber<uint32_t>(); 1006 if (std::error_code EC = Attributes.getError()) 1007 return EC; 1008 if (ProfileInMap) 1009 Profiles[FContext].getContext().setAllAttributes(*Attributes); 1010 } 1011 } 1012 1013 assert(Data == End && "More data is read than expected"); 1014 return sampleprof_error::success; 1015 } 1016 1017 std::error_code SampleProfileReaderCompactBinary::readNameTable() { 1018 auto Size = readNumber<uint64_t>(); 1019 if (std::error_code EC = Size.getError()) 1020 return EC; 1021 NameTable.reserve(*Size); 1022 for (uint32_t I = 0; I < *Size; ++I) { 1023 auto FID = readNumber<uint64_t>(); 1024 if (std::error_code EC = FID.getError()) 1025 return EC; 1026 NameTable.push_back(std::to_string(*FID)); 1027 } 1028 return sampleprof_error::success; 1029 } 1030 1031 std::error_code 1032 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) { 1033 SecHdrTableEntry Entry; 1034 auto Type = readUnencodedNumber<uint64_t>(); 1035 if (std::error_code EC = Type.getError()) 1036 return EC; 1037 Entry.Type = static_cast<SecType>(*Type); 1038 1039 auto Flags = readUnencodedNumber<uint64_t>(); 1040 if (std::error_code EC = Flags.getError()) 1041 return EC; 1042 Entry.Flags = *Flags; 1043 1044 auto Offset = readUnencodedNumber<uint64_t>(); 1045 if (std::error_code EC = Offset.getError()) 1046 return EC; 1047 Entry.Offset = *Offset; 1048 1049 auto Size = readUnencodedNumber<uint64_t>(); 1050 if (std::error_code EC = Size.getError()) 1051 return EC; 1052 Entry.Size = *Size; 1053 1054 Entry.LayoutIndex = Idx; 1055 SecHdrTable.push_back(std::move(Entry)); 1056 return sampleprof_error::success; 1057 } 1058 1059 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1060 auto EntryNum = readUnencodedNumber<uint64_t>(); 1061 if (std::error_code EC = EntryNum.getError()) 1062 return EC; 1063 1064 for (uint32_t i = 0; i < (*EntryNum); i++) 1065 if (std::error_code EC = readSecHdrTableEntry(i)) 1066 return EC; 1067 1068 return sampleprof_error::success; 1069 } 1070 1071 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1072 const uint8_t *BufStart = 1073 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1074 Data = BufStart; 1075 End = BufStart + Buffer->getBufferSize(); 1076 1077 if (std::error_code EC = readMagicIdent()) 1078 return EC; 1079 1080 if (std::error_code EC = readSecHdrTable()) 1081 return EC; 1082 1083 return sampleprof_error::success; 1084 } 1085 1086 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1087 uint64_t Size = 0; 1088 for (auto &Entry : SecHdrTable) { 1089 if (Entry.Type == Type) 1090 Size += Entry.Size; 1091 } 1092 return Size; 1093 } 1094 1095 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1096 // Sections in SecHdrTable is not necessarily in the same order as 1097 // sections in the profile because section like FuncOffsetTable needs 1098 // to be written after section LBRProfile but needs to be read before 1099 // section LBRProfile, so we cannot simply use the last entry in 1100 // SecHdrTable to calculate the file size. 1101 uint64_t FileSize = 0; 1102 for (auto &Entry : SecHdrTable) { 1103 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1104 } 1105 return FileSize; 1106 } 1107 1108 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1109 std::string Flags; 1110 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1111 Flags.append("{compressed,"); 1112 else 1113 Flags.append("{"); 1114 1115 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1116 Flags.append("flat,"); 1117 1118 switch (Entry.Type) { 1119 case SecNameTable: 1120 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1121 Flags.append("fixlenmd5,"); 1122 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1123 Flags.append("md5,"); 1124 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1125 Flags.append("uniq,"); 1126 break; 1127 case SecProfSummary: 1128 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1129 Flags.append("partial,"); 1130 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1131 Flags.append("context,"); 1132 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1133 Flags.append("fs-discriminator,"); 1134 break; 1135 default: 1136 break; 1137 } 1138 char &last = Flags.back(); 1139 if (last == ',') 1140 last = '}'; 1141 else 1142 Flags.append("}"); 1143 return Flags; 1144 } 1145 1146 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1147 uint64_t TotalSecsSize = 0; 1148 for (auto &Entry : SecHdrTable) { 1149 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1150 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1151 << "\n"; 1152 ; 1153 TotalSecsSize += Entry.Size; 1154 } 1155 uint64_t HeaderSize = SecHdrTable.front().Offset; 1156 assert(HeaderSize + TotalSecsSize == getFileSize() && 1157 "Size of 'header + sections' doesn't match the total size of profile"); 1158 1159 OS << "Header Size: " << HeaderSize << "\n"; 1160 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1161 OS << "File Size: " << getFileSize() << "\n"; 1162 return true; 1163 } 1164 1165 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1166 // Read and check the magic identifier. 1167 auto Magic = readNumber<uint64_t>(); 1168 if (std::error_code EC = Magic.getError()) 1169 return EC; 1170 else if (std::error_code EC = verifySPMagic(*Magic)) 1171 return EC; 1172 1173 // Read the version number. 1174 auto Version = readNumber<uint64_t>(); 1175 if (std::error_code EC = Version.getError()) 1176 return EC; 1177 else if (*Version != SPVersion()) 1178 return sampleprof_error::unsupported_version; 1179 1180 return sampleprof_error::success; 1181 } 1182 1183 std::error_code SampleProfileReaderBinary::readHeader() { 1184 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1185 End = Data + Buffer->getBufferSize(); 1186 1187 if (std::error_code EC = readMagicIdent()) 1188 return EC; 1189 1190 if (std::error_code EC = readSummary()) 1191 return EC; 1192 1193 if (std::error_code EC = readNameTable()) 1194 return EC; 1195 return sampleprof_error::success; 1196 } 1197 1198 std::error_code SampleProfileReaderCompactBinary::readHeader() { 1199 SampleProfileReaderBinary::readHeader(); 1200 if (std::error_code EC = readFuncOffsetTable()) 1201 return EC; 1202 return sampleprof_error::success; 1203 } 1204 1205 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() { 1206 auto TableOffset = readUnencodedNumber<uint64_t>(); 1207 if (std::error_code EC = TableOffset.getError()) 1208 return EC; 1209 1210 const uint8_t *SavedData = Data; 1211 const uint8_t *TableStart = 1212 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 1213 *TableOffset; 1214 Data = TableStart; 1215 1216 auto Size = readNumber<uint64_t>(); 1217 if (std::error_code EC = Size.getError()) 1218 return EC; 1219 1220 FuncOffsetTable.reserve(*Size); 1221 for (uint32_t I = 0; I < *Size; ++I) { 1222 auto FName(readStringFromTable()); 1223 if (std::error_code EC = FName.getError()) 1224 return EC; 1225 1226 auto Offset = readNumber<uint64_t>(); 1227 if (std::error_code EC = Offset.getError()) 1228 return EC; 1229 1230 FuncOffsetTable[*FName] = *Offset; 1231 } 1232 End = TableStart; 1233 Data = SavedData; 1234 return sampleprof_error::success; 1235 } 1236 1237 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() { 1238 if (!M) 1239 return false; 1240 FuncsToUse.clear(); 1241 for (auto &F : *M) 1242 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 1243 return true; 1244 } 1245 1246 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1247 std::vector<ProfileSummaryEntry> &Entries) { 1248 auto Cutoff = readNumber<uint64_t>(); 1249 if (std::error_code EC = Cutoff.getError()) 1250 return EC; 1251 1252 auto MinBlockCount = readNumber<uint64_t>(); 1253 if (std::error_code EC = MinBlockCount.getError()) 1254 return EC; 1255 1256 auto NumBlocks = readNumber<uint64_t>(); 1257 if (std::error_code EC = NumBlocks.getError()) 1258 return EC; 1259 1260 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1261 return sampleprof_error::success; 1262 } 1263 1264 std::error_code SampleProfileReaderBinary::readSummary() { 1265 auto TotalCount = readNumber<uint64_t>(); 1266 if (std::error_code EC = TotalCount.getError()) 1267 return EC; 1268 1269 auto MaxBlockCount = readNumber<uint64_t>(); 1270 if (std::error_code EC = MaxBlockCount.getError()) 1271 return EC; 1272 1273 auto MaxFunctionCount = readNumber<uint64_t>(); 1274 if (std::error_code EC = MaxFunctionCount.getError()) 1275 return EC; 1276 1277 auto NumBlocks = readNumber<uint64_t>(); 1278 if (std::error_code EC = NumBlocks.getError()) 1279 return EC; 1280 1281 auto NumFunctions = readNumber<uint64_t>(); 1282 if (std::error_code EC = NumFunctions.getError()) 1283 return EC; 1284 1285 auto NumSummaryEntries = readNumber<uint64_t>(); 1286 if (std::error_code EC = NumSummaryEntries.getError()) 1287 return EC; 1288 1289 std::vector<ProfileSummaryEntry> Entries; 1290 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1291 std::error_code EC = readSummaryEntry(Entries); 1292 if (EC != sampleprof_error::success) 1293 return EC; 1294 } 1295 Summary = std::make_unique<ProfileSummary>( 1296 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1297 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1298 1299 return sampleprof_error::success; 1300 } 1301 1302 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1303 const uint8_t *Data = 1304 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1305 uint64_t Magic = decodeULEB128(Data); 1306 return Magic == SPMagic(); 1307 } 1308 1309 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1310 const uint8_t *Data = 1311 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1312 uint64_t Magic = decodeULEB128(Data); 1313 return Magic == SPMagic(SPF_Ext_Binary); 1314 } 1315 1316 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) { 1317 const uint8_t *Data = 1318 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1319 uint64_t Magic = decodeULEB128(Data); 1320 return Magic == SPMagic(SPF_Compact_Binary); 1321 } 1322 1323 std::error_code SampleProfileReaderGCC::skipNextWord() { 1324 uint32_t dummy; 1325 if (!GcovBuffer.readInt(dummy)) 1326 return sampleprof_error::truncated; 1327 return sampleprof_error::success; 1328 } 1329 1330 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1331 if (sizeof(T) <= sizeof(uint32_t)) { 1332 uint32_t Val; 1333 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1334 return static_cast<T>(Val); 1335 } else if (sizeof(T) <= sizeof(uint64_t)) { 1336 uint64_t Val; 1337 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1338 return static_cast<T>(Val); 1339 } 1340 1341 std::error_code EC = sampleprof_error::malformed; 1342 reportError(0, EC.message()); 1343 return EC; 1344 } 1345 1346 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1347 StringRef Str; 1348 if (!GcovBuffer.readString(Str)) 1349 return sampleprof_error::truncated; 1350 return Str; 1351 } 1352 1353 std::error_code SampleProfileReaderGCC::readHeader() { 1354 // Read the magic identifier. 1355 if (!GcovBuffer.readGCDAFormat()) 1356 return sampleprof_error::unrecognized_format; 1357 1358 // Read the version number. Note - the GCC reader does not validate this 1359 // version, but the profile creator generates v704. 1360 GCOV::GCOVVersion version; 1361 if (!GcovBuffer.readGCOVVersion(version)) 1362 return sampleprof_error::unrecognized_format; 1363 1364 if (version != GCOV::V407) 1365 return sampleprof_error::unsupported_version; 1366 1367 // Skip the empty integer. 1368 if (std::error_code EC = skipNextWord()) 1369 return EC; 1370 1371 return sampleprof_error::success; 1372 } 1373 1374 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1375 uint32_t Tag; 1376 if (!GcovBuffer.readInt(Tag)) 1377 return sampleprof_error::truncated; 1378 1379 if (Tag != Expected) 1380 return sampleprof_error::malformed; 1381 1382 if (std::error_code EC = skipNextWord()) 1383 return EC; 1384 1385 return sampleprof_error::success; 1386 } 1387 1388 std::error_code SampleProfileReaderGCC::readNameTable() { 1389 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1390 return EC; 1391 1392 uint32_t Size; 1393 if (!GcovBuffer.readInt(Size)) 1394 return sampleprof_error::truncated; 1395 1396 for (uint32_t I = 0; I < Size; ++I) { 1397 StringRef Str; 1398 if (!GcovBuffer.readString(Str)) 1399 return sampleprof_error::truncated; 1400 Names.push_back(std::string(Str)); 1401 } 1402 1403 return sampleprof_error::success; 1404 } 1405 1406 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1407 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1408 return EC; 1409 1410 uint32_t NumFunctions; 1411 if (!GcovBuffer.readInt(NumFunctions)) 1412 return sampleprof_error::truncated; 1413 1414 InlineCallStack Stack; 1415 for (uint32_t I = 0; I < NumFunctions; ++I) 1416 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1417 return EC; 1418 1419 computeSummary(); 1420 return sampleprof_error::success; 1421 } 1422 1423 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1424 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1425 uint64_t HeadCount = 0; 1426 if (InlineStack.size() == 0) 1427 if (!GcovBuffer.readInt64(HeadCount)) 1428 return sampleprof_error::truncated; 1429 1430 uint32_t NameIdx; 1431 if (!GcovBuffer.readInt(NameIdx)) 1432 return sampleprof_error::truncated; 1433 1434 StringRef Name(Names[NameIdx]); 1435 1436 uint32_t NumPosCounts; 1437 if (!GcovBuffer.readInt(NumPosCounts)) 1438 return sampleprof_error::truncated; 1439 1440 uint32_t NumCallsites; 1441 if (!GcovBuffer.readInt(NumCallsites)) 1442 return sampleprof_error::truncated; 1443 1444 FunctionSamples *FProfile = nullptr; 1445 if (InlineStack.size() == 0) { 1446 // If this is a top function that we have already processed, do not 1447 // update its profile again. This happens in the presence of 1448 // function aliases. Since these aliases share the same function 1449 // body, there will be identical replicated profiles for the 1450 // original function. In this case, we simply not bother updating 1451 // the profile of the original function. 1452 FProfile = &Profiles[Name]; 1453 FProfile->addHeadSamples(HeadCount); 1454 if (FProfile->getTotalSamples() > 0) 1455 Update = false; 1456 } else { 1457 // Otherwise, we are reading an inlined instance. The top of the 1458 // inline stack contains the profile of the caller. Insert this 1459 // callee in the caller's CallsiteMap. 1460 FunctionSamples *CallerProfile = InlineStack.front(); 1461 uint32_t LineOffset = Offset >> 16; 1462 uint32_t Discriminator = Offset & 0xffff; 1463 FProfile = &CallerProfile->functionSamplesAt( 1464 LineLocation(LineOffset, Discriminator))[std::string(Name)]; 1465 } 1466 FProfile->setName(Name); 1467 1468 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1469 uint32_t Offset; 1470 if (!GcovBuffer.readInt(Offset)) 1471 return sampleprof_error::truncated; 1472 1473 uint32_t NumTargets; 1474 if (!GcovBuffer.readInt(NumTargets)) 1475 return sampleprof_error::truncated; 1476 1477 uint64_t Count; 1478 if (!GcovBuffer.readInt64(Count)) 1479 return sampleprof_error::truncated; 1480 1481 // The line location is encoded in the offset as: 1482 // high 16 bits: line offset to the start of the function. 1483 // low 16 bits: discriminator. 1484 uint32_t LineOffset = Offset >> 16; 1485 uint32_t Discriminator = Offset & 0xffff; 1486 1487 InlineCallStack NewStack; 1488 NewStack.push_back(FProfile); 1489 llvm::append_range(NewStack, InlineStack); 1490 if (Update) { 1491 // Walk up the inline stack, adding the samples on this line to 1492 // the total sample count of the callers in the chain. 1493 for (auto CallerProfile : NewStack) 1494 CallerProfile->addTotalSamples(Count); 1495 1496 // Update the body samples for the current profile. 1497 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1498 } 1499 1500 // Process the list of functions called at an indirect call site. 1501 // These are all the targets that a function pointer (or virtual 1502 // function) resolved at runtime. 1503 for (uint32_t J = 0; J < NumTargets; J++) { 1504 uint32_t HistVal; 1505 if (!GcovBuffer.readInt(HistVal)) 1506 return sampleprof_error::truncated; 1507 1508 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1509 return sampleprof_error::malformed; 1510 1511 uint64_t TargetIdx; 1512 if (!GcovBuffer.readInt64(TargetIdx)) 1513 return sampleprof_error::truncated; 1514 StringRef TargetName(Names[TargetIdx]); 1515 1516 uint64_t TargetCount; 1517 if (!GcovBuffer.readInt64(TargetCount)) 1518 return sampleprof_error::truncated; 1519 1520 if (Update) 1521 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1522 TargetName, TargetCount); 1523 } 1524 } 1525 1526 // Process all the inlined callers into the current function. These 1527 // are all the callsites that were inlined into this function. 1528 for (uint32_t I = 0; I < NumCallsites; I++) { 1529 // The offset is encoded as: 1530 // high 16 bits: line offset to the start of the function. 1531 // low 16 bits: discriminator. 1532 uint32_t Offset; 1533 if (!GcovBuffer.readInt(Offset)) 1534 return sampleprof_error::truncated; 1535 InlineCallStack NewStack; 1536 NewStack.push_back(FProfile); 1537 llvm::append_range(NewStack, InlineStack); 1538 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1539 return EC; 1540 } 1541 1542 return sampleprof_error::success; 1543 } 1544 1545 /// Read a GCC AutoFDO profile. 1546 /// 1547 /// This format is generated by the Linux Perf conversion tool at 1548 /// https://github.com/google/autofdo. 1549 std::error_code SampleProfileReaderGCC::readImpl() { 1550 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1551 // Read the string table. 1552 if (std::error_code EC = readNameTable()) 1553 return EC; 1554 1555 // Read the source profile. 1556 if (std::error_code EC = readFunctionProfiles()) 1557 return EC; 1558 1559 return sampleprof_error::success; 1560 } 1561 1562 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1563 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1564 return Magic == "adcg*704"; 1565 } 1566 1567 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1568 // If the reader uses MD5 to represent string, we can't remap it because 1569 // we don't know what the original function names were. 1570 if (Reader.useMD5()) { 1571 Ctx.diagnose(DiagnosticInfoSampleProfile( 1572 Reader.getBuffer()->getBufferIdentifier(), 1573 "Profile data remapping cannot be applied to profile data " 1574 "in compact format (original mangled names are not available).", 1575 DS_Warning)); 1576 return; 1577 } 1578 1579 // CSSPGO-TODO: Remapper is not yet supported. 1580 // We will need to remap the entire context string. 1581 assert(Remappings && "should be initialized while creating remapper"); 1582 for (auto &Sample : Reader.getProfiles()) { 1583 DenseSet<StringRef> NamesInSample; 1584 Sample.second.findAllNames(NamesInSample); 1585 for (auto &Name : NamesInSample) 1586 if (auto Key = Remappings->insert(Name)) 1587 NameMap.insert({Key, Name}); 1588 } 1589 1590 RemappingApplied = true; 1591 } 1592 1593 Optional<StringRef> 1594 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1595 if (auto Key = Remappings->lookup(Fname)) 1596 return NameMap.lookup(Key); 1597 return None; 1598 } 1599 1600 /// Prepare a memory buffer for the contents of \p Filename. 1601 /// 1602 /// \returns an error code indicating the status of the buffer. 1603 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1604 setupMemoryBuffer(const Twine &Filename) { 1605 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename, /*IsText=*/true); 1606 if (std::error_code EC = BufferOrErr.getError()) 1607 return EC; 1608 auto Buffer = std::move(BufferOrErr.get()); 1609 1610 // Sanity check the file. 1611 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max()) 1612 return sampleprof_error::too_large; 1613 1614 return std::move(Buffer); 1615 } 1616 1617 /// Create a sample profile reader based on the format of the input file. 1618 /// 1619 /// \param Filename The file to open. 1620 /// 1621 /// \param C The LLVM context to use to emit diagnostics. 1622 /// 1623 /// \param P The FSDiscriminatorPass. 1624 /// 1625 /// \param RemapFilename The file used for profile remapping. 1626 /// 1627 /// \returns an error code indicating the status of the created reader. 1628 ErrorOr<std::unique_ptr<SampleProfileReader>> 1629 SampleProfileReader::create(const std::string Filename, LLVMContext &C, 1630 FSDiscriminatorPass P, 1631 const std::string RemapFilename) { 1632 auto BufferOrError = setupMemoryBuffer(Filename); 1633 if (std::error_code EC = BufferOrError.getError()) 1634 return EC; 1635 return create(BufferOrError.get(), C, P, RemapFilename); 1636 } 1637 1638 /// Create a sample profile remapper from the given input, to remap the 1639 /// function names in the given profile data. 1640 /// 1641 /// \param Filename The file to open. 1642 /// 1643 /// \param Reader The profile reader the remapper is going to be applied to. 1644 /// 1645 /// \param C The LLVM context to use to emit diagnostics. 1646 /// 1647 /// \returns an error code indicating the status of the created reader. 1648 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1649 SampleProfileReaderItaniumRemapper::create(const std::string Filename, 1650 SampleProfileReader &Reader, 1651 LLVMContext &C) { 1652 auto BufferOrError = setupMemoryBuffer(Filename); 1653 if (std::error_code EC = BufferOrError.getError()) 1654 return EC; 1655 return create(BufferOrError.get(), Reader, C); 1656 } 1657 1658 /// Create a sample profile remapper from the given input, to remap the 1659 /// function names in the given profile data. 1660 /// 1661 /// \param B The memory buffer to create the reader from (assumes ownership). 1662 /// 1663 /// \param C The LLVM context to use to emit diagnostics. 1664 /// 1665 /// \param Reader The profile reader the remapper is going to be applied to. 1666 /// 1667 /// \returns an error code indicating the status of the created reader. 1668 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1669 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1670 SampleProfileReader &Reader, 1671 LLVMContext &C) { 1672 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1673 if (Error E = Remappings->read(*B.get())) { 1674 handleAllErrors( 1675 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1676 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1677 ParseError.getLineNum(), 1678 ParseError.getMessage())); 1679 }); 1680 return sampleprof_error::malformed; 1681 } 1682 1683 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1684 std::move(B), std::move(Remappings), Reader); 1685 } 1686 1687 /// Create a sample profile reader based on the format of the input data. 1688 /// 1689 /// \param B The memory buffer to create the reader from (assumes ownership). 1690 /// 1691 /// \param C The LLVM context to use to emit diagnostics. 1692 /// 1693 /// \param P The FSDiscriminatorPass. 1694 /// 1695 /// \param RemapFilename The file used for profile remapping. 1696 /// 1697 /// \returns an error code indicating the status of the created reader. 1698 ErrorOr<std::unique_ptr<SampleProfileReader>> 1699 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1700 FSDiscriminatorPass P, 1701 const std::string RemapFilename) { 1702 std::unique_ptr<SampleProfileReader> Reader; 1703 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1704 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1705 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1706 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1707 else if (SampleProfileReaderCompactBinary::hasFormat(*B)) 1708 Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C)); 1709 else if (SampleProfileReaderGCC::hasFormat(*B)) 1710 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1711 else if (SampleProfileReaderText::hasFormat(*B)) 1712 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1713 else 1714 return sampleprof_error::unrecognized_format; 1715 1716 if (!RemapFilename.empty()) { 1717 auto ReaderOrErr = 1718 SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C); 1719 if (std::error_code EC = ReaderOrErr.getError()) { 1720 std::string Msg = "Could not create remapper: " + EC.message(); 1721 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1722 return EC; 1723 } 1724 Reader->Remapper = std::move(ReaderOrErr.get()); 1725 } 1726 1727 FunctionSamples::Format = Reader->getFormat(); 1728 if (std::error_code EC = Reader->readHeader()) { 1729 return EC; 1730 } 1731 1732 Reader->setDiscriminatorMaskedBitFrom(P); 1733 1734 return std::move(Reader); 1735 } 1736 1737 // For text and GCC file formats, we compute the summary after reading the 1738 // profile. Binary format has the profile summary in its header. 1739 void SampleProfileReader::computeSummary() { 1740 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1741 Summary = Builder.computeSummaryForProfiles(Profiles); 1742 } 1743