xref: /freebsd/contrib/llvm-project/llvm/lib/ProfileData/SampleProfReader.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the class that reads LLVM sample profiles. It
10 // supports three file formats: text, binary and gcov.
11 //
12 // The textual representation is useful for debugging and testing purposes. The
13 // binary representation is more compact, resulting in smaller file sizes.
14 //
15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation
16 // tool (https://github.com/google/autofdo)
17 //
18 // All three encodings can be used interchangeably as an input sample profile.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ProfileData/SampleProfReader.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/ProfileSummary.h"
28 #include "llvm/ProfileData/ProfileCommon.h"
29 #include "llvm/ProfileData/SampleProf.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/ErrorOr.h"
33 #include "llvm/Support/JSON.h"
34 #include "llvm/Support/LEB128.h"
35 #include "llvm/Support/LineIterator.h"
36 #include "llvm/Support/MD5.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/VirtualFileSystem.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cstddef>
42 #include <cstdint>
43 #include <limits>
44 #include <memory>
45 #include <system_error>
46 #include <vector>
47 
48 using namespace llvm;
49 using namespace sampleprof;
50 
51 #define DEBUG_TYPE "samplepgo-reader"
52 
53 // This internal option specifies if the profile uses FS discriminators.
54 // It only applies to text, and binary format profiles.
55 // For ext-binary format profiles, the flag is set in the summary.
56 static cl::opt<bool> ProfileIsFSDisciminator(
57     "profile-isfs", cl::Hidden, cl::init(false),
58     cl::desc("Profile uses flow sensitive discriminators"));
59 
60 /// Dump the function profile for \p FName.
61 ///
62 /// \param FContext Name + context of the function to print.
63 /// \param OS Stream to emit the output to.
64 void SampleProfileReader::dumpFunctionProfile(const FunctionSamples &FS,
65                                               raw_ostream &OS) {
66   OS << "Function: " << FS.getContext().toString() << ": " << FS;
67 }
68 
69 /// Dump all the function profiles found on stream \p OS.
70 void SampleProfileReader::dump(raw_ostream &OS) {
71   std::vector<NameFunctionSamples> V;
72   sortFuncProfiles(Profiles, V);
73   for (const auto &I : V)
74     dumpFunctionProfile(*I.second, OS);
75 }
76 
77 static void dumpFunctionProfileJson(const FunctionSamples &S,
78                                     json::OStream &JOS, bool TopLevel = false) {
79   auto DumpBody = [&](const BodySampleMap &BodySamples) {
80     for (const auto &I : BodySamples) {
81       const LineLocation &Loc = I.first;
82       const SampleRecord &Sample = I.second;
83       JOS.object([&] {
84         JOS.attribute("line", Loc.LineOffset);
85         if (Loc.Discriminator)
86           JOS.attribute("discriminator", Loc.Discriminator);
87         JOS.attribute("samples", Sample.getSamples());
88 
89         auto CallTargets = Sample.getSortedCallTargets();
90         if (!CallTargets.empty()) {
91           JOS.attributeArray("calls", [&] {
92             for (const auto &J : CallTargets) {
93               JOS.object([&] {
94                 JOS.attribute("function", J.first.str());
95                 JOS.attribute("samples", J.second);
96               });
97             }
98           });
99         }
100       });
101     }
102   };
103 
104   auto DumpCallsiteSamples = [&](const CallsiteSampleMap &CallsiteSamples) {
105     for (const auto &I : CallsiteSamples)
106       for (const auto &FS : I.second) {
107         const LineLocation &Loc = I.first;
108         const FunctionSamples &CalleeSamples = FS.second;
109         JOS.object([&] {
110           JOS.attribute("line", Loc.LineOffset);
111           if (Loc.Discriminator)
112             JOS.attribute("discriminator", Loc.Discriminator);
113           JOS.attributeArray(
114               "samples", [&] { dumpFunctionProfileJson(CalleeSamples, JOS); });
115         });
116       }
117   };
118 
119   JOS.object([&] {
120     JOS.attribute("name", S.getFunction().str());
121     JOS.attribute("total", S.getTotalSamples());
122     if (TopLevel)
123       JOS.attribute("head", S.getHeadSamples());
124 
125     const auto &BodySamples = S.getBodySamples();
126     if (!BodySamples.empty())
127       JOS.attributeArray("body", [&] { DumpBody(BodySamples); });
128 
129     const auto &CallsiteSamples = S.getCallsiteSamples();
130     if (!CallsiteSamples.empty())
131       JOS.attributeArray("callsites",
132                          [&] { DumpCallsiteSamples(CallsiteSamples); });
133   });
134 }
135 
136 /// Dump all the function profiles found on stream \p OS in the JSON format.
137 void SampleProfileReader::dumpJson(raw_ostream &OS) {
138   std::vector<NameFunctionSamples> V;
139   sortFuncProfiles(Profiles, V);
140   json::OStream JOS(OS, 2);
141   JOS.arrayBegin();
142   for (const auto &F : V)
143     dumpFunctionProfileJson(*F.second, JOS, true);
144   JOS.arrayEnd();
145 
146   // Emit a newline character at the end as json::OStream doesn't emit one.
147   OS << "\n";
148 }
149 
150 /// Parse \p Input as function head.
151 ///
152 /// Parse one line of \p Input, and update function name in \p FName,
153 /// function's total sample count in \p NumSamples, function's entry
154 /// count in \p NumHeadSamples.
155 ///
156 /// \returns true if parsing is successful.
157 static bool ParseHead(const StringRef &Input, StringRef &FName,
158                       uint64_t &NumSamples, uint64_t &NumHeadSamples) {
159   if (Input[0] == ' ')
160     return false;
161   size_t n2 = Input.rfind(':');
162   size_t n1 = Input.rfind(':', n2 - 1);
163   FName = Input.substr(0, n1);
164   if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
165     return false;
166   if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
167     return false;
168   return true;
169 }
170 
171 /// Returns true if line offset \p L is legal (only has 16 bits).
172 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }
173 
174 /// Parse \p Input that contains metadata.
175 /// Possible metadata:
176 /// - CFG Checksum information:
177 ///     !CFGChecksum: 12345
178 /// - CFG Checksum information:
179 ///     !Attributes: 1
180 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash.
181 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash,
182                           uint32_t &Attributes) {
183   if (Input.starts_with("!CFGChecksum:")) {
184     StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim();
185     return !CFGInfo.getAsInteger(10, FunctionHash);
186   }
187 
188   if (Input.starts_with("!Attributes:")) {
189     StringRef Attrib = Input.substr(strlen("!Attributes:")).trim();
190     return !Attrib.getAsInteger(10, Attributes);
191   }
192 
193   return false;
194 }
195 
196 enum class LineType {
197   CallSiteProfile,
198   BodyProfile,
199   Metadata,
200 };
201 
202 /// Parse \p Input as line sample.
203 ///
204 /// \param Input input line.
205 /// \param LineTy Type of this line.
206 /// \param Depth the depth of the inline stack.
207 /// \param NumSamples total samples of the line/inlined callsite.
208 /// \param LineOffset line offset to the start of the function.
209 /// \param Discriminator discriminator of the line.
210 /// \param TargetCountMap map from indirect call target to count.
211 /// \param FunctionHash the function's CFG hash, used by pseudo probe.
212 ///
213 /// returns true if parsing is successful.
214 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth,
215                       uint64_t &NumSamples, uint32_t &LineOffset,
216                       uint32_t &Discriminator, StringRef &CalleeName,
217                       DenseMap<StringRef, uint64_t> &TargetCountMap,
218                       uint64_t &FunctionHash, uint32_t &Attributes) {
219   for (Depth = 0; Input[Depth] == ' '; Depth++)
220     ;
221   if (Depth == 0)
222     return false;
223 
224   if (Input[Depth] == '!') {
225     LineTy = LineType::Metadata;
226     return parseMetadata(Input.substr(Depth), FunctionHash, Attributes);
227   }
228 
229   size_t n1 = Input.find(':');
230   StringRef Loc = Input.substr(Depth, n1 - Depth);
231   size_t n2 = Loc.find('.');
232   if (n2 == StringRef::npos) {
233     if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
234       return false;
235     Discriminator = 0;
236   } else {
237     if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
238       return false;
239     if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
240       return false;
241   }
242 
243   StringRef Rest = Input.substr(n1 + 2);
244   if (isDigit(Rest[0])) {
245     LineTy = LineType::BodyProfile;
246     size_t n3 = Rest.find(' ');
247     if (n3 == StringRef::npos) {
248       if (Rest.getAsInteger(10, NumSamples))
249         return false;
250     } else {
251       if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
252         return false;
253     }
254     // Find call targets and their sample counts.
255     // Note: In some cases, there are symbols in the profile which are not
256     // mangled. To accommodate such cases, use colon + integer pairs as the
257     // anchor points.
258     // An example:
259     // _M_construct<char *>:1000 string_view<std::allocator<char> >:437
260     // ":1000" and ":437" are used as anchor points so the string above will
261     // be interpreted as
262     // target: _M_construct<char *>
263     // count: 1000
264     // target: string_view<std::allocator<char> >
265     // count: 437
266     while (n3 != StringRef::npos) {
267       n3 += Rest.substr(n3).find_first_not_of(' ');
268       Rest = Rest.substr(n3);
269       n3 = Rest.find_first_of(':');
270       if (n3 == StringRef::npos || n3 == 0)
271         return false;
272 
273       StringRef Target;
274       uint64_t count, n4;
275       while (true) {
276         // Get the segment after the current colon.
277         StringRef AfterColon = Rest.substr(n3 + 1);
278         // Get the target symbol before the current colon.
279         Target = Rest.substr(0, n3);
280         // Check if the word after the current colon is an integer.
281         n4 = AfterColon.find_first_of(' ');
282         n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
283         StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
284         if (!WordAfterColon.getAsInteger(10, count))
285           break;
286 
287         // Try to find the next colon.
288         uint64_t n5 = AfterColon.find_first_of(':');
289         if (n5 == StringRef::npos)
290           return false;
291         n3 += n5 + 1;
292       }
293 
294       // An anchor point is found. Save the {target, count} pair
295       TargetCountMap[Target] = count;
296       if (n4 == Rest.size())
297         break;
298       // Change n3 to the next blank space after colon + integer pair.
299       n3 = n4;
300     }
301   } else {
302     LineTy = LineType::CallSiteProfile;
303     size_t n3 = Rest.find_last_of(':');
304     CalleeName = Rest.substr(0, n3);
305     if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
306       return false;
307   }
308   return true;
309 }
310 
311 /// Load samples from a text file.
312 ///
313 /// See the documentation at the top of the file for an explanation of
314 /// the expected format.
315 ///
316 /// \returns true if the file was loaded successfully, false otherwise.
317 std::error_code SampleProfileReaderText::readImpl() {
318   line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
319   sampleprof_error Result = sampleprof_error::success;
320 
321   InlineCallStack InlineStack;
322   uint32_t TopLevelProbeProfileCount = 0;
323 
324   // DepthMetadata tracks whether we have processed metadata for the current
325   // top-level or nested function profile.
326   uint32_t DepthMetadata = 0;
327 
328   ProfileIsFS = ProfileIsFSDisciminator;
329   FunctionSamples::ProfileIsFS = ProfileIsFS;
330   for (; !LineIt.is_at_eof(); ++LineIt) {
331     size_t pos = LineIt->find_first_not_of(' ');
332     if (pos == LineIt->npos || (*LineIt)[pos] == '#')
333       continue;
334     // Read the header of each function.
335     //
336     // Note that for function identifiers we are actually expecting
337     // mangled names, but we may not always get them. This happens when
338     // the compiler decides not to emit the function (e.g., it was inlined
339     // and removed). In this case, the binary will not have the linkage
340     // name for the function, so the profiler will emit the function's
341     // unmangled name, which may contain characters like ':' and '>' in its
342     // name (member functions, templates, etc).
343     //
344     // The only requirement we place on the identifier, then, is that it
345     // should not begin with a number.
346     if ((*LineIt)[0] != ' ') {
347       uint64_t NumSamples, NumHeadSamples;
348       StringRef FName;
349       if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
350         reportError(LineIt.line_number(),
351                     "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
352         return sampleprof_error::malformed;
353       }
354       DepthMetadata = 0;
355       SampleContext FContext(FName, CSNameTable);
356       if (FContext.hasContext())
357         ++CSProfileCount;
358       FunctionSamples &FProfile = Profiles.create(FContext);
359       mergeSampleProfErrors(Result, FProfile.addTotalSamples(NumSamples));
360       mergeSampleProfErrors(Result, FProfile.addHeadSamples(NumHeadSamples));
361       InlineStack.clear();
362       InlineStack.push_back(&FProfile);
363     } else {
364       uint64_t NumSamples;
365       StringRef FName;
366       DenseMap<StringRef, uint64_t> TargetCountMap;
367       uint32_t Depth, LineOffset, Discriminator;
368       LineType LineTy;
369       uint64_t FunctionHash = 0;
370       uint32_t Attributes = 0;
371       if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset,
372                      Discriminator, FName, TargetCountMap, FunctionHash,
373                      Attributes)) {
374         reportError(LineIt.line_number(),
375                     "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
376                         *LineIt);
377         return sampleprof_error::malformed;
378       }
379       if (LineTy != LineType::Metadata && Depth == DepthMetadata) {
380         // Metadata must be put at the end of a function profile.
381         reportError(LineIt.line_number(),
382                     "Found non-metadata after metadata: " + *LineIt);
383         return sampleprof_error::malformed;
384       }
385 
386       // Here we handle FS discriminators.
387       Discriminator &= getDiscriminatorMask();
388 
389       while (InlineStack.size() > Depth) {
390         InlineStack.pop_back();
391       }
392       switch (LineTy) {
393       case LineType::CallSiteProfile: {
394         FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
395             LineLocation(LineOffset, Discriminator))[FunctionId(FName)];
396         FSamples.setFunction(FunctionId(FName));
397         mergeSampleProfErrors(Result, FSamples.addTotalSamples(NumSamples));
398         InlineStack.push_back(&FSamples);
399         DepthMetadata = 0;
400         break;
401       }
402       case LineType::BodyProfile: {
403         while (InlineStack.size() > Depth) {
404           InlineStack.pop_back();
405         }
406         FunctionSamples &FProfile = *InlineStack.back();
407         for (const auto &name_count : TargetCountMap) {
408           mergeSampleProfErrors(Result, FProfile.addCalledTargetSamples(
409                                             LineOffset, Discriminator,
410                                             FunctionId(name_count.first),
411                                             name_count.second));
412         }
413         mergeSampleProfErrors(
414             Result,
415             FProfile.addBodySamples(LineOffset, Discriminator, NumSamples));
416         break;
417       }
418       case LineType::Metadata: {
419         FunctionSamples &FProfile = *InlineStack.back();
420         if (FunctionHash) {
421           FProfile.setFunctionHash(FunctionHash);
422           if (Depth == 1)
423             ++TopLevelProbeProfileCount;
424         }
425         FProfile.getContext().setAllAttributes(Attributes);
426         if (Attributes & (uint32_t)ContextShouldBeInlined)
427           ProfileIsPreInlined = true;
428         DepthMetadata = Depth;
429         break;
430       }
431       }
432     }
433   }
434 
435   assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
436          "Cannot have both context-sensitive and regular profile");
437   ProfileIsCS = (CSProfileCount > 0);
438   assert((TopLevelProbeProfileCount == 0 ||
439           TopLevelProbeProfileCount == Profiles.size()) &&
440          "Cannot have both probe-based profiles and regular profiles");
441   ProfileIsProbeBased = (TopLevelProbeProfileCount > 0);
442   FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
443   FunctionSamples::ProfileIsCS = ProfileIsCS;
444   FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined;
445 
446   if (Result == sampleprof_error::success)
447     computeSummary();
448 
449   return Result;
450 }
451 
452 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
453   bool result = false;
454 
455   // Check that the first non-comment line is a valid function header.
456   line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
457   if (!LineIt.is_at_eof()) {
458     if ((*LineIt)[0] != ' ') {
459       uint64_t NumSamples, NumHeadSamples;
460       StringRef FName;
461       result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
462     }
463   }
464 
465   return result;
466 }
467 
468 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
469   unsigned NumBytesRead = 0;
470   uint64_t Val = decodeULEB128(Data, &NumBytesRead);
471 
472   if (Val > std::numeric_limits<T>::max()) {
473     std::error_code EC = sampleprof_error::malformed;
474     reportError(0, EC.message());
475     return EC;
476   } else if (Data + NumBytesRead > End) {
477     std::error_code EC = sampleprof_error::truncated;
478     reportError(0, EC.message());
479     return EC;
480   }
481 
482   Data += NumBytesRead;
483   return static_cast<T>(Val);
484 }
485 
486 ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
487   StringRef Str(reinterpret_cast<const char *>(Data));
488   if (Data + Str.size() + 1 > End) {
489     std::error_code EC = sampleprof_error::truncated;
490     reportError(0, EC.message());
491     return EC;
492   }
493 
494   Data += Str.size() + 1;
495   return Str;
496 }
497 
498 template <typename T>
499 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
500   if (Data + sizeof(T) > End) {
501     std::error_code EC = sampleprof_error::truncated;
502     reportError(0, EC.message());
503     return EC;
504   }
505 
506   using namespace support;
507   T Val = endian::readNext<T, llvm::endianness::little>(Data);
508   return Val;
509 }
510 
511 template <typename T>
512 inline ErrorOr<size_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
513   auto Idx = readNumber<size_t>();
514   if (std::error_code EC = Idx.getError())
515     return EC;
516   if (*Idx >= Table.size())
517     return sampleprof_error::truncated_name_table;
518   return *Idx;
519 }
520 
521 ErrorOr<FunctionId>
522 SampleProfileReaderBinary::readStringFromTable(size_t *RetIdx) {
523   auto Idx = readStringIndex(NameTable);
524   if (std::error_code EC = Idx.getError())
525     return EC;
526   if (RetIdx)
527     *RetIdx = *Idx;
528   return NameTable[*Idx];
529 }
530 
531 ErrorOr<SampleContextFrames>
532 SampleProfileReaderBinary::readContextFromTable(size_t *RetIdx) {
533   auto ContextIdx = readNumber<size_t>();
534   if (std::error_code EC = ContextIdx.getError())
535     return EC;
536   if (*ContextIdx >= CSNameTable.size())
537     return sampleprof_error::truncated_name_table;
538   if (RetIdx)
539     *RetIdx = *ContextIdx;
540   return CSNameTable[*ContextIdx];
541 }
542 
543 ErrorOr<std::pair<SampleContext, uint64_t>>
544 SampleProfileReaderBinary::readSampleContextFromTable() {
545   SampleContext Context;
546   size_t Idx;
547   if (ProfileIsCS) {
548     auto FContext(readContextFromTable(&Idx));
549     if (std::error_code EC = FContext.getError())
550       return EC;
551     Context = SampleContext(*FContext);
552   } else {
553     auto FName(readStringFromTable(&Idx));
554     if (std::error_code EC = FName.getError())
555       return EC;
556     Context = SampleContext(*FName);
557   }
558   // Since MD5SampleContextStart may point to the profile's file data, need to
559   // make sure it is reading the same value on big endian CPU.
560   uint64_t Hash = support::endian::read64le(MD5SampleContextStart + Idx);
561   // Lazy computing of hash value, write back to the table to cache it. Only
562   // compute the context's hash value if it is being referenced for the first
563   // time.
564   if (Hash == 0) {
565     assert(MD5SampleContextStart == MD5SampleContextTable.data());
566     Hash = Context.getHashCode();
567     support::endian::write64le(&MD5SampleContextTable[Idx], Hash);
568   }
569   return std::make_pair(Context, Hash);
570 }
571 
572 std::error_code
573 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
574   auto NumSamples = readNumber<uint64_t>();
575   if (std::error_code EC = NumSamples.getError())
576     return EC;
577   FProfile.addTotalSamples(*NumSamples);
578 
579   // Read the samples in the body.
580   auto NumRecords = readNumber<uint32_t>();
581   if (std::error_code EC = NumRecords.getError())
582     return EC;
583 
584   for (uint32_t I = 0; I < *NumRecords; ++I) {
585     auto LineOffset = readNumber<uint64_t>();
586     if (std::error_code EC = LineOffset.getError())
587       return EC;
588 
589     if (!isOffsetLegal(*LineOffset)) {
590       return std::error_code();
591     }
592 
593     auto Discriminator = readNumber<uint64_t>();
594     if (std::error_code EC = Discriminator.getError())
595       return EC;
596 
597     auto NumSamples = readNumber<uint64_t>();
598     if (std::error_code EC = NumSamples.getError())
599       return EC;
600 
601     auto NumCalls = readNumber<uint32_t>();
602     if (std::error_code EC = NumCalls.getError())
603       return EC;
604 
605     // Here we handle FS discriminators:
606     uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
607 
608     for (uint32_t J = 0; J < *NumCalls; ++J) {
609       auto CalledFunction(readStringFromTable());
610       if (std::error_code EC = CalledFunction.getError())
611         return EC;
612 
613       auto CalledFunctionSamples = readNumber<uint64_t>();
614       if (std::error_code EC = CalledFunctionSamples.getError())
615         return EC;
616 
617       FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal,
618                                       *CalledFunction, *CalledFunctionSamples);
619     }
620 
621     FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples);
622   }
623 
624   // Read all the samples for inlined function calls.
625   auto NumCallsites = readNumber<uint32_t>();
626   if (std::error_code EC = NumCallsites.getError())
627     return EC;
628 
629   for (uint32_t J = 0; J < *NumCallsites; ++J) {
630     auto LineOffset = readNumber<uint64_t>();
631     if (std::error_code EC = LineOffset.getError())
632       return EC;
633 
634     auto Discriminator = readNumber<uint64_t>();
635     if (std::error_code EC = Discriminator.getError())
636       return EC;
637 
638     auto FName(readStringFromTable());
639     if (std::error_code EC = FName.getError())
640       return EC;
641 
642     // Here we handle FS discriminators:
643     uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
644 
645     FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
646         LineLocation(*LineOffset, DiscriminatorVal))[*FName];
647     CalleeProfile.setFunction(*FName);
648     if (std::error_code EC = readProfile(CalleeProfile))
649       return EC;
650   }
651 
652   return sampleprof_error::success;
653 }
654 
655 std::error_code
656 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
657   Data = Start;
658   auto NumHeadSamples = readNumber<uint64_t>();
659   if (std::error_code EC = NumHeadSamples.getError())
660     return EC;
661 
662   auto FContextHash(readSampleContextFromTable());
663   if (std::error_code EC = FContextHash.getError())
664     return EC;
665 
666   auto &[FContext, Hash] = *FContextHash;
667   // Use the cached hash value for insertion instead of recalculating it.
668   auto Res = Profiles.try_emplace(Hash, FContext, FunctionSamples());
669   FunctionSamples &FProfile = Res.first->second;
670   FProfile.setContext(FContext);
671   FProfile.addHeadSamples(*NumHeadSamples);
672 
673   if (FContext.hasContext())
674     CSProfileCount++;
675 
676   if (std::error_code EC = readProfile(FProfile))
677     return EC;
678   return sampleprof_error::success;
679 }
680 
681 std::error_code SampleProfileReaderBinary::readImpl() {
682   ProfileIsFS = ProfileIsFSDisciminator;
683   FunctionSamples::ProfileIsFS = ProfileIsFS;
684   while (Data < End) {
685     if (std::error_code EC = readFuncProfile(Data))
686       return EC;
687   }
688 
689   return sampleprof_error::success;
690 }
691 
692 std::error_code SampleProfileReaderExtBinaryBase::readOneSection(
693     const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) {
694   Data = Start;
695   End = Start + Size;
696   switch (Entry.Type) {
697   case SecProfSummary:
698     if (std::error_code EC = readSummary())
699       return EC;
700     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
701       Summary->setPartialProfile(true);
702     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
703       FunctionSamples::ProfileIsCS = ProfileIsCS = true;
704     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined))
705       FunctionSamples::ProfileIsPreInlined = ProfileIsPreInlined = true;
706     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
707       FunctionSamples::ProfileIsFS = ProfileIsFS = true;
708     break;
709   case SecNameTable: {
710     bool FixedLengthMD5 =
711         hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5);
712     bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name);
713     // UseMD5 means if THIS section uses MD5, ProfileIsMD5 means if the entire
714     // profile uses MD5 for function name matching in IPO passes.
715     ProfileIsMD5 = ProfileIsMD5 || UseMD5;
716     FunctionSamples::HasUniqSuffix =
717         hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix);
718     if (std::error_code EC = readNameTableSec(UseMD5, FixedLengthMD5))
719       return EC;
720     break;
721   }
722   case SecCSNameTable: {
723     if (std::error_code EC = readCSNameTableSec())
724       return EC;
725     break;
726   }
727   case SecLBRProfile:
728     if (std::error_code EC = readFuncProfiles())
729       return EC;
730     break;
731   case SecFuncOffsetTable:
732     // If module is absent, we are using LLVM tools, and need to read all
733     // profiles, so skip reading the function offset table.
734     if (!M) {
735       Data = End;
736     } else {
737       assert((!ProfileIsCS ||
738               hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered)) &&
739              "func offset table should always be sorted in CS profile");
740       if (std::error_code EC = readFuncOffsetTable())
741         return EC;
742     }
743     break;
744   case SecFuncMetadata: {
745     ProfileIsProbeBased =
746         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased);
747     FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
748     bool HasAttribute =
749         hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute);
750     if (std::error_code EC = readFuncMetadata(HasAttribute))
751       return EC;
752     break;
753   }
754   case SecProfileSymbolList:
755     if (std::error_code EC = readProfileSymbolList())
756       return EC;
757     break;
758   default:
759     if (std::error_code EC = readCustomSection(Entry))
760       return EC;
761     break;
762   }
763   return sampleprof_error::success;
764 }
765 
766 bool SampleProfileReaderExtBinaryBase::useFuncOffsetList() const {
767   // If profile is CS, the function offset section is expected to consist of
768   // sequences of contexts in pre-order layout
769   // (e.g. [A, A:1 @ B, A:1 @ B:2.3 @ C] [D, D:1 @ E]), so that when a matched
770   // context in the module is found, the profiles of all its callees are
771   // recursively loaded. A list is needed since the order of profiles matters.
772   if (ProfileIsCS)
773     return true;
774 
775   // If the profile is MD5, use the map container to lookup functions in
776   // the module. A remapper has no use on MD5 names.
777   if (useMD5())
778     return false;
779 
780   // Profile is not MD5 and if a remapper is present, the remapped name of
781   // every function needed to be matched against the module, so use the list
782   // container since each entry is accessed.
783   if (Remapper)
784     return true;
785 
786   // Otherwise use the map container for faster lookup.
787   // TODO: If the cardinality of the function offset section is much smaller
788   // than the number of functions in the module, using the list container can
789   // be always faster, but we need to figure out the constant factor to
790   // determine the cutoff.
791   return false;
792 }
793 
794 
795 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() {
796   if (!M)
797     return false;
798   FuncsToUse.clear();
799   for (auto &F : *M)
800     FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
801   return true;
802 }
803 
804 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() {
805   // If there are more than one function offset section, the profile associated
806   // with the previous section has to be done reading before next one is read.
807   FuncOffsetTable.clear();
808   FuncOffsetList.clear();
809 
810   auto Size = readNumber<uint64_t>();
811   if (std::error_code EC = Size.getError())
812     return EC;
813 
814   bool UseFuncOffsetList = useFuncOffsetList();
815   if (UseFuncOffsetList)
816     FuncOffsetList.reserve(*Size);
817   else
818     FuncOffsetTable.reserve(*Size);
819 
820   for (uint64_t I = 0; I < *Size; ++I) {
821     auto FContextHash(readSampleContextFromTable());
822     if (std::error_code EC = FContextHash.getError())
823       return EC;
824 
825     auto &[FContext, Hash] = *FContextHash;
826     auto Offset = readNumber<uint64_t>();
827     if (std::error_code EC = Offset.getError())
828       return EC;
829 
830     if (UseFuncOffsetList)
831       FuncOffsetList.emplace_back(FContext, *Offset);
832     else
833       // Because Porfiles replace existing value with new value if collision
834       // happens, we also use the latest offset so that they are consistent.
835       FuncOffsetTable[Hash] = *Offset;
836  }
837 
838  return sampleprof_error::success;
839 }
840 
841 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() {
842   // Collect functions used by current module if the Reader has been
843   // given a module.
844   // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName
845   // which will query FunctionSamples::HasUniqSuffix, so it has to be
846   // called after FunctionSamples::HasUniqSuffix is set, i.e. after
847   // NameTable section is read.
848   bool LoadFuncsToBeUsed = collectFuncsFromModule();
849 
850   // When LoadFuncsToBeUsed is false, we are using LLVM tool, need to read all
851   // profiles.
852   const uint8_t *Start = Data;
853   if (!LoadFuncsToBeUsed) {
854     while (Data < End) {
855       if (std::error_code EC = readFuncProfile(Data))
856         return EC;
857     }
858     assert(Data == End && "More data is read than expected");
859   } else {
860     // Load function profiles on demand.
861     if (Remapper) {
862       for (auto Name : FuncsToUse) {
863         Remapper->insert(Name);
864       }
865     }
866 
867     if (ProfileIsCS) {
868       assert(useFuncOffsetList());
869       DenseSet<uint64_t> FuncGuidsToUse;
870       if (useMD5()) {
871         for (auto Name : FuncsToUse)
872           FuncGuidsToUse.insert(Function::getGUID(Name));
873       }
874 
875       // For each function in current module, load all context profiles for
876       // the function as well as their callee contexts which can help profile
877       // guided importing for ThinLTO. This can be achieved by walking
878       // through an ordered context container, where contexts are laid out
879       // as if they were walked in preorder of a context trie. While
880       // traversing the trie, a link to the highest common ancestor node is
881       // kept so that all of its decendants will be loaded.
882       const SampleContext *CommonContext = nullptr;
883       for (const auto &NameOffset : FuncOffsetList) {
884         const auto &FContext = NameOffset.first;
885         FunctionId FName = FContext.getFunction();
886         StringRef FNameString;
887         if (!useMD5())
888           FNameString = FName.stringRef();
889 
890         // For function in the current module, keep its farthest ancestor
891         // context. This can be used to load itself and its child and
892         // sibling contexts.
893         if ((useMD5() && FuncGuidsToUse.count(FName.getHashCode())) ||
894             (!useMD5() && (FuncsToUse.count(FNameString) ||
895                            (Remapper && Remapper->exist(FNameString))))) {
896           if (!CommonContext || !CommonContext->isPrefixOf(FContext))
897             CommonContext = &FContext;
898         }
899 
900         if (CommonContext == &FContext ||
901             (CommonContext && CommonContext->isPrefixOf(FContext))) {
902           // Load profile for the current context which originated from
903           // the common ancestor.
904           const uint8_t *FuncProfileAddr = Start + NameOffset.second;
905           if (std::error_code EC = readFuncProfile(FuncProfileAddr))
906             return EC;
907         }
908       }
909     } else if (useMD5()) {
910       assert(!useFuncOffsetList());
911       for (auto Name : FuncsToUse) {
912         auto GUID = MD5Hash(Name);
913         auto iter = FuncOffsetTable.find(GUID);
914         if (iter == FuncOffsetTable.end())
915           continue;
916         const uint8_t *FuncProfileAddr = Start + iter->second;
917         if (std::error_code EC = readFuncProfile(FuncProfileAddr))
918           return EC;
919       }
920     } else if (Remapper) {
921       assert(useFuncOffsetList());
922       for (auto NameOffset : FuncOffsetList) {
923         SampleContext FContext(NameOffset.first);
924         auto FuncName = FContext.getFunction();
925         StringRef FuncNameStr = FuncName.stringRef();
926         if (!FuncsToUse.count(FuncNameStr) && !Remapper->exist(FuncNameStr))
927           continue;
928         const uint8_t *FuncProfileAddr = Start + NameOffset.second;
929         if (std::error_code EC = readFuncProfile(FuncProfileAddr))
930           return EC;
931       }
932     } else {
933       assert(!useFuncOffsetList());
934       for (auto Name : FuncsToUse) {
935         auto iter = FuncOffsetTable.find(MD5Hash(Name));
936         if (iter == FuncOffsetTable.end())
937           continue;
938         const uint8_t *FuncProfileAddr = Start + iter->second;
939         if (std::error_code EC = readFuncProfile(FuncProfileAddr))
940           return EC;
941       }
942     }
943     Data = End;
944   }
945   assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
946          "Cannot have both context-sensitive and regular profile");
947   assert((!CSProfileCount || ProfileIsCS) &&
948          "Section flag should be consistent with actual profile");
949   return sampleprof_error::success;
950 }
951 
952 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() {
953   if (!ProfSymList)
954     ProfSymList = std::make_unique<ProfileSymbolList>();
955 
956   if (std::error_code EC = ProfSymList->read(Data, End - Data))
957     return EC;
958 
959   Data = End;
960   return sampleprof_error::success;
961 }
962 
963 std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
964     const uint8_t *SecStart, const uint64_t SecSize,
965     const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
966   Data = SecStart;
967   End = SecStart + SecSize;
968   auto DecompressSize = readNumber<uint64_t>();
969   if (std::error_code EC = DecompressSize.getError())
970     return EC;
971   DecompressBufSize = *DecompressSize;
972 
973   auto CompressSize = readNumber<uint64_t>();
974   if (std::error_code EC = CompressSize.getError())
975     return EC;
976 
977   if (!llvm::compression::zlib::isAvailable())
978     return sampleprof_error::zlib_unavailable;
979 
980   uint8_t *Buffer = Allocator.Allocate<uint8_t>(DecompressBufSize);
981   size_t UCSize = DecompressBufSize;
982   llvm::Error E = compression::zlib::decompress(ArrayRef(Data, *CompressSize),
983                                                 Buffer, UCSize);
984   if (E)
985     return sampleprof_error::uncompress_failed;
986   DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
987   return sampleprof_error::success;
988 }
989 
990 std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
991   const uint8_t *BufStart =
992       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
993 
994   for (auto &Entry : SecHdrTable) {
995     // Skip empty section.
996     if (!Entry.Size)
997       continue;
998 
999     // Skip sections without context when SkipFlatProf is true.
1000     if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
1001       continue;
1002 
1003     const uint8_t *SecStart = BufStart + Entry.Offset;
1004     uint64_t SecSize = Entry.Size;
1005 
1006     // If the section is compressed, decompress it into a buffer
1007     // DecompressBuf before reading the actual data. The pointee of
1008     // 'Data' will be changed to buffer hold by DecompressBuf
1009     // temporarily when reading the actual data.
1010     bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress);
1011     if (isCompressed) {
1012       const uint8_t *DecompressBuf;
1013       uint64_t DecompressBufSize;
1014       if (std::error_code EC = decompressSection(
1015               SecStart, SecSize, DecompressBuf, DecompressBufSize))
1016         return EC;
1017       SecStart = DecompressBuf;
1018       SecSize = DecompressBufSize;
1019     }
1020 
1021     if (std::error_code EC = readOneSection(SecStart, SecSize, Entry))
1022       return EC;
1023     if (Data != SecStart + SecSize)
1024       return sampleprof_error::malformed;
1025 
1026     // Change the pointee of 'Data' from DecompressBuf to original Buffer.
1027     if (isCompressed) {
1028       Data = BufStart + Entry.Offset;
1029       End = BufStart + Buffer->getBufferSize();
1030     }
1031   }
1032 
1033   return sampleprof_error::success;
1034 }
1035 
1036 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
1037   if (Magic == SPMagic())
1038     return sampleprof_error::success;
1039   return sampleprof_error::bad_magic;
1040 }
1041 
1042 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
1043   if (Magic == SPMagic(SPF_Ext_Binary))
1044     return sampleprof_error::success;
1045   return sampleprof_error::bad_magic;
1046 }
1047 
1048 std::error_code SampleProfileReaderBinary::readNameTable() {
1049   auto Size = readNumber<size_t>();
1050   if (std::error_code EC = Size.getError())
1051     return EC;
1052 
1053   // Normally if useMD5 is true, the name table should have MD5 values, not
1054   // strings, however in the case that ExtBinary profile has multiple name
1055   // tables mixing string and MD5, all of them have to be normalized to use MD5,
1056   // because optimization passes can only handle either type.
1057   bool UseMD5 = useMD5();
1058 
1059   NameTable.clear();
1060   NameTable.reserve(*Size);
1061   if (!ProfileIsCS) {
1062     MD5SampleContextTable.clear();
1063     if (UseMD5)
1064       MD5SampleContextTable.reserve(*Size);
1065     else
1066       // If we are using strings, delay MD5 computation since only a portion of
1067       // names are used by top level functions. Use 0 to indicate MD5 value is
1068       // to be calculated as no known string has a MD5 value of 0.
1069       MD5SampleContextTable.resize(*Size);
1070   }
1071   for (size_t I = 0; I < *Size; ++I) {
1072     auto Name(readString());
1073     if (std::error_code EC = Name.getError())
1074       return EC;
1075     if (UseMD5) {
1076       FunctionId FID(*Name);
1077       if (!ProfileIsCS)
1078         MD5SampleContextTable.emplace_back(FID.getHashCode());
1079       NameTable.emplace_back(FID);
1080     } else
1081       NameTable.push_back(FunctionId(*Name));
1082   }
1083   if (!ProfileIsCS)
1084     MD5SampleContextStart = MD5SampleContextTable.data();
1085   return sampleprof_error::success;
1086 }
1087 
1088 std::error_code
1089 SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5,
1090                                                    bool FixedLengthMD5) {
1091   if (FixedLengthMD5) {
1092     if (!IsMD5)
1093       errs() << "If FixedLengthMD5 is true, UseMD5 has to be true";
1094     auto Size = readNumber<size_t>();
1095     if (std::error_code EC = Size.getError())
1096       return EC;
1097 
1098     assert(Data + (*Size) * sizeof(uint64_t) == End &&
1099            "Fixed length MD5 name table does not contain specified number of "
1100            "entries");
1101     if (Data + (*Size) * sizeof(uint64_t) > End)
1102       return sampleprof_error::truncated;
1103 
1104     NameTable.clear();
1105     NameTable.reserve(*Size);
1106     for (size_t I = 0; I < *Size; ++I) {
1107       using namespace support;
1108       uint64_t FID = endian::read<uint64_t, endianness::little, unaligned>(
1109           Data + I * sizeof(uint64_t));
1110       NameTable.emplace_back(FunctionId(FID));
1111     }
1112     if (!ProfileIsCS)
1113       MD5SampleContextStart = reinterpret_cast<const uint64_t *>(Data);
1114     Data = Data + (*Size) * sizeof(uint64_t);
1115     return sampleprof_error::success;
1116   }
1117 
1118   if (IsMD5) {
1119     assert(!FixedLengthMD5 && "FixedLengthMD5 should be unreachable here");
1120     auto Size = readNumber<size_t>();
1121     if (std::error_code EC = Size.getError())
1122       return EC;
1123 
1124     NameTable.clear();
1125     NameTable.reserve(*Size);
1126     if (!ProfileIsCS)
1127       MD5SampleContextTable.resize(*Size);
1128     for (size_t I = 0; I < *Size; ++I) {
1129       auto FID = readNumber<uint64_t>();
1130       if (std::error_code EC = FID.getError())
1131         return EC;
1132       if (!ProfileIsCS)
1133         support::endian::write64le(&MD5SampleContextTable[I], *FID);
1134       NameTable.emplace_back(FunctionId(*FID));
1135     }
1136     if (!ProfileIsCS)
1137       MD5SampleContextStart = MD5SampleContextTable.data();
1138     return sampleprof_error::success;
1139   }
1140 
1141   return SampleProfileReaderBinary::readNameTable();
1142 }
1143 
1144 // Read in the CS name table section, which basically contains a list of context
1145 // vectors. Each element of a context vector, aka a frame, refers to the
1146 // underlying raw function names that are stored in the name table, as well as
1147 // a callsite identifier that only makes sense for non-leaf frames.
1148 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() {
1149   auto Size = readNumber<size_t>();
1150   if (std::error_code EC = Size.getError())
1151     return EC;
1152 
1153   CSNameTable.clear();
1154   CSNameTable.reserve(*Size);
1155   if (ProfileIsCS) {
1156     // Delay MD5 computation of CS context until they are needed. Use 0 to
1157     // indicate MD5 value is to be calculated as no known string has a MD5
1158     // value of 0.
1159     MD5SampleContextTable.clear();
1160     MD5SampleContextTable.resize(*Size);
1161     MD5SampleContextStart = MD5SampleContextTable.data();
1162   }
1163   for (size_t I = 0; I < *Size; ++I) {
1164     CSNameTable.emplace_back(SampleContextFrameVector());
1165     auto ContextSize = readNumber<uint32_t>();
1166     if (std::error_code EC = ContextSize.getError())
1167       return EC;
1168     for (uint32_t J = 0; J < *ContextSize; ++J) {
1169       auto FName(readStringFromTable());
1170       if (std::error_code EC = FName.getError())
1171         return EC;
1172       auto LineOffset = readNumber<uint64_t>();
1173       if (std::error_code EC = LineOffset.getError())
1174         return EC;
1175 
1176       if (!isOffsetLegal(*LineOffset))
1177         return std::error_code();
1178 
1179       auto Discriminator = readNumber<uint64_t>();
1180       if (std::error_code EC = Discriminator.getError())
1181         return EC;
1182 
1183       CSNameTable.back().emplace_back(
1184           FName.get(), LineLocation(LineOffset.get(), Discriminator.get()));
1185     }
1186   }
1187 
1188   return sampleprof_error::success;
1189 }
1190 
1191 std::error_code
1192 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute,
1193                                                    FunctionSamples *FProfile) {
1194   if (Data < End) {
1195     if (ProfileIsProbeBased) {
1196       auto Checksum = readNumber<uint64_t>();
1197       if (std::error_code EC = Checksum.getError())
1198         return EC;
1199       if (FProfile)
1200         FProfile->setFunctionHash(*Checksum);
1201     }
1202 
1203     if (ProfileHasAttribute) {
1204       auto Attributes = readNumber<uint32_t>();
1205       if (std::error_code EC = Attributes.getError())
1206         return EC;
1207       if (FProfile)
1208         FProfile->getContext().setAllAttributes(*Attributes);
1209     }
1210 
1211     if (!ProfileIsCS) {
1212       // Read all the attributes for inlined function calls.
1213       auto NumCallsites = readNumber<uint32_t>();
1214       if (std::error_code EC = NumCallsites.getError())
1215         return EC;
1216 
1217       for (uint32_t J = 0; J < *NumCallsites; ++J) {
1218         auto LineOffset = readNumber<uint64_t>();
1219         if (std::error_code EC = LineOffset.getError())
1220           return EC;
1221 
1222         auto Discriminator = readNumber<uint64_t>();
1223         if (std::error_code EC = Discriminator.getError())
1224           return EC;
1225 
1226         auto FContextHash(readSampleContextFromTable());
1227         if (std::error_code EC = FContextHash.getError())
1228           return EC;
1229 
1230         auto &[FContext, Hash] = *FContextHash;
1231         FunctionSamples *CalleeProfile = nullptr;
1232         if (FProfile) {
1233           CalleeProfile = const_cast<FunctionSamples *>(
1234               &FProfile->functionSamplesAt(LineLocation(
1235                   *LineOffset,
1236                   *Discriminator))[FContext.getFunction()]);
1237         }
1238         if (std::error_code EC =
1239                 readFuncMetadata(ProfileHasAttribute, CalleeProfile))
1240           return EC;
1241       }
1242     }
1243   }
1244 
1245   return sampleprof_error::success;
1246 }
1247 
1248 std::error_code
1249 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) {
1250   while (Data < End) {
1251     auto FContextHash(readSampleContextFromTable());
1252     if (std::error_code EC = FContextHash.getError())
1253       return EC;
1254     auto &[FContext, Hash] = *FContextHash;
1255     FunctionSamples *FProfile = nullptr;
1256     auto It = Profiles.find(FContext);
1257     if (It != Profiles.end())
1258       FProfile = &It->second;
1259 
1260     if (std::error_code EC = readFuncMetadata(ProfileHasAttribute, FProfile))
1261       return EC;
1262   }
1263 
1264   assert(Data == End && "More data is read than expected");
1265   return sampleprof_error::success;
1266 }
1267 
1268 std::error_code
1269 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint64_t Idx) {
1270   SecHdrTableEntry Entry;
1271   auto Type = readUnencodedNumber<uint64_t>();
1272   if (std::error_code EC = Type.getError())
1273     return EC;
1274   Entry.Type = static_cast<SecType>(*Type);
1275 
1276   auto Flags = readUnencodedNumber<uint64_t>();
1277   if (std::error_code EC = Flags.getError())
1278     return EC;
1279   Entry.Flags = *Flags;
1280 
1281   auto Offset = readUnencodedNumber<uint64_t>();
1282   if (std::error_code EC = Offset.getError())
1283     return EC;
1284   Entry.Offset = *Offset;
1285 
1286   auto Size = readUnencodedNumber<uint64_t>();
1287   if (std::error_code EC = Size.getError())
1288     return EC;
1289   Entry.Size = *Size;
1290 
1291   Entry.LayoutIndex = Idx;
1292   SecHdrTable.push_back(std::move(Entry));
1293   return sampleprof_error::success;
1294 }
1295 
1296 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
1297   auto EntryNum = readUnencodedNumber<uint64_t>();
1298   if (std::error_code EC = EntryNum.getError())
1299     return EC;
1300 
1301   for (uint64_t i = 0; i < (*EntryNum); i++)
1302     if (std::error_code EC = readSecHdrTableEntry(i))
1303       return EC;
1304 
1305   return sampleprof_error::success;
1306 }
1307 
1308 std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
1309   const uint8_t *BufStart =
1310       reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1311   Data = BufStart;
1312   End = BufStart + Buffer->getBufferSize();
1313 
1314   if (std::error_code EC = readMagicIdent())
1315     return EC;
1316 
1317   if (std::error_code EC = readSecHdrTable())
1318     return EC;
1319 
1320   return sampleprof_error::success;
1321 }
1322 
1323 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
1324   uint64_t Size = 0;
1325   for (auto &Entry : SecHdrTable) {
1326     if (Entry.Type == Type)
1327       Size += Entry.Size;
1328   }
1329   return Size;
1330 }
1331 
1332 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
1333   // Sections in SecHdrTable is not necessarily in the same order as
1334   // sections in the profile because section like FuncOffsetTable needs
1335   // to be written after section LBRProfile but needs to be read before
1336   // section LBRProfile, so we cannot simply use the last entry in
1337   // SecHdrTable to calculate the file size.
1338   uint64_t FileSize = 0;
1339   for (auto &Entry : SecHdrTable) {
1340     FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
1341   }
1342   return FileSize;
1343 }
1344 
1345 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) {
1346   std::string Flags;
1347   if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress))
1348     Flags.append("{compressed,");
1349   else
1350     Flags.append("{");
1351 
1352   if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
1353     Flags.append("flat,");
1354 
1355   switch (Entry.Type) {
1356   case SecNameTable:
1357     if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5))
1358       Flags.append("fixlenmd5,");
1359     else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name))
1360       Flags.append("md5,");
1361     if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix))
1362       Flags.append("uniq,");
1363     break;
1364   case SecProfSummary:
1365     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
1366       Flags.append("partial,");
1367     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
1368       Flags.append("context,");
1369     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagIsPreInlined))
1370       Flags.append("preInlined,");
1371     if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
1372       Flags.append("fs-discriminator,");
1373     break;
1374   case SecFuncOffsetTable:
1375     if (hasSecFlag(Entry, SecFuncOffsetFlags::SecFlagOrdered))
1376       Flags.append("ordered,");
1377     break;
1378   case SecFuncMetadata:
1379     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased))
1380       Flags.append("probe,");
1381     if (hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute))
1382       Flags.append("attr,");
1383     break;
1384   default:
1385     break;
1386   }
1387   char &last = Flags.back();
1388   if (last == ',')
1389     last = '}';
1390   else
1391     Flags.append("}");
1392   return Flags;
1393 }
1394 
1395 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
1396   uint64_t TotalSecsSize = 0;
1397   for (auto &Entry : SecHdrTable) {
1398     OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
1399        << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry)
1400        << "\n";
1401     ;
1402     TotalSecsSize += Entry.Size;
1403   }
1404   uint64_t HeaderSize = SecHdrTable.front().Offset;
1405   assert(HeaderSize + TotalSecsSize == getFileSize() &&
1406          "Size of 'header + sections' doesn't match the total size of profile");
1407 
1408   OS << "Header Size: " << HeaderSize << "\n";
1409   OS << "Total Sections Size: " << TotalSecsSize << "\n";
1410   OS << "File Size: " << getFileSize() << "\n";
1411   return true;
1412 }
1413 
1414 std::error_code SampleProfileReaderBinary::readMagicIdent() {
1415   // Read and check the magic identifier.
1416   auto Magic = readNumber<uint64_t>();
1417   if (std::error_code EC = Magic.getError())
1418     return EC;
1419   else if (std::error_code EC = verifySPMagic(*Magic))
1420     return EC;
1421 
1422   // Read the version number.
1423   auto Version = readNumber<uint64_t>();
1424   if (std::error_code EC = Version.getError())
1425     return EC;
1426   else if (*Version != SPVersion())
1427     return sampleprof_error::unsupported_version;
1428 
1429   return sampleprof_error::success;
1430 }
1431 
1432 std::error_code SampleProfileReaderBinary::readHeader() {
1433   Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1434   End = Data + Buffer->getBufferSize();
1435 
1436   if (std::error_code EC = readMagicIdent())
1437     return EC;
1438 
1439   if (std::error_code EC = readSummary())
1440     return EC;
1441 
1442   if (std::error_code EC = readNameTable())
1443     return EC;
1444   return sampleprof_error::success;
1445 }
1446 
1447 std::error_code SampleProfileReaderBinary::readSummaryEntry(
1448     std::vector<ProfileSummaryEntry> &Entries) {
1449   auto Cutoff = readNumber<uint64_t>();
1450   if (std::error_code EC = Cutoff.getError())
1451     return EC;
1452 
1453   auto MinBlockCount = readNumber<uint64_t>();
1454   if (std::error_code EC = MinBlockCount.getError())
1455     return EC;
1456 
1457   auto NumBlocks = readNumber<uint64_t>();
1458   if (std::error_code EC = NumBlocks.getError())
1459     return EC;
1460 
1461   Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
1462   return sampleprof_error::success;
1463 }
1464 
1465 std::error_code SampleProfileReaderBinary::readSummary() {
1466   auto TotalCount = readNumber<uint64_t>();
1467   if (std::error_code EC = TotalCount.getError())
1468     return EC;
1469 
1470   auto MaxBlockCount = readNumber<uint64_t>();
1471   if (std::error_code EC = MaxBlockCount.getError())
1472     return EC;
1473 
1474   auto MaxFunctionCount = readNumber<uint64_t>();
1475   if (std::error_code EC = MaxFunctionCount.getError())
1476     return EC;
1477 
1478   auto NumBlocks = readNumber<uint64_t>();
1479   if (std::error_code EC = NumBlocks.getError())
1480     return EC;
1481 
1482   auto NumFunctions = readNumber<uint64_t>();
1483   if (std::error_code EC = NumFunctions.getError())
1484     return EC;
1485 
1486   auto NumSummaryEntries = readNumber<uint64_t>();
1487   if (std::error_code EC = NumSummaryEntries.getError())
1488     return EC;
1489 
1490   std::vector<ProfileSummaryEntry> Entries;
1491   for (unsigned i = 0; i < *NumSummaryEntries; i++) {
1492     std::error_code EC = readSummaryEntry(Entries);
1493     if (EC != sampleprof_error::success)
1494       return EC;
1495   }
1496   Summary = std::make_unique<ProfileSummary>(
1497       ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
1498       *MaxFunctionCount, *NumBlocks, *NumFunctions);
1499 
1500   return sampleprof_error::success;
1501 }
1502 
1503 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
1504   const uint8_t *Data =
1505       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1506   uint64_t Magic = decodeULEB128(Data);
1507   return Magic == SPMagic();
1508 }
1509 
1510 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
1511   const uint8_t *Data =
1512       reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1513   uint64_t Magic = decodeULEB128(Data);
1514   return Magic == SPMagic(SPF_Ext_Binary);
1515 }
1516 
1517 std::error_code SampleProfileReaderGCC::skipNextWord() {
1518   uint32_t dummy;
1519   if (!GcovBuffer.readInt(dummy))
1520     return sampleprof_error::truncated;
1521   return sampleprof_error::success;
1522 }
1523 
1524 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
1525   if (sizeof(T) <= sizeof(uint32_t)) {
1526     uint32_t Val;
1527     if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
1528       return static_cast<T>(Val);
1529   } else if (sizeof(T) <= sizeof(uint64_t)) {
1530     uint64_t Val;
1531     if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
1532       return static_cast<T>(Val);
1533   }
1534 
1535   std::error_code EC = sampleprof_error::malformed;
1536   reportError(0, EC.message());
1537   return EC;
1538 }
1539 
1540 ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
1541   StringRef Str;
1542   if (!GcovBuffer.readString(Str))
1543     return sampleprof_error::truncated;
1544   return Str;
1545 }
1546 
1547 std::error_code SampleProfileReaderGCC::readHeader() {
1548   // Read the magic identifier.
1549   if (!GcovBuffer.readGCDAFormat())
1550     return sampleprof_error::unrecognized_format;
1551 
1552   // Read the version number. Note - the GCC reader does not validate this
1553   // version, but the profile creator generates v704.
1554   GCOV::GCOVVersion version;
1555   if (!GcovBuffer.readGCOVVersion(version))
1556     return sampleprof_error::unrecognized_format;
1557 
1558   if (version != GCOV::V407)
1559     return sampleprof_error::unsupported_version;
1560 
1561   // Skip the empty integer.
1562   if (std::error_code EC = skipNextWord())
1563     return EC;
1564 
1565   return sampleprof_error::success;
1566 }
1567 
1568 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
1569   uint32_t Tag;
1570   if (!GcovBuffer.readInt(Tag))
1571     return sampleprof_error::truncated;
1572 
1573   if (Tag != Expected)
1574     return sampleprof_error::malformed;
1575 
1576   if (std::error_code EC = skipNextWord())
1577     return EC;
1578 
1579   return sampleprof_error::success;
1580 }
1581 
1582 std::error_code SampleProfileReaderGCC::readNameTable() {
1583   if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
1584     return EC;
1585 
1586   uint32_t Size;
1587   if (!GcovBuffer.readInt(Size))
1588     return sampleprof_error::truncated;
1589 
1590   for (uint32_t I = 0; I < Size; ++I) {
1591     StringRef Str;
1592     if (!GcovBuffer.readString(Str))
1593       return sampleprof_error::truncated;
1594     Names.push_back(std::string(Str));
1595   }
1596 
1597   return sampleprof_error::success;
1598 }
1599 
1600 std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
1601   if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
1602     return EC;
1603 
1604   uint32_t NumFunctions;
1605   if (!GcovBuffer.readInt(NumFunctions))
1606     return sampleprof_error::truncated;
1607 
1608   InlineCallStack Stack;
1609   for (uint32_t I = 0; I < NumFunctions; ++I)
1610     if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
1611       return EC;
1612 
1613   computeSummary();
1614   return sampleprof_error::success;
1615 }
1616 
1617 std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
1618     const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
1619   uint64_t HeadCount = 0;
1620   if (InlineStack.size() == 0)
1621     if (!GcovBuffer.readInt64(HeadCount))
1622       return sampleprof_error::truncated;
1623 
1624   uint32_t NameIdx;
1625   if (!GcovBuffer.readInt(NameIdx))
1626     return sampleprof_error::truncated;
1627 
1628   StringRef Name(Names[NameIdx]);
1629 
1630   uint32_t NumPosCounts;
1631   if (!GcovBuffer.readInt(NumPosCounts))
1632     return sampleprof_error::truncated;
1633 
1634   uint32_t NumCallsites;
1635   if (!GcovBuffer.readInt(NumCallsites))
1636     return sampleprof_error::truncated;
1637 
1638   FunctionSamples *FProfile = nullptr;
1639   if (InlineStack.size() == 0) {
1640     // If this is a top function that we have already processed, do not
1641     // update its profile again.  This happens in the presence of
1642     // function aliases.  Since these aliases share the same function
1643     // body, there will be identical replicated profiles for the
1644     // original function.  In this case, we simply not bother updating
1645     // the profile of the original function.
1646     FProfile = &Profiles[FunctionId(Name)];
1647     FProfile->addHeadSamples(HeadCount);
1648     if (FProfile->getTotalSamples() > 0)
1649       Update = false;
1650   } else {
1651     // Otherwise, we are reading an inlined instance. The top of the
1652     // inline stack contains the profile of the caller. Insert this
1653     // callee in the caller's CallsiteMap.
1654     FunctionSamples *CallerProfile = InlineStack.front();
1655     uint32_t LineOffset = Offset >> 16;
1656     uint32_t Discriminator = Offset & 0xffff;
1657     FProfile = &CallerProfile->functionSamplesAt(
1658         LineLocation(LineOffset, Discriminator))[FunctionId(Name)];
1659   }
1660   FProfile->setFunction(FunctionId(Name));
1661 
1662   for (uint32_t I = 0; I < NumPosCounts; ++I) {
1663     uint32_t Offset;
1664     if (!GcovBuffer.readInt(Offset))
1665       return sampleprof_error::truncated;
1666 
1667     uint32_t NumTargets;
1668     if (!GcovBuffer.readInt(NumTargets))
1669       return sampleprof_error::truncated;
1670 
1671     uint64_t Count;
1672     if (!GcovBuffer.readInt64(Count))
1673       return sampleprof_error::truncated;
1674 
1675     // The line location is encoded in the offset as:
1676     //   high 16 bits: line offset to the start of the function.
1677     //   low 16 bits: discriminator.
1678     uint32_t LineOffset = Offset >> 16;
1679     uint32_t Discriminator = Offset & 0xffff;
1680 
1681     InlineCallStack NewStack;
1682     NewStack.push_back(FProfile);
1683     llvm::append_range(NewStack, InlineStack);
1684     if (Update) {
1685       // Walk up the inline stack, adding the samples on this line to
1686       // the total sample count of the callers in the chain.
1687       for (auto *CallerProfile : NewStack)
1688         CallerProfile->addTotalSamples(Count);
1689 
1690       // Update the body samples for the current profile.
1691       FProfile->addBodySamples(LineOffset, Discriminator, Count);
1692     }
1693 
1694     // Process the list of functions called at an indirect call site.
1695     // These are all the targets that a function pointer (or virtual
1696     // function) resolved at runtime.
1697     for (uint32_t J = 0; J < NumTargets; J++) {
1698       uint32_t HistVal;
1699       if (!GcovBuffer.readInt(HistVal))
1700         return sampleprof_error::truncated;
1701 
1702       if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
1703         return sampleprof_error::malformed;
1704 
1705       uint64_t TargetIdx;
1706       if (!GcovBuffer.readInt64(TargetIdx))
1707         return sampleprof_error::truncated;
1708       StringRef TargetName(Names[TargetIdx]);
1709 
1710       uint64_t TargetCount;
1711       if (!GcovBuffer.readInt64(TargetCount))
1712         return sampleprof_error::truncated;
1713 
1714       if (Update)
1715         FProfile->addCalledTargetSamples(LineOffset, Discriminator,
1716                                          FunctionId(TargetName),
1717                                          TargetCount);
1718     }
1719   }
1720 
1721   // Process all the inlined callers into the current function. These
1722   // are all the callsites that were inlined into this function.
1723   for (uint32_t I = 0; I < NumCallsites; I++) {
1724     // The offset is encoded as:
1725     //   high 16 bits: line offset to the start of the function.
1726     //   low 16 bits: discriminator.
1727     uint32_t Offset;
1728     if (!GcovBuffer.readInt(Offset))
1729       return sampleprof_error::truncated;
1730     InlineCallStack NewStack;
1731     NewStack.push_back(FProfile);
1732     llvm::append_range(NewStack, InlineStack);
1733     if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
1734       return EC;
1735   }
1736 
1737   return sampleprof_error::success;
1738 }
1739 
1740 /// Read a GCC AutoFDO profile.
1741 ///
1742 /// This format is generated by the Linux Perf conversion tool at
1743 /// https://github.com/google/autofdo.
1744 std::error_code SampleProfileReaderGCC::readImpl() {
1745   assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator");
1746   // Read the string table.
1747   if (std::error_code EC = readNameTable())
1748     return EC;
1749 
1750   // Read the source profile.
1751   if (std::error_code EC = readFunctionProfiles())
1752     return EC;
1753 
1754   return sampleprof_error::success;
1755 }
1756 
1757 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
1758   StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
1759   return Magic == "adcg*704";
1760 }
1761 
1762 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
1763   // If the reader uses MD5 to represent string, we can't remap it because
1764   // we don't know what the original function names were.
1765   if (Reader.useMD5()) {
1766     Ctx.diagnose(DiagnosticInfoSampleProfile(
1767         Reader.getBuffer()->getBufferIdentifier(),
1768         "Profile data remapping cannot be applied to profile data "
1769         "using MD5 names (original mangled names are not available).",
1770         DS_Warning));
1771     return;
1772   }
1773 
1774   // CSSPGO-TODO: Remapper is not yet supported.
1775   // We will need to remap the entire context string.
1776   assert(Remappings && "should be initialized while creating remapper");
1777   for (auto &Sample : Reader.getProfiles()) {
1778     DenseSet<FunctionId> NamesInSample;
1779     Sample.second.findAllNames(NamesInSample);
1780     for (auto &Name : NamesInSample) {
1781       StringRef NameStr = Name.stringRef();
1782       if (auto Key = Remappings->insert(NameStr))
1783         NameMap.insert({Key, NameStr});
1784     }
1785   }
1786 
1787   RemappingApplied = true;
1788 }
1789 
1790 std::optional<StringRef>
1791 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) {
1792   if (auto Key = Remappings->lookup(Fname)) {
1793     StringRef Result = NameMap.lookup(Key);
1794     if (!Result.empty())
1795       return Result;
1796   }
1797   return std::nullopt;
1798 }
1799 
1800 /// Prepare a memory buffer for the contents of \p Filename.
1801 ///
1802 /// \returns an error code indicating the status of the buffer.
1803 static ErrorOr<std::unique_ptr<MemoryBuffer>>
1804 setupMemoryBuffer(const Twine &Filename, vfs::FileSystem &FS) {
1805   auto BufferOrErr = Filename.str() == "-" ? MemoryBuffer::getSTDIN()
1806                                            : FS.getBufferForFile(Filename);
1807   if (std::error_code EC = BufferOrErr.getError())
1808     return EC;
1809   auto Buffer = std::move(BufferOrErr.get());
1810 
1811   return std::move(Buffer);
1812 }
1813 
1814 /// Create a sample profile reader based on the format of the input file.
1815 ///
1816 /// \param Filename The file to open.
1817 ///
1818 /// \param C The LLVM context to use to emit diagnostics.
1819 ///
1820 /// \param P The FSDiscriminatorPass.
1821 ///
1822 /// \param RemapFilename The file used for profile remapping.
1823 ///
1824 /// \returns an error code indicating the status of the created reader.
1825 ErrorOr<std::unique_ptr<SampleProfileReader>>
1826 SampleProfileReader::create(StringRef Filename, LLVMContext &C,
1827                             vfs::FileSystem &FS, FSDiscriminatorPass P,
1828                             StringRef RemapFilename) {
1829   auto BufferOrError = setupMemoryBuffer(Filename, FS);
1830   if (std::error_code EC = BufferOrError.getError())
1831     return EC;
1832   return create(BufferOrError.get(), C, FS, P, RemapFilename);
1833 }
1834 
1835 /// Create a sample profile remapper from the given input, to remap the
1836 /// function names in the given profile data.
1837 ///
1838 /// \param Filename The file to open.
1839 ///
1840 /// \param Reader The profile reader the remapper is going to be applied to.
1841 ///
1842 /// \param C The LLVM context to use to emit diagnostics.
1843 ///
1844 /// \returns an error code indicating the status of the created reader.
1845 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
1846 SampleProfileReaderItaniumRemapper::create(StringRef Filename,
1847                                            vfs::FileSystem &FS,
1848                                            SampleProfileReader &Reader,
1849                                            LLVMContext &C) {
1850   auto BufferOrError = setupMemoryBuffer(Filename, FS);
1851   if (std::error_code EC = BufferOrError.getError())
1852     return EC;
1853   return create(BufferOrError.get(), Reader, C);
1854 }
1855 
1856 /// Create a sample profile remapper from the given input, to remap the
1857 /// function names in the given profile data.
1858 ///
1859 /// \param B The memory buffer to create the reader from (assumes ownership).
1860 ///
1861 /// \param C The LLVM context to use to emit diagnostics.
1862 ///
1863 /// \param Reader The profile reader the remapper is going to be applied to.
1864 ///
1865 /// \returns an error code indicating the status of the created reader.
1866 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
1867 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
1868                                            SampleProfileReader &Reader,
1869                                            LLVMContext &C) {
1870   auto Remappings = std::make_unique<SymbolRemappingReader>();
1871   if (Error E = Remappings->read(*B)) {
1872     handleAllErrors(
1873         std::move(E), [&](const SymbolRemappingParseError &ParseError) {
1874           C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
1875                                                  ParseError.getLineNum(),
1876                                                  ParseError.getMessage()));
1877         });
1878     return sampleprof_error::malformed;
1879   }
1880 
1881   return std::make_unique<SampleProfileReaderItaniumRemapper>(
1882       std::move(B), std::move(Remappings), Reader);
1883 }
1884 
1885 /// Create a sample profile reader based on the format of the input data.
1886 ///
1887 /// \param B The memory buffer to create the reader from (assumes ownership).
1888 ///
1889 /// \param C The LLVM context to use to emit diagnostics.
1890 ///
1891 /// \param P The FSDiscriminatorPass.
1892 ///
1893 /// \param RemapFilename The file used for profile remapping.
1894 ///
1895 /// \returns an error code indicating the status of the created reader.
1896 ErrorOr<std::unique_ptr<SampleProfileReader>>
1897 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
1898                             vfs::FileSystem &FS, FSDiscriminatorPass P,
1899                             StringRef RemapFilename) {
1900   std::unique_ptr<SampleProfileReader> Reader;
1901   if (SampleProfileReaderRawBinary::hasFormat(*B))
1902     Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
1903   else if (SampleProfileReaderExtBinary::hasFormat(*B))
1904     Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
1905   else if (SampleProfileReaderGCC::hasFormat(*B))
1906     Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
1907   else if (SampleProfileReaderText::hasFormat(*B))
1908     Reader.reset(new SampleProfileReaderText(std::move(B), C));
1909   else
1910     return sampleprof_error::unrecognized_format;
1911 
1912   if (!RemapFilename.empty()) {
1913     auto ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1914         RemapFilename, FS, *Reader, C);
1915     if (std::error_code EC = ReaderOrErr.getError()) {
1916       std::string Msg = "Could not create remapper: " + EC.message();
1917       C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
1918       return EC;
1919     }
1920     Reader->Remapper = std::move(ReaderOrErr.get());
1921   }
1922 
1923   if (std::error_code EC = Reader->readHeader()) {
1924     return EC;
1925   }
1926 
1927   Reader->setDiscriminatorMaskedBitFrom(P);
1928 
1929   return std::move(Reader);
1930 }
1931 
1932 // For text and GCC file formats, we compute the summary after reading the
1933 // profile. Binary format has the profile summary in its header.
1934 void SampleProfileReader::computeSummary() {
1935   SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1936   Summary = Builder.computeSummaryForProfiles(Profiles);
1937 }
1938