xref: /freebsd/contrib/llvm-project/llvm/lib/ProfileData/ProfileSummaryBuilder.cpp (revision 942815c54820783d3d4f7f6faa71ab7919b5f0e5)
1 //=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for computing profile summary data.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/ProfileSummary.h"
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ProfileData/ProfileCommon.h"
16 #include "llvm/ProfileData/SampleProf.h"
17 #include "llvm/Support/CommandLine.h"
18 
19 using namespace llvm;
20 
21 cl::opt<bool> UseContextLessSummary(
22     "profile-summary-contextless", cl::Hidden,
23     cl::desc("Merge context profiles before calculating thresholds."));
24 
25 // The following two parameters determine the threshold for a count to be
26 // considered hot/cold. These two parameters are percentile values (multiplied
27 // by 10000). If the counts are sorted in descending order, the minimum count to
28 // reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
29 // Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
30 // threshold for determining cold count (everything <= this threshold is
31 // considered cold).
32 cl::opt<int> ProfileSummaryCutoffHot(
33     "profile-summary-cutoff-hot", cl::Hidden, cl::init(990000),
34     cl::desc("A count is hot if it exceeds the minimum count to"
35              " reach this percentile of total counts."));
36 
37 cl::opt<int> ProfileSummaryCutoffCold(
38     "profile-summary-cutoff-cold", cl::Hidden, cl::init(999999),
39     cl::desc("A count is cold if it is below the minimum count"
40              " to reach this percentile of total counts."));
41 
42 cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold(
43     "profile-summary-huge-working-set-size-threshold", cl::Hidden,
44     cl::init(15000),
45     cl::desc("The code working set size is considered huge if the number of"
46              " blocks required to reach the -profile-summary-cutoff-hot"
47              " percentile exceeds this count."));
48 
49 cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold(
50     "profile-summary-large-working-set-size-threshold", cl::Hidden,
51     cl::init(12500),
52     cl::desc("The code working set size is considered large if the number of"
53              " blocks required to reach the -profile-summary-cutoff-hot"
54              " percentile exceeds this count."));
55 
56 // The next two options override the counts derived from summary computation and
57 // are useful for debugging purposes.
58 cl::opt<uint64_t> ProfileSummaryHotCount(
59     "profile-summary-hot-count", cl::ReallyHidden,
60     cl::desc("A fixed hot count that overrides the count derived from"
61              " profile-summary-cutoff-hot"));
62 
63 cl::opt<uint64_t> ProfileSummaryColdCount(
64     "profile-summary-cold-count", cl::ReallyHidden,
65     cl::desc("A fixed cold count that overrides the count derived from"
66              " profile-summary-cutoff-cold"));
67 
68 // A set of cutoff values. Each value, when divided by ProfileSummary::Scale
69 // (which is 1000000) is a desired percentile of total counts.
70 static const uint32_t DefaultCutoffsData[] = {
71     10000,  /*  1% */
72     100000, /* 10% */
73     200000, 300000, 400000, 500000, 600000, 700000, 800000,
74     900000, 950000, 990000, 999000, 999900, 999990, 999999};
75 const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
76     DefaultCutoffsData;
77 
78 const ProfileSummaryEntry &
79 ProfileSummaryBuilder::getEntryForPercentile(const SummaryEntryVector &DS,
80                                              uint64_t Percentile) {
81   auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
82     return Entry.Cutoff < Percentile;
83   });
84   // The required percentile has to be <= one of the percentiles in the
85   // detailed summary.
86   if (It == DS.end())
87     report_fatal_error("Desired percentile exceeds the maximum cutoff");
88   return *It;
89 }
90 
91 void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
92   // The first counter is not necessarily an entry count for IR
93   // instrumentation profiles.
94   // Eventually MaxFunctionCount will become obsolete and this can be
95   // removed.
96   addEntryCount(R.Counts[0]);
97   for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
98     addInternalCount(R.Counts[I]);
99 }
100 
101 // To compute the detailed summary, we consider each line containing samples as
102 // equivalent to a block with a count in the instrumented profile.
103 void SampleProfileSummaryBuilder::addRecord(
104     const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
105   if (!isCallsiteSample) {
106     NumFunctions++;
107     if (FS.getHeadSamples() > MaxFunctionCount)
108       MaxFunctionCount = FS.getHeadSamples();
109   } else if (FS.getContext().hasAttribute(
110                  sampleprof::ContextDuplicatedIntoBase)) {
111     // Do not recount callee samples if they are already merged into their base
112     // profiles. This can happen to CS nested profile.
113     return;
114   }
115 
116   for (const auto &I : FS.getBodySamples()) {
117     uint64_t Count = I.second.getSamples();
118       addCount(Count);
119   }
120   for (const auto &I : FS.getCallsiteSamples())
121     for (const auto &CS : I.second)
122       addRecord(CS.second, true);
123 }
124 
125 // The argument to this method is a vector of cutoff percentages and the return
126 // value is a vector of (Cutoff, MinCount, NumCounts) triplets.
127 void ProfileSummaryBuilder::computeDetailedSummary() {
128   if (DetailedSummaryCutoffs.empty())
129     return;
130   llvm::sort(DetailedSummaryCutoffs);
131   auto Iter = CountFrequencies.begin();
132   const auto End = CountFrequencies.end();
133 
134   uint32_t CountsSeen = 0;
135   uint64_t CurrSum = 0, Count = 0;
136 
137   for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
138     assert(Cutoff <= 999999);
139     APInt Temp(128, TotalCount);
140     APInt N(128, Cutoff);
141     APInt D(128, ProfileSummary::Scale);
142     Temp *= N;
143     Temp = Temp.sdiv(D);
144     uint64_t DesiredCount = Temp.getZExtValue();
145     assert(DesiredCount <= TotalCount);
146     while (CurrSum < DesiredCount && Iter != End) {
147       Count = Iter->first;
148       uint32_t Freq = Iter->second;
149       CurrSum += (Count * Freq);
150       CountsSeen += Freq;
151       Iter++;
152     }
153     assert(CurrSum >= DesiredCount);
154     ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
155     DetailedSummary.push_back(PSE);
156   }
157 }
158 
159 uint64_t
160 ProfileSummaryBuilder::getHotCountThreshold(const SummaryEntryVector &DS) {
161   auto &HotEntry =
162       ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot);
163   uint64_t HotCountThreshold = HotEntry.MinCount;
164   if (ProfileSummaryHotCount.getNumOccurrences() > 0)
165     HotCountThreshold = ProfileSummaryHotCount;
166   return HotCountThreshold;
167 }
168 
169 uint64_t
170 ProfileSummaryBuilder::getColdCountThreshold(const SummaryEntryVector &DS) {
171   auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile(
172       DS, ProfileSummaryCutoffCold);
173   uint64_t ColdCountThreshold = ColdEntry.MinCount;
174   if (ProfileSummaryColdCount.getNumOccurrences() > 0)
175     ColdCountThreshold = ProfileSummaryColdCount;
176   return ColdCountThreshold;
177 }
178 
179 std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
180   computeDetailedSummary();
181   return std::make_unique<ProfileSummary>(
182       ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
183       MaxFunctionCount, NumCounts, NumFunctions);
184 }
185 
186 std::unique_ptr<ProfileSummary>
187 SampleProfileSummaryBuilder::computeSummaryForProfiles(
188     const SampleProfileMap &Profiles) {
189   assert(NumFunctions == 0 &&
190          "This can only be called on an empty summary builder");
191   sampleprof::SampleProfileMap ContextLessProfiles;
192   const sampleprof::SampleProfileMap *ProfilesToUse = &Profiles;
193   // For CSSPGO, context-sensitive profile effectively split a function profile
194   // into many copies each representing the CFG profile of a particular calling
195   // context. That makes the count distribution looks more flat as we now have
196   // more function profiles each with lower counts, which in turn leads to lower
197   // hot thresholds. To compensate for that, by default we merge context
198   // profiles before computing profile summary.
199   if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
200                                 !UseContextLessSummary.getNumOccurrences())) {
201     for (const auto &I : Profiles) {
202       ContextLessProfiles[I.second.getName()].merge(I.second);
203     }
204     ProfilesToUse = &ContextLessProfiles;
205   }
206 
207   for (const auto &I : *ProfilesToUse) {
208     const sampleprof::FunctionSamples &Profile = I.second;
209     addRecord(Profile);
210   }
211 
212   return getSummary();
213 }
214 
215 std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
216   computeDetailedSummary();
217   return std::make_unique<ProfileSummary>(
218       ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
219       MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
220 }
221 
222 void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
223   NumFunctions++;
224 
225   // Skip invalid count.
226   if (Count == (uint64_t)-1)
227     return;
228 
229   addCount(Count);
230   if (Count > MaxFunctionCount)
231     MaxFunctionCount = Count;
232 }
233 
234 void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
235   // Skip invalid count.
236   if (Count == (uint64_t)-1)
237     return;
238 
239   addCount(Count);
240   if (Count > MaxInternalBlockCount)
241     MaxInternalBlockCount = Count;
242 }
243