1 //=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for computing profile summary data. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Attributes.h" 14 #include "llvm/IR/Function.h" 15 #include "llvm/IR/Metadata.h" 16 #include "llvm/IR/Type.h" 17 #include "llvm/ProfileData/InstrProf.h" 18 #include "llvm/ProfileData/ProfileCommon.h" 19 #include "llvm/ProfileData/SampleProf.h" 20 #include "llvm/Support/Casting.h" 21 #include "llvm/Support/CommandLine.h" 22 23 using namespace llvm; 24 25 cl::opt<bool> UseContextLessSummary( 26 "profile-summary-contextless", cl::Hidden, cl::init(false), cl::ZeroOrMore, 27 cl::desc("Merge context profiles before calculating thresholds.")); 28 29 // The following two parameters determine the threshold for a count to be 30 // considered hot/cold. These two parameters are percentile values (multiplied 31 // by 10000). If the counts are sorted in descending order, the minimum count to 32 // reach ProfileSummaryCutoffHot gives the threshold to determine a hot count. 33 // Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the 34 // threshold for determining cold count (everything <= this threshold is 35 // considered cold). 36 cl::opt<int> ProfileSummaryCutoffHot( 37 "profile-summary-cutoff-hot", cl::Hidden, cl::init(990000), cl::ZeroOrMore, 38 cl::desc("A count is hot if it exceeds the minimum count to" 39 " reach this percentile of total counts.")); 40 41 cl::opt<int> ProfileSummaryCutoffCold( 42 "profile-summary-cutoff-cold", cl::Hidden, cl::init(999999), cl::ZeroOrMore, 43 cl::desc("A count is cold if it is below the minimum count" 44 " to reach this percentile of total counts.")); 45 46 cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold( 47 "profile-summary-huge-working-set-size-threshold", cl::Hidden, 48 cl::init(15000), cl::ZeroOrMore, 49 cl::desc("The code working set size is considered huge if the number of" 50 " blocks required to reach the -profile-summary-cutoff-hot" 51 " percentile exceeds this count.")); 52 53 cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold( 54 "profile-summary-large-working-set-size-threshold", cl::Hidden, 55 cl::init(12500), cl::ZeroOrMore, 56 cl::desc("The code working set size is considered large if the number of" 57 " blocks required to reach the -profile-summary-cutoff-hot" 58 " percentile exceeds this count.")); 59 60 // The next two options override the counts derived from summary computation and 61 // are useful for debugging purposes. 62 cl::opt<int> ProfileSummaryHotCount( 63 "profile-summary-hot-count", cl::ReallyHidden, cl::ZeroOrMore, 64 cl::desc("A fixed hot count that overrides the count derived from" 65 " profile-summary-cutoff-hot")); 66 67 cl::opt<int> ProfileSummaryColdCount( 68 "profile-summary-cold-count", cl::ReallyHidden, cl::ZeroOrMore, 69 cl::desc("A fixed cold count that overrides the count derived from" 70 " profile-summary-cutoff-cold")); 71 72 // A set of cutoff values. Each value, when divided by ProfileSummary::Scale 73 // (which is 1000000) is a desired percentile of total counts. 74 static const uint32_t DefaultCutoffsData[] = { 75 10000, /* 1% */ 76 100000, /* 10% */ 77 200000, 300000, 400000, 500000, 600000, 700000, 800000, 78 900000, 950000, 990000, 999000, 999900, 999990, 999999}; 79 const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs = 80 DefaultCutoffsData; 81 82 const ProfileSummaryEntry & 83 ProfileSummaryBuilder::getEntryForPercentile(const SummaryEntryVector &DS, 84 uint64_t Percentile) { 85 auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) { 86 return Entry.Cutoff < Percentile; 87 }); 88 // The required percentile has to be <= one of the percentiles in the 89 // detailed summary. 90 if (It == DS.end()) 91 report_fatal_error("Desired percentile exceeds the maximum cutoff"); 92 return *It; 93 } 94 95 void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) { 96 // The first counter is not necessarily an entry count for IR 97 // instrumentation profiles. 98 // Eventually MaxFunctionCount will become obsolete and this can be 99 // removed. 100 addEntryCount(R.Counts[0]); 101 for (size_t I = 1, E = R.Counts.size(); I < E; ++I) 102 addInternalCount(R.Counts[I]); 103 } 104 105 // To compute the detailed summary, we consider each line containing samples as 106 // equivalent to a block with a count in the instrumented profile. 107 void SampleProfileSummaryBuilder::addRecord( 108 const sampleprof::FunctionSamples &FS, bool isCallsiteSample) { 109 if (!isCallsiteSample) { 110 NumFunctions++; 111 if (FS.getHeadSamples() > MaxFunctionCount) 112 MaxFunctionCount = FS.getHeadSamples(); 113 } 114 for (const auto &I : FS.getBodySamples()) { 115 uint64_t Count = I.second.getSamples(); 116 addCount(Count); 117 } 118 for (const auto &I : FS.getCallsiteSamples()) 119 for (const auto &CS : I.second) 120 addRecord(CS.second, true); 121 } 122 123 // The argument to this method is a vector of cutoff percentages and the return 124 // value is a vector of (Cutoff, MinCount, NumCounts) triplets. 125 void ProfileSummaryBuilder::computeDetailedSummary() { 126 if (DetailedSummaryCutoffs.empty()) 127 return; 128 llvm::sort(DetailedSummaryCutoffs); 129 auto Iter = CountFrequencies.begin(); 130 const auto End = CountFrequencies.end(); 131 132 uint32_t CountsSeen = 0; 133 uint64_t CurrSum = 0, Count = 0; 134 135 for (const uint32_t Cutoff : DetailedSummaryCutoffs) { 136 assert(Cutoff <= 999999); 137 APInt Temp(128, TotalCount); 138 APInt N(128, Cutoff); 139 APInt D(128, ProfileSummary::Scale); 140 Temp *= N; 141 Temp = Temp.sdiv(D); 142 uint64_t DesiredCount = Temp.getZExtValue(); 143 assert(DesiredCount <= TotalCount); 144 while (CurrSum < DesiredCount && Iter != End) { 145 Count = Iter->first; 146 uint32_t Freq = Iter->second; 147 CurrSum += (Count * Freq); 148 CountsSeen += Freq; 149 Iter++; 150 } 151 assert(CurrSum >= DesiredCount); 152 ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen}; 153 DetailedSummary.push_back(PSE); 154 } 155 } 156 157 uint64_t 158 ProfileSummaryBuilder::getHotCountThreshold(const SummaryEntryVector &DS) { 159 auto &HotEntry = 160 ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot); 161 uint64_t HotCountThreshold = HotEntry.MinCount; 162 if (ProfileSummaryHotCount.getNumOccurrences() > 0) 163 HotCountThreshold = ProfileSummaryHotCount; 164 return HotCountThreshold; 165 } 166 167 uint64_t 168 ProfileSummaryBuilder::getColdCountThreshold(const SummaryEntryVector &DS) { 169 auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile( 170 DS, ProfileSummaryCutoffCold); 171 uint64_t ColdCountThreshold = ColdEntry.MinCount; 172 if (ProfileSummaryColdCount.getNumOccurrences() > 0) 173 ColdCountThreshold = ProfileSummaryColdCount; 174 return ColdCountThreshold; 175 } 176 177 std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() { 178 computeDetailedSummary(); 179 return std::make_unique<ProfileSummary>( 180 ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0, 181 MaxFunctionCount, NumCounts, NumFunctions); 182 } 183 184 std::unique_ptr<ProfileSummary> 185 SampleProfileSummaryBuilder::computeSummaryForProfiles( 186 const SampleProfileMap &Profiles) { 187 assert(NumFunctions == 0 && 188 "This can only be called on an empty summary builder"); 189 sampleprof::SampleProfileMap ContextLessProfiles; 190 const sampleprof::SampleProfileMap *ProfilesToUse = &Profiles; 191 // For CSSPGO, context-sensitive profile effectively split a function profile 192 // into many copies each representing the CFG profile of a particular calling 193 // context. That makes the count distribution looks more flat as we now have 194 // more function profiles each with lower counts, which in turn leads to lower 195 // hot thresholds. To compensate for that, by default we merge context 196 // profiles before computing profile summary. 197 if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCSFlat && 198 !UseContextLessSummary.getNumOccurrences())) { 199 for (const auto &I : Profiles) { 200 ContextLessProfiles[I.second.getName()].merge(I.second); 201 } 202 ProfilesToUse = &ContextLessProfiles; 203 } 204 205 for (const auto &I : *ProfilesToUse) { 206 const sampleprof::FunctionSamples &Profile = I.second; 207 addRecord(Profile); 208 } 209 210 return getSummary(); 211 } 212 213 std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() { 214 computeDetailedSummary(); 215 return std::make_unique<ProfileSummary>( 216 ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount, 217 MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions); 218 } 219 220 void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) { 221 NumFunctions++; 222 223 // Skip invalid count. 224 if (Count == (uint64_t)-1) 225 return; 226 227 addCount(Count); 228 if (Count > MaxFunctionCount) 229 MaxFunctionCount = Count; 230 } 231 232 void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) { 233 // Skip invalid count. 234 if (Count == (uint64_t)-1) 235 return; 236 237 addCount(Count); 238 if (Count > MaxInternalBlockCount) 239 MaxInternalBlockCount = Count; 240 } 241