1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalValue.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/ProfileData/InstrProfReader.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Compression.h" 37 #include "llvm/Support/Endian.h" 38 #include "llvm/Support/Error.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/LEB128.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SwapByteOrder.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <string> 52 #include <system_error> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 static cl::opt<bool> StaticFuncFullModulePrefix( 59 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 60 cl::desc("Use full module build paths in the profile counter names for " 61 "static functions.")); 62 63 // This option is tailored to users that have different top-level directory in 64 // profile-gen and profile-use compilation. Users need to specific the number 65 // of levels to strip. A value larger than the number of directories in the 66 // source file will strip all the directory names and only leave the basename. 67 // 68 // Note current ThinLTO module importing for the indirect-calls assumes 69 // the source directory name not being stripped. A non-zero option value here 70 // can potentially prevent some inter-module indirect-call-promotions. 71 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 72 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 73 cl::desc("Strip specified level of directory name from source path in " 74 "the profile counter name for static functions.")); 75 76 static std::string getInstrProfErrString(instrprof_error Err) { 77 switch (Err) { 78 case instrprof_error::success: 79 return "Success"; 80 case instrprof_error::eof: 81 return "End of File"; 82 case instrprof_error::unrecognized_format: 83 return "Unrecognized instrumentation profile encoding format"; 84 case instrprof_error::bad_magic: 85 return "Invalid instrumentation profile data (bad magic)"; 86 case instrprof_error::bad_header: 87 return "Invalid instrumentation profile data (file header is corrupt)"; 88 case instrprof_error::unsupported_version: 89 return "Unsupported instrumentation profile format version"; 90 case instrprof_error::unsupported_hash_type: 91 return "Unsupported instrumentation profile hash type"; 92 case instrprof_error::too_large: 93 return "Too much profile data"; 94 case instrprof_error::truncated: 95 return "Truncated profile data"; 96 case instrprof_error::malformed: 97 return "Malformed instrumentation profile data"; 98 case instrprof_error::unknown_function: 99 return "No profile data available for function"; 100 case instrprof_error::hash_mismatch: 101 return "Function control flow change detected (hash mismatch)"; 102 case instrprof_error::count_mismatch: 103 return "Function basic block count change detected (counter mismatch)"; 104 case instrprof_error::counter_overflow: 105 return "Counter overflow"; 106 case instrprof_error::value_site_count_mismatch: 107 return "Function value site count change detected (counter mismatch)"; 108 case instrprof_error::compress_failed: 109 return "Failed to compress data (zlib)"; 110 case instrprof_error::uncompress_failed: 111 return "Failed to uncompress data (zlib)"; 112 case instrprof_error::empty_raw_profile: 113 return "Empty raw profile file"; 114 case instrprof_error::zlib_unavailable: 115 return "Profile uses zlib compression but the profile reader was built without zlib support"; 116 } 117 llvm_unreachable("A value of instrprof_error has no message."); 118 } 119 120 namespace { 121 122 // FIXME: This class is only here to support the transition to llvm::Error. It 123 // will be removed once this transition is complete. Clients should prefer to 124 // deal with the Error value directly, rather than converting to error_code. 125 class InstrProfErrorCategoryType : public std::error_category { 126 const char *name() const noexcept override { return "llvm.instrprof"; } 127 128 std::string message(int IE) const override { 129 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 130 } 131 }; 132 133 } // end anonymous namespace 134 135 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 136 137 const std::error_category &llvm::instrprof_category() { 138 return *ErrorCategory; 139 } 140 141 namespace { 142 143 const char *InstrProfSectNameCommon[] = { 144 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 145 SectNameCommon, 146 #include "llvm/ProfileData/InstrProfData.inc" 147 }; 148 149 const char *InstrProfSectNameCoff[] = { 150 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 151 SectNameCoff, 152 #include "llvm/ProfileData/InstrProfData.inc" 153 }; 154 155 const char *InstrProfSectNamePrefix[] = { 156 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 157 Prefix, 158 #include "llvm/ProfileData/InstrProfData.inc" 159 }; 160 161 } // namespace 162 163 namespace llvm { 164 165 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 166 Triple::ObjectFormatType OF, 167 bool AddSegmentInfo) { 168 std::string SectName; 169 170 if (OF == Triple::MachO && AddSegmentInfo) 171 SectName = InstrProfSectNamePrefix[IPSK]; 172 173 if (OF == Triple::COFF) 174 SectName += InstrProfSectNameCoff[IPSK]; 175 else 176 SectName += InstrProfSectNameCommon[IPSK]; 177 178 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 179 SectName += ",regular,live_support"; 180 181 return SectName; 182 } 183 184 void SoftInstrProfErrors::addError(instrprof_error IE) { 185 if (IE == instrprof_error::success) 186 return; 187 188 if (FirstError == instrprof_error::success) 189 FirstError = IE; 190 191 switch (IE) { 192 case instrprof_error::hash_mismatch: 193 ++NumHashMismatches; 194 break; 195 case instrprof_error::count_mismatch: 196 ++NumCountMismatches; 197 break; 198 case instrprof_error::counter_overflow: 199 ++NumCounterOverflows; 200 break; 201 case instrprof_error::value_site_count_mismatch: 202 ++NumValueSiteCountMismatches; 203 break; 204 default: 205 llvm_unreachable("Not a soft error"); 206 } 207 } 208 209 std::string InstrProfError::message() const { 210 return getInstrProfErrString(Err); 211 } 212 213 char InstrProfError::ID = 0; 214 215 std::string getPGOFuncName(StringRef RawFuncName, 216 GlobalValue::LinkageTypes Linkage, 217 StringRef FileName, 218 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 219 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 220 } 221 222 // Strip NumPrefix level of directory name from PathNameStr. If the number of 223 // directory separators is less than NumPrefix, strip all the directories and 224 // leave base file name only. 225 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 226 uint32_t Count = NumPrefix; 227 uint32_t Pos = 0, LastPos = 0; 228 for (auto & CI : PathNameStr) { 229 ++Pos; 230 if (llvm::sys::path::is_separator(CI)) { 231 LastPos = Pos; 232 --Count; 233 } 234 if (Count == 0) 235 break; 236 } 237 return PathNameStr.substr(LastPos); 238 } 239 240 // Return the PGOFuncName. This function has some special handling when called 241 // in LTO optimization. The following only applies when calling in LTO passes 242 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 243 // symbols. This happens after value profile annotation, but those internal 244 // linkage functions should not have a source prefix. 245 // Additionally, for ThinLTO mode, exported internal functions are promoted 246 // and renamed. We need to ensure that the original internal PGO name is 247 // used when computing the GUID that is compared against the profiled GUIDs. 248 // To differentiate compiler generated internal symbols from original ones, 249 // PGOFuncName meta data are created and attached to the original internal 250 // symbols in the value profile annotation step 251 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 252 // data, its original linkage must be non-internal. 253 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 254 if (!InLTO) { 255 StringRef FileName(F.getParent()->getSourceFileName()); 256 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 257 if (StripLevel < StaticFuncStripDirNamePrefix) 258 StripLevel = StaticFuncStripDirNamePrefix; 259 if (StripLevel) 260 FileName = stripDirPrefix(FileName, StripLevel); 261 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 262 } 263 264 // In LTO mode (when InLTO is true), first check if there is a meta data. 265 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 266 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 267 return S.str(); 268 } 269 270 // If there is no meta data, the function must be a global before the value 271 // profile annotation pass. Its current linkage may be internal if it is 272 // internalized in LTO mode. 273 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 274 } 275 276 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 277 if (FileName.empty()) 278 return PGOFuncName; 279 // Drop the file name including ':'. See also getPGOFuncName. 280 if (PGOFuncName.startswith(FileName)) 281 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 282 return PGOFuncName; 283 } 284 285 // \p FuncName is the string used as profile lookup key for the function. A 286 // symbol is created to hold the name. Return the legalized symbol name. 287 std::string getPGOFuncNameVarName(StringRef FuncName, 288 GlobalValue::LinkageTypes Linkage) { 289 std::string VarName = getInstrProfNameVarPrefix(); 290 VarName += FuncName; 291 292 if (!GlobalValue::isLocalLinkage(Linkage)) 293 return VarName; 294 295 // Now fix up illegal chars in local VarName that may upset the assembler. 296 const char *InvalidChars = "-:<>/\"'"; 297 size_t found = VarName.find_first_of(InvalidChars); 298 while (found != std::string::npos) { 299 VarName[found] = '_'; 300 found = VarName.find_first_of(InvalidChars, found + 1); 301 } 302 return VarName; 303 } 304 305 GlobalVariable *createPGOFuncNameVar(Module &M, 306 GlobalValue::LinkageTypes Linkage, 307 StringRef PGOFuncName) { 308 // We generally want to match the function's linkage, but available_externally 309 // and extern_weak both have the wrong semantics, and anything that doesn't 310 // need to link across compilation units doesn't need to be visible at all. 311 if (Linkage == GlobalValue::ExternalWeakLinkage) 312 Linkage = GlobalValue::LinkOnceAnyLinkage; 313 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 314 Linkage = GlobalValue::LinkOnceODRLinkage; 315 else if (Linkage == GlobalValue::InternalLinkage || 316 Linkage == GlobalValue::ExternalLinkage) 317 Linkage = GlobalValue::PrivateLinkage; 318 319 auto *Value = 320 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 321 auto FuncNameVar = 322 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 323 getPGOFuncNameVarName(PGOFuncName, Linkage)); 324 325 // Hide the symbol so that we correctly get a copy for each executable. 326 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 327 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 328 329 return FuncNameVar; 330 } 331 332 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 333 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 334 } 335 336 Error InstrProfSymtab::create(Module &M, bool InLTO) { 337 for (Function &F : M) { 338 // Function may not have a name: like using asm("") to overwrite the name. 339 // Ignore in this case. 340 if (!F.hasName()) 341 continue; 342 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 343 if (Error E = addFuncName(PGOFuncName)) 344 return E; 345 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 346 // In ThinLTO, local function may have been promoted to global and have 347 // suffix added to the function name. We need to add the stripped function 348 // name to the symbol table so that we can find a match from profile. 349 if (InLTO) { 350 auto pos = PGOFuncName.find('.'); 351 if (pos != std::string::npos) { 352 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 353 if (Error E = addFuncName(OtherFuncName)) 354 return E; 355 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 356 } 357 } 358 } 359 Sorted = false; 360 finalizeSymtab(); 361 return Error::success(); 362 } 363 364 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 365 finalizeSymtab(); 366 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 367 return A.first < Address; 368 }); 369 // Raw function pointer collected by value profiler may be from 370 // external functions that are not instrumented. They won't have 371 // mapping data to be used by the deserializer. Force the value to 372 // be 0 in this case. 373 if (It != AddrToMD5Map.end() && It->first == Address) 374 return (uint64_t)It->second; 375 return 0; 376 } 377 378 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 379 bool doCompression, std::string &Result) { 380 assert(!NameStrs.empty() && "No name data to emit"); 381 382 uint8_t Header[16], *P = Header; 383 std::string UncompressedNameStrings = 384 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 385 386 assert(StringRef(UncompressedNameStrings) 387 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 388 "PGO name is invalid (contains separator token)"); 389 390 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 391 P += EncLen; 392 393 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 394 EncLen = encodeULEB128(CompressedLen, P); 395 P += EncLen; 396 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 397 unsigned HeaderLen = P - &Header[0]; 398 Result.append(HeaderStr, HeaderLen); 399 Result += InputStr; 400 return Error::success(); 401 }; 402 403 if (!doCompression) { 404 return WriteStringToResult(0, UncompressedNameStrings); 405 } 406 407 SmallString<128> CompressedNameStrings; 408 Error E = zlib::compress(StringRef(UncompressedNameStrings), 409 CompressedNameStrings, zlib::BestSizeCompression); 410 if (E) { 411 consumeError(std::move(E)); 412 return make_error<InstrProfError>(instrprof_error::compress_failed); 413 } 414 415 return WriteStringToResult(CompressedNameStrings.size(), 416 CompressedNameStrings); 417 } 418 419 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 420 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 421 StringRef NameStr = 422 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 423 return NameStr; 424 } 425 426 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 427 std::string &Result, bool doCompression) { 428 std::vector<std::string> NameStrs; 429 for (auto *NameVar : NameVars) { 430 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); 431 } 432 return collectPGOFuncNameStrings( 433 NameStrs, zlib::isAvailable() && doCompression, Result); 434 } 435 436 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 437 const uint8_t *P = NameStrings.bytes_begin(); 438 const uint8_t *EndP = NameStrings.bytes_end(); 439 while (P < EndP) { 440 uint32_t N; 441 uint64_t UncompressedSize = decodeULEB128(P, &N); 442 P += N; 443 uint64_t CompressedSize = decodeULEB128(P, &N); 444 P += N; 445 bool isCompressed = (CompressedSize != 0); 446 SmallString<128> UncompressedNameStrings; 447 StringRef NameStrings; 448 if (isCompressed) { 449 if (!llvm::zlib::isAvailable()) 450 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 451 452 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 453 CompressedSize); 454 if (Error E = 455 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 456 UncompressedSize)) { 457 consumeError(std::move(E)); 458 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 459 } 460 P += CompressedSize; 461 NameStrings = StringRef(UncompressedNameStrings.data(), 462 UncompressedNameStrings.size()); 463 } else { 464 NameStrings = 465 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 466 P += UncompressedSize; 467 } 468 // Now parse the name strings. 469 SmallVector<StringRef, 0> Names; 470 NameStrings.split(Names, getInstrProfNameSeparator()); 471 for (StringRef &Name : Names) 472 if (Error E = Symtab.addFuncName(Name)) 473 return E; 474 475 while (P < EndP && *P == 0) 476 P++; 477 } 478 return Error::success(); 479 } 480 481 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 482 uint64_t FuncSum = 0; 483 Sum.NumEntries += Counts.size(); 484 for (size_t F = 0, E = Counts.size(); F < E; ++F) 485 FuncSum += Counts[F]; 486 Sum.CountSum += FuncSum; 487 488 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 489 uint64_t KindSum = 0; 490 uint32_t NumValueSites = getNumValueSites(VK); 491 for (size_t I = 0; I < NumValueSites; ++I) { 492 uint32_t NV = getNumValueDataForSite(VK, I); 493 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 494 for (uint32_t V = 0; V < NV; V++) 495 KindSum += VD[V].Count; 496 } 497 Sum.ValueCounts[VK] += KindSum; 498 } 499 } 500 501 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 502 uint32_t ValueKind, 503 OverlapStats &Overlap, 504 OverlapStats &FuncLevelOverlap) { 505 this->sortByTargetValues(); 506 Input.sortByTargetValues(); 507 double Score = 0.0f, FuncLevelScore = 0.0f; 508 auto I = ValueData.begin(); 509 auto IE = ValueData.end(); 510 auto J = Input.ValueData.begin(); 511 auto JE = Input.ValueData.end(); 512 while (I != IE && J != JE) { 513 if (I->Value == J->Value) { 514 Score += OverlapStats::score(I->Count, J->Count, 515 Overlap.Base.ValueCounts[ValueKind], 516 Overlap.Test.ValueCounts[ValueKind]); 517 FuncLevelScore += OverlapStats::score( 518 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 519 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 520 ++I; 521 } else if (I->Value < J->Value) { 522 ++I; 523 continue; 524 } 525 ++J; 526 } 527 Overlap.Overlap.ValueCounts[ValueKind] += Score; 528 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 529 } 530 531 // Return false on mismatch. 532 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 533 InstrProfRecord &Other, 534 OverlapStats &Overlap, 535 OverlapStats &FuncLevelOverlap) { 536 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 537 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 538 if (!ThisNumValueSites) 539 return; 540 541 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 542 getOrCreateValueSitesForKind(ValueKind); 543 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 544 Other.getValueSitesForKind(ValueKind); 545 for (uint32_t I = 0; I < ThisNumValueSites; I++) 546 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 547 FuncLevelOverlap); 548 } 549 550 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 551 OverlapStats &FuncLevelOverlap, 552 uint64_t ValueCutoff) { 553 // FuncLevel CountSum for other should already computed and nonzero. 554 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 555 accumulateCounts(FuncLevelOverlap.Base); 556 bool Mismatch = (Counts.size() != Other.Counts.size()); 557 558 // Check if the value profiles mismatch. 559 if (!Mismatch) { 560 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 561 uint32_t ThisNumValueSites = getNumValueSites(Kind); 562 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 563 if (ThisNumValueSites != OtherNumValueSites) { 564 Mismatch = true; 565 break; 566 } 567 } 568 } 569 if (Mismatch) { 570 Overlap.addOneMismatch(FuncLevelOverlap.Test); 571 return; 572 } 573 574 // Compute overlap for value counts. 575 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 576 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 577 578 double Score = 0.0; 579 uint64_t MaxCount = 0; 580 // Compute overlap for edge counts. 581 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 582 Score += OverlapStats::score(Counts[I], Other.Counts[I], 583 Overlap.Base.CountSum, Overlap.Test.CountSum); 584 MaxCount = std::max(Other.Counts[I], MaxCount); 585 } 586 Overlap.Overlap.CountSum += Score; 587 Overlap.Overlap.NumEntries += 1; 588 589 if (MaxCount >= ValueCutoff) { 590 double FuncScore = 0.0; 591 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 592 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 593 FuncLevelOverlap.Base.CountSum, 594 FuncLevelOverlap.Test.CountSum); 595 FuncLevelOverlap.Overlap.CountSum = FuncScore; 596 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 597 FuncLevelOverlap.Valid = true; 598 } 599 } 600 601 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 602 uint64_t Weight, 603 function_ref<void(instrprof_error)> Warn) { 604 this->sortByTargetValues(); 605 Input.sortByTargetValues(); 606 auto I = ValueData.begin(); 607 auto IE = ValueData.end(); 608 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 609 ++J) { 610 while (I != IE && I->Value < J->Value) 611 ++I; 612 if (I != IE && I->Value == J->Value) { 613 bool Overflowed; 614 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 615 if (Overflowed) 616 Warn(instrprof_error::counter_overflow); 617 ++I; 618 continue; 619 } 620 ValueData.insert(I, *J); 621 } 622 } 623 624 void InstrProfValueSiteRecord::scale(uint64_t Weight, 625 function_ref<void(instrprof_error)> Warn) { 626 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 627 bool Overflowed; 628 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); 629 if (Overflowed) 630 Warn(instrprof_error::counter_overflow); 631 } 632 } 633 634 // Merge Value Profile data from Src record to this record for ValueKind. 635 // Scale merged value counts by \p Weight. 636 void InstrProfRecord::mergeValueProfData( 637 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 638 function_ref<void(instrprof_error)> Warn) { 639 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 640 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 641 if (ThisNumValueSites != OtherNumValueSites) { 642 Warn(instrprof_error::value_site_count_mismatch); 643 return; 644 } 645 if (!ThisNumValueSites) 646 return; 647 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 648 getOrCreateValueSitesForKind(ValueKind); 649 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 650 Src.getValueSitesForKind(ValueKind); 651 for (uint32_t I = 0; I < ThisNumValueSites; I++) 652 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 653 } 654 655 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 656 function_ref<void(instrprof_error)> Warn) { 657 // If the number of counters doesn't match we either have bad data 658 // or a hash collision. 659 if (Counts.size() != Other.Counts.size()) { 660 Warn(instrprof_error::count_mismatch); 661 return; 662 } 663 664 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 665 bool Overflowed; 666 Counts[I] = 667 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 668 if (Overflowed) 669 Warn(instrprof_error::counter_overflow); 670 } 671 672 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 673 mergeValueProfData(Kind, Other, Weight, Warn); 674 } 675 676 void InstrProfRecord::scaleValueProfData( 677 uint32_t ValueKind, uint64_t Weight, 678 function_ref<void(instrprof_error)> Warn) { 679 for (auto &R : getValueSitesForKind(ValueKind)) 680 R.scale(Weight, Warn); 681 } 682 683 void InstrProfRecord::scale(uint64_t Weight, 684 function_ref<void(instrprof_error)> Warn) { 685 for (auto &Count : this->Counts) { 686 bool Overflowed; 687 Count = SaturatingMultiply(Count, Weight, &Overflowed); 688 if (Overflowed) 689 Warn(instrprof_error::counter_overflow); 690 } 691 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 692 scaleValueProfData(Kind, Weight, Warn); 693 } 694 695 // Map indirect call target name hash to name string. 696 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 697 InstrProfSymtab *SymTab) { 698 if (!SymTab) 699 return Value; 700 701 if (ValueKind == IPVK_IndirectCallTarget) 702 return SymTab->getFunctionHashFromAddress(Value); 703 704 return Value; 705 } 706 707 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 708 InstrProfValueData *VData, uint32_t N, 709 InstrProfSymtab *ValueMap) { 710 for (uint32_t I = 0; I < N; I++) { 711 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 712 } 713 std::vector<InstrProfValueSiteRecord> &ValueSites = 714 getOrCreateValueSitesForKind(ValueKind); 715 if (N == 0) 716 ValueSites.emplace_back(); 717 else 718 ValueSites.emplace_back(VData, VData + N); 719 } 720 721 #define INSTR_PROF_COMMON_API_IMPL 722 #include "llvm/ProfileData/InstrProfData.inc" 723 724 /*! 725 * ValueProfRecordClosure Interface implementation for InstrProfRecord 726 * class. These C wrappers are used as adaptors so that C++ code can be 727 * invoked as callbacks. 728 */ 729 uint32_t getNumValueKindsInstrProf(const void *Record) { 730 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 731 } 732 733 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 734 return reinterpret_cast<const InstrProfRecord *>(Record) 735 ->getNumValueSites(VKind); 736 } 737 738 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 739 return reinterpret_cast<const InstrProfRecord *>(Record) 740 ->getNumValueData(VKind); 741 } 742 743 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 744 uint32_t S) { 745 return reinterpret_cast<const InstrProfRecord *>(R) 746 ->getNumValueDataForSite(VK, S); 747 } 748 749 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 750 uint32_t K, uint32_t S) { 751 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 752 } 753 754 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 755 ValueProfData *VD = 756 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 757 memset(VD, 0, TotalSizeInBytes); 758 return VD; 759 } 760 761 static ValueProfRecordClosure InstrProfRecordClosure = { 762 nullptr, 763 getNumValueKindsInstrProf, 764 getNumValueSitesInstrProf, 765 getNumValueDataInstrProf, 766 getNumValueDataForSiteInstrProf, 767 nullptr, 768 getValueForSiteInstrProf, 769 allocValueProfDataInstrProf}; 770 771 // Wrapper implementation using the closure mechanism. 772 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 773 auto Closure = InstrProfRecordClosure; 774 Closure.Record = &Record; 775 return getValueProfDataSize(&Closure); 776 } 777 778 // Wrapper implementation using the closure mechanism. 779 std::unique_ptr<ValueProfData> 780 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 781 InstrProfRecordClosure.Record = &Record; 782 783 std::unique_ptr<ValueProfData> VPD( 784 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 785 return VPD; 786 } 787 788 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 789 InstrProfSymtab *SymTab) { 790 Record.reserveSites(Kind, NumValueSites); 791 792 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 793 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 794 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 795 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 796 ValueData += ValueDataCount; 797 } 798 } 799 800 // For writing/serializing, Old is the host endianness, and New is 801 // byte order intended on disk. For Reading/deserialization, Old 802 // is the on-disk source endianness, and New is the host endianness. 803 void ValueProfRecord::swapBytes(support::endianness Old, 804 support::endianness New) { 805 using namespace support; 806 807 if (Old == New) 808 return; 809 810 if (getHostEndianness() != Old) { 811 sys::swapByteOrder<uint32_t>(NumValueSites); 812 sys::swapByteOrder<uint32_t>(Kind); 813 } 814 uint32_t ND = getValueProfRecordNumValueData(this); 815 InstrProfValueData *VD = getValueProfRecordValueData(this); 816 817 // No need to swap byte array: SiteCountArrray. 818 for (uint32_t I = 0; I < ND; I++) { 819 sys::swapByteOrder<uint64_t>(VD[I].Value); 820 sys::swapByteOrder<uint64_t>(VD[I].Count); 821 } 822 if (getHostEndianness() == Old) { 823 sys::swapByteOrder<uint32_t>(NumValueSites); 824 sys::swapByteOrder<uint32_t>(Kind); 825 } 826 } 827 828 void ValueProfData::deserializeTo(InstrProfRecord &Record, 829 InstrProfSymtab *SymTab) { 830 if (NumValueKinds == 0) 831 return; 832 833 ValueProfRecord *VR = getFirstValueProfRecord(this); 834 for (uint32_t K = 0; K < NumValueKinds; K++) { 835 VR->deserializeTo(Record, SymTab); 836 VR = getValueProfRecordNext(VR); 837 } 838 } 839 840 template <class T> 841 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 842 using namespace support; 843 844 if (Orig == little) 845 return endian::readNext<T, little, unaligned>(D); 846 else 847 return endian::readNext<T, big, unaligned>(D); 848 } 849 850 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 851 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 852 ValueProfData()); 853 } 854 855 Error ValueProfData::checkIntegrity() { 856 if (NumValueKinds > IPVK_Last + 1) 857 return make_error<InstrProfError>(instrprof_error::malformed); 858 // Total size needs to be mulltiple of quadword size. 859 if (TotalSize % sizeof(uint64_t)) 860 return make_error<InstrProfError>(instrprof_error::malformed); 861 862 ValueProfRecord *VR = getFirstValueProfRecord(this); 863 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 864 if (VR->Kind > IPVK_Last) 865 return make_error<InstrProfError>(instrprof_error::malformed); 866 VR = getValueProfRecordNext(VR); 867 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 868 return make_error<InstrProfError>(instrprof_error::malformed); 869 } 870 return Error::success(); 871 } 872 873 Expected<std::unique_ptr<ValueProfData>> 874 ValueProfData::getValueProfData(const unsigned char *D, 875 const unsigned char *const BufferEnd, 876 support::endianness Endianness) { 877 using namespace support; 878 879 if (D + sizeof(ValueProfData) > BufferEnd) 880 return make_error<InstrProfError>(instrprof_error::truncated); 881 882 const unsigned char *Header = D; 883 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 884 if (D + TotalSize > BufferEnd) 885 return make_error<InstrProfError>(instrprof_error::too_large); 886 887 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 888 memcpy(VPD.get(), D, TotalSize); 889 // Byte swap. 890 VPD->swapBytesToHost(Endianness); 891 892 Error E = VPD->checkIntegrity(); 893 if (E) 894 return std::move(E); 895 896 return std::move(VPD); 897 } 898 899 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 900 using namespace support; 901 902 if (Endianness == getHostEndianness()) 903 return; 904 905 sys::swapByteOrder<uint32_t>(TotalSize); 906 sys::swapByteOrder<uint32_t>(NumValueKinds); 907 908 ValueProfRecord *VR = getFirstValueProfRecord(this); 909 for (uint32_t K = 0; K < NumValueKinds; K++) { 910 VR->swapBytes(Endianness, getHostEndianness()); 911 VR = getValueProfRecordNext(VR); 912 } 913 } 914 915 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 916 using namespace support; 917 918 if (Endianness == getHostEndianness()) 919 return; 920 921 ValueProfRecord *VR = getFirstValueProfRecord(this); 922 for (uint32_t K = 0; K < NumValueKinds; K++) { 923 ValueProfRecord *NVR = getValueProfRecordNext(VR); 924 VR->swapBytes(getHostEndianness(), Endianness); 925 VR = NVR; 926 } 927 sys::swapByteOrder<uint32_t>(TotalSize); 928 sys::swapByteOrder<uint32_t>(NumValueKinds); 929 } 930 931 void annotateValueSite(Module &M, Instruction &Inst, 932 const InstrProfRecord &InstrProfR, 933 InstrProfValueKind ValueKind, uint32_t SiteIdx, 934 uint32_t MaxMDCount) { 935 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 936 if (!NV) 937 return; 938 939 uint64_t Sum = 0; 940 std::unique_ptr<InstrProfValueData[]> VD = 941 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 942 943 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 944 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 945 } 946 947 void annotateValueSite(Module &M, Instruction &Inst, 948 ArrayRef<InstrProfValueData> VDs, 949 uint64_t Sum, InstrProfValueKind ValueKind, 950 uint32_t MaxMDCount) { 951 LLVMContext &Ctx = M.getContext(); 952 MDBuilder MDHelper(Ctx); 953 SmallVector<Metadata *, 3> Vals; 954 // Tag 955 Vals.push_back(MDHelper.createString("VP")); 956 // Value Kind 957 Vals.push_back(MDHelper.createConstant( 958 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 959 // Total Count 960 Vals.push_back( 961 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 962 963 // Value Profile Data 964 uint32_t MDCount = MaxMDCount; 965 for (auto &VD : VDs) { 966 Vals.push_back(MDHelper.createConstant( 967 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 968 Vals.push_back(MDHelper.createConstant( 969 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 970 if (--MDCount == 0) 971 break; 972 } 973 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 974 } 975 976 bool getValueProfDataFromInst(const Instruction &Inst, 977 InstrProfValueKind ValueKind, 978 uint32_t MaxNumValueData, 979 InstrProfValueData ValueData[], 980 uint32_t &ActualNumValueData, uint64_t &TotalC) { 981 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 982 if (!MD) 983 return false; 984 985 unsigned NOps = MD->getNumOperands(); 986 987 if (NOps < 5) 988 return false; 989 990 // Operand 0 is a string tag "VP": 991 MDString *Tag = cast<MDString>(MD->getOperand(0)); 992 if (!Tag) 993 return false; 994 995 if (!Tag->getString().equals("VP")) 996 return false; 997 998 // Now check kind: 999 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1000 if (!KindInt) 1001 return false; 1002 if (KindInt->getZExtValue() != ValueKind) 1003 return false; 1004 1005 // Get total count 1006 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1007 if (!TotalCInt) 1008 return false; 1009 TotalC = TotalCInt->getZExtValue(); 1010 1011 ActualNumValueData = 0; 1012 1013 for (unsigned I = 3; I < NOps; I += 2) { 1014 if (ActualNumValueData >= MaxNumValueData) 1015 break; 1016 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1017 ConstantInt *Count = 1018 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1019 if (!Value || !Count) 1020 return false; 1021 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1022 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 1023 ActualNumValueData++; 1024 } 1025 return true; 1026 } 1027 1028 MDNode *getPGOFuncNameMetadata(const Function &F) { 1029 return F.getMetadata(getPGOFuncNameMetadataName()); 1030 } 1031 1032 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1033 // Only for internal linkage functions. 1034 if (PGOFuncName == F.getName()) 1035 return; 1036 // Don't create duplicated meta-data. 1037 if (getPGOFuncNameMetadata(F)) 1038 return; 1039 LLVMContext &C = F.getContext(); 1040 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1041 F.setMetadata(getPGOFuncNameMetadataName(), N); 1042 } 1043 1044 bool needsComdatForCounter(const Function &F, const Module &M) { 1045 if (F.hasComdat()) 1046 return true; 1047 1048 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1049 return false; 1050 1051 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1052 // counters for function with available_externally linkage needs to be changed 1053 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1054 // created. Without using comdat, duplicate entries won't be removed by the 1055 // linker leading to increased data segement size and raw profile size. Even 1056 // worse, since the referenced counter from profile per-function data object 1057 // will be resolved to the common strong definition, the profile counts for 1058 // available_externally functions will end up being duplicated in raw profile 1059 // data. This can result in distorted profile as the counts of those dups 1060 // will be accumulated by the profile merger. 1061 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1062 if (Linkage != GlobalValue::ExternalWeakLinkage && 1063 Linkage != GlobalValue::AvailableExternallyLinkage) 1064 return false; 1065 1066 return true; 1067 } 1068 1069 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1070 bool isIRPGOFlagSet(const Module *M) { 1071 auto IRInstrVar = 1072 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1073 if (!IRInstrVar || IRInstrVar->isDeclaration() || 1074 IRInstrVar->hasLocalLinkage()) 1075 return false; 1076 1077 // Check if the flag is set. 1078 if (!IRInstrVar->hasInitializer()) 1079 return false; 1080 1081 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1082 if (!InitVal) 1083 return false; 1084 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1085 } 1086 1087 // Check if we can safely rename this Comdat function. 1088 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1089 if (F.getName().empty()) 1090 return false; 1091 if (!needsComdatForCounter(F, *(F.getParent()))) 1092 return false; 1093 // Unsafe to rename the address-taken function (which can be used in 1094 // function comparison). 1095 if (CheckAddressTaken && F.hasAddressTaken()) 1096 return false; 1097 // Only safe to do if this function may be discarded if it is not used 1098 // in the compilation unit. 1099 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1100 return false; 1101 1102 // For AvailableExternallyLinkage functions. 1103 if (!F.hasComdat()) { 1104 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1105 return true; 1106 } 1107 return true; 1108 } 1109 1110 // Parse the value profile options. 1111 void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart, 1112 int64_t &RangeLast) { 1113 static const int64_t DefaultMemOPSizeRangeStart = 0; 1114 static const int64_t DefaultMemOPSizeRangeLast = 8; 1115 RangeStart = DefaultMemOPSizeRangeStart; 1116 RangeLast = DefaultMemOPSizeRangeLast; 1117 1118 if (!MemOPSizeRange.empty()) { 1119 auto Pos = MemOPSizeRange.find(':'); 1120 if (Pos != std::string::npos) { 1121 if (Pos > 0) 1122 MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart); 1123 if (Pos < MemOPSizeRange.size() - 1) 1124 MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast); 1125 } else 1126 MemOPSizeRange.getAsInteger(10, RangeLast); 1127 } 1128 assert(RangeLast >= RangeStart); 1129 } 1130 1131 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime 1132 // aware this is an ir_level profile so it can set the version flag. 1133 void createIRLevelProfileFlagVar(Module &M, bool IsCS) { 1134 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1135 Type *IntTy64 = Type::getInt64Ty(M.getContext()); 1136 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); 1137 if (IsCS) 1138 ProfileVersion |= VARIANT_MASK_CSIR_PROF; 1139 auto IRLevelVersionVariable = new GlobalVariable( 1140 M, IntTy64, true, GlobalValue::WeakAnyLinkage, 1141 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName); 1142 IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility); 1143 Triple TT(M.getTargetTriple()); 1144 if (TT.supportsCOMDAT()) { 1145 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage); 1146 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName)); 1147 } 1148 } 1149 1150 // Create the variable for the profile file name. 1151 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1152 if (InstrProfileOutput.empty()) 1153 return; 1154 Constant *ProfileNameConst = 1155 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1156 GlobalVariable *ProfileNameVar = new GlobalVariable( 1157 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1158 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1159 Triple TT(M.getTargetTriple()); 1160 if (TT.supportsCOMDAT()) { 1161 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1162 ProfileNameVar->setComdat(M.getOrInsertComdat( 1163 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1164 } 1165 } 1166 1167 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1168 const std::string &TestFilename, 1169 bool IsCS) { 1170 auto getProfileSum = [IsCS](const std::string &Filename, 1171 CountSumOrPercent &Sum) -> Error { 1172 auto ReaderOrErr = InstrProfReader::create(Filename); 1173 if (Error E = ReaderOrErr.takeError()) { 1174 return E; 1175 } 1176 auto Reader = std::move(ReaderOrErr.get()); 1177 Reader->accumulateCounts(Sum, IsCS); 1178 return Error::success(); 1179 }; 1180 auto Ret = getProfileSum(BaseFilename, Base); 1181 if (Ret) 1182 return Ret; 1183 Ret = getProfileSum(TestFilename, Test); 1184 if (Ret) 1185 return Ret; 1186 this->BaseFilename = &BaseFilename; 1187 this->TestFilename = &TestFilename; 1188 Valid = true; 1189 return Error::success(); 1190 } 1191 1192 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1193 Mismatch.NumEntries += 1; 1194 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1195 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1196 if (Test.ValueCounts[I] >= 1.0f) 1197 Mismatch.ValueCounts[I] += 1198 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1199 } 1200 } 1201 1202 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1203 Unique.NumEntries += 1; 1204 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1205 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1206 if (Test.ValueCounts[I] >= 1.0f) 1207 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1208 } 1209 } 1210 1211 void OverlapStats::dump(raw_fd_ostream &OS) const { 1212 if (!Valid) 1213 return; 1214 1215 const char *EntryName = 1216 (Level == ProgramLevel ? "functions" : "edge counters"); 1217 if (Level == ProgramLevel) { 1218 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1219 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1220 } else { 1221 OS << "Function level:\n" 1222 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1223 } 1224 1225 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1226 if (Mismatch.NumEntries) 1227 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1228 << "\n"; 1229 if (Unique.NumEntries) 1230 OS << " # of " << EntryName 1231 << " only in test_profile: " << Unique.NumEntries << "\n"; 1232 1233 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1234 << "\n"; 1235 if (Mismatch.NumEntries) 1236 OS << " Mismatched count percentage (Edge): " 1237 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1238 if (Unique.NumEntries) 1239 OS << " Percentage of Edge profile only in test_profile: " 1240 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1241 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1242 << "\n" 1243 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1244 << "\n"; 1245 1246 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1247 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1248 continue; 1249 char ProfileKindName[20]; 1250 switch (I) { 1251 case IPVK_IndirectCallTarget: 1252 strncpy(ProfileKindName, "IndirectCall", 19); 1253 break; 1254 case IPVK_MemOPSize: 1255 strncpy(ProfileKindName, "MemOP", 19); 1256 break; 1257 default: 1258 snprintf(ProfileKindName, 19, "VP[%d]", I); 1259 break; 1260 } 1261 OS << " " << ProfileKindName 1262 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1263 << "\n"; 1264 if (Mismatch.NumEntries) 1265 OS << " Mismatched count percentage (" << ProfileKindName 1266 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1267 if (Unique.NumEntries) 1268 OS << " Percentage of " << ProfileKindName 1269 << " profile only in test_profile: " 1270 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1271 OS << " " << ProfileKindName 1272 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1273 << "\n" 1274 << " " << ProfileKindName 1275 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1276 << "\n"; 1277 } 1278 } 1279 1280 } // end namespace llvm 1281