1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Config/config.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/ProfileData/InstrProfReader.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Compression.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/LEB128.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SwapByteOrder.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <string> 52 #include <system_error> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 static cl::opt<bool> StaticFuncFullModulePrefix( 60 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 61 cl::desc("Use full module build paths in the profile counter names for " 62 "static functions.")); 63 64 // This option is tailored to users that have different top-level directory in 65 // profile-gen and profile-use compilation. Users need to specific the number 66 // of levels to strip. A value larger than the number of directories in the 67 // source file will strip all the directory names and only leave the basename. 68 // 69 // Note current ThinLTO module importing for the indirect-calls assumes 70 // the source directory name not being stripped. A non-zero option value here 71 // can potentially prevent some inter-module indirect-call-promotions. 72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 73 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 74 cl::desc("Strip specified level of directory name from source path in " 75 "the profile counter name for static functions.")); 76 77 static std::string getInstrProfErrString(instrprof_error Err, 78 const std::string &ErrMsg = "") { 79 std::string Msg; 80 raw_string_ostream OS(Msg); 81 82 switch (Err) { 83 case instrprof_error::success: 84 OS << "success"; 85 break; 86 case instrprof_error::eof: 87 OS << "end of File"; 88 break; 89 case instrprof_error::unrecognized_format: 90 OS << "unrecognized instrumentation profile encoding format"; 91 break; 92 case instrprof_error::bad_magic: 93 OS << "invalid instrumentation profile data (bad magic)"; 94 break; 95 case instrprof_error::bad_header: 96 OS << "invalid instrumentation profile data (file header is corrupt)"; 97 break; 98 case instrprof_error::unsupported_version: 99 OS << "unsupported instrumentation profile format version"; 100 break; 101 case instrprof_error::unsupported_hash_type: 102 OS << "unsupported instrumentation profile hash type"; 103 break; 104 case instrprof_error::too_large: 105 OS << "too much profile data"; 106 break; 107 case instrprof_error::truncated: 108 OS << "truncated profile data"; 109 break; 110 case instrprof_error::malformed: 111 OS << "malformed instrumentation profile data"; 112 break; 113 case instrprof_error::missing_debug_info_for_correlation: 114 OS << "debug info for correlation is required"; 115 break; 116 case instrprof_error::unexpected_debug_info_for_correlation: 117 OS << "debug info for correlation is not necessary"; 118 break; 119 case instrprof_error::unable_to_correlate_profile: 120 OS << "unable to correlate profile"; 121 break; 122 case instrprof_error::invalid_prof: 123 OS << "invalid profile created. Please file a bug " 124 "at: " BUG_REPORT_URL 125 " and include the profraw files that caused this error."; 126 break; 127 case instrprof_error::unknown_function: 128 OS << "no profile data available for function"; 129 break; 130 case instrprof_error::hash_mismatch: 131 OS << "function control flow change detected (hash mismatch)"; 132 break; 133 case instrprof_error::count_mismatch: 134 OS << "function basic block count change detected (counter mismatch)"; 135 break; 136 case instrprof_error::counter_overflow: 137 OS << "counter overflow"; 138 break; 139 case instrprof_error::value_site_count_mismatch: 140 OS << "function value site count change detected (counter mismatch)"; 141 break; 142 case instrprof_error::compress_failed: 143 OS << "failed to compress data (zlib)"; 144 break; 145 case instrprof_error::uncompress_failed: 146 OS << "failed to uncompress data (zlib)"; 147 break; 148 case instrprof_error::empty_raw_profile: 149 OS << "empty raw profile file"; 150 break; 151 case instrprof_error::zlib_unavailable: 152 OS << "profile uses zlib compression but the profile reader was built " 153 "without zlib support"; 154 break; 155 } 156 157 // If optional error message is not empty, append it to the message. 158 if (!ErrMsg.empty()) 159 OS << ": " << ErrMsg; 160 161 return OS.str(); 162 } 163 164 namespace { 165 166 // FIXME: This class is only here to support the transition to llvm::Error. It 167 // will be removed once this transition is complete. Clients should prefer to 168 // deal with the Error value directly, rather than converting to error_code. 169 class InstrProfErrorCategoryType : public std::error_category { 170 const char *name() const noexcept override { return "llvm.instrprof"; } 171 172 std::string message(int IE) const override { 173 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 174 } 175 }; 176 177 } // end anonymous namespace 178 179 const std::error_category &llvm::instrprof_category() { 180 static InstrProfErrorCategoryType ErrorCategory; 181 return ErrorCategory; 182 } 183 184 namespace { 185 186 const char *InstrProfSectNameCommon[] = { 187 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 188 SectNameCommon, 189 #include "llvm/ProfileData/InstrProfData.inc" 190 }; 191 192 const char *InstrProfSectNameCoff[] = { 193 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 194 SectNameCoff, 195 #include "llvm/ProfileData/InstrProfData.inc" 196 }; 197 198 const char *InstrProfSectNamePrefix[] = { 199 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 200 Prefix, 201 #include "llvm/ProfileData/InstrProfData.inc" 202 }; 203 204 } // namespace 205 206 namespace llvm { 207 208 cl::opt<bool> DoInstrProfNameCompression( 209 "enable-name-compression", 210 cl::desc("Enable name/filename string compression"), cl::init(true)); 211 212 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 213 Triple::ObjectFormatType OF, 214 bool AddSegmentInfo) { 215 std::string SectName; 216 217 if (OF == Triple::MachO && AddSegmentInfo) 218 SectName = InstrProfSectNamePrefix[IPSK]; 219 220 if (OF == Triple::COFF) 221 SectName += InstrProfSectNameCoff[IPSK]; 222 else 223 SectName += InstrProfSectNameCommon[IPSK]; 224 225 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 226 SectName += ",regular,live_support"; 227 228 return SectName; 229 } 230 231 void SoftInstrProfErrors::addError(instrprof_error IE) { 232 if (IE == instrprof_error::success) 233 return; 234 235 if (FirstError == instrprof_error::success) 236 FirstError = IE; 237 238 switch (IE) { 239 case instrprof_error::hash_mismatch: 240 ++NumHashMismatches; 241 break; 242 case instrprof_error::count_mismatch: 243 ++NumCountMismatches; 244 break; 245 case instrprof_error::counter_overflow: 246 ++NumCounterOverflows; 247 break; 248 case instrprof_error::value_site_count_mismatch: 249 ++NumValueSiteCountMismatches; 250 break; 251 default: 252 llvm_unreachable("Not a soft error"); 253 } 254 } 255 256 std::string InstrProfError::message() const { 257 return getInstrProfErrString(Err, Msg); 258 } 259 260 char InstrProfError::ID = 0; 261 262 std::string getPGOFuncName(StringRef RawFuncName, 263 GlobalValue::LinkageTypes Linkage, 264 StringRef FileName, 265 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 266 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 267 } 268 269 // Strip NumPrefix level of directory name from PathNameStr. If the number of 270 // directory separators is less than NumPrefix, strip all the directories and 271 // leave base file name only. 272 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 273 uint32_t Count = NumPrefix; 274 uint32_t Pos = 0, LastPos = 0; 275 for (auto & CI : PathNameStr) { 276 ++Pos; 277 if (llvm::sys::path::is_separator(CI)) { 278 LastPos = Pos; 279 --Count; 280 } 281 if (Count == 0) 282 break; 283 } 284 return PathNameStr.substr(LastPos); 285 } 286 287 // Return the PGOFuncName. This function has some special handling when called 288 // in LTO optimization. The following only applies when calling in LTO passes 289 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 290 // symbols. This happens after value profile annotation, but those internal 291 // linkage functions should not have a source prefix. 292 // Additionally, for ThinLTO mode, exported internal functions are promoted 293 // and renamed. We need to ensure that the original internal PGO name is 294 // used when computing the GUID that is compared against the profiled GUIDs. 295 // To differentiate compiler generated internal symbols from original ones, 296 // PGOFuncName meta data are created and attached to the original internal 297 // symbols in the value profile annotation step 298 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 299 // data, its original linkage must be non-internal. 300 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 301 if (!InLTO) { 302 StringRef FileName(F.getParent()->getSourceFileName()); 303 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 304 if (StripLevel < StaticFuncStripDirNamePrefix) 305 StripLevel = StaticFuncStripDirNamePrefix; 306 if (StripLevel) 307 FileName = stripDirPrefix(FileName, StripLevel); 308 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 309 } 310 311 // In LTO mode (when InLTO is true), first check if there is a meta data. 312 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 313 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 314 return S.str(); 315 } 316 317 // If there is no meta data, the function must be a global before the value 318 // profile annotation pass. Its current linkage may be internal if it is 319 // internalized in LTO mode. 320 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 321 } 322 323 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 324 if (FileName.empty()) 325 return PGOFuncName; 326 // Drop the file name including ':'. See also getPGOFuncName. 327 if (PGOFuncName.startswith(FileName)) 328 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 329 return PGOFuncName; 330 } 331 332 // \p FuncName is the string used as profile lookup key for the function. A 333 // symbol is created to hold the name. Return the legalized symbol name. 334 std::string getPGOFuncNameVarName(StringRef FuncName, 335 GlobalValue::LinkageTypes Linkage) { 336 std::string VarName = std::string(getInstrProfNameVarPrefix()); 337 VarName += FuncName; 338 339 if (!GlobalValue::isLocalLinkage(Linkage)) 340 return VarName; 341 342 // Now fix up illegal chars in local VarName that may upset the assembler. 343 const char *InvalidChars = "-:<>/\"'"; 344 size_t found = VarName.find_first_of(InvalidChars); 345 while (found != std::string::npos) { 346 VarName[found] = '_'; 347 found = VarName.find_first_of(InvalidChars, found + 1); 348 } 349 return VarName; 350 } 351 352 GlobalVariable *createPGOFuncNameVar(Module &M, 353 GlobalValue::LinkageTypes Linkage, 354 StringRef PGOFuncName) { 355 // We generally want to match the function's linkage, but available_externally 356 // and extern_weak both have the wrong semantics, and anything that doesn't 357 // need to link across compilation units doesn't need to be visible at all. 358 if (Linkage == GlobalValue::ExternalWeakLinkage) 359 Linkage = GlobalValue::LinkOnceAnyLinkage; 360 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 361 Linkage = GlobalValue::LinkOnceODRLinkage; 362 else if (Linkage == GlobalValue::InternalLinkage || 363 Linkage == GlobalValue::ExternalLinkage) 364 Linkage = GlobalValue::PrivateLinkage; 365 366 auto *Value = 367 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 368 auto FuncNameVar = 369 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 370 getPGOFuncNameVarName(PGOFuncName, Linkage)); 371 372 // Hide the symbol so that we correctly get a copy for each executable. 373 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 374 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 375 376 return FuncNameVar; 377 } 378 379 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 380 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 381 } 382 383 Error InstrProfSymtab::create(Module &M, bool InLTO) { 384 for (Function &F : M) { 385 // Function may not have a name: like using asm("") to overwrite the name. 386 // Ignore in this case. 387 if (!F.hasName()) 388 continue; 389 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 390 if (Error E = addFuncName(PGOFuncName)) 391 return E; 392 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 393 // In ThinLTO, local function may have been promoted to global and have 394 // suffix ".llvm." added to the function name. We need to add the 395 // stripped function name to the symbol table so that we can find a match 396 // from profile. 397 // 398 // We may have other suffixes similar as ".llvm." which are needed to 399 // be stripped before the matching, but ".__uniq." suffix which is used 400 // to differentiate internal linkage functions in different modules 401 // should be kept. Now this is the only suffix with the pattern ".xxx" 402 // which is kept before matching. 403 const std::string UniqSuffix = ".__uniq."; 404 auto pos = PGOFuncName.find(UniqSuffix); 405 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise 406 // search '.' from the beginning. 407 if (pos != std::string::npos) 408 pos += UniqSuffix.length(); 409 else 410 pos = 0; 411 pos = PGOFuncName.find('.', pos); 412 if (pos != std::string::npos && pos != 0) { 413 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 414 if (Error E = addFuncName(OtherFuncName)) 415 return E; 416 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 417 } 418 } 419 Sorted = false; 420 finalizeSymtab(); 421 return Error::success(); 422 } 423 424 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 425 finalizeSymtab(); 426 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 427 return A.first < Address; 428 }); 429 // Raw function pointer collected by value profiler may be from 430 // external functions that are not instrumented. They won't have 431 // mapping data to be used by the deserializer. Force the value to 432 // be 0 in this case. 433 if (It != AddrToMD5Map.end() && It->first == Address) 434 return (uint64_t)It->second; 435 return 0; 436 } 437 438 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 439 bool doCompression, std::string &Result) { 440 assert(!NameStrs.empty() && "No name data to emit"); 441 442 uint8_t Header[16], *P = Header; 443 std::string UncompressedNameStrings = 444 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 445 446 assert(StringRef(UncompressedNameStrings) 447 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 448 "PGO name is invalid (contains separator token)"); 449 450 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 451 P += EncLen; 452 453 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 454 EncLen = encodeULEB128(CompressedLen, P); 455 P += EncLen; 456 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 457 unsigned HeaderLen = P - &Header[0]; 458 Result.append(HeaderStr, HeaderLen); 459 Result += InputStr; 460 return Error::success(); 461 }; 462 463 if (!doCompression) { 464 return WriteStringToResult(0, UncompressedNameStrings); 465 } 466 467 SmallVector<uint8_t, 128> CompressedNameStrings; 468 compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings), 469 CompressedNameStrings, 470 compression::zlib::BestSizeCompression); 471 472 return WriteStringToResult(CompressedNameStrings.size(), 473 toStringRef(CompressedNameStrings)); 474 } 475 476 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 477 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 478 StringRef NameStr = 479 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 480 return NameStr; 481 } 482 483 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 484 std::string &Result, bool doCompression) { 485 std::vector<std::string> NameStrs; 486 for (auto *NameVar : NameVars) { 487 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); 488 } 489 return collectPGOFuncNameStrings( 490 NameStrs, compression::zlib::isAvailable() && doCompression, Result); 491 } 492 493 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 494 const uint8_t *P = NameStrings.bytes_begin(); 495 const uint8_t *EndP = NameStrings.bytes_end(); 496 while (P < EndP) { 497 uint32_t N; 498 uint64_t UncompressedSize = decodeULEB128(P, &N); 499 P += N; 500 uint64_t CompressedSize = decodeULEB128(P, &N); 501 P += N; 502 bool isCompressed = (CompressedSize != 0); 503 SmallVector<uint8_t, 128> UncompressedNameStrings; 504 StringRef NameStrings; 505 if (isCompressed) { 506 if (!llvm::compression::zlib::isAvailable()) 507 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 508 509 if (Error E = compression::zlib::decompress(ArrayRef(P, CompressedSize), 510 UncompressedNameStrings, 511 UncompressedSize)) { 512 consumeError(std::move(E)); 513 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 514 } 515 P += CompressedSize; 516 NameStrings = toStringRef(UncompressedNameStrings); 517 } else { 518 NameStrings = 519 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 520 P += UncompressedSize; 521 } 522 // Now parse the name strings. 523 SmallVector<StringRef, 0> Names; 524 NameStrings.split(Names, getInstrProfNameSeparator()); 525 for (StringRef &Name : Names) 526 if (Error E = Symtab.addFuncName(Name)) 527 return E; 528 529 while (P < EndP && *P == 0) 530 P++; 531 } 532 return Error::success(); 533 } 534 535 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 536 uint64_t FuncSum = 0; 537 Sum.NumEntries += Counts.size(); 538 for (uint64_t Count : Counts) 539 FuncSum += Count; 540 Sum.CountSum += FuncSum; 541 542 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 543 uint64_t KindSum = 0; 544 uint32_t NumValueSites = getNumValueSites(VK); 545 for (size_t I = 0; I < NumValueSites; ++I) { 546 uint32_t NV = getNumValueDataForSite(VK, I); 547 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 548 for (uint32_t V = 0; V < NV; V++) 549 KindSum += VD[V].Count; 550 } 551 Sum.ValueCounts[VK] += KindSum; 552 } 553 } 554 555 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 556 uint32_t ValueKind, 557 OverlapStats &Overlap, 558 OverlapStats &FuncLevelOverlap) { 559 this->sortByTargetValues(); 560 Input.sortByTargetValues(); 561 double Score = 0.0f, FuncLevelScore = 0.0f; 562 auto I = ValueData.begin(); 563 auto IE = ValueData.end(); 564 auto J = Input.ValueData.begin(); 565 auto JE = Input.ValueData.end(); 566 while (I != IE && J != JE) { 567 if (I->Value == J->Value) { 568 Score += OverlapStats::score(I->Count, J->Count, 569 Overlap.Base.ValueCounts[ValueKind], 570 Overlap.Test.ValueCounts[ValueKind]); 571 FuncLevelScore += OverlapStats::score( 572 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 573 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 574 ++I; 575 } else if (I->Value < J->Value) { 576 ++I; 577 continue; 578 } 579 ++J; 580 } 581 Overlap.Overlap.ValueCounts[ValueKind] += Score; 582 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 583 } 584 585 // Return false on mismatch. 586 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 587 InstrProfRecord &Other, 588 OverlapStats &Overlap, 589 OverlapStats &FuncLevelOverlap) { 590 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 591 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 592 if (!ThisNumValueSites) 593 return; 594 595 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 596 getOrCreateValueSitesForKind(ValueKind); 597 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 598 Other.getValueSitesForKind(ValueKind); 599 for (uint32_t I = 0; I < ThisNumValueSites; I++) 600 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 601 FuncLevelOverlap); 602 } 603 604 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 605 OverlapStats &FuncLevelOverlap, 606 uint64_t ValueCutoff) { 607 // FuncLevel CountSum for other should already computed and nonzero. 608 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 609 accumulateCounts(FuncLevelOverlap.Base); 610 bool Mismatch = (Counts.size() != Other.Counts.size()); 611 612 // Check if the value profiles mismatch. 613 if (!Mismatch) { 614 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 615 uint32_t ThisNumValueSites = getNumValueSites(Kind); 616 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 617 if (ThisNumValueSites != OtherNumValueSites) { 618 Mismatch = true; 619 break; 620 } 621 } 622 } 623 if (Mismatch) { 624 Overlap.addOneMismatch(FuncLevelOverlap.Test); 625 return; 626 } 627 628 // Compute overlap for value counts. 629 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 630 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 631 632 double Score = 0.0; 633 uint64_t MaxCount = 0; 634 // Compute overlap for edge counts. 635 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 636 Score += OverlapStats::score(Counts[I], Other.Counts[I], 637 Overlap.Base.CountSum, Overlap.Test.CountSum); 638 MaxCount = std::max(Other.Counts[I], MaxCount); 639 } 640 Overlap.Overlap.CountSum += Score; 641 Overlap.Overlap.NumEntries += 1; 642 643 if (MaxCount >= ValueCutoff) { 644 double FuncScore = 0.0; 645 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 646 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 647 FuncLevelOverlap.Base.CountSum, 648 FuncLevelOverlap.Test.CountSum); 649 FuncLevelOverlap.Overlap.CountSum = FuncScore; 650 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 651 FuncLevelOverlap.Valid = true; 652 } 653 } 654 655 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 656 uint64_t Weight, 657 function_ref<void(instrprof_error)> Warn) { 658 this->sortByTargetValues(); 659 Input.sortByTargetValues(); 660 auto I = ValueData.begin(); 661 auto IE = ValueData.end(); 662 for (const InstrProfValueData &J : Input.ValueData) { 663 while (I != IE && I->Value < J.Value) 664 ++I; 665 if (I != IE && I->Value == J.Value) { 666 bool Overflowed; 667 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed); 668 if (Overflowed) 669 Warn(instrprof_error::counter_overflow); 670 ++I; 671 continue; 672 } 673 ValueData.insert(I, J); 674 } 675 } 676 677 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D, 678 function_ref<void(instrprof_error)> Warn) { 679 for (InstrProfValueData &I : ValueData) { 680 bool Overflowed; 681 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D; 682 if (Overflowed) 683 Warn(instrprof_error::counter_overflow); 684 } 685 } 686 687 // Merge Value Profile data from Src record to this record for ValueKind. 688 // Scale merged value counts by \p Weight. 689 void InstrProfRecord::mergeValueProfData( 690 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 691 function_ref<void(instrprof_error)> Warn) { 692 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 693 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 694 if (ThisNumValueSites != OtherNumValueSites) { 695 Warn(instrprof_error::value_site_count_mismatch); 696 return; 697 } 698 if (!ThisNumValueSites) 699 return; 700 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 701 getOrCreateValueSitesForKind(ValueKind); 702 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 703 Src.getValueSitesForKind(ValueKind); 704 for (uint32_t I = 0; I < ThisNumValueSites; I++) 705 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 706 } 707 708 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 709 function_ref<void(instrprof_error)> Warn) { 710 // If the number of counters doesn't match we either have bad data 711 // or a hash collision. 712 if (Counts.size() != Other.Counts.size()) { 713 Warn(instrprof_error::count_mismatch); 714 return; 715 } 716 717 // Special handling of the first count as the PseudoCount. 718 CountPseudoKind OtherKind = Other.getCountPseudoKind(); 719 CountPseudoKind ThisKind = getCountPseudoKind(); 720 if (OtherKind != NotPseudo || ThisKind != NotPseudo) { 721 // We don't allow the merge of a profile with pseudo counts and 722 // a normal profile (i.e. without pesudo counts). 723 // Profile supplimenation should be done after the profile merge. 724 if (OtherKind == NotPseudo || ThisKind == NotPseudo) { 725 Warn(instrprof_error::count_mismatch); 726 return; 727 } 728 if (OtherKind == PseudoHot || ThisKind == PseudoHot) 729 setPseudoCount(PseudoHot); 730 else 731 setPseudoCount(PseudoWarm); 732 return; 733 } 734 735 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 736 bool Overflowed; 737 uint64_t Value = 738 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 739 if (Value > getInstrMaxCountValue()) { 740 Value = getInstrMaxCountValue(); 741 Overflowed = true; 742 } 743 Counts[I] = Value; 744 if (Overflowed) 745 Warn(instrprof_error::counter_overflow); 746 } 747 748 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 749 mergeValueProfData(Kind, Other, Weight, Warn); 750 } 751 752 void InstrProfRecord::scaleValueProfData( 753 uint32_t ValueKind, uint64_t N, uint64_t D, 754 function_ref<void(instrprof_error)> Warn) { 755 for (auto &R : getValueSitesForKind(ValueKind)) 756 R.scale(N, D, Warn); 757 } 758 759 void InstrProfRecord::scale(uint64_t N, uint64_t D, 760 function_ref<void(instrprof_error)> Warn) { 761 assert(D != 0 && "D cannot be 0"); 762 for (auto &Count : this->Counts) { 763 bool Overflowed; 764 Count = SaturatingMultiply(Count, N, &Overflowed) / D; 765 if (Count > getInstrMaxCountValue()) { 766 Count = getInstrMaxCountValue(); 767 Overflowed = true; 768 } 769 if (Overflowed) 770 Warn(instrprof_error::counter_overflow); 771 } 772 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 773 scaleValueProfData(Kind, N, D, Warn); 774 } 775 776 // Map indirect call target name hash to name string. 777 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 778 InstrProfSymtab *SymTab) { 779 if (!SymTab) 780 return Value; 781 782 if (ValueKind == IPVK_IndirectCallTarget) 783 return SymTab->getFunctionHashFromAddress(Value); 784 785 return Value; 786 } 787 788 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 789 InstrProfValueData *VData, uint32_t N, 790 InstrProfSymtab *ValueMap) { 791 for (uint32_t I = 0; I < N; I++) { 792 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 793 } 794 std::vector<InstrProfValueSiteRecord> &ValueSites = 795 getOrCreateValueSitesForKind(ValueKind); 796 if (N == 0) 797 ValueSites.emplace_back(); 798 else 799 ValueSites.emplace_back(VData, VData + N); 800 } 801 802 #define INSTR_PROF_COMMON_API_IMPL 803 #include "llvm/ProfileData/InstrProfData.inc" 804 805 /*! 806 * ValueProfRecordClosure Interface implementation for InstrProfRecord 807 * class. These C wrappers are used as adaptors so that C++ code can be 808 * invoked as callbacks. 809 */ 810 uint32_t getNumValueKindsInstrProf(const void *Record) { 811 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 812 } 813 814 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 815 return reinterpret_cast<const InstrProfRecord *>(Record) 816 ->getNumValueSites(VKind); 817 } 818 819 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 820 return reinterpret_cast<const InstrProfRecord *>(Record) 821 ->getNumValueData(VKind); 822 } 823 824 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 825 uint32_t S) { 826 return reinterpret_cast<const InstrProfRecord *>(R) 827 ->getNumValueDataForSite(VK, S); 828 } 829 830 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 831 uint32_t K, uint32_t S) { 832 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 833 } 834 835 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 836 ValueProfData *VD = 837 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 838 memset(VD, 0, TotalSizeInBytes); 839 return VD; 840 } 841 842 static ValueProfRecordClosure InstrProfRecordClosure = { 843 nullptr, 844 getNumValueKindsInstrProf, 845 getNumValueSitesInstrProf, 846 getNumValueDataInstrProf, 847 getNumValueDataForSiteInstrProf, 848 nullptr, 849 getValueForSiteInstrProf, 850 allocValueProfDataInstrProf}; 851 852 // Wrapper implementation using the closure mechanism. 853 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 854 auto Closure = InstrProfRecordClosure; 855 Closure.Record = &Record; 856 return getValueProfDataSize(&Closure); 857 } 858 859 // Wrapper implementation using the closure mechanism. 860 std::unique_ptr<ValueProfData> 861 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 862 InstrProfRecordClosure.Record = &Record; 863 864 std::unique_ptr<ValueProfData> VPD( 865 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 866 return VPD; 867 } 868 869 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 870 InstrProfSymtab *SymTab) { 871 Record.reserveSites(Kind, NumValueSites); 872 873 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 874 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 875 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 876 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 877 ValueData += ValueDataCount; 878 } 879 } 880 881 // For writing/serializing, Old is the host endianness, and New is 882 // byte order intended on disk. For Reading/deserialization, Old 883 // is the on-disk source endianness, and New is the host endianness. 884 void ValueProfRecord::swapBytes(support::endianness Old, 885 support::endianness New) { 886 using namespace support; 887 888 if (Old == New) 889 return; 890 891 if (getHostEndianness() != Old) { 892 sys::swapByteOrder<uint32_t>(NumValueSites); 893 sys::swapByteOrder<uint32_t>(Kind); 894 } 895 uint32_t ND = getValueProfRecordNumValueData(this); 896 InstrProfValueData *VD = getValueProfRecordValueData(this); 897 898 // No need to swap byte array: SiteCountArrray. 899 for (uint32_t I = 0; I < ND; I++) { 900 sys::swapByteOrder<uint64_t>(VD[I].Value); 901 sys::swapByteOrder<uint64_t>(VD[I].Count); 902 } 903 if (getHostEndianness() == Old) { 904 sys::swapByteOrder<uint32_t>(NumValueSites); 905 sys::swapByteOrder<uint32_t>(Kind); 906 } 907 } 908 909 void ValueProfData::deserializeTo(InstrProfRecord &Record, 910 InstrProfSymtab *SymTab) { 911 if (NumValueKinds == 0) 912 return; 913 914 ValueProfRecord *VR = getFirstValueProfRecord(this); 915 for (uint32_t K = 0; K < NumValueKinds; K++) { 916 VR->deserializeTo(Record, SymTab); 917 VR = getValueProfRecordNext(VR); 918 } 919 } 920 921 template <class T> 922 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 923 using namespace support; 924 925 if (Orig == little) 926 return endian::readNext<T, little, unaligned>(D); 927 else 928 return endian::readNext<T, big, unaligned>(D); 929 } 930 931 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 932 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 933 ValueProfData()); 934 } 935 936 Error ValueProfData::checkIntegrity() { 937 if (NumValueKinds > IPVK_Last + 1) 938 return make_error<InstrProfError>( 939 instrprof_error::malformed, "number of value profile kinds is invalid"); 940 // Total size needs to be multiple of quadword size. 941 if (TotalSize % sizeof(uint64_t)) 942 return make_error<InstrProfError>( 943 instrprof_error::malformed, "total size is not multiples of quardword"); 944 945 ValueProfRecord *VR = getFirstValueProfRecord(this); 946 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 947 if (VR->Kind > IPVK_Last) 948 return make_error<InstrProfError>(instrprof_error::malformed, 949 "value kind is invalid"); 950 VR = getValueProfRecordNext(VR); 951 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 952 return make_error<InstrProfError>( 953 instrprof_error::malformed, 954 "value profile address is greater than total size"); 955 } 956 return Error::success(); 957 } 958 959 Expected<std::unique_ptr<ValueProfData>> 960 ValueProfData::getValueProfData(const unsigned char *D, 961 const unsigned char *const BufferEnd, 962 support::endianness Endianness) { 963 using namespace support; 964 965 if (D + sizeof(ValueProfData) > BufferEnd) 966 return make_error<InstrProfError>(instrprof_error::truncated); 967 968 const unsigned char *Header = D; 969 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 970 if (D + TotalSize > BufferEnd) 971 return make_error<InstrProfError>(instrprof_error::too_large); 972 973 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 974 memcpy(VPD.get(), D, TotalSize); 975 // Byte swap. 976 VPD->swapBytesToHost(Endianness); 977 978 Error E = VPD->checkIntegrity(); 979 if (E) 980 return std::move(E); 981 982 return std::move(VPD); 983 } 984 985 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 986 using namespace support; 987 988 if (Endianness == getHostEndianness()) 989 return; 990 991 sys::swapByteOrder<uint32_t>(TotalSize); 992 sys::swapByteOrder<uint32_t>(NumValueKinds); 993 994 ValueProfRecord *VR = getFirstValueProfRecord(this); 995 for (uint32_t K = 0; K < NumValueKinds; K++) { 996 VR->swapBytes(Endianness, getHostEndianness()); 997 VR = getValueProfRecordNext(VR); 998 } 999 } 1000 1001 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 1002 using namespace support; 1003 1004 if (Endianness == getHostEndianness()) 1005 return; 1006 1007 ValueProfRecord *VR = getFirstValueProfRecord(this); 1008 for (uint32_t K = 0; K < NumValueKinds; K++) { 1009 ValueProfRecord *NVR = getValueProfRecordNext(VR); 1010 VR->swapBytes(getHostEndianness(), Endianness); 1011 VR = NVR; 1012 } 1013 sys::swapByteOrder<uint32_t>(TotalSize); 1014 sys::swapByteOrder<uint32_t>(NumValueKinds); 1015 } 1016 1017 void annotateValueSite(Module &M, Instruction &Inst, 1018 const InstrProfRecord &InstrProfR, 1019 InstrProfValueKind ValueKind, uint32_t SiteIdx, 1020 uint32_t MaxMDCount) { 1021 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 1022 if (!NV) 1023 return; 1024 1025 uint64_t Sum = 0; 1026 std::unique_ptr<InstrProfValueData[]> VD = 1027 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 1028 1029 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 1030 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 1031 } 1032 1033 void annotateValueSite(Module &M, Instruction &Inst, 1034 ArrayRef<InstrProfValueData> VDs, 1035 uint64_t Sum, InstrProfValueKind ValueKind, 1036 uint32_t MaxMDCount) { 1037 LLVMContext &Ctx = M.getContext(); 1038 MDBuilder MDHelper(Ctx); 1039 SmallVector<Metadata *, 3> Vals; 1040 // Tag 1041 Vals.push_back(MDHelper.createString("VP")); 1042 // Value Kind 1043 Vals.push_back(MDHelper.createConstant( 1044 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 1045 // Total Count 1046 Vals.push_back( 1047 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 1048 1049 // Value Profile Data 1050 uint32_t MDCount = MaxMDCount; 1051 for (auto &VD : VDs) { 1052 Vals.push_back(MDHelper.createConstant( 1053 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 1054 Vals.push_back(MDHelper.createConstant( 1055 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 1056 if (--MDCount == 0) 1057 break; 1058 } 1059 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 1060 } 1061 1062 bool getValueProfDataFromInst(const Instruction &Inst, 1063 InstrProfValueKind ValueKind, 1064 uint32_t MaxNumValueData, 1065 InstrProfValueData ValueData[], 1066 uint32_t &ActualNumValueData, uint64_t &TotalC, 1067 bool GetNoICPValue) { 1068 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 1069 if (!MD) 1070 return false; 1071 1072 unsigned NOps = MD->getNumOperands(); 1073 1074 if (NOps < 5) 1075 return false; 1076 1077 // Operand 0 is a string tag "VP": 1078 MDString *Tag = cast<MDString>(MD->getOperand(0)); 1079 if (!Tag) 1080 return false; 1081 1082 if (!Tag->getString().equals("VP")) 1083 return false; 1084 1085 // Now check kind: 1086 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1087 if (!KindInt) 1088 return false; 1089 if (KindInt->getZExtValue() != ValueKind) 1090 return false; 1091 1092 // Get total count 1093 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1094 if (!TotalCInt) 1095 return false; 1096 TotalC = TotalCInt->getZExtValue(); 1097 1098 ActualNumValueData = 0; 1099 1100 for (unsigned I = 3; I < NOps; I += 2) { 1101 if (ActualNumValueData >= MaxNumValueData) 1102 break; 1103 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1104 ConstantInt *Count = 1105 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1106 if (!Value || !Count) 1107 return false; 1108 uint64_t CntValue = Count->getZExtValue(); 1109 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM)) 1110 continue; 1111 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1112 ValueData[ActualNumValueData].Count = CntValue; 1113 ActualNumValueData++; 1114 } 1115 return true; 1116 } 1117 1118 MDNode *getPGOFuncNameMetadata(const Function &F) { 1119 return F.getMetadata(getPGOFuncNameMetadataName()); 1120 } 1121 1122 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1123 // Only for internal linkage functions. 1124 if (PGOFuncName == F.getName()) 1125 return; 1126 // Don't create duplicated meta-data. 1127 if (getPGOFuncNameMetadata(F)) 1128 return; 1129 LLVMContext &C = F.getContext(); 1130 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1131 F.setMetadata(getPGOFuncNameMetadataName(), N); 1132 } 1133 1134 bool needsComdatForCounter(const Function &F, const Module &M) { 1135 if (F.hasComdat()) 1136 return true; 1137 1138 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1139 return false; 1140 1141 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1142 // counters for function with available_externally linkage needs to be changed 1143 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1144 // created. Without using comdat, duplicate entries won't be removed by the 1145 // linker leading to increased data segement size and raw profile size. Even 1146 // worse, since the referenced counter from profile per-function data object 1147 // will be resolved to the common strong definition, the profile counts for 1148 // available_externally functions will end up being duplicated in raw profile 1149 // data. This can result in distorted profile as the counts of those dups 1150 // will be accumulated by the profile merger. 1151 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1152 if (Linkage != GlobalValue::ExternalWeakLinkage && 1153 Linkage != GlobalValue::AvailableExternallyLinkage) 1154 return false; 1155 1156 return true; 1157 } 1158 1159 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1160 bool isIRPGOFlagSet(const Module *M) { 1161 auto IRInstrVar = 1162 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1163 if (!IRInstrVar || IRInstrVar->hasLocalLinkage()) 1164 return false; 1165 1166 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only 1167 // have the decl. 1168 if (IRInstrVar->isDeclaration()) 1169 return true; 1170 1171 // Check if the flag is set. 1172 if (!IRInstrVar->hasInitializer()) 1173 return false; 1174 1175 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1176 if (!InitVal) 1177 return false; 1178 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1179 } 1180 1181 // Check if we can safely rename this Comdat function. 1182 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1183 if (F.getName().empty()) 1184 return false; 1185 if (!needsComdatForCounter(F, *(F.getParent()))) 1186 return false; 1187 // Unsafe to rename the address-taken function (which can be used in 1188 // function comparison). 1189 if (CheckAddressTaken && F.hasAddressTaken()) 1190 return false; 1191 // Only safe to do if this function may be discarded if it is not used 1192 // in the compilation unit. 1193 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1194 return false; 1195 1196 // For AvailableExternallyLinkage functions. 1197 if (!F.hasComdat()) { 1198 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1199 return true; 1200 } 1201 return true; 1202 } 1203 1204 // Create the variable for the profile file name. 1205 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1206 if (InstrProfileOutput.empty()) 1207 return; 1208 Constant *ProfileNameConst = 1209 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1210 GlobalVariable *ProfileNameVar = new GlobalVariable( 1211 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1212 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1213 ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility); 1214 Triple TT(M.getTargetTriple()); 1215 if (TT.supportsCOMDAT()) { 1216 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1217 ProfileNameVar->setComdat(M.getOrInsertComdat( 1218 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1219 } 1220 } 1221 1222 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1223 const std::string &TestFilename, 1224 bool IsCS) { 1225 auto getProfileSum = [IsCS](const std::string &Filename, 1226 CountSumOrPercent &Sum) -> Error { 1227 auto ReaderOrErr = InstrProfReader::create(Filename); 1228 if (Error E = ReaderOrErr.takeError()) { 1229 return E; 1230 } 1231 auto Reader = std::move(ReaderOrErr.get()); 1232 Reader->accumulateCounts(Sum, IsCS); 1233 return Error::success(); 1234 }; 1235 auto Ret = getProfileSum(BaseFilename, Base); 1236 if (Ret) 1237 return Ret; 1238 Ret = getProfileSum(TestFilename, Test); 1239 if (Ret) 1240 return Ret; 1241 this->BaseFilename = &BaseFilename; 1242 this->TestFilename = &TestFilename; 1243 Valid = true; 1244 return Error::success(); 1245 } 1246 1247 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1248 Mismatch.NumEntries += 1; 1249 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1250 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1251 if (Test.ValueCounts[I] >= 1.0f) 1252 Mismatch.ValueCounts[I] += 1253 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1254 } 1255 } 1256 1257 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1258 Unique.NumEntries += 1; 1259 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1260 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1261 if (Test.ValueCounts[I] >= 1.0f) 1262 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1263 } 1264 } 1265 1266 void OverlapStats::dump(raw_fd_ostream &OS) const { 1267 if (!Valid) 1268 return; 1269 1270 const char *EntryName = 1271 (Level == ProgramLevel ? "functions" : "edge counters"); 1272 if (Level == ProgramLevel) { 1273 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1274 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1275 } else { 1276 OS << "Function level:\n" 1277 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1278 } 1279 1280 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1281 if (Mismatch.NumEntries) 1282 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1283 << "\n"; 1284 if (Unique.NumEntries) 1285 OS << " # of " << EntryName 1286 << " only in test_profile: " << Unique.NumEntries << "\n"; 1287 1288 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1289 << "\n"; 1290 if (Mismatch.NumEntries) 1291 OS << " Mismatched count percentage (Edge): " 1292 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1293 if (Unique.NumEntries) 1294 OS << " Percentage of Edge profile only in test_profile: " 1295 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1296 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1297 << "\n" 1298 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1299 << "\n"; 1300 1301 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1302 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1303 continue; 1304 char ProfileKindName[20]; 1305 switch (I) { 1306 case IPVK_IndirectCallTarget: 1307 strncpy(ProfileKindName, "IndirectCall", 19); 1308 break; 1309 case IPVK_MemOPSize: 1310 strncpy(ProfileKindName, "MemOP", 19); 1311 break; 1312 default: 1313 snprintf(ProfileKindName, 19, "VP[%d]", I); 1314 break; 1315 } 1316 OS << " " << ProfileKindName 1317 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1318 << "\n"; 1319 if (Mismatch.NumEntries) 1320 OS << " Mismatched count percentage (" << ProfileKindName 1321 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1322 if (Unique.NumEntries) 1323 OS << " Percentage of " << ProfileKindName 1324 << " profile only in test_profile: " 1325 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1326 OS << " " << ProfileKindName 1327 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1328 << "\n" 1329 << " " << ProfileKindName 1330 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1331 << "\n"; 1332 } 1333 } 1334 1335 namespace IndexedInstrProf { 1336 // A C++14 compatible version of the offsetof macro. 1337 template <typename T1, typename T2> 1338 inline size_t constexpr offsetOf(T1 T2::*Member) { 1339 constexpr T2 Object{}; 1340 return size_t(&(Object.*Member)) - size_t(&Object); 1341 } 1342 1343 static inline uint64_t read(const unsigned char *Buffer, size_t Offset) { 1344 return *reinterpret_cast<const uint64_t *>(Buffer + Offset); 1345 } 1346 1347 uint64_t Header::formatVersion() const { 1348 using namespace support; 1349 return endian::byte_swap<uint64_t, little>(Version); 1350 } 1351 1352 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) { 1353 using namespace support; 1354 static_assert(std::is_standard_layout_v<Header>, 1355 "The header should be standard layout type since we use offset " 1356 "of fields to read."); 1357 Header H; 1358 1359 H.Magic = read(Buffer, offsetOf(&Header::Magic)); 1360 // Check the magic number. 1361 uint64_t Magic = endian::byte_swap<uint64_t, little>(H.Magic); 1362 if (Magic != IndexedInstrProf::Magic) 1363 return make_error<InstrProfError>(instrprof_error::bad_magic); 1364 1365 // Read the version. 1366 H.Version = read(Buffer, offsetOf(&Header::Version)); 1367 if (GET_VERSION(H.formatVersion()) > 1368 IndexedInstrProf::ProfVersion::CurrentVersion) 1369 return make_error<InstrProfError>(instrprof_error::unsupported_version); 1370 1371 switch (GET_VERSION(H.formatVersion())) { 1372 // When a new field is added in the header add a case statement here to 1373 // populate it. 1374 static_assert( 1375 IndexedInstrProf::ProfVersion::CurrentVersion == Version9, 1376 "Please update the reading code below if a new field has been added, " 1377 "if not add a case statement to fall through to the latest version."); 1378 case 9ull: 1379 H.BinaryIdOffset = read(Buffer, offsetOf(&Header::BinaryIdOffset)); 1380 [[fallthrough]]; 1381 case 8ull: 1382 H.MemProfOffset = read(Buffer, offsetOf(&Header::MemProfOffset)); 1383 [[fallthrough]]; 1384 default: // Version7 (when the backwards compatible header was introduced). 1385 H.HashType = read(Buffer, offsetOf(&Header::HashType)); 1386 H.HashOffset = read(Buffer, offsetOf(&Header::HashOffset)); 1387 } 1388 1389 return H; 1390 } 1391 1392 size_t Header::size() const { 1393 switch (GET_VERSION(formatVersion())) { 1394 // When a new field is added to the header add a case statement here to 1395 // compute the size as offset of the new field + size of the new field. This 1396 // relies on the field being added to the end of the list. 1397 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version9, 1398 "Please update the size computation below if a new field has " 1399 "been added to the header, if not add a case statement to " 1400 "fall through to the latest version."); 1401 case 9ull: 1402 return offsetOf(&Header::BinaryIdOffset) + sizeof(Header::BinaryIdOffset); 1403 case 8ull: 1404 return offsetOf(&Header::MemProfOffset) + sizeof(Header::MemProfOffset); 1405 default: // Version7 (when the backwards compatible header was introduced). 1406 return offsetOf(&Header::HashOffset) + sizeof(Header::HashOffset); 1407 } 1408 } 1409 1410 } // namespace IndexedInstrProf 1411 1412 } // end namespace llvm 1413