xref: /freebsd/contrib/llvm-project/llvm/lib/ProfileData/InstrProf.cpp (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalValue.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/ProfileData/InstrProfReader.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Compression.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/LEB128.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/Path.h"
43 #include "llvm/Support/SwapByteOrder.h"
44 #include "llvm/Support/VirtualFileSystem.h"
45 #include "llvm/TargetParser/Triple.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <memory>
52 #include <string>
53 #include <system_error>
54 #include <type_traits>
55 #include <utility>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "instrprof"
61 
62 static cl::opt<bool> StaticFuncFullModulePrefix(
63     "static-func-full-module-prefix", cl::init(true), cl::Hidden,
64     cl::desc("Use full module build paths in the profile counter names for "
65              "static functions."));
66 
67 // This option is tailored to users that have different top-level directory in
68 // profile-gen and profile-use compilation. Users need to specific the number
69 // of levels to strip. A value larger than the number of directories in the
70 // source file will strip all the directory names and only leave the basename.
71 //
72 // Note current ThinLTO module importing for the indirect-calls assumes
73 // the source directory name not being stripped. A non-zero option value here
74 // can potentially prevent some inter-module indirect-call-promotions.
75 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
76     "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
77     cl::desc("Strip specified level of directory name from source path in "
78              "the profile counter name for static functions."));
79 
80 static std::string getInstrProfErrString(instrprof_error Err,
81                                          const std::string &ErrMsg = "") {
82   std::string Msg;
83   raw_string_ostream OS(Msg);
84 
85   switch (Err) {
86   case instrprof_error::success:
87     OS << "success";
88     break;
89   case instrprof_error::eof:
90     OS << "end of File";
91     break;
92   case instrprof_error::unrecognized_format:
93     OS << "unrecognized instrumentation profile encoding format";
94     break;
95   case instrprof_error::bad_magic:
96     OS << "invalid instrumentation profile data (bad magic)";
97     break;
98   case instrprof_error::bad_header:
99     OS << "invalid instrumentation profile data (file header is corrupt)";
100     break;
101   case instrprof_error::unsupported_version:
102     OS << "unsupported instrumentation profile format version";
103     break;
104   case instrprof_error::unsupported_hash_type:
105     OS << "unsupported instrumentation profile hash type";
106     break;
107   case instrprof_error::too_large:
108     OS << "too much profile data";
109     break;
110   case instrprof_error::truncated:
111     OS << "truncated profile data";
112     break;
113   case instrprof_error::malformed:
114     OS << "malformed instrumentation profile data";
115     break;
116   case instrprof_error::missing_correlation_info:
117     OS << "debug info/binary for correlation is required";
118     break;
119   case instrprof_error::unexpected_correlation_info:
120     OS << "debug info/binary for correlation is not necessary";
121     break;
122   case instrprof_error::unable_to_correlate_profile:
123     OS << "unable to correlate profile";
124     break;
125   case instrprof_error::invalid_prof:
126     OS << "invalid profile created. Please file a bug "
127           "at: " BUG_REPORT_URL
128           " and include the profraw files that caused this error.";
129     break;
130   case instrprof_error::unknown_function:
131     OS << "no profile data available for function";
132     break;
133   case instrprof_error::hash_mismatch:
134     OS << "function control flow change detected (hash mismatch)";
135     break;
136   case instrprof_error::count_mismatch:
137     OS << "function basic block count change detected (counter mismatch)";
138     break;
139   case instrprof_error::bitmap_mismatch:
140     OS << "function bitmap size change detected (bitmap size mismatch)";
141     break;
142   case instrprof_error::counter_overflow:
143     OS << "counter overflow";
144     break;
145   case instrprof_error::value_site_count_mismatch:
146     OS << "function value site count change detected (counter mismatch)";
147     break;
148   case instrprof_error::compress_failed:
149     OS << "failed to compress data (zlib)";
150     break;
151   case instrprof_error::uncompress_failed:
152     OS << "failed to uncompress data (zlib)";
153     break;
154   case instrprof_error::empty_raw_profile:
155     OS << "empty raw profile file";
156     break;
157   case instrprof_error::zlib_unavailable:
158     OS << "profile uses zlib compression but the profile reader was built "
159           "without zlib support";
160     break;
161   case instrprof_error::raw_profile_version_mismatch:
162     OS << "raw profile version mismatch";
163     break;
164   case instrprof_error::counter_value_too_large:
165     OS << "excessively large counter value suggests corrupted profile data";
166     break;
167   }
168 
169   // If optional error message is not empty, append it to the message.
170   if (!ErrMsg.empty())
171     OS << ": " << ErrMsg;
172 
173   return OS.str();
174 }
175 
176 namespace {
177 
178 // FIXME: This class is only here to support the transition to llvm::Error. It
179 // will be removed once this transition is complete. Clients should prefer to
180 // deal with the Error value directly, rather than converting to error_code.
181 class InstrProfErrorCategoryType : public std::error_category {
182   const char *name() const noexcept override { return "llvm.instrprof"; }
183 
184   std::string message(int IE) const override {
185     return getInstrProfErrString(static_cast<instrprof_error>(IE));
186   }
187 };
188 
189 } // end anonymous namespace
190 
191 const std::error_category &llvm::instrprof_category() {
192   static InstrProfErrorCategoryType ErrorCategory;
193   return ErrorCategory;
194 }
195 
196 namespace {
197 
198 const char *InstrProfSectNameCommon[] = {
199 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
200   SectNameCommon,
201 #include "llvm/ProfileData/InstrProfData.inc"
202 };
203 
204 const char *InstrProfSectNameCoff[] = {
205 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
206   SectNameCoff,
207 #include "llvm/ProfileData/InstrProfData.inc"
208 };
209 
210 const char *InstrProfSectNamePrefix[] = {
211 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
212   Prefix,
213 #include "llvm/ProfileData/InstrProfData.inc"
214 };
215 
216 } // namespace
217 
218 namespace llvm {
219 
220 cl::opt<bool> DoInstrProfNameCompression(
221     "enable-name-compression",
222     cl::desc("Enable name/filename string compression"), cl::init(true));
223 
224 cl::opt<bool> EnableVTableValueProfiling(
225     "enable-vtable-value-profiling", cl::init(false),
226     cl::desc("If true, the virtual table address will be instrumented to know "
227              "the types of a C++ pointer. The information is used in indirect "
228              "call promotion to do selective vtable-based comparison."));
229 
230 cl::opt<bool> EnableVTableProfileUse(
231     "enable-vtable-profile-use", cl::init(false),
232     cl::desc("If ThinLTO and WPD is enabled and this option is true, vtable "
233              "profiles will be used by ICP pass for more efficient indirect "
234              "call sequence. If false, type profiles won't be used."));
235 
236 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
237                                     Triple::ObjectFormatType OF,
238                                     bool AddSegmentInfo) {
239   std::string SectName;
240 
241   if (OF == Triple::MachO && AddSegmentInfo)
242     SectName = InstrProfSectNamePrefix[IPSK];
243 
244   if (OF == Triple::COFF)
245     SectName += InstrProfSectNameCoff[IPSK];
246   else
247     SectName += InstrProfSectNameCommon[IPSK];
248 
249   if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
250     SectName += ",regular,live_support";
251 
252   return SectName;
253 }
254 
255 std::string InstrProfError::message() const {
256   return getInstrProfErrString(Err, Msg);
257 }
258 
259 char InstrProfError::ID = 0;
260 
261 std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage,
262                            StringRef FileName,
263                            uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
264   // Value names may be prefixed with a binary '1' to indicate
265   // that the backend should not modify the symbols due to any platform
266   // naming convention. Do not include that '1' in the PGO profile name.
267   if (Name[0] == '\1')
268     Name = Name.substr(1);
269 
270   std::string NewName = std::string(Name);
271   if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
272     // For local symbols, prepend the main file name to distinguish them.
273     // Do not include the full path in the file name since there's no guarantee
274     // that it will stay the same, e.g., if the files are checked out from
275     // version control in different locations.
276     if (FileName.empty())
277       NewName = NewName.insert(0, "<unknown>:");
278     else
279       NewName = NewName.insert(0, FileName.str() + ":");
280   }
281   return NewName;
282 }
283 
284 // Strip NumPrefix level of directory name from PathNameStr. If the number of
285 // directory separators is less than NumPrefix, strip all the directories and
286 // leave base file name only.
287 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
288   uint32_t Count = NumPrefix;
289   uint32_t Pos = 0, LastPos = 0;
290   for (const auto &CI : PathNameStr) {
291     ++Pos;
292     if (llvm::sys::path::is_separator(CI)) {
293       LastPos = Pos;
294       --Count;
295     }
296     if (Count == 0)
297       break;
298   }
299   return PathNameStr.substr(LastPos);
300 }
301 
302 static StringRef getStrippedSourceFileName(const GlobalObject &GO) {
303   StringRef FileName(GO.getParent()->getSourceFileName());
304   uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
305   if (StripLevel < StaticFuncStripDirNamePrefix)
306     StripLevel = StaticFuncStripDirNamePrefix;
307   if (StripLevel)
308     FileName = stripDirPrefix(FileName, StripLevel);
309   return FileName;
310 }
311 
312 // The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is
313 // provided if linkage is local and is used to discriminate possibly identical
314 // mangled names. ";" is used because it is unlikely to be found in either
315 // <filepath> or <mangled-name>.
316 //
317 // Older compilers used getPGOFuncName() which has the format
318 // [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions
319 // which commonly have :'s in their names. We still need to compute this name to
320 // lookup functions from profiles built by older compilers.
321 static std::string
322 getIRPGONameForGlobalObject(const GlobalObject &GO,
323                             GlobalValue::LinkageTypes Linkage,
324                             StringRef FileName) {
325   return GlobalValue::getGlobalIdentifier(GO.getName(), Linkage, FileName);
326 }
327 
328 static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) {
329   if (MD != nullptr) {
330     StringRef S = cast<MDString>(MD->getOperand(0))->getString();
331     return S.str();
332   }
333   return {};
334 }
335 
336 // Returns the PGO object name. This function has some special handling
337 // when called in LTO optimization. The following only applies when calling in
338 // LTO passes (when \c InLTO is true): LTO's internalization privatizes many
339 // global linkage symbols. This happens after value profile annotation, but
340 // those internal linkage functions should not have a source prefix.
341 // Additionally, for ThinLTO mode, exported internal functions are promoted
342 // and renamed. We need to ensure that the original internal PGO name is
343 // used when computing the GUID that is compared against the profiled GUIDs.
344 // To differentiate compiler generated internal symbols from original ones,
345 // PGOFuncName meta data are created and attached to the original internal
346 // symbols in the value profile annotation step
347 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
348 // data, its original linkage must be non-internal.
349 static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO,
350                                       MDNode *PGONameMetadata) {
351   if (!InLTO) {
352     auto FileName = getStrippedSourceFileName(GO);
353     return getIRPGONameForGlobalObject(GO, GO.getLinkage(), FileName);
354   }
355 
356   // In LTO mode (when InLTO is true), first check if there is a meta data.
357   if (auto IRPGOFuncName = lookupPGONameFromMetadata(PGONameMetadata))
358     return *IRPGOFuncName;
359 
360   // If there is no meta data, the function must be a global before the value
361   // profile annotation pass. Its current linkage may be internal if it is
362   // internalized in LTO mode.
363   return getIRPGONameForGlobalObject(GO, GlobalValue::ExternalLinkage, "");
364 }
365 
366 // Returns the IRPGO function name and does special handling when called
367 // in LTO optimization. See the comments of `getIRPGOObjectName` for details.
368 std::string getIRPGOFuncName(const Function &F, bool InLTO) {
369   return getIRPGOObjectName(F, InLTO, getPGOFuncNameMetadata(F));
370 }
371 
372 // Please use getIRPGOFuncName for LLVM IR instrumentation. This function is
373 // for front-end (Clang, etc) instrumentation.
374 // The implementation is kept for profile matching from older profiles.
375 // This is similar to `getIRPGOFuncName` except that this function calls
376 // 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls
377 // 'getIRPGONameForGlobalObject'. See the difference between two callees in the
378 // comments of `getIRPGONameForGlobalObject`.
379 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
380   if (!InLTO) {
381     auto FileName = getStrippedSourceFileName(F);
382     return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
383   }
384 
385   // In LTO mode (when InLTO is true), first check if there is a meta data.
386   if (auto PGOFuncName = lookupPGONameFromMetadata(getPGOFuncNameMetadata(F)))
387     return *PGOFuncName;
388 
389   // If there is no meta data, the function must be a global before the value
390   // profile annotation pass. Its current linkage may be internal if it is
391   // internalized in LTO mode.
392   return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
393 }
394 
395 std::string getPGOName(const GlobalVariable &V, bool InLTO) {
396   // PGONameMetadata should be set by compiler at profile use time
397   // and read by symtab creation to look up symbols corresponding to
398   // a MD5 hash.
399   return getIRPGOObjectName(V, InLTO, V.getMetadata(getPGONameMetadataName()));
400 }
401 
402 // See getIRPGOObjectName() for a discription of the format.
403 std::pair<StringRef, StringRef> getParsedIRPGOName(StringRef IRPGOName) {
404   auto [FileName, MangledName] = IRPGOName.split(GlobalIdentifierDelimiter);
405   if (MangledName.empty())
406     return std::make_pair(StringRef(), IRPGOName);
407   return std::make_pair(FileName, MangledName);
408 }
409 
410 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
411   if (FileName.empty())
412     return PGOFuncName;
413   // Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as
414   // well.
415   if (PGOFuncName.starts_with(FileName))
416     PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
417   return PGOFuncName;
418 }
419 
420 // \p FuncName is the string used as profile lookup key for the function. A
421 // symbol is created to hold the name. Return the legalized symbol name.
422 std::string getPGOFuncNameVarName(StringRef FuncName,
423                                   GlobalValue::LinkageTypes Linkage) {
424   std::string VarName = std::string(getInstrProfNameVarPrefix());
425   VarName += FuncName;
426 
427   if (!GlobalValue::isLocalLinkage(Linkage))
428     return VarName;
429 
430   // Now fix up illegal chars in local VarName that may upset the assembler.
431   const char InvalidChars[] = "-:;<>/\"'";
432   size_t FoundPos = VarName.find_first_of(InvalidChars);
433   while (FoundPos != std::string::npos) {
434     VarName[FoundPos] = '_';
435     FoundPos = VarName.find_first_of(InvalidChars, FoundPos + 1);
436   }
437   return VarName;
438 }
439 
440 GlobalVariable *createPGOFuncNameVar(Module &M,
441                                      GlobalValue::LinkageTypes Linkage,
442                                      StringRef PGOFuncName) {
443   // We generally want to match the function's linkage, but available_externally
444   // and extern_weak both have the wrong semantics, and anything that doesn't
445   // need to link across compilation units doesn't need to be visible at all.
446   if (Linkage == GlobalValue::ExternalWeakLinkage)
447     Linkage = GlobalValue::LinkOnceAnyLinkage;
448   else if (Linkage == GlobalValue::AvailableExternallyLinkage)
449     Linkage = GlobalValue::LinkOnceODRLinkage;
450   else if (Linkage == GlobalValue::InternalLinkage ||
451            Linkage == GlobalValue::ExternalLinkage)
452     Linkage = GlobalValue::PrivateLinkage;
453 
454   auto *Value =
455       ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
456   auto *FuncNameVar =
457       new GlobalVariable(M, Value->getType(), true, Linkage, Value,
458                          getPGOFuncNameVarName(PGOFuncName, Linkage));
459 
460   // Hide the symbol so that we correctly get a copy for each executable.
461   if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
462     FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
463 
464   return FuncNameVar;
465 }
466 
467 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
468   return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
469 }
470 
471 Error InstrProfSymtab::create(Module &M, bool InLTO) {
472   for (Function &F : M) {
473     // Function may not have a name: like using asm("") to overwrite the name.
474     // Ignore in this case.
475     if (!F.hasName())
476       continue;
477     if (Error E = addFuncWithName(F, getIRPGOFuncName(F, InLTO)))
478       return E;
479     // Also use getPGOFuncName() so that we can find records from older profiles
480     if (Error E = addFuncWithName(F, getPGOFuncName(F, InLTO)))
481       return E;
482   }
483 
484   SmallVector<MDNode *, 2> Types;
485   for (GlobalVariable &G : M.globals()) {
486     if (!G.hasName() || !G.hasMetadata(LLVMContext::MD_type))
487       continue;
488     if (Error E = addVTableWithName(G, getPGOName(G, InLTO)))
489       return E;
490   }
491 
492   Sorted = false;
493   finalizeSymtab();
494   return Error::success();
495 }
496 
497 Error InstrProfSymtab::addVTableWithName(GlobalVariable &VTable,
498                                          StringRef VTablePGOName) {
499   auto NameToGUIDMap = [&](StringRef Name) -> Error {
500     if (Error E = addSymbolName(Name))
501       return E;
502 
503     bool Inserted = true;
504     std::tie(std::ignore, Inserted) =
505         MD5VTableMap.try_emplace(GlobalValue::getGUID(Name), &VTable);
506     if (!Inserted)
507       LLVM_DEBUG(dbgs() << "GUID conflict within one module");
508     return Error::success();
509   };
510   if (Error E = NameToGUIDMap(VTablePGOName))
511     return E;
512 
513   StringRef CanonicalName = getCanonicalName(VTablePGOName);
514   if (CanonicalName != VTablePGOName)
515     return NameToGUIDMap(CanonicalName);
516 
517   return Error::success();
518 }
519 
520 /// \c NameStrings is a string composed of one of more possibly encoded
521 /// sub-strings. The substrings are separated by 0 or more zero bytes. This
522 /// method decodes the string and calls `NameCallback` for each substring.
523 static Error
524 readAndDecodeStrings(StringRef NameStrings,
525                      std::function<Error(StringRef)> NameCallback) {
526   const uint8_t *P = NameStrings.bytes_begin();
527   const uint8_t *EndP = NameStrings.bytes_end();
528   while (P < EndP) {
529     uint32_t N;
530     uint64_t UncompressedSize = decodeULEB128(P, &N);
531     P += N;
532     uint64_t CompressedSize = decodeULEB128(P, &N);
533     P += N;
534     const bool IsCompressed = (CompressedSize != 0);
535     SmallVector<uint8_t, 128> UncompressedNameStrings;
536     StringRef NameStrings;
537     if (IsCompressed) {
538       if (!llvm::compression::zlib::isAvailable())
539         return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
540 
541       if (Error E = compression::zlib::decompress(ArrayRef(P, CompressedSize),
542                                                   UncompressedNameStrings,
543                                                   UncompressedSize)) {
544         consumeError(std::move(E));
545         return make_error<InstrProfError>(instrprof_error::uncompress_failed);
546       }
547       P += CompressedSize;
548       NameStrings = toStringRef(UncompressedNameStrings);
549     } else {
550       NameStrings =
551           StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
552       P += UncompressedSize;
553     }
554     // Now parse the name strings.
555     SmallVector<StringRef, 0> Names;
556     NameStrings.split(Names, getInstrProfNameSeparator());
557     for (StringRef &Name : Names)
558       if (Error E = NameCallback(Name))
559         return E;
560 
561     while (P < EndP && *P == 0)
562       P++;
563   }
564   return Error::success();
565 }
566 
567 Error InstrProfSymtab::create(StringRef NameStrings) {
568   return readAndDecodeStrings(
569       NameStrings,
570       std::bind(&InstrProfSymtab::addFuncName, this, std::placeholders::_1));
571 }
572 
573 Error InstrProfSymtab::create(StringRef FuncNameStrings,
574                               StringRef VTableNameStrings) {
575   if (Error E = readAndDecodeStrings(FuncNameStrings,
576                                      std::bind(&InstrProfSymtab::addFuncName,
577                                                this, std::placeholders::_1)))
578     return E;
579 
580   return readAndDecodeStrings(
581       VTableNameStrings,
582       std::bind(&InstrProfSymtab::addVTableName, this, std::placeholders::_1));
583 }
584 
585 Error InstrProfSymtab::initVTableNamesFromCompressedStrings(
586     StringRef CompressedVTableStrings) {
587   return readAndDecodeStrings(
588       CompressedVTableStrings,
589       std::bind(&InstrProfSymtab::addVTableName, this, std::placeholders::_1));
590 }
591 
592 StringRef InstrProfSymtab::getCanonicalName(StringRef PGOName) {
593   // In ThinLTO, local function may have been promoted to global and have
594   // suffix ".llvm." added to the function name. We need to add the
595   // stripped function name to the symbol table so that we can find a match
596   // from profile.
597   //
598   // ".__uniq." suffix is used to differentiate internal linkage functions in
599   // different modules and should be kept. This is the only suffix with the
600   // pattern ".xxx" which is kept before matching, other suffixes similar as
601   // ".llvm." will be stripped.
602   const std::string UniqSuffix = ".__uniq.";
603   size_t Pos = PGOName.find(UniqSuffix);
604   if (Pos != StringRef::npos)
605     Pos += UniqSuffix.length();
606   else
607     Pos = 0;
608 
609   // Search '.' after ".__uniq." if ".__uniq." exists, otherwise search '.' from
610   // the beginning.
611   Pos = PGOName.find('.', Pos);
612   if (Pos != StringRef::npos && Pos != 0)
613     return PGOName.substr(0, Pos);
614 
615   return PGOName;
616 }
617 
618 Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName) {
619   auto NameToGUIDMap = [&](StringRef Name) -> Error {
620     if (Error E = addFuncName(Name))
621       return E;
622     MD5FuncMap.emplace_back(Function::getGUID(Name), &F);
623     return Error::success();
624   };
625   if (Error E = NameToGUIDMap(PGOFuncName))
626     return E;
627 
628   StringRef CanonicalFuncName = getCanonicalName(PGOFuncName);
629   if (CanonicalFuncName != PGOFuncName)
630     return NameToGUIDMap(CanonicalFuncName);
631 
632   return Error::success();
633 }
634 
635 uint64_t InstrProfSymtab::getVTableHashFromAddress(uint64_t Address) {
636   // Given a runtime address, look up the hash value in the interval map, and
637   // fallback to value 0 if a hash value is not found.
638   return VTableAddrMap.lookup(Address, 0);
639 }
640 
641 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
642   finalizeSymtab();
643   auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
644     return A.first < Address;
645   });
646   // Raw function pointer collected by value profiler may be from
647   // external functions that are not instrumented. They won't have
648   // mapping data to be used by the deserializer. Force the value to
649   // be 0 in this case.
650   if (It != AddrToMD5Map.end() && It->first == Address)
651     return (uint64_t)It->second;
652   return 0;
653 }
654 
655 void InstrProfSymtab::dumpNames(raw_ostream &OS) const {
656   SmallVector<StringRef, 0> Sorted(NameTab.keys());
657   llvm::sort(Sorted);
658   for (StringRef S : Sorted)
659     OS << S << '\n';
660 }
661 
662 Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs,
663                                      bool DoCompression, std::string &Result) {
664   assert(!NameStrs.empty() && "No name data to emit");
665 
666   uint8_t Header[20], *P = Header;
667   std::string UncompressedNameStrings =
668       join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
669 
670   assert(StringRef(UncompressedNameStrings)
671                  .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
672          "PGO name is invalid (contains separator token)");
673 
674   unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
675   P += EncLen;
676 
677   auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
678     EncLen = encodeULEB128(CompressedLen, P);
679     P += EncLen;
680     char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
681     unsigned HeaderLen = P - &Header[0];
682     Result.append(HeaderStr, HeaderLen);
683     Result += InputStr;
684     return Error::success();
685   };
686 
687   if (!DoCompression) {
688     return WriteStringToResult(0, UncompressedNameStrings);
689   }
690 
691   SmallVector<uint8_t, 128> CompressedNameStrings;
692   compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings),
693                               CompressedNameStrings,
694                               compression::zlib::BestSizeCompression);
695 
696   return WriteStringToResult(CompressedNameStrings.size(),
697                              toStringRef(CompressedNameStrings));
698 }
699 
700 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
701   auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
702   StringRef NameStr =
703       Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
704   return NameStr;
705 }
706 
707 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
708                                 std::string &Result, bool DoCompression) {
709   std::vector<std::string> NameStrs;
710   for (auto *NameVar : NameVars) {
711     NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
712   }
713   return collectGlobalObjectNameStrings(
714       NameStrs, compression::zlib::isAvailable() && DoCompression, Result);
715 }
716 
717 Error collectVTableStrings(ArrayRef<GlobalVariable *> VTables,
718                            std::string &Result, bool DoCompression) {
719   std::vector<std::string> VTableNameStrs;
720   for (auto *VTable : VTables)
721     VTableNameStrs.push_back(getPGOName(*VTable));
722   return collectGlobalObjectNameStrings(
723       VTableNameStrs, compression::zlib::isAvailable() && DoCompression,
724       Result);
725 }
726 
727 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
728   uint64_t FuncSum = 0;
729   Sum.NumEntries += Counts.size();
730   for (uint64_t Count : Counts)
731     FuncSum += Count;
732   Sum.CountSum += FuncSum;
733 
734   for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
735     uint64_t KindSum = 0;
736     uint32_t NumValueSites = getNumValueSites(VK);
737     for (size_t I = 0; I < NumValueSites; ++I) {
738       for (const auto &V : getValueArrayForSite(VK, I))
739         KindSum += V.Count;
740     }
741     Sum.ValueCounts[VK] += KindSum;
742   }
743 }
744 
745 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
746                                        uint32_t ValueKind,
747                                        OverlapStats &Overlap,
748                                        OverlapStats &FuncLevelOverlap) {
749   this->sortByTargetValues();
750   Input.sortByTargetValues();
751   double Score = 0.0f, FuncLevelScore = 0.0f;
752   auto I = ValueData.begin();
753   auto IE = ValueData.end();
754   auto J = Input.ValueData.begin();
755   auto JE = Input.ValueData.end();
756   while (I != IE && J != JE) {
757     if (I->Value == J->Value) {
758       Score += OverlapStats::score(I->Count, J->Count,
759                                    Overlap.Base.ValueCounts[ValueKind],
760                                    Overlap.Test.ValueCounts[ValueKind]);
761       FuncLevelScore += OverlapStats::score(
762           I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
763           FuncLevelOverlap.Test.ValueCounts[ValueKind]);
764       ++I;
765     } else if (I->Value < J->Value) {
766       ++I;
767       continue;
768     }
769     ++J;
770   }
771   Overlap.Overlap.ValueCounts[ValueKind] += Score;
772   FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
773 }
774 
775 // Return false on mismatch.
776 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
777                                            InstrProfRecord &Other,
778                                            OverlapStats &Overlap,
779                                            OverlapStats &FuncLevelOverlap) {
780   uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
781   assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
782   if (!ThisNumValueSites)
783     return;
784 
785   std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
786       getOrCreateValueSitesForKind(ValueKind);
787   MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
788       Other.getValueSitesForKind(ValueKind);
789   for (uint32_t I = 0; I < ThisNumValueSites; I++)
790     ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
791                                FuncLevelOverlap);
792 }
793 
794 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
795                               OverlapStats &FuncLevelOverlap,
796                               uint64_t ValueCutoff) {
797   // FuncLevel CountSum for other should already computed and nonzero.
798   assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
799   accumulateCounts(FuncLevelOverlap.Base);
800   bool Mismatch = (Counts.size() != Other.Counts.size());
801 
802   // Check if the value profiles mismatch.
803   if (!Mismatch) {
804     for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
805       uint32_t ThisNumValueSites = getNumValueSites(Kind);
806       uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
807       if (ThisNumValueSites != OtherNumValueSites) {
808         Mismatch = true;
809         break;
810       }
811     }
812   }
813   if (Mismatch) {
814     Overlap.addOneMismatch(FuncLevelOverlap.Test);
815     return;
816   }
817 
818   // Compute overlap for value counts.
819   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
820     overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
821 
822   double Score = 0.0;
823   uint64_t MaxCount = 0;
824   // Compute overlap for edge counts.
825   for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
826     Score += OverlapStats::score(Counts[I], Other.Counts[I],
827                                  Overlap.Base.CountSum, Overlap.Test.CountSum);
828     MaxCount = std::max(Other.Counts[I], MaxCount);
829   }
830   Overlap.Overlap.CountSum += Score;
831   Overlap.Overlap.NumEntries += 1;
832 
833   if (MaxCount >= ValueCutoff) {
834     double FuncScore = 0.0;
835     for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
836       FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
837                                        FuncLevelOverlap.Base.CountSum,
838                                        FuncLevelOverlap.Test.CountSum);
839     FuncLevelOverlap.Overlap.CountSum = FuncScore;
840     FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
841     FuncLevelOverlap.Valid = true;
842   }
843 }
844 
845 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
846                                      uint64_t Weight,
847                                      function_ref<void(instrprof_error)> Warn) {
848   this->sortByTargetValues();
849   Input.sortByTargetValues();
850   auto I = ValueData.begin();
851   auto IE = ValueData.end();
852   std::vector<InstrProfValueData> Merged;
853   Merged.reserve(std::max(ValueData.size(), Input.ValueData.size()));
854   for (const InstrProfValueData &J : Input.ValueData) {
855     while (I != IE && I->Value < J.Value) {
856       Merged.push_back(*I);
857       ++I;
858     }
859     if (I != IE && I->Value == J.Value) {
860       bool Overflowed;
861       I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed);
862       if (Overflowed)
863         Warn(instrprof_error::counter_overflow);
864       Merged.push_back(*I);
865       ++I;
866       continue;
867     }
868     Merged.push_back(J);
869   }
870   Merged.insert(Merged.end(), I, IE);
871   ValueData = std::move(Merged);
872 }
873 
874 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
875                                      function_ref<void(instrprof_error)> Warn) {
876   for (InstrProfValueData &I : ValueData) {
877     bool Overflowed;
878     I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D;
879     if (Overflowed)
880       Warn(instrprof_error::counter_overflow);
881   }
882 }
883 
884 // Merge Value Profile data from Src record to this record for ValueKind.
885 // Scale merged value counts by \p Weight.
886 void InstrProfRecord::mergeValueProfData(
887     uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
888     function_ref<void(instrprof_error)> Warn) {
889   uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
890   uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
891   if (ThisNumValueSites != OtherNumValueSites) {
892     Warn(instrprof_error::value_site_count_mismatch);
893     return;
894   }
895   if (!ThisNumValueSites)
896     return;
897   std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
898       getOrCreateValueSitesForKind(ValueKind);
899   MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
900       Src.getValueSitesForKind(ValueKind);
901   for (uint32_t I = 0; I < ThisNumValueSites; I++)
902     ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
903 }
904 
905 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
906                             function_ref<void(instrprof_error)> Warn) {
907   // If the number of counters doesn't match we either have bad data
908   // or a hash collision.
909   if (Counts.size() != Other.Counts.size()) {
910     Warn(instrprof_error::count_mismatch);
911     return;
912   }
913 
914   // Special handling of the first count as the PseudoCount.
915   CountPseudoKind OtherKind = Other.getCountPseudoKind();
916   CountPseudoKind ThisKind = getCountPseudoKind();
917   if (OtherKind != NotPseudo || ThisKind != NotPseudo) {
918     // We don't allow the merge of a profile with pseudo counts and
919     // a normal profile (i.e. without pesudo counts).
920     // Profile supplimenation should be done after the profile merge.
921     if (OtherKind == NotPseudo || ThisKind == NotPseudo) {
922       Warn(instrprof_error::count_mismatch);
923       return;
924     }
925     if (OtherKind == PseudoHot || ThisKind == PseudoHot)
926       setPseudoCount(PseudoHot);
927     else
928       setPseudoCount(PseudoWarm);
929     return;
930   }
931 
932   for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
933     bool Overflowed;
934     uint64_t Value =
935         SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
936     if (Value > getInstrMaxCountValue()) {
937       Value = getInstrMaxCountValue();
938       Overflowed = true;
939     }
940     Counts[I] = Value;
941     if (Overflowed)
942       Warn(instrprof_error::counter_overflow);
943   }
944 
945   // If the number of bitmap bytes doesn't match we either have bad data
946   // or a hash collision.
947   if (BitmapBytes.size() != Other.BitmapBytes.size()) {
948     Warn(instrprof_error::bitmap_mismatch);
949     return;
950   }
951 
952   // Bitmap bytes are merged by simply ORing them together.
953   for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) {
954     BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I];
955   }
956 
957   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
958     mergeValueProfData(Kind, Other, Weight, Warn);
959 }
960 
961 void InstrProfRecord::scaleValueProfData(
962     uint32_t ValueKind, uint64_t N, uint64_t D,
963     function_ref<void(instrprof_error)> Warn) {
964   for (auto &R : getValueSitesForKind(ValueKind))
965     R.scale(N, D, Warn);
966 }
967 
968 void InstrProfRecord::scale(uint64_t N, uint64_t D,
969                             function_ref<void(instrprof_error)> Warn) {
970   assert(D != 0 && "D cannot be 0");
971   for (auto &Count : this->Counts) {
972     bool Overflowed;
973     Count = SaturatingMultiply(Count, N, &Overflowed) / D;
974     if (Count > getInstrMaxCountValue()) {
975       Count = getInstrMaxCountValue();
976       Overflowed = true;
977     }
978     if (Overflowed)
979       Warn(instrprof_error::counter_overflow);
980   }
981   for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
982     scaleValueProfData(Kind, N, D, Warn);
983 }
984 
985 // Map indirect call target name hash to name string.
986 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
987                                      InstrProfSymtab *SymTab) {
988   if (!SymTab)
989     return Value;
990 
991   if (ValueKind == IPVK_IndirectCallTarget)
992     return SymTab->getFunctionHashFromAddress(Value);
993 
994   if (ValueKind == IPVK_VTableTarget)
995     return SymTab->getVTableHashFromAddress(Value);
996 
997   return Value;
998 }
999 
1000 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
1001                                    ArrayRef<InstrProfValueData> VData,
1002                                    InstrProfSymtab *ValueMap) {
1003   // Remap values.
1004   std::vector<InstrProfValueData> RemappedVD;
1005   RemappedVD.reserve(VData.size());
1006   for (const auto &V : VData) {
1007     uint64_t NewValue = remapValue(V.Value, ValueKind, ValueMap);
1008     RemappedVD.push_back({NewValue, V.Count});
1009   }
1010 
1011   std::vector<InstrProfValueSiteRecord> &ValueSites =
1012       getOrCreateValueSitesForKind(ValueKind);
1013   assert(ValueSites.size() == Site);
1014 
1015   // Add a new value site with remapped value profiling data.
1016   ValueSites.emplace_back(std::move(RemappedVD));
1017 }
1018 
1019 void TemporalProfTraceTy::createBPFunctionNodes(
1020     ArrayRef<TemporalProfTraceTy> Traces, std::vector<BPFunctionNode> &Nodes,
1021     bool RemoveOutlierUNs) {
1022   using IDT = BPFunctionNode::IDT;
1023   using UtilityNodeT = BPFunctionNode::UtilityNodeT;
1024   UtilityNodeT MaxUN = 0;
1025   DenseMap<IDT, size_t> IdToFirstTimestamp;
1026   DenseMap<IDT, UtilityNodeT> IdToFirstUN;
1027   DenseMap<IDT, SmallVector<UtilityNodeT>> IdToUNs;
1028   // TODO: We need to use the Trace.Weight field to give more weight to more
1029   // important utilities
1030   for (auto &Trace : Traces) {
1031     size_t CutoffTimestamp = 1;
1032     for (size_t Timestamp = 0; Timestamp < Trace.FunctionNameRefs.size();
1033          Timestamp++) {
1034       IDT Id = Trace.FunctionNameRefs[Timestamp];
1035       auto [It, WasInserted] = IdToFirstTimestamp.try_emplace(Id, Timestamp);
1036       if (!WasInserted)
1037         It->getSecond() = std::min<size_t>(It->getSecond(), Timestamp);
1038       if (Timestamp >= CutoffTimestamp) {
1039         ++MaxUN;
1040         CutoffTimestamp = 2 * Timestamp;
1041       }
1042       IdToFirstUN.try_emplace(Id, MaxUN);
1043     }
1044     for (auto &[Id, FirstUN] : IdToFirstUN)
1045       for (auto UN = FirstUN; UN <= MaxUN; ++UN)
1046         IdToUNs[Id].push_back(UN);
1047     ++MaxUN;
1048     IdToFirstUN.clear();
1049   }
1050 
1051   if (RemoveOutlierUNs) {
1052     DenseMap<UtilityNodeT, unsigned> UNFrequency;
1053     for (auto &[Id, UNs] : IdToUNs)
1054       for (auto &UN : UNs)
1055         ++UNFrequency[UN];
1056     // Filter out utility nodes that are too infrequent or too prevalent to make
1057     // BalancedPartitioning more effective.
1058     for (auto &[Id, UNs] : IdToUNs)
1059       llvm::erase_if(UNs, [&](auto &UN) {
1060         return UNFrequency[UN] <= 1 || 2 * UNFrequency[UN] > IdToUNs.size();
1061       });
1062   }
1063 
1064   for (auto &[Id, UNs] : IdToUNs)
1065     Nodes.emplace_back(Id, UNs);
1066 
1067   // Since BalancedPartitioning is sensitive to the initial order, we explicitly
1068   // order nodes by their earliest timestamp.
1069   llvm::sort(Nodes, [&](auto &L, auto &R) {
1070     return std::make_pair(IdToFirstTimestamp[L.Id], L.Id) <
1071            std::make_pair(IdToFirstTimestamp[R.Id], R.Id);
1072   });
1073 }
1074 
1075 #define INSTR_PROF_COMMON_API_IMPL
1076 #include "llvm/ProfileData/InstrProfData.inc"
1077 
1078 /*!
1079  * ValueProfRecordClosure Interface implementation for  InstrProfRecord
1080  *  class. These C wrappers are used as adaptors so that C++ code can be
1081  *  invoked as callbacks.
1082  */
1083 uint32_t getNumValueKindsInstrProf(const void *Record) {
1084   return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
1085 }
1086 
1087 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
1088   return reinterpret_cast<const InstrProfRecord *>(Record)
1089       ->getNumValueSites(VKind);
1090 }
1091 
1092 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
1093   return reinterpret_cast<const InstrProfRecord *>(Record)
1094       ->getNumValueData(VKind);
1095 }
1096 
1097 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
1098                                          uint32_t S) {
1099   const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1100   return IPR->getValueArrayForSite(VK, S).size();
1101 }
1102 
1103 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
1104                               uint32_t K, uint32_t S) {
1105   const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1106   llvm::copy(IPR->getValueArrayForSite(K, S), Dst);
1107 }
1108 
1109 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
1110   ValueProfData *VD =
1111       (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
1112   memset(VD, 0, TotalSizeInBytes);
1113   return VD;
1114 }
1115 
1116 static ValueProfRecordClosure InstrProfRecordClosure = {
1117     nullptr,
1118     getNumValueKindsInstrProf,
1119     getNumValueSitesInstrProf,
1120     getNumValueDataInstrProf,
1121     getNumValueDataForSiteInstrProf,
1122     nullptr,
1123     getValueForSiteInstrProf,
1124     allocValueProfDataInstrProf};
1125 
1126 // Wrapper implementation using the closure mechanism.
1127 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
1128   auto Closure = InstrProfRecordClosure;
1129   Closure.Record = &Record;
1130   return getValueProfDataSize(&Closure);
1131 }
1132 
1133 // Wrapper implementation using the closure mechanism.
1134 std::unique_ptr<ValueProfData>
1135 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
1136   InstrProfRecordClosure.Record = &Record;
1137 
1138   std::unique_ptr<ValueProfData> VPD(
1139       serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
1140   return VPD;
1141 }
1142 
1143 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
1144                                     InstrProfSymtab *SymTab) {
1145   Record.reserveSites(Kind, NumValueSites);
1146 
1147   InstrProfValueData *ValueData = getValueProfRecordValueData(this);
1148   for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
1149     uint8_t ValueDataCount = this->SiteCountArray[VSite];
1150     ArrayRef<InstrProfValueData> VDs(ValueData, ValueDataCount);
1151     Record.addValueData(Kind, VSite, VDs, SymTab);
1152     ValueData += ValueDataCount;
1153   }
1154 }
1155 
1156 // For writing/serializing,  Old is the host endianness, and  New is
1157 // byte order intended on disk. For Reading/deserialization, Old
1158 // is the on-disk source endianness, and New is the host endianness.
1159 void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) {
1160   using namespace support;
1161 
1162   if (Old == New)
1163     return;
1164 
1165   if (llvm::endianness::native != Old) {
1166     sys::swapByteOrder<uint32_t>(NumValueSites);
1167     sys::swapByteOrder<uint32_t>(Kind);
1168   }
1169   uint32_t ND = getValueProfRecordNumValueData(this);
1170   InstrProfValueData *VD = getValueProfRecordValueData(this);
1171 
1172   // No need to swap byte array: SiteCountArrray.
1173   for (uint32_t I = 0; I < ND; I++) {
1174     sys::swapByteOrder<uint64_t>(VD[I].Value);
1175     sys::swapByteOrder<uint64_t>(VD[I].Count);
1176   }
1177   if (llvm::endianness::native == Old) {
1178     sys::swapByteOrder<uint32_t>(NumValueSites);
1179     sys::swapByteOrder<uint32_t>(Kind);
1180   }
1181 }
1182 
1183 void ValueProfData::deserializeTo(InstrProfRecord &Record,
1184                                   InstrProfSymtab *SymTab) {
1185   if (NumValueKinds == 0)
1186     return;
1187 
1188   ValueProfRecord *VR = getFirstValueProfRecord(this);
1189   for (uint32_t K = 0; K < NumValueKinds; K++) {
1190     VR->deserializeTo(Record, SymTab);
1191     VR = getValueProfRecordNext(VR);
1192   }
1193 }
1194 
1195 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
1196   return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
1197                                             ValueProfData());
1198 }
1199 
1200 Error ValueProfData::checkIntegrity() {
1201   if (NumValueKinds > IPVK_Last + 1)
1202     return make_error<InstrProfError>(
1203         instrprof_error::malformed, "number of value profile kinds is invalid");
1204   // Total size needs to be multiple of quadword size.
1205   if (TotalSize % sizeof(uint64_t))
1206     return make_error<InstrProfError>(
1207         instrprof_error::malformed, "total size is not multiples of quardword");
1208 
1209   ValueProfRecord *VR = getFirstValueProfRecord(this);
1210   for (uint32_t K = 0; K < this->NumValueKinds; K++) {
1211     if (VR->Kind > IPVK_Last)
1212       return make_error<InstrProfError>(instrprof_error::malformed,
1213                                         "value kind is invalid");
1214     VR = getValueProfRecordNext(VR);
1215     if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
1216       return make_error<InstrProfError>(
1217           instrprof_error::malformed,
1218           "value profile address is greater than total size");
1219   }
1220   return Error::success();
1221 }
1222 
1223 Expected<std::unique_ptr<ValueProfData>>
1224 ValueProfData::getValueProfData(const unsigned char *D,
1225                                 const unsigned char *const BufferEnd,
1226                                 llvm::endianness Endianness) {
1227   using namespace support;
1228 
1229   if (D + sizeof(ValueProfData) > BufferEnd)
1230     return make_error<InstrProfError>(instrprof_error::truncated);
1231 
1232   const unsigned char *Header = D;
1233   uint32_t TotalSize = endian::readNext<uint32_t>(Header, Endianness);
1234 
1235   if (D + TotalSize > BufferEnd)
1236     return make_error<InstrProfError>(instrprof_error::too_large);
1237 
1238   std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
1239   memcpy(VPD.get(), D, TotalSize);
1240   // Byte swap.
1241   VPD->swapBytesToHost(Endianness);
1242 
1243   Error E = VPD->checkIntegrity();
1244   if (E)
1245     return std::move(E);
1246 
1247   return std::move(VPD);
1248 }
1249 
1250 void ValueProfData::swapBytesToHost(llvm::endianness Endianness) {
1251   using namespace support;
1252 
1253   if (Endianness == llvm::endianness::native)
1254     return;
1255 
1256   sys::swapByteOrder<uint32_t>(TotalSize);
1257   sys::swapByteOrder<uint32_t>(NumValueKinds);
1258 
1259   ValueProfRecord *VR = getFirstValueProfRecord(this);
1260   for (uint32_t K = 0; K < NumValueKinds; K++) {
1261     VR->swapBytes(Endianness, llvm::endianness::native);
1262     VR = getValueProfRecordNext(VR);
1263   }
1264 }
1265 
1266 void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) {
1267   using namespace support;
1268 
1269   if (Endianness == llvm::endianness::native)
1270     return;
1271 
1272   ValueProfRecord *VR = getFirstValueProfRecord(this);
1273   for (uint32_t K = 0; K < NumValueKinds; K++) {
1274     ValueProfRecord *NVR = getValueProfRecordNext(VR);
1275     VR->swapBytes(llvm::endianness::native, Endianness);
1276     VR = NVR;
1277   }
1278   sys::swapByteOrder<uint32_t>(TotalSize);
1279   sys::swapByteOrder<uint32_t>(NumValueKinds);
1280 }
1281 
1282 void annotateValueSite(Module &M, Instruction &Inst,
1283                        const InstrProfRecord &InstrProfR,
1284                        InstrProfValueKind ValueKind, uint32_t SiteIdx,
1285                        uint32_t MaxMDCount) {
1286   auto VDs = InstrProfR.getValueArrayForSite(ValueKind, SiteIdx);
1287   if (VDs.empty())
1288     return;
1289   uint64_t Sum = 0;
1290   for (const InstrProfValueData &V : VDs)
1291     Sum = SaturatingAdd(Sum, V.Count);
1292   annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1293 }
1294 
1295 void annotateValueSite(Module &M, Instruction &Inst,
1296                        ArrayRef<InstrProfValueData> VDs,
1297                        uint64_t Sum, InstrProfValueKind ValueKind,
1298                        uint32_t MaxMDCount) {
1299   if (VDs.empty())
1300     return;
1301   LLVMContext &Ctx = M.getContext();
1302   MDBuilder MDHelper(Ctx);
1303   SmallVector<Metadata *, 3> Vals;
1304   // Tag
1305   Vals.push_back(MDHelper.createString("VP"));
1306   // Value Kind
1307   Vals.push_back(MDHelper.createConstant(
1308       ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
1309   // Total Count
1310   Vals.push_back(
1311       MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
1312 
1313   // Value Profile Data
1314   uint32_t MDCount = MaxMDCount;
1315   for (const auto &VD : VDs) {
1316     Vals.push_back(MDHelper.createConstant(
1317         ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
1318     Vals.push_back(MDHelper.createConstant(
1319         ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
1320     if (--MDCount == 0)
1321       break;
1322   }
1323   Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
1324 }
1325 
1326 MDNode *mayHaveValueProfileOfKind(const Instruction &Inst,
1327                                   InstrProfValueKind ValueKind) {
1328   MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
1329   if (!MD)
1330     return nullptr;
1331 
1332   if (MD->getNumOperands() < 5)
1333     return nullptr;
1334 
1335   MDString *Tag = cast<MDString>(MD->getOperand(0));
1336   if (!Tag || Tag->getString() != "VP")
1337     return nullptr;
1338 
1339   // Now check kind:
1340   ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1341   if (!KindInt)
1342     return nullptr;
1343   if (KindInt->getZExtValue() != ValueKind)
1344     return nullptr;
1345 
1346   return MD;
1347 }
1348 
1349 SmallVector<InstrProfValueData, 4>
1350 getValueProfDataFromInst(const Instruction &Inst, InstrProfValueKind ValueKind,
1351                          uint32_t MaxNumValueData, uint64_t &TotalC,
1352                          bool GetNoICPValue) {
1353   // Four inline elements seem to work well in practice.  With MaxNumValueData,
1354   // this array won't grow very big anyway.
1355   SmallVector<InstrProfValueData, 4> ValueData;
1356   MDNode *MD = mayHaveValueProfileOfKind(Inst, ValueKind);
1357   if (!MD)
1358     return ValueData;
1359   const unsigned NOps = MD->getNumOperands();
1360   // Get total count
1361   ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1362   if (!TotalCInt)
1363     return ValueData;
1364   TotalC = TotalCInt->getZExtValue();
1365 
1366   ValueData.reserve((NOps - 3) / 2);
1367   for (unsigned I = 3; I < NOps; I += 2) {
1368     if (ValueData.size() >= MaxNumValueData)
1369       break;
1370     ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1371     ConstantInt *Count =
1372         mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1373     if (!Value || !Count) {
1374       ValueData.clear();
1375       return ValueData;
1376     }
1377     uint64_t CntValue = Count->getZExtValue();
1378     if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1379       continue;
1380     InstrProfValueData V;
1381     V.Value = Value->getZExtValue();
1382     V.Count = CntValue;
1383     ValueData.push_back(V);
1384   }
1385   return ValueData;
1386 }
1387 
1388 MDNode *getPGOFuncNameMetadata(const Function &F) {
1389   return F.getMetadata(getPGOFuncNameMetadataName());
1390 }
1391 
1392 static void createPGONameMetadata(GlobalObject &GO, StringRef MetadataName,
1393                                   StringRef PGOName) {
1394   // Only for internal linkage functions or global variables. The name is not
1395   // the same as PGO name for these global objects.
1396   if (GO.getName() == PGOName)
1397     return;
1398 
1399   // Don't create duplicated metadata.
1400   if (GO.getMetadata(MetadataName))
1401     return;
1402 
1403   LLVMContext &C = GO.getContext();
1404   MDNode *N = MDNode::get(C, MDString::get(C, PGOName));
1405   GO.setMetadata(MetadataName, N);
1406 }
1407 
1408 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1409   return createPGONameMetadata(F, getPGOFuncNameMetadataName(), PGOFuncName);
1410 }
1411 
1412 void createPGONameMetadata(GlobalObject &GO, StringRef PGOName) {
1413   return createPGONameMetadata(GO, getPGONameMetadataName(), PGOName);
1414 }
1415 
1416 bool needsComdatForCounter(const GlobalObject &GO, const Module &M) {
1417   if (GO.hasComdat())
1418     return true;
1419 
1420   if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1421     return false;
1422 
1423   // See createPGOFuncNameVar for more details. To avoid link errors, profile
1424   // counters for function with available_externally linkage needs to be changed
1425   // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1426   // created. Without using comdat, duplicate entries won't be removed by the
1427   // linker leading to increased data segement size and raw profile size. Even
1428   // worse, since the referenced counter from profile per-function data object
1429   // will be resolved to the common strong definition, the profile counts for
1430   // available_externally functions will end up being duplicated in raw profile
1431   // data. This can result in distorted profile as the counts of those dups
1432   // will be accumulated by the profile merger.
1433   GlobalValue::LinkageTypes Linkage = GO.getLinkage();
1434   if (Linkage != GlobalValue::ExternalWeakLinkage &&
1435       Linkage != GlobalValue::AvailableExternallyLinkage)
1436     return false;
1437 
1438   return true;
1439 }
1440 
1441 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1442 bool isIRPGOFlagSet(const Module *M) {
1443   const GlobalVariable *IRInstrVar =
1444       M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1445   if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1446     return false;
1447 
1448   // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1449   // have the decl.
1450   if (IRInstrVar->isDeclaration())
1451     return true;
1452 
1453   // Check if the flag is set.
1454   if (!IRInstrVar->hasInitializer())
1455     return false;
1456 
1457   auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1458   if (!InitVal)
1459     return false;
1460   return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1461 }
1462 
1463 // Check if we can safely rename this Comdat function.
1464 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1465   if (F.getName().empty())
1466     return false;
1467   if (!needsComdatForCounter(F, *(F.getParent())))
1468     return false;
1469   // Unsafe to rename the address-taken function (which can be used in
1470   // function comparison).
1471   if (CheckAddressTaken && F.hasAddressTaken())
1472     return false;
1473   // Only safe to do if this function may be discarded if it is not used
1474   // in the compilation unit.
1475   if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1476     return false;
1477 
1478   // For AvailableExternallyLinkage functions.
1479   if (!F.hasComdat()) {
1480     assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1481     return true;
1482   }
1483   return true;
1484 }
1485 
1486 // Create the variable for the profile file name.
1487 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1488   if (InstrProfileOutput.empty())
1489     return;
1490   Constant *ProfileNameConst =
1491       ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1492   GlobalVariable *ProfileNameVar = new GlobalVariable(
1493       M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1494       ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1495   ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility);
1496   Triple TT(M.getTargetTriple());
1497   if (TT.supportsCOMDAT()) {
1498     ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1499     ProfileNameVar->setComdat(M.getOrInsertComdat(
1500         StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1501   }
1502 }
1503 
1504 Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1505                                      const std::string &TestFilename,
1506                                      bool IsCS) {
1507   auto GetProfileSum = [IsCS](const std::string &Filename,
1508                               CountSumOrPercent &Sum) -> Error {
1509     // This function is only used from llvm-profdata that doesn't use any kind
1510     // of VFS. Just create a default RealFileSystem to read profiles.
1511     auto FS = vfs::getRealFileSystem();
1512     auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
1513     if (Error E = ReaderOrErr.takeError()) {
1514       return E;
1515     }
1516     auto Reader = std::move(ReaderOrErr.get());
1517     Reader->accumulateCounts(Sum, IsCS);
1518     return Error::success();
1519   };
1520   auto Ret = GetProfileSum(BaseFilename, Base);
1521   if (Ret)
1522     return Ret;
1523   Ret = GetProfileSum(TestFilename, Test);
1524   if (Ret)
1525     return Ret;
1526   this->BaseFilename = &BaseFilename;
1527   this->TestFilename = &TestFilename;
1528   Valid = true;
1529   return Error::success();
1530 }
1531 
1532 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1533   Mismatch.NumEntries += 1;
1534   Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1535   for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1536     if (Test.ValueCounts[I] >= 1.0f)
1537       Mismatch.ValueCounts[I] +=
1538           MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1539   }
1540 }
1541 
1542 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1543   Unique.NumEntries += 1;
1544   Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1545   for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1546     if (Test.ValueCounts[I] >= 1.0f)
1547       Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1548   }
1549 }
1550 
1551 void OverlapStats::dump(raw_fd_ostream &OS) const {
1552   if (!Valid)
1553     return;
1554 
1555   const char *EntryName =
1556       (Level == ProgramLevel ? "functions" : "edge counters");
1557   if (Level == ProgramLevel) {
1558     OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1559        << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1560   } else {
1561     OS << "Function level:\n"
1562        << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1563   }
1564 
1565   OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1566   if (Mismatch.NumEntries)
1567     OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1568        << "\n";
1569   if (Unique.NumEntries)
1570     OS << "  # of " << EntryName
1571        << " only in test_profile: " << Unique.NumEntries << "\n";
1572 
1573   OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1574      << "\n";
1575   if (Mismatch.NumEntries)
1576     OS << "  Mismatched count percentage (Edge): "
1577        << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1578   if (Unique.NumEntries)
1579     OS << "  Percentage of Edge profile only in test_profile: "
1580        << format("%.3f%%", Unique.CountSum * 100) << "\n";
1581   OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum)
1582      << "\n"
1583      << "  Edge profile test count sum: " << format("%.0f", Test.CountSum)
1584      << "\n";
1585 
1586   for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1587     if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1588       continue;
1589     char ProfileKindName[20] = {0};
1590     switch (I) {
1591     case IPVK_IndirectCallTarget:
1592       strncpy(ProfileKindName, "IndirectCall", 19);
1593       break;
1594     case IPVK_MemOPSize:
1595       strncpy(ProfileKindName, "MemOP", 19);
1596       break;
1597     case IPVK_VTableTarget:
1598       strncpy(ProfileKindName, "VTable", 19);
1599       break;
1600     default:
1601       snprintf(ProfileKindName, 19, "VP[%d]", I);
1602       break;
1603     }
1604     OS << "  " << ProfileKindName
1605        << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1606        << "\n";
1607     if (Mismatch.NumEntries)
1608       OS << "  Mismatched count percentage (" << ProfileKindName
1609          << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1610     if (Unique.NumEntries)
1611       OS << "  Percentage of " << ProfileKindName
1612          << " profile only in test_profile: "
1613          << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1614     OS << "  " << ProfileKindName
1615        << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1616        << "\n"
1617        << "  " << ProfileKindName
1618        << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1619        << "\n";
1620   }
1621 }
1622 
1623 namespace IndexedInstrProf {
1624 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
1625   using namespace support;
1626   static_assert(std::is_standard_layout_v<Header>,
1627                 "Use standard layout for Header for simplicity");
1628   Header H;
1629 
1630   H.Magic = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1631   // Check the magic number.
1632   if (H.Magic != IndexedInstrProf::Magic)
1633     return make_error<InstrProfError>(instrprof_error::bad_magic);
1634 
1635   // Read the version.
1636   H.Version = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1637   if (H.getIndexedProfileVersion() >
1638       IndexedInstrProf::ProfVersion::CurrentVersion)
1639     return make_error<InstrProfError>(instrprof_error::unsupported_version);
1640 
1641   static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1642                 "Please update the reader as needed when a new field is added "
1643                 "or when indexed profile version gets bumped.");
1644 
1645   Buffer += sizeof(uint64_t); // Skip Header.Unused field.
1646   H.HashType = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1647   H.HashOffset = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1648   if (H.getIndexedProfileVersion() >= 8)
1649     H.MemProfOffset =
1650         endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1651   if (H.getIndexedProfileVersion() >= 9)
1652     H.BinaryIdOffset =
1653         endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1654   // Version 11 is handled by this condition.
1655   if (H.getIndexedProfileVersion() >= 10)
1656     H.TemporalProfTracesOffset =
1657         endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1658   if (H.getIndexedProfileVersion() >= 12)
1659     H.VTableNamesOffset =
1660         endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1661   return H;
1662 }
1663 
1664 uint64_t Header::getIndexedProfileVersion() const {
1665   return GET_VERSION(Version);
1666 }
1667 
1668 size_t Header::size() const {
1669   switch (getIndexedProfileVersion()) {
1670     // To retain backward compatibility, new fields must be appended to the end
1671     // of the header, and byte offset of existing fields shouldn't change when
1672     // indexed profile version gets incremented.
1673     static_assert(
1674         IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1675         "Please update the size computation below if a new field has "
1676         "been added to the header; for a version bump without new "
1677         "fields, add a case statement to fall through to the latest version.");
1678   case 12ull:
1679     return 72;
1680   case 11ull:
1681     [[fallthrough]];
1682   case 10ull:
1683     return 64;
1684   case 9ull:
1685     return 56;
1686   case 8ull:
1687     return 48;
1688   default: // Version7 (when the backwards compatible header was introduced).
1689     return 40;
1690   }
1691 }
1692 
1693 } // namespace IndexedInstrProf
1694 
1695 } // end namespace llvm
1696