1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Config/config.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalValue.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/ProfileData/InstrProfReader.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Compression.h" 37 #include "llvm/Support/Endian.h" 38 #include "llvm/Support/Error.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/LEB128.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/Path.h" 43 #include "llvm/Support/SwapByteOrder.h" 44 #include "llvm/Support/VirtualFileSystem.h" 45 #include "llvm/TargetParser/Triple.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <cstring> 51 #include <memory> 52 #include <string> 53 #include <system_error> 54 #include <type_traits> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 static cl::opt<bool> StaticFuncFullModulePrefix( 61 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 62 cl::desc("Use full module build paths in the profile counter names for " 63 "static functions.")); 64 65 // This option is tailored to users that have different top-level directory in 66 // profile-gen and profile-use compilation. Users need to specific the number 67 // of levels to strip. A value larger than the number of directories in the 68 // source file will strip all the directory names and only leave the basename. 69 // 70 // Note current ThinLTO module importing for the indirect-calls assumes 71 // the source directory name not being stripped. A non-zero option value here 72 // can potentially prevent some inter-module indirect-call-promotions. 73 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 74 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 75 cl::desc("Strip specified level of directory name from source path in " 76 "the profile counter name for static functions.")); 77 78 static std::string getInstrProfErrString(instrprof_error Err, 79 const std::string &ErrMsg = "") { 80 std::string Msg; 81 raw_string_ostream OS(Msg); 82 83 switch (Err) { 84 case instrprof_error::success: 85 OS << "success"; 86 break; 87 case instrprof_error::eof: 88 OS << "end of File"; 89 break; 90 case instrprof_error::unrecognized_format: 91 OS << "unrecognized instrumentation profile encoding format"; 92 break; 93 case instrprof_error::bad_magic: 94 OS << "invalid instrumentation profile data (bad magic)"; 95 break; 96 case instrprof_error::bad_header: 97 OS << "invalid instrumentation profile data (file header is corrupt)"; 98 break; 99 case instrprof_error::unsupported_version: 100 OS << "unsupported instrumentation profile format version"; 101 break; 102 case instrprof_error::unsupported_hash_type: 103 OS << "unsupported instrumentation profile hash type"; 104 break; 105 case instrprof_error::too_large: 106 OS << "too much profile data"; 107 break; 108 case instrprof_error::truncated: 109 OS << "truncated profile data"; 110 break; 111 case instrprof_error::malformed: 112 OS << "malformed instrumentation profile data"; 113 break; 114 case instrprof_error::missing_correlation_info: 115 OS << "debug info/binary for correlation is required"; 116 break; 117 case instrprof_error::unexpected_correlation_info: 118 OS << "debug info/binary for correlation is not necessary"; 119 break; 120 case instrprof_error::unable_to_correlate_profile: 121 OS << "unable to correlate profile"; 122 break; 123 case instrprof_error::invalid_prof: 124 OS << "invalid profile created. Please file a bug " 125 "at: " BUG_REPORT_URL 126 " and include the profraw files that caused this error."; 127 break; 128 case instrprof_error::unknown_function: 129 OS << "no profile data available for function"; 130 break; 131 case instrprof_error::hash_mismatch: 132 OS << "function control flow change detected (hash mismatch)"; 133 break; 134 case instrprof_error::count_mismatch: 135 OS << "function basic block count change detected (counter mismatch)"; 136 break; 137 case instrprof_error::bitmap_mismatch: 138 OS << "function bitmap size change detected (bitmap size mismatch)"; 139 break; 140 case instrprof_error::counter_overflow: 141 OS << "counter overflow"; 142 break; 143 case instrprof_error::value_site_count_mismatch: 144 OS << "function value site count change detected (counter mismatch)"; 145 break; 146 case instrprof_error::compress_failed: 147 OS << "failed to compress data (zlib)"; 148 break; 149 case instrprof_error::uncompress_failed: 150 OS << "failed to uncompress data (zlib)"; 151 break; 152 case instrprof_error::empty_raw_profile: 153 OS << "empty raw profile file"; 154 break; 155 case instrprof_error::zlib_unavailable: 156 OS << "profile uses zlib compression but the profile reader was built " 157 "without zlib support"; 158 break; 159 case instrprof_error::raw_profile_version_mismatch: 160 OS << "raw profile version mismatch"; 161 break; 162 case instrprof_error::counter_value_too_large: 163 OS << "excessively large counter value suggests corrupted profile data"; 164 break; 165 } 166 167 // If optional error message is not empty, append it to the message. 168 if (!ErrMsg.empty()) 169 OS << ": " << ErrMsg; 170 171 return OS.str(); 172 } 173 174 namespace { 175 176 // FIXME: This class is only here to support the transition to llvm::Error. It 177 // will be removed once this transition is complete. Clients should prefer to 178 // deal with the Error value directly, rather than converting to error_code. 179 class InstrProfErrorCategoryType : public std::error_category { 180 const char *name() const noexcept override { return "llvm.instrprof"; } 181 182 std::string message(int IE) const override { 183 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 184 } 185 }; 186 187 } // end anonymous namespace 188 189 const std::error_category &llvm::instrprof_category() { 190 static InstrProfErrorCategoryType ErrorCategory; 191 return ErrorCategory; 192 } 193 194 namespace { 195 196 const char *InstrProfSectNameCommon[] = { 197 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 198 SectNameCommon, 199 #include "llvm/ProfileData/InstrProfData.inc" 200 }; 201 202 const char *InstrProfSectNameCoff[] = { 203 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 204 SectNameCoff, 205 #include "llvm/ProfileData/InstrProfData.inc" 206 }; 207 208 const char *InstrProfSectNamePrefix[] = { 209 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 210 Prefix, 211 #include "llvm/ProfileData/InstrProfData.inc" 212 }; 213 214 } // namespace 215 216 namespace llvm { 217 218 cl::opt<bool> DoInstrProfNameCompression( 219 "enable-name-compression", 220 cl::desc("Enable name/filename string compression"), cl::init(true)); 221 222 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 223 Triple::ObjectFormatType OF, 224 bool AddSegmentInfo) { 225 std::string SectName; 226 227 if (OF == Triple::MachO && AddSegmentInfo) 228 SectName = InstrProfSectNamePrefix[IPSK]; 229 230 if (OF == Triple::COFF) 231 SectName += InstrProfSectNameCoff[IPSK]; 232 else 233 SectName += InstrProfSectNameCommon[IPSK]; 234 235 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 236 SectName += ",regular,live_support"; 237 238 return SectName; 239 } 240 241 std::string InstrProfError::message() const { 242 return getInstrProfErrString(Err, Msg); 243 } 244 245 char InstrProfError::ID = 0; 246 247 std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage, 248 StringRef FileName, 249 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 250 // Value names may be prefixed with a binary '1' to indicate 251 // that the backend should not modify the symbols due to any platform 252 // naming convention. Do not include that '1' in the PGO profile name. 253 if (Name[0] == '\1') 254 Name = Name.substr(1); 255 256 std::string NewName = std::string(Name); 257 if (llvm::GlobalValue::isLocalLinkage(Linkage)) { 258 // For local symbols, prepend the main file name to distinguish them. 259 // Do not include the full path in the file name since there's no guarantee 260 // that it will stay the same, e.g., if the files are checked out from 261 // version control in different locations. 262 if (FileName.empty()) 263 NewName = NewName.insert(0, "<unknown>:"); 264 else 265 NewName = NewName.insert(0, FileName.str() + ":"); 266 } 267 return NewName; 268 } 269 270 // Strip NumPrefix level of directory name from PathNameStr. If the number of 271 // directory separators is less than NumPrefix, strip all the directories and 272 // leave base file name only. 273 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 274 uint32_t Count = NumPrefix; 275 uint32_t Pos = 0, LastPos = 0; 276 for (auto & CI : PathNameStr) { 277 ++Pos; 278 if (llvm::sys::path::is_separator(CI)) { 279 LastPos = Pos; 280 --Count; 281 } 282 if (Count == 0) 283 break; 284 } 285 return PathNameStr.substr(LastPos); 286 } 287 288 static StringRef getStrippedSourceFileName(const GlobalObject &GO) { 289 StringRef FileName(GO.getParent()->getSourceFileName()); 290 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 291 if (StripLevel < StaticFuncStripDirNamePrefix) 292 StripLevel = StaticFuncStripDirNamePrefix; 293 if (StripLevel) 294 FileName = stripDirPrefix(FileName, StripLevel); 295 return FileName; 296 } 297 298 // The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is 299 // provided if linkage is local and is used to discriminate possibly identical 300 // mangled names. ";" is used because it is unlikely to be found in either 301 // <filepath> or <mangled-name>. 302 // 303 // Older compilers used getPGOFuncName() which has the format 304 // [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions 305 // which commonly have :'s in their names. We still need to compute this name to 306 // lookup functions from profiles built by older compilers. 307 static std::string 308 getIRPGONameForGlobalObject(const GlobalObject &GO, 309 GlobalValue::LinkageTypes Linkage, 310 StringRef FileName) { 311 return GlobalValue::getGlobalIdentifier(GO.getName(), Linkage, FileName); 312 } 313 314 static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) { 315 if (MD != nullptr) { 316 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 317 return S.str(); 318 } 319 return {}; 320 } 321 322 // Returns the PGO object name. This function has some special handling 323 // when called in LTO optimization. The following only applies when calling in 324 // LTO passes (when \c InLTO is true): LTO's internalization privatizes many 325 // global linkage symbols. This happens after value profile annotation, but 326 // those internal linkage functions should not have a source prefix. 327 // Additionally, for ThinLTO mode, exported internal functions are promoted 328 // and renamed. We need to ensure that the original internal PGO name is 329 // used when computing the GUID that is compared against the profiled GUIDs. 330 // To differentiate compiler generated internal symbols from original ones, 331 // PGOFuncName meta data are created and attached to the original internal 332 // symbols in the value profile annotation step 333 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 334 // data, its original linkage must be non-internal. 335 static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO, 336 MDNode *PGONameMetadata) { 337 if (!InLTO) { 338 auto FileName = getStrippedSourceFileName(GO); 339 return getIRPGONameForGlobalObject(GO, GO.getLinkage(), FileName); 340 } 341 342 // In LTO mode (when InLTO is true), first check if there is a meta data. 343 if (auto IRPGOFuncName = lookupPGONameFromMetadata(PGONameMetadata)) 344 return *IRPGOFuncName; 345 346 // If there is no meta data, the function must be a global before the value 347 // profile annotation pass. Its current linkage may be internal if it is 348 // internalized in LTO mode. 349 return getIRPGONameForGlobalObject(GO, GlobalValue::ExternalLinkage, ""); 350 } 351 352 // Returns the IRPGO function name and does special handling when called 353 // in LTO optimization. See the comments of `getIRPGOObjectName` for details. 354 std::string getIRPGOFuncName(const Function &F, bool InLTO) { 355 return getIRPGOObjectName(F, InLTO, getPGOFuncNameMetadata(F)); 356 } 357 358 // Please use getIRPGOFuncName for LLVM IR instrumentation. This function is 359 // for front-end (Clang, etc) instrumentation. 360 // The implementation is kept for profile matching from older profiles. 361 // This is similar to `getIRPGOFuncName` except that this function calls 362 // 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls 363 // 'getIRPGONameForGlobalObject'. See the difference between two callees in the 364 // comments of `getIRPGONameForGlobalObject`. 365 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 366 if (!InLTO) { 367 auto FileName = getStrippedSourceFileName(F); 368 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 369 } 370 371 // In LTO mode (when InLTO is true), first check if there is a meta data. 372 if (auto PGOFuncName = lookupPGONameFromMetadata(getPGOFuncNameMetadata(F))) 373 return *PGOFuncName; 374 375 // If there is no meta data, the function must be a global before the value 376 // profile annotation pass. Its current linkage may be internal if it is 377 // internalized in LTO mode. 378 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 379 } 380 381 // See getIRPGOFuncName() for a discription of the format. 382 std::pair<StringRef, StringRef> 383 getParsedIRPGOFuncName(StringRef IRPGOFuncName) { 384 auto [FileName, FuncName] = IRPGOFuncName.split(';'); 385 if (FuncName.empty()) 386 return std::make_pair(StringRef(), IRPGOFuncName); 387 return std::make_pair(FileName, FuncName); 388 } 389 390 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 391 if (FileName.empty()) 392 return PGOFuncName; 393 // Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as 394 // well. 395 if (PGOFuncName.starts_with(FileName)) 396 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 397 return PGOFuncName; 398 } 399 400 // \p FuncName is the string used as profile lookup key for the function. A 401 // symbol is created to hold the name. Return the legalized symbol name. 402 std::string getPGOFuncNameVarName(StringRef FuncName, 403 GlobalValue::LinkageTypes Linkage) { 404 std::string VarName = std::string(getInstrProfNameVarPrefix()); 405 VarName += FuncName; 406 407 if (!GlobalValue::isLocalLinkage(Linkage)) 408 return VarName; 409 410 // Now fix up illegal chars in local VarName that may upset the assembler. 411 const char InvalidChars[] = "-:;<>/\"'"; 412 size_t found = VarName.find_first_of(InvalidChars); 413 while (found != std::string::npos) { 414 VarName[found] = '_'; 415 found = VarName.find_first_of(InvalidChars, found + 1); 416 } 417 return VarName; 418 } 419 420 GlobalVariable *createPGOFuncNameVar(Module &M, 421 GlobalValue::LinkageTypes Linkage, 422 StringRef PGOFuncName) { 423 // We generally want to match the function's linkage, but available_externally 424 // and extern_weak both have the wrong semantics, and anything that doesn't 425 // need to link across compilation units doesn't need to be visible at all. 426 if (Linkage == GlobalValue::ExternalWeakLinkage) 427 Linkage = GlobalValue::LinkOnceAnyLinkage; 428 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 429 Linkage = GlobalValue::LinkOnceODRLinkage; 430 else if (Linkage == GlobalValue::InternalLinkage || 431 Linkage == GlobalValue::ExternalLinkage) 432 Linkage = GlobalValue::PrivateLinkage; 433 434 auto *Value = 435 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 436 auto FuncNameVar = 437 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 438 getPGOFuncNameVarName(PGOFuncName, Linkage)); 439 440 // Hide the symbol so that we correctly get a copy for each executable. 441 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 442 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 443 444 return FuncNameVar; 445 } 446 447 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 448 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 449 } 450 451 Error InstrProfSymtab::create(Module &M, bool InLTO) { 452 for (Function &F : M) { 453 // Function may not have a name: like using asm("") to overwrite the name. 454 // Ignore in this case. 455 if (!F.hasName()) 456 continue; 457 if (Error E = addFuncWithName(F, getIRPGOFuncName(F, InLTO))) 458 return E; 459 // Also use getPGOFuncName() so that we can find records from older profiles 460 if (Error E = addFuncWithName(F, getPGOFuncName(F, InLTO))) 461 return E; 462 } 463 Sorted = false; 464 finalizeSymtab(); 465 return Error::success(); 466 } 467 468 /// \c NameStrings is a string composed of one of more possibly encoded 469 /// sub-strings. The substrings are separated by 0 or more zero bytes. This 470 /// method decodes the string and calls `NameCallback` for each substring. 471 static Error 472 readAndDecodeStrings(StringRef NameStrings, 473 std::function<Error(StringRef)> NameCallback) { 474 const uint8_t *P = NameStrings.bytes_begin(); 475 const uint8_t *EndP = NameStrings.bytes_end(); 476 while (P < EndP) { 477 uint32_t N; 478 uint64_t UncompressedSize = decodeULEB128(P, &N); 479 P += N; 480 uint64_t CompressedSize = decodeULEB128(P, &N); 481 P += N; 482 bool isCompressed = (CompressedSize != 0); 483 SmallVector<uint8_t, 128> UncompressedNameStrings; 484 StringRef NameStrings; 485 if (isCompressed) { 486 if (!llvm::compression::zlib::isAvailable()) 487 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 488 489 if (Error E = compression::zlib::decompress(ArrayRef(P, CompressedSize), 490 UncompressedNameStrings, 491 UncompressedSize)) { 492 consumeError(std::move(E)); 493 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 494 } 495 P += CompressedSize; 496 NameStrings = toStringRef(UncompressedNameStrings); 497 } else { 498 NameStrings = 499 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 500 P += UncompressedSize; 501 } 502 // Now parse the name strings. 503 SmallVector<StringRef, 0> Names; 504 NameStrings.split(Names, getInstrProfNameSeparator()); 505 for (StringRef &Name : Names) 506 if (Error E = NameCallback(Name)) 507 return E; 508 509 while (P < EndP && *P == 0) 510 P++; 511 } 512 return Error::success(); 513 } 514 515 Error InstrProfSymtab::create(StringRef NameStrings) { 516 return readAndDecodeStrings( 517 NameStrings, 518 std::bind(&InstrProfSymtab::addFuncName, this, std::placeholders::_1)); 519 } 520 521 Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName) { 522 if (Error E = addFuncName(PGOFuncName)) 523 return E; 524 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 525 // In ThinLTO, local function may have been promoted to global and have 526 // suffix ".llvm." added to the function name. We need to add the 527 // stripped function name to the symbol table so that we can find a match 528 // from profile. 529 // 530 // We may have other suffixes similar as ".llvm." which are needed to 531 // be stripped before the matching, but ".__uniq." suffix which is used 532 // to differentiate internal linkage functions in different modules 533 // should be kept. Now this is the only suffix with the pattern ".xxx" 534 // which is kept before matching. 535 const std::string UniqSuffix = ".__uniq."; 536 auto pos = PGOFuncName.find(UniqSuffix); 537 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise 538 // search '.' from the beginning. 539 if (pos != std::string::npos) 540 pos += UniqSuffix.length(); 541 else 542 pos = 0; 543 pos = PGOFuncName.find('.', pos); 544 if (pos != std::string::npos && pos != 0) { 545 StringRef OtherFuncName = PGOFuncName.substr(0, pos); 546 if (Error E = addFuncName(OtherFuncName)) 547 return E; 548 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 549 } 550 return Error::success(); 551 } 552 553 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 554 finalizeSymtab(); 555 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 556 return A.first < Address; 557 }); 558 // Raw function pointer collected by value profiler may be from 559 // external functions that are not instrumented. They won't have 560 // mapping data to be used by the deserializer. Force the value to 561 // be 0 in this case. 562 if (It != AddrToMD5Map.end() && It->first == Address) 563 return (uint64_t)It->second; 564 return 0; 565 } 566 567 void InstrProfSymtab::dumpNames(raw_ostream &OS) const { 568 SmallVector<StringRef, 0> Sorted(NameTab.keys()); 569 llvm::sort(Sorted); 570 for (StringRef S : Sorted) 571 OS << S << '\n'; 572 } 573 574 Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs, 575 bool doCompression, std::string &Result) { 576 assert(!NameStrs.empty() && "No name data to emit"); 577 578 uint8_t Header[20], *P = Header; 579 std::string UncompressedNameStrings = 580 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 581 582 assert(StringRef(UncompressedNameStrings) 583 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 584 "PGO name is invalid (contains separator token)"); 585 586 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 587 P += EncLen; 588 589 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 590 EncLen = encodeULEB128(CompressedLen, P); 591 P += EncLen; 592 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 593 unsigned HeaderLen = P - &Header[0]; 594 Result.append(HeaderStr, HeaderLen); 595 Result += InputStr; 596 return Error::success(); 597 }; 598 599 if (!doCompression) { 600 return WriteStringToResult(0, UncompressedNameStrings); 601 } 602 603 SmallVector<uint8_t, 128> CompressedNameStrings; 604 compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings), 605 CompressedNameStrings, 606 compression::zlib::BestSizeCompression); 607 608 return WriteStringToResult(CompressedNameStrings.size(), 609 toStringRef(CompressedNameStrings)); 610 } 611 612 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 613 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 614 StringRef NameStr = 615 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 616 return NameStr; 617 } 618 619 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 620 std::string &Result, bool doCompression) { 621 std::vector<std::string> NameStrs; 622 for (auto *NameVar : NameVars) { 623 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); 624 } 625 return collectGlobalObjectNameStrings( 626 NameStrs, compression::zlib::isAvailable() && doCompression, Result); 627 } 628 629 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 630 uint64_t FuncSum = 0; 631 Sum.NumEntries += Counts.size(); 632 for (uint64_t Count : Counts) 633 FuncSum += Count; 634 Sum.CountSum += FuncSum; 635 636 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 637 uint64_t KindSum = 0; 638 uint32_t NumValueSites = getNumValueSites(VK); 639 for (size_t I = 0; I < NumValueSites; ++I) { 640 uint32_t NV = getNumValueDataForSite(VK, I); 641 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 642 for (uint32_t V = 0; V < NV; V++) 643 KindSum += VD[V].Count; 644 } 645 Sum.ValueCounts[VK] += KindSum; 646 } 647 } 648 649 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 650 uint32_t ValueKind, 651 OverlapStats &Overlap, 652 OverlapStats &FuncLevelOverlap) { 653 this->sortByTargetValues(); 654 Input.sortByTargetValues(); 655 double Score = 0.0f, FuncLevelScore = 0.0f; 656 auto I = ValueData.begin(); 657 auto IE = ValueData.end(); 658 auto J = Input.ValueData.begin(); 659 auto JE = Input.ValueData.end(); 660 while (I != IE && J != JE) { 661 if (I->Value == J->Value) { 662 Score += OverlapStats::score(I->Count, J->Count, 663 Overlap.Base.ValueCounts[ValueKind], 664 Overlap.Test.ValueCounts[ValueKind]); 665 FuncLevelScore += OverlapStats::score( 666 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 667 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 668 ++I; 669 } else if (I->Value < J->Value) { 670 ++I; 671 continue; 672 } 673 ++J; 674 } 675 Overlap.Overlap.ValueCounts[ValueKind] += Score; 676 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 677 } 678 679 // Return false on mismatch. 680 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 681 InstrProfRecord &Other, 682 OverlapStats &Overlap, 683 OverlapStats &FuncLevelOverlap) { 684 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 685 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 686 if (!ThisNumValueSites) 687 return; 688 689 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 690 getOrCreateValueSitesForKind(ValueKind); 691 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 692 Other.getValueSitesForKind(ValueKind); 693 for (uint32_t I = 0; I < ThisNumValueSites; I++) 694 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 695 FuncLevelOverlap); 696 } 697 698 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 699 OverlapStats &FuncLevelOverlap, 700 uint64_t ValueCutoff) { 701 // FuncLevel CountSum for other should already computed and nonzero. 702 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 703 accumulateCounts(FuncLevelOverlap.Base); 704 bool Mismatch = (Counts.size() != Other.Counts.size()); 705 706 // Check if the value profiles mismatch. 707 if (!Mismatch) { 708 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 709 uint32_t ThisNumValueSites = getNumValueSites(Kind); 710 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 711 if (ThisNumValueSites != OtherNumValueSites) { 712 Mismatch = true; 713 break; 714 } 715 } 716 } 717 if (Mismatch) { 718 Overlap.addOneMismatch(FuncLevelOverlap.Test); 719 return; 720 } 721 722 // Compute overlap for value counts. 723 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 724 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 725 726 double Score = 0.0; 727 uint64_t MaxCount = 0; 728 // Compute overlap for edge counts. 729 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 730 Score += OverlapStats::score(Counts[I], Other.Counts[I], 731 Overlap.Base.CountSum, Overlap.Test.CountSum); 732 MaxCount = std::max(Other.Counts[I], MaxCount); 733 } 734 Overlap.Overlap.CountSum += Score; 735 Overlap.Overlap.NumEntries += 1; 736 737 if (MaxCount >= ValueCutoff) { 738 double FuncScore = 0.0; 739 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 740 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 741 FuncLevelOverlap.Base.CountSum, 742 FuncLevelOverlap.Test.CountSum); 743 FuncLevelOverlap.Overlap.CountSum = FuncScore; 744 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 745 FuncLevelOverlap.Valid = true; 746 } 747 } 748 749 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 750 uint64_t Weight, 751 function_ref<void(instrprof_error)> Warn) { 752 this->sortByTargetValues(); 753 Input.sortByTargetValues(); 754 auto I = ValueData.begin(); 755 auto IE = ValueData.end(); 756 for (const InstrProfValueData &J : Input.ValueData) { 757 while (I != IE && I->Value < J.Value) 758 ++I; 759 if (I != IE && I->Value == J.Value) { 760 bool Overflowed; 761 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed); 762 if (Overflowed) 763 Warn(instrprof_error::counter_overflow); 764 ++I; 765 continue; 766 } 767 ValueData.insert(I, J); 768 } 769 } 770 771 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D, 772 function_ref<void(instrprof_error)> Warn) { 773 for (InstrProfValueData &I : ValueData) { 774 bool Overflowed; 775 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D; 776 if (Overflowed) 777 Warn(instrprof_error::counter_overflow); 778 } 779 } 780 781 // Merge Value Profile data from Src record to this record for ValueKind. 782 // Scale merged value counts by \p Weight. 783 void InstrProfRecord::mergeValueProfData( 784 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 785 function_ref<void(instrprof_error)> Warn) { 786 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 787 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 788 if (ThisNumValueSites != OtherNumValueSites) { 789 Warn(instrprof_error::value_site_count_mismatch); 790 return; 791 } 792 if (!ThisNumValueSites) 793 return; 794 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 795 getOrCreateValueSitesForKind(ValueKind); 796 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 797 Src.getValueSitesForKind(ValueKind); 798 for (uint32_t I = 0; I < ThisNumValueSites; I++) 799 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 800 } 801 802 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 803 function_ref<void(instrprof_error)> Warn) { 804 // If the number of counters doesn't match we either have bad data 805 // or a hash collision. 806 if (Counts.size() != Other.Counts.size()) { 807 Warn(instrprof_error::count_mismatch); 808 return; 809 } 810 811 // Special handling of the first count as the PseudoCount. 812 CountPseudoKind OtherKind = Other.getCountPseudoKind(); 813 CountPseudoKind ThisKind = getCountPseudoKind(); 814 if (OtherKind != NotPseudo || ThisKind != NotPseudo) { 815 // We don't allow the merge of a profile with pseudo counts and 816 // a normal profile (i.e. without pesudo counts). 817 // Profile supplimenation should be done after the profile merge. 818 if (OtherKind == NotPseudo || ThisKind == NotPseudo) { 819 Warn(instrprof_error::count_mismatch); 820 return; 821 } 822 if (OtherKind == PseudoHot || ThisKind == PseudoHot) 823 setPseudoCount(PseudoHot); 824 else 825 setPseudoCount(PseudoWarm); 826 return; 827 } 828 829 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 830 bool Overflowed; 831 uint64_t Value = 832 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 833 if (Value > getInstrMaxCountValue()) { 834 Value = getInstrMaxCountValue(); 835 Overflowed = true; 836 } 837 Counts[I] = Value; 838 if (Overflowed) 839 Warn(instrprof_error::counter_overflow); 840 } 841 842 // If the number of bitmap bytes doesn't match we either have bad data 843 // or a hash collision. 844 if (BitmapBytes.size() != Other.BitmapBytes.size()) { 845 Warn(instrprof_error::bitmap_mismatch); 846 return; 847 } 848 849 // Bitmap bytes are merged by simply ORing them together. 850 for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) { 851 BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I]; 852 } 853 854 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 855 mergeValueProfData(Kind, Other, Weight, Warn); 856 } 857 858 void InstrProfRecord::scaleValueProfData( 859 uint32_t ValueKind, uint64_t N, uint64_t D, 860 function_ref<void(instrprof_error)> Warn) { 861 for (auto &R : getValueSitesForKind(ValueKind)) 862 R.scale(N, D, Warn); 863 } 864 865 void InstrProfRecord::scale(uint64_t N, uint64_t D, 866 function_ref<void(instrprof_error)> Warn) { 867 assert(D != 0 && "D cannot be 0"); 868 for (auto &Count : this->Counts) { 869 bool Overflowed; 870 Count = SaturatingMultiply(Count, N, &Overflowed) / D; 871 if (Count > getInstrMaxCountValue()) { 872 Count = getInstrMaxCountValue(); 873 Overflowed = true; 874 } 875 if (Overflowed) 876 Warn(instrprof_error::counter_overflow); 877 } 878 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 879 scaleValueProfData(Kind, N, D, Warn); 880 } 881 882 // Map indirect call target name hash to name string. 883 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 884 InstrProfSymtab *SymTab) { 885 if (!SymTab) 886 return Value; 887 888 if (ValueKind == IPVK_IndirectCallTarget) 889 return SymTab->getFunctionHashFromAddress(Value); 890 891 return Value; 892 } 893 894 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 895 InstrProfValueData *VData, uint32_t N, 896 InstrProfSymtab *ValueMap) { 897 for (uint32_t I = 0; I < N; I++) { 898 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 899 } 900 std::vector<InstrProfValueSiteRecord> &ValueSites = 901 getOrCreateValueSitesForKind(ValueKind); 902 if (N == 0) 903 ValueSites.emplace_back(); 904 else 905 ValueSites.emplace_back(VData, VData + N); 906 } 907 908 std::vector<BPFunctionNode> TemporalProfTraceTy::createBPFunctionNodes( 909 ArrayRef<TemporalProfTraceTy> Traces) { 910 using IDT = BPFunctionNode::IDT; 911 using UtilityNodeT = BPFunctionNode::UtilityNodeT; 912 // Collect all function IDs ordered by their smallest timestamp. This will be 913 // used as the initial FunctionNode order. 914 SetVector<IDT> FunctionIds; 915 size_t LargestTraceSize = 0; 916 for (auto &Trace : Traces) 917 LargestTraceSize = 918 std::max(LargestTraceSize, Trace.FunctionNameRefs.size()); 919 for (size_t Timestamp = 0; Timestamp < LargestTraceSize; Timestamp++) 920 for (auto &Trace : Traces) 921 if (Timestamp < Trace.FunctionNameRefs.size()) 922 FunctionIds.insert(Trace.FunctionNameRefs[Timestamp]); 923 924 int N = std::ceil(std::log2(LargestTraceSize)); 925 926 // TODO: We need to use the Trace.Weight field to give more weight to more 927 // important utilities 928 DenseMap<IDT, SmallVector<UtilityNodeT, 4>> FuncGroups; 929 for (size_t TraceIdx = 0; TraceIdx < Traces.size(); TraceIdx++) { 930 auto &Trace = Traces[TraceIdx].FunctionNameRefs; 931 for (size_t Timestamp = 0; Timestamp < Trace.size(); Timestamp++) { 932 for (int I = std::floor(std::log2(Timestamp + 1)); I < N; I++) { 933 auto &FunctionId = Trace[Timestamp]; 934 UtilityNodeT GroupId = TraceIdx * N + I; 935 FuncGroups[FunctionId].push_back(GroupId); 936 } 937 } 938 } 939 940 std::vector<BPFunctionNode> Nodes; 941 for (auto &Id : FunctionIds) { 942 auto &UNs = FuncGroups[Id]; 943 llvm::sort(UNs); 944 UNs.erase(std::unique(UNs.begin(), UNs.end()), UNs.end()); 945 Nodes.emplace_back(Id, UNs); 946 } 947 return Nodes; 948 } 949 950 #define INSTR_PROF_COMMON_API_IMPL 951 #include "llvm/ProfileData/InstrProfData.inc" 952 953 /*! 954 * ValueProfRecordClosure Interface implementation for InstrProfRecord 955 * class. These C wrappers are used as adaptors so that C++ code can be 956 * invoked as callbacks. 957 */ 958 uint32_t getNumValueKindsInstrProf(const void *Record) { 959 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 960 } 961 962 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 963 return reinterpret_cast<const InstrProfRecord *>(Record) 964 ->getNumValueSites(VKind); 965 } 966 967 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 968 return reinterpret_cast<const InstrProfRecord *>(Record) 969 ->getNumValueData(VKind); 970 } 971 972 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 973 uint32_t S) { 974 return reinterpret_cast<const InstrProfRecord *>(R) 975 ->getNumValueDataForSite(VK, S); 976 } 977 978 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 979 uint32_t K, uint32_t S) { 980 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 981 } 982 983 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 984 ValueProfData *VD = 985 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 986 memset(VD, 0, TotalSizeInBytes); 987 return VD; 988 } 989 990 static ValueProfRecordClosure InstrProfRecordClosure = { 991 nullptr, 992 getNumValueKindsInstrProf, 993 getNumValueSitesInstrProf, 994 getNumValueDataInstrProf, 995 getNumValueDataForSiteInstrProf, 996 nullptr, 997 getValueForSiteInstrProf, 998 allocValueProfDataInstrProf}; 999 1000 // Wrapper implementation using the closure mechanism. 1001 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 1002 auto Closure = InstrProfRecordClosure; 1003 Closure.Record = &Record; 1004 return getValueProfDataSize(&Closure); 1005 } 1006 1007 // Wrapper implementation using the closure mechanism. 1008 std::unique_ptr<ValueProfData> 1009 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 1010 InstrProfRecordClosure.Record = &Record; 1011 1012 std::unique_ptr<ValueProfData> VPD( 1013 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 1014 return VPD; 1015 } 1016 1017 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 1018 InstrProfSymtab *SymTab) { 1019 Record.reserveSites(Kind, NumValueSites); 1020 1021 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 1022 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 1023 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 1024 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 1025 ValueData += ValueDataCount; 1026 } 1027 } 1028 1029 // For writing/serializing, Old is the host endianness, and New is 1030 // byte order intended on disk. For Reading/deserialization, Old 1031 // is the on-disk source endianness, and New is the host endianness. 1032 void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) { 1033 using namespace support; 1034 1035 if (Old == New) 1036 return; 1037 1038 if (llvm::endianness::native != Old) { 1039 sys::swapByteOrder<uint32_t>(NumValueSites); 1040 sys::swapByteOrder<uint32_t>(Kind); 1041 } 1042 uint32_t ND = getValueProfRecordNumValueData(this); 1043 InstrProfValueData *VD = getValueProfRecordValueData(this); 1044 1045 // No need to swap byte array: SiteCountArrray. 1046 for (uint32_t I = 0; I < ND; I++) { 1047 sys::swapByteOrder<uint64_t>(VD[I].Value); 1048 sys::swapByteOrder<uint64_t>(VD[I].Count); 1049 } 1050 if (llvm::endianness::native == Old) { 1051 sys::swapByteOrder<uint32_t>(NumValueSites); 1052 sys::swapByteOrder<uint32_t>(Kind); 1053 } 1054 } 1055 1056 void ValueProfData::deserializeTo(InstrProfRecord &Record, 1057 InstrProfSymtab *SymTab) { 1058 if (NumValueKinds == 0) 1059 return; 1060 1061 ValueProfRecord *VR = getFirstValueProfRecord(this); 1062 for (uint32_t K = 0; K < NumValueKinds; K++) { 1063 VR->deserializeTo(Record, SymTab); 1064 VR = getValueProfRecordNext(VR); 1065 } 1066 } 1067 1068 template <class T> 1069 static T swapToHostOrder(const unsigned char *&D, llvm::endianness Orig) { 1070 using namespace support; 1071 1072 if (Orig == llvm::endianness::little) 1073 return endian::readNext<T, llvm::endianness::little, unaligned>(D); 1074 else 1075 return endian::readNext<T, llvm::endianness::big, unaligned>(D); 1076 } 1077 1078 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 1079 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 1080 ValueProfData()); 1081 } 1082 1083 Error ValueProfData::checkIntegrity() { 1084 if (NumValueKinds > IPVK_Last + 1) 1085 return make_error<InstrProfError>( 1086 instrprof_error::malformed, "number of value profile kinds is invalid"); 1087 // Total size needs to be multiple of quadword size. 1088 if (TotalSize % sizeof(uint64_t)) 1089 return make_error<InstrProfError>( 1090 instrprof_error::malformed, "total size is not multiples of quardword"); 1091 1092 ValueProfRecord *VR = getFirstValueProfRecord(this); 1093 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 1094 if (VR->Kind > IPVK_Last) 1095 return make_error<InstrProfError>(instrprof_error::malformed, 1096 "value kind is invalid"); 1097 VR = getValueProfRecordNext(VR); 1098 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 1099 return make_error<InstrProfError>( 1100 instrprof_error::malformed, 1101 "value profile address is greater than total size"); 1102 } 1103 return Error::success(); 1104 } 1105 1106 Expected<std::unique_ptr<ValueProfData>> 1107 ValueProfData::getValueProfData(const unsigned char *D, 1108 const unsigned char *const BufferEnd, 1109 llvm::endianness Endianness) { 1110 using namespace support; 1111 1112 if (D + sizeof(ValueProfData) > BufferEnd) 1113 return make_error<InstrProfError>(instrprof_error::truncated); 1114 1115 const unsigned char *Header = D; 1116 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 1117 if (D + TotalSize > BufferEnd) 1118 return make_error<InstrProfError>(instrprof_error::too_large); 1119 1120 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 1121 memcpy(VPD.get(), D, TotalSize); 1122 // Byte swap. 1123 VPD->swapBytesToHost(Endianness); 1124 1125 Error E = VPD->checkIntegrity(); 1126 if (E) 1127 return std::move(E); 1128 1129 return std::move(VPD); 1130 } 1131 1132 void ValueProfData::swapBytesToHost(llvm::endianness Endianness) { 1133 using namespace support; 1134 1135 if (Endianness == llvm::endianness::native) 1136 return; 1137 1138 sys::swapByteOrder<uint32_t>(TotalSize); 1139 sys::swapByteOrder<uint32_t>(NumValueKinds); 1140 1141 ValueProfRecord *VR = getFirstValueProfRecord(this); 1142 for (uint32_t K = 0; K < NumValueKinds; K++) { 1143 VR->swapBytes(Endianness, llvm::endianness::native); 1144 VR = getValueProfRecordNext(VR); 1145 } 1146 } 1147 1148 void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) { 1149 using namespace support; 1150 1151 if (Endianness == llvm::endianness::native) 1152 return; 1153 1154 ValueProfRecord *VR = getFirstValueProfRecord(this); 1155 for (uint32_t K = 0; K < NumValueKinds; K++) { 1156 ValueProfRecord *NVR = getValueProfRecordNext(VR); 1157 VR->swapBytes(llvm::endianness::native, Endianness); 1158 VR = NVR; 1159 } 1160 sys::swapByteOrder<uint32_t>(TotalSize); 1161 sys::swapByteOrder<uint32_t>(NumValueKinds); 1162 } 1163 1164 void annotateValueSite(Module &M, Instruction &Inst, 1165 const InstrProfRecord &InstrProfR, 1166 InstrProfValueKind ValueKind, uint32_t SiteIdx, 1167 uint32_t MaxMDCount) { 1168 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 1169 if (!NV) 1170 return; 1171 1172 uint64_t Sum = 0; 1173 std::unique_ptr<InstrProfValueData[]> VD = 1174 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 1175 1176 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 1177 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 1178 } 1179 1180 void annotateValueSite(Module &M, Instruction &Inst, 1181 ArrayRef<InstrProfValueData> VDs, 1182 uint64_t Sum, InstrProfValueKind ValueKind, 1183 uint32_t MaxMDCount) { 1184 LLVMContext &Ctx = M.getContext(); 1185 MDBuilder MDHelper(Ctx); 1186 SmallVector<Metadata *, 3> Vals; 1187 // Tag 1188 Vals.push_back(MDHelper.createString("VP")); 1189 // Value Kind 1190 Vals.push_back(MDHelper.createConstant( 1191 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 1192 // Total Count 1193 Vals.push_back( 1194 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 1195 1196 // Value Profile Data 1197 uint32_t MDCount = MaxMDCount; 1198 for (auto &VD : VDs) { 1199 Vals.push_back(MDHelper.createConstant( 1200 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 1201 Vals.push_back(MDHelper.createConstant( 1202 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 1203 if (--MDCount == 0) 1204 break; 1205 } 1206 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 1207 } 1208 1209 bool getValueProfDataFromInst(const Instruction &Inst, 1210 InstrProfValueKind ValueKind, 1211 uint32_t MaxNumValueData, 1212 InstrProfValueData ValueData[], 1213 uint32_t &ActualNumValueData, uint64_t &TotalC, 1214 bool GetNoICPValue) { 1215 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 1216 if (!MD) 1217 return false; 1218 1219 unsigned NOps = MD->getNumOperands(); 1220 1221 if (NOps < 5) 1222 return false; 1223 1224 // Operand 0 is a string tag "VP": 1225 MDString *Tag = cast<MDString>(MD->getOperand(0)); 1226 if (!Tag) 1227 return false; 1228 1229 if (!Tag->getString().equals("VP")) 1230 return false; 1231 1232 // Now check kind: 1233 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1234 if (!KindInt) 1235 return false; 1236 if (KindInt->getZExtValue() != ValueKind) 1237 return false; 1238 1239 // Get total count 1240 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1241 if (!TotalCInt) 1242 return false; 1243 TotalC = TotalCInt->getZExtValue(); 1244 1245 ActualNumValueData = 0; 1246 1247 for (unsigned I = 3; I < NOps; I += 2) { 1248 if (ActualNumValueData >= MaxNumValueData) 1249 break; 1250 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1251 ConstantInt *Count = 1252 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1253 if (!Value || !Count) 1254 return false; 1255 uint64_t CntValue = Count->getZExtValue(); 1256 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM)) 1257 continue; 1258 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1259 ValueData[ActualNumValueData].Count = CntValue; 1260 ActualNumValueData++; 1261 } 1262 return true; 1263 } 1264 1265 MDNode *getPGOFuncNameMetadata(const Function &F) { 1266 return F.getMetadata(getPGOFuncNameMetadataName()); 1267 } 1268 1269 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1270 // Only for internal linkage functions. 1271 if (PGOFuncName == F.getName()) 1272 return; 1273 // Don't create duplicated meta-data. 1274 if (getPGOFuncNameMetadata(F)) 1275 return; 1276 LLVMContext &C = F.getContext(); 1277 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1278 F.setMetadata(getPGOFuncNameMetadataName(), N); 1279 } 1280 1281 bool needsComdatForCounter(const Function &F, const Module &M) { 1282 if (F.hasComdat()) 1283 return true; 1284 1285 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1286 return false; 1287 1288 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1289 // counters for function with available_externally linkage needs to be changed 1290 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1291 // created. Without using comdat, duplicate entries won't be removed by the 1292 // linker leading to increased data segement size and raw profile size. Even 1293 // worse, since the referenced counter from profile per-function data object 1294 // will be resolved to the common strong definition, the profile counts for 1295 // available_externally functions will end up being duplicated in raw profile 1296 // data. This can result in distorted profile as the counts of those dups 1297 // will be accumulated by the profile merger. 1298 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1299 if (Linkage != GlobalValue::ExternalWeakLinkage && 1300 Linkage != GlobalValue::AvailableExternallyLinkage) 1301 return false; 1302 1303 return true; 1304 } 1305 1306 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1307 bool isIRPGOFlagSet(const Module *M) { 1308 auto IRInstrVar = 1309 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1310 if (!IRInstrVar || IRInstrVar->hasLocalLinkage()) 1311 return false; 1312 1313 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only 1314 // have the decl. 1315 if (IRInstrVar->isDeclaration()) 1316 return true; 1317 1318 // Check if the flag is set. 1319 if (!IRInstrVar->hasInitializer()) 1320 return false; 1321 1322 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1323 if (!InitVal) 1324 return false; 1325 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1326 } 1327 1328 // Check if we can safely rename this Comdat function. 1329 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1330 if (F.getName().empty()) 1331 return false; 1332 if (!needsComdatForCounter(F, *(F.getParent()))) 1333 return false; 1334 // Unsafe to rename the address-taken function (which can be used in 1335 // function comparison). 1336 if (CheckAddressTaken && F.hasAddressTaken()) 1337 return false; 1338 // Only safe to do if this function may be discarded if it is not used 1339 // in the compilation unit. 1340 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1341 return false; 1342 1343 // For AvailableExternallyLinkage functions. 1344 if (!F.hasComdat()) { 1345 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1346 return true; 1347 } 1348 return true; 1349 } 1350 1351 // Create the variable for the profile file name. 1352 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1353 if (InstrProfileOutput.empty()) 1354 return; 1355 Constant *ProfileNameConst = 1356 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1357 GlobalVariable *ProfileNameVar = new GlobalVariable( 1358 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1359 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1360 ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility); 1361 Triple TT(M.getTargetTriple()); 1362 if (TT.supportsCOMDAT()) { 1363 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1364 ProfileNameVar->setComdat(M.getOrInsertComdat( 1365 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1366 } 1367 } 1368 1369 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1370 const std::string &TestFilename, 1371 bool IsCS) { 1372 auto getProfileSum = [IsCS](const std::string &Filename, 1373 CountSumOrPercent &Sum) -> Error { 1374 // This function is only used from llvm-profdata that doesn't use any kind 1375 // of VFS. Just create a default RealFileSystem to read profiles. 1376 auto FS = vfs::getRealFileSystem(); 1377 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 1378 if (Error E = ReaderOrErr.takeError()) { 1379 return E; 1380 } 1381 auto Reader = std::move(ReaderOrErr.get()); 1382 Reader->accumulateCounts(Sum, IsCS); 1383 return Error::success(); 1384 }; 1385 auto Ret = getProfileSum(BaseFilename, Base); 1386 if (Ret) 1387 return Ret; 1388 Ret = getProfileSum(TestFilename, Test); 1389 if (Ret) 1390 return Ret; 1391 this->BaseFilename = &BaseFilename; 1392 this->TestFilename = &TestFilename; 1393 Valid = true; 1394 return Error::success(); 1395 } 1396 1397 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1398 Mismatch.NumEntries += 1; 1399 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1400 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1401 if (Test.ValueCounts[I] >= 1.0f) 1402 Mismatch.ValueCounts[I] += 1403 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1404 } 1405 } 1406 1407 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1408 Unique.NumEntries += 1; 1409 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1410 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1411 if (Test.ValueCounts[I] >= 1.0f) 1412 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1413 } 1414 } 1415 1416 void OverlapStats::dump(raw_fd_ostream &OS) const { 1417 if (!Valid) 1418 return; 1419 1420 const char *EntryName = 1421 (Level == ProgramLevel ? "functions" : "edge counters"); 1422 if (Level == ProgramLevel) { 1423 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1424 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1425 } else { 1426 OS << "Function level:\n" 1427 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1428 } 1429 1430 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1431 if (Mismatch.NumEntries) 1432 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1433 << "\n"; 1434 if (Unique.NumEntries) 1435 OS << " # of " << EntryName 1436 << " only in test_profile: " << Unique.NumEntries << "\n"; 1437 1438 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1439 << "\n"; 1440 if (Mismatch.NumEntries) 1441 OS << " Mismatched count percentage (Edge): " 1442 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1443 if (Unique.NumEntries) 1444 OS << " Percentage of Edge profile only in test_profile: " 1445 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1446 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1447 << "\n" 1448 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1449 << "\n"; 1450 1451 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1452 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1453 continue; 1454 char ProfileKindName[20]; 1455 switch (I) { 1456 case IPVK_IndirectCallTarget: 1457 strncpy(ProfileKindName, "IndirectCall", 19); 1458 break; 1459 case IPVK_MemOPSize: 1460 strncpy(ProfileKindName, "MemOP", 19); 1461 break; 1462 default: 1463 snprintf(ProfileKindName, 19, "VP[%d]", I); 1464 break; 1465 } 1466 OS << " " << ProfileKindName 1467 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1468 << "\n"; 1469 if (Mismatch.NumEntries) 1470 OS << " Mismatched count percentage (" << ProfileKindName 1471 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1472 if (Unique.NumEntries) 1473 OS << " Percentage of " << ProfileKindName 1474 << " profile only in test_profile: " 1475 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1476 OS << " " << ProfileKindName 1477 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1478 << "\n" 1479 << " " << ProfileKindName 1480 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1481 << "\n"; 1482 } 1483 } 1484 1485 namespace IndexedInstrProf { 1486 // A C++14 compatible version of the offsetof macro. 1487 template <typename T1, typename T2> 1488 inline size_t constexpr offsetOf(T1 T2::*Member) { 1489 constexpr T2 Object{}; 1490 return size_t(&(Object.*Member)) - size_t(&Object); 1491 } 1492 1493 static inline uint64_t read(const unsigned char *Buffer, size_t Offset) { 1494 return *reinterpret_cast<const uint64_t *>(Buffer + Offset); 1495 } 1496 1497 uint64_t Header::formatVersion() const { 1498 using namespace support; 1499 return endian::byte_swap<uint64_t, llvm::endianness::little>(Version); 1500 } 1501 1502 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) { 1503 using namespace support; 1504 static_assert(std::is_standard_layout_v<Header>, 1505 "The header should be standard layout type since we use offset " 1506 "of fields to read."); 1507 Header H; 1508 1509 H.Magic = read(Buffer, offsetOf(&Header::Magic)); 1510 // Check the magic number. 1511 uint64_t Magic = 1512 endian::byte_swap<uint64_t, llvm::endianness::little>(H.Magic); 1513 if (Magic != IndexedInstrProf::Magic) 1514 return make_error<InstrProfError>(instrprof_error::bad_magic); 1515 1516 // Read the version. 1517 H.Version = read(Buffer, offsetOf(&Header::Version)); 1518 if (GET_VERSION(H.formatVersion()) > 1519 IndexedInstrProf::ProfVersion::CurrentVersion) 1520 return make_error<InstrProfError>(instrprof_error::unsupported_version); 1521 1522 switch (GET_VERSION(H.formatVersion())) { 1523 // When a new field is added in the header add a case statement here to 1524 // populate it. 1525 static_assert( 1526 IndexedInstrProf::ProfVersion::CurrentVersion == Version11, 1527 "Please update the reading code below if a new field has been added, " 1528 "if not add a case statement to fall through to the latest version."); 1529 case 11ull: 1530 [[fallthrough]]; 1531 case 10ull: 1532 H.TemporalProfTracesOffset = 1533 read(Buffer, offsetOf(&Header::TemporalProfTracesOffset)); 1534 [[fallthrough]]; 1535 case 9ull: 1536 H.BinaryIdOffset = read(Buffer, offsetOf(&Header::BinaryIdOffset)); 1537 [[fallthrough]]; 1538 case 8ull: 1539 H.MemProfOffset = read(Buffer, offsetOf(&Header::MemProfOffset)); 1540 [[fallthrough]]; 1541 default: // Version7 (when the backwards compatible header was introduced). 1542 H.HashType = read(Buffer, offsetOf(&Header::HashType)); 1543 H.HashOffset = read(Buffer, offsetOf(&Header::HashOffset)); 1544 } 1545 1546 return H; 1547 } 1548 1549 size_t Header::size() const { 1550 switch (GET_VERSION(formatVersion())) { 1551 // When a new field is added to the header add a case statement here to 1552 // compute the size as offset of the new field + size of the new field. This 1553 // relies on the field being added to the end of the list. 1554 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version11, 1555 "Please update the size computation below if a new field has " 1556 "been added to the header, if not add a case statement to " 1557 "fall through to the latest version."); 1558 case 11ull: 1559 [[fallthrough]]; 1560 case 10ull: 1561 return offsetOf(&Header::TemporalProfTracesOffset) + 1562 sizeof(Header::TemporalProfTracesOffset); 1563 case 9ull: 1564 return offsetOf(&Header::BinaryIdOffset) + sizeof(Header::BinaryIdOffset); 1565 case 8ull: 1566 return offsetOf(&Header::MemProfOffset) + sizeof(Header::MemProfOffset); 1567 default: // Version7 (when the backwards compatible header was introduced). 1568 return offsetOf(&Header::HashOffset) + sizeof(Header::HashOffset); 1569 } 1570 } 1571 1572 } // namespace IndexedInstrProf 1573 1574 } // end namespace llvm 1575