1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for reading coverage mapping data for 10 // instrumentation based coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/Binary.h" 23 #include "llvm/Object/COFF.h" 24 #include "llvm/Object/Error.h" 25 #include "llvm/Object/MachOUniversal.h" 26 #include "llvm/Object/ObjectFile.h" 27 #include "llvm/ProfileData/InstrProf.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Compression.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Endian.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <vector> 40 41 using namespace llvm; 42 using namespace coverage; 43 using namespace object; 44 45 #define DEBUG_TYPE "coverage-mapping" 46 47 STATISTIC(CovMapNumRecords, "The # of coverage function records"); 48 STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records"); 49 50 void CoverageMappingIterator::increment() { 51 if (ReadErr != coveragemap_error::success) 52 return; 53 54 // Check if all the records were read or if an error occurred while reading 55 // the next record. 56 if (auto E = Reader->readNextRecord(Record)) 57 handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { 58 if (CME.get() == coveragemap_error::eof) 59 *this = CoverageMappingIterator(); 60 else 61 ReadErr = CME.get(); 62 }); 63 } 64 65 Error RawCoverageReader::readULEB128(uint64_t &Result) { 66 if (Data.empty()) 67 return make_error<CoverageMapError>(coveragemap_error::truncated); 68 unsigned N = 0; 69 Result = decodeULEB128(Data.bytes_begin(), &N); 70 if (N > Data.size()) 71 return make_error<CoverageMapError>(coveragemap_error::malformed, 72 "the size of ULEB128 is too big"); 73 Data = Data.substr(N); 74 return Error::success(); 75 } 76 77 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { 78 if (auto Err = readULEB128(Result)) 79 return Err; 80 if (Result >= MaxPlus1) 81 return make_error<CoverageMapError>( 82 coveragemap_error::malformed, 83 "the value of ULEB128 is greater than or equal to MaxPlus1"); 84 return Error::success(); 85 } 86 87 Error RawCoverageReader::readSize(uint64_t &Result) { 88 if (auto Err = readULEB128(Result)) 89 return Err; 90 if (Result > Data.size()) 91 return make_error<CoverageMapError>(coveragemap_error::malformed, 92 "the value of ULEB128 is too big"); 93 return Error::success(); 94 } 95 96 Error RawCoverageReader::readString(StringRef &Result) { 97 uint64_t Length; 98 if (auto Err = readSize(Length)) 99 return Err; 100 Result = Data.substr(0, Length); 101 Data = Data.substr(Length); 102 return Error::success(); 103 } 104 105 Error RawCoverageFilenamesReader::read(CovMapVersion Version) { 106 uint64_t NumFilenames; 107 if (auto Err = readSize(NumFilenames)) 108 return Err; 109 if (!NumFilenames) 110 return make_error<CoverageMapError>(coveragemap_error::malformed, 111 "number of filenames is zero"); 112 113 if (Version < CovMapVersion::Version4) 114 return readUncompressed(Version, NumFilenames); 115 116 // The uncompressed length may exceed the size of the encoded filenames. 117 // Skip size validation. 118 uint64_t UncompressedLen; 119 if (auto Err = readULEB128(UncompressedLen)) 120 return Err; 121 122 uint64_t CompressedLen; 123 if (auto Err = readSize(CompressedLen)) 124 return Err; 125 126 if (CompressedLen > 0) { 127 if (!compression::zlib::isAvailable()) 128 return make_error<CoverageMapError>( 129 coveragemap_error::decompression_failed); 130 131 // Allocate memory for the decompressed filenames. 132 SmallVector<uint8_t, 0> StorageBuf; 133 134 // Read compressed filenames. 135 StringRef CompressedFilenames = Data.substr(0, CompressedLen); 136 Data = Data.substr(CompressedLen); 137 auto Err = compression::zlib::decompress( 138 arrayRefFromStringRef(CompressedFilenames), StorageBuf, 139 UncompressedLen); 140 if (Err) { 141 consumeError(std::move(Err)); 142 return make_error<CoverageMapError>( 143 coveragemap_error::decompression_failed); 144 } 145 146 RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames, 147 CompilationDir); 148 return Delegate.readUncompressed(Version, NumFilenames); 149 } 150 151 return readUncompressed(Version, NumFilenames); 152 } 153 154 Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version, 155 uint64_t NumFilenames) { 156 // Read uncompressed filenames. 157 if (Version < CovMapVersion::Version6) { 158 for (size_t I = 0; I < NumFilenames; ++I) { 159 StringRef Filename; 160 if (auto Err = readString(Filename)) 161 return Err; 162 Filenames.push_back(Filename.str()); 163 } 164 } else { 165 StringRef CWD; 166 if (auto Err = readString(CWD)) 167 return Err; 168 Filenames.push_back(CWD.str()); 169 170 for (size_t I = 1; I < NumFilenames; ++I) { 171 StringRef Filename; 172 if (auto Err = readString(Filename)) 173 return Err; 174 if (sys::path::is_absolute(Filename)) { 175 Filenames.push_back(Filename.str()); 176 } else { 177 SmallString<256> P; 178 if (!CompilationDir.empty()) 179 P.assign(CompilationDir); 180 else 181 P.assign(CWD); 182 llvm::sys::path::append(P, Filename); 183 sys::path::remove_dots(P, /*remove_dot_dot=*/true); 184 Filenames.push_back(static_cast<std::string>(P.str())); 185 } 186 } 187 } 188 return Error::success(); 189 } 190 191 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { 192 auto Tag = Value & Counter::EncodingTagMask; 193 switch (Tag) { 194 case Counter::Zero: 195 C = Counter::getZero(); 196 return Error::success(); 197 case Counter::CounterValueReference: 198 C = Counter::getCounter(Value >> Counter::EncodingTagBits); 199 return Error::success(); 200 default: 201 break; 202 } 203 Tag -= Counter::Expression; 204 switch (Tag) { 205 case CounterExpression::Subtract: 206 case CounterExpression::Add: { 207 auto ID = Value >> Counter::EncodingTagBits; 208 if (ID >= Expressions.size()) 209 return make_error<CoverageMapError>(coveragemap_error::malformed, 210 "counter expression is invalid"); 211 Expressions[ID].Kind = CounterExpression::ExprKind(Tag); 212 C = Counter::getExpression(ID); 213 break; 214 } 215 default: 216 return make_error<CoverageMapError>(coveragemap_error::malformed, 217 "counter expression kind is invalid"); 218 } 219 return Error::success(); 220 } 221 222 Error RawCoverageMappingReader::readCounter(Counter &C) { 223 uint64_t EncodedCounter; 224 if (auto Err = 225 readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) 226 return Err; 227 if (auto Err = decodeCounter(EncodedCounter, C)) 228 return Err; 229 return Error::success(); 230 } 231 232 static const unsigned EncodingExpansionRegionBit = 1 233 << Counter::EncodingTagBits; 234 235 /// Read the sub-array of regions for the given inferred file id. 236 /// \param NumFileIDs the number of file ids that are defined for this 237 /// function. 238 Error RawCoverageMappingReader::readMappingRegionsSubArray( 239 std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, 240 size_t NumFileIDs) { 241 uint64_t NumRegions; 242 if (auto Err = readSize(NumRegions)) 243 return Err; 244 unsigned LineStart = 0; 245 for (size_t I = 0; I < NumRegions; ++I) { 246 Counter C, C2; 247 uint64_t BIDX, NC; 248 // They are stored as internal values plus 1 (min is -1) 249 uint64_t ID1, TID1, FID1; 250 mcdc::Parameters Params; 251 CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; 252 253 // Read the combined counter + region kind. 254 uint64_t EncodedCounterAndRegion; 255 if (auto Err = readIntMax(EncodedCounterAndRegion, 256 std::numeric_limits<unsigned>::max())) 257 return Err; 258 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 259 uint64_t ExpandedFileID = 0; 260 261 // If Tag does not represent a ZeroCounter, then it is understood to refer 262 // to a counter or counter expression with region kind assumed to be 263 // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the 264 // referenced counter or counter expression (and nothing else). 265 // 266 // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set, 267 // then EncodedCounterAndRegion is interpreted to represent an 268 // ExpansionRegion. In all other cases, EncodedCounterAndRegion is 269 // interpreted to refer to a specific region kind, after which additional 270 // fields may be read (e.g. BranchRegions have two encoded counters that 271 // follow an encoded region kind value). 272 if (Tag != Counter::Zero) { 273 if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) 274 return Err; 275 } else { 276 // Is it an expansion region? 277 if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { 278 Kind = CounterMappingRegion::ExpansionRegion; 279 ExpandedFileID = EncodedCounterAndRegion >> 280 Counter::EncodingCounterTagAndExpansionRegionTagBits; 281 if (ExpandedFileID >= NumFileIDs) 282 return make_error<CoverageMapError>(coveragemap_error::malformed, 283 "ExpandedFileID is invalid"); 284 } else { 285 switch (EncodedCounterAndRegion >> 286 Counter::EncodingCounterTagAndExpansionRegionTagBits) { 287 case CounterMappingRegion::CodeRegion: 288 // Don't do anything when we have a code region with a zero counter. 289 break; 290 case CounterMappingRegion::SkippedRegion: 291 Kind = CounterMappingRegion::SkippedRegion; 292 break; 293 case CounterMappingRegion::BranchRegion: 294 // For a Branch Region, read two successive counters. 295 Kind = CounterMappingRegion::BranchRegion; 296 if (auto Err = readCounter(C)) 297 return Err; 298 if (auto Err = readCounter(C2)) 299 return Err; 300 break; 301 case CounterMappingRegion::MCDCBranchRegion: 302 // For a MCDC Branch Region, read two successive counters and 3 IDs. 303 Kind = CounterMappingRegion::MCDCBranchRegion; 304 if (auto Err = readCounter(C)) 305 return Err; 306 if (auto Err = readCounter(C2)) 307 return Err; 308 if (auto Err = readIntMax(ID1, std::numeric_limits<int16_t>::max())) 309 return Err; 310 if (auto Err = readIntMax(TID1, std::numeric_limits<int16_t>::max())) 311 return Err; 312 if (auto Err = readIntMax(FID1, std::numeric_limits<int16_t>::max())) 313 return Err; 314 if (ID1 == 0) 315 return make_error<CoverageMapError>( 316 coveragemap_error::malformed, 317 "MCDCConditionID shouldn't be zero"); 318 Params = mcdc::BranchParameters{ 319 static_cast<int16_t>(static_cast<int16_t>(ID1) - 1), 320 {static_cast<int16_t>(static_cast<int16_t>(FID1) - 1), 321 static_cast<int16_t>(static_cast<int16_t>(TID1) - 1)}}; 322 break; 323 case CounterMappingRegion::MCDCDecisionRegion: 324 Kind = CounterMappingRegion::MCDCDecisionRegion; 325 if (auto Err = readIntMax(BIDX, std::numeric_limits<unsigned>::max())) 326 return Err; 327 if (auto Err = readIntMax(NC, std::numeric_limits<int16_t>::max())) 328 return Err; 329 Params = mcdc::DecisionParameters{static_cast<unsigned>(BIDX), 330 static_cast<uint16_t>(NC)}; 331 break; 332 default: 333 return make_error<CoverageMapError>(coveragemap_error::malformed, 334 "region kind is incorrect"); 335 } 336 } 337 } 338 339 // Read the source range. 340 uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; 341 if (auto Err = 342 readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) 343 return Err; 344 if (auto Err = readULEB128(ColumnStart)) 345 return Err; 346 if (ColumnStart > std::numeric_limits<unsigned>::max()) 347 return make_error<CoverageMapError>(coveragemap_error::malformed, 348 "start column is too big"); 349 if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) 350 return Err; 351 if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) 352 return Err; 353 LineStart += LineStartDelta; 354 355 // If the high bit of ColumnEnd is set, this is a gap region. 356 if (ColumnEnd & (1U << 31)) { 357 Kind = CounterMappingRegion::GapRegion; 358 ColumnEnd &= ~(1U << 31); 359 } 360 361 // Adjust the column locations for the empty regions that are supposed to 362 // cover whole lines. Those regions should be encoded with the 363 // column range (1 -> std::numeric_limits<unsigned>::max()), but because 364 // the encoded std::numeric_limits<unsigned>::max() is several bytes long, 365 // we set the column range to (0 -> 0) to ensure that the column start and 366 // column end take up one byte each. 367 // The std::numeric_limits<unsigned>::max() is used to represent a column 368 // position at the end of the line without knowing the length of that line. 369 if (ColumnStart == 0 && ColumnEnd == 0) { 370 ColumnStart = 1; 371 ColumnEnd = std::numeric_limits<unsigned>::max(); 372 } 373 374 LLVM_DEBUG({ 375 dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" 376 << ColumnStart << " -> " << (LineStart + NumLines) << ":" 377 << ColumnEnd << ", "; 378 if (Kind == CounterMappingRegion::ExpansionRegion) 379 dbgs() << "Expands to file " << ExpandedFileID; 380 else 381 CounterMappingContext(Expressions).dump(C, dbgs()); 382 dbgs() << "\n"; 383 }); 384 385 auto CMR = CounterMappingRegion( 386 C, C2, InferredFileID, ExpandedFileID, LineStart, ColumnStart, 387 LineStart + NumLines, ColumnEnd, Kind, Params); 388 if (CMR.startLoc() > CMR.endLoc()) 389 return make_error<CoverageMapError>( 390 coveragemap_error::malformed, 391 "counter mapping region locations are incorrect"); 392 MappingRegions.push_back(CMR); 393 } 394 return Error::success(); 395 } 396 397 Error RawCoverageMappingReader::read() { 398 // Read the virtual file mapping. 399 SmallVector<unsigned, 8> VirtualFileMapping; 400 uint64_t NumFileMappings; 401 if (auto Err = readSize(NumFileMappings)) 402 return Err; 403 for (size_t I = 0; I < NumFileMappings; ++I) { 404 uint64_t FilenameIndex; 405 if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) 406 return Err; 407 VirtualFileMapping.push_back(FilenameIndex); 408 } 409 410 // Construct the files using unique filenames and virtual file mapping. 411 for (auto I : VirtualFileMapping) { 412 Filenames.push_back(TranslationUnitFilenames[I]); 413 } 414 415 // Read the expressions. 416 uint64_t NumExpressions; 417 if (auto Err = readSize(NumExpressions)) 418 return Err; 419 // Create an array of dummy expressions that get the proper counters 420 // when the expressions are read, and the proper kinds when the counters 421 // are decoded. 422 Expressions.resize( 423 NumExpressions, 424 CounterExpression(CounterExpression::Subtract, Counter(), Counter())); 425 for (size_t I = 0; I < NumExpressions; ++I) { 426 if (auto Err = readCounter(Expressions[I].LHS)) 427 return Err; 428 if (auto Err = readCounter(Expressions[I].RHS)) 429 return Err; 430 } 431 432 // Read the mapping regions sub-arrays. 433 for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); 434 InferredFileID < S; ++InferredFileID) { 435 if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, 436 VirtualFileMapping.size())) 437 return Err; 438 } 439 440 // Set the counters for the expansion regions. 441 // i.e. Counter of expansion region = counter of the first region 442 // from the expanded file. 443 // Perform multiple passes to correctly propagate the counters through 444 // all the nested expansion regions. 445 SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; 446 FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); 447 for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { 448 for (auto &R : MappingRegions) { 449 if (R.Kind != CounterMappingRegion::ExpansionRegion) 450 continue; 451 assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); 452 FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; 453 } 454 for (auto &R : MappingRegions) { 455 if (FileIDExpansionRegionMapping[R.FileID]) { 456 FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; 457 FileIDExpansionRegionMapping[R.FileID] = nullptr; 458 } 459 } 460 } 461 462 return Error::success(); 463 } 464 465 Expected<bool> RawCoverageMappingDummyChecker::isDummy() { 466 // A dummy coverage mapping data consists of just one region with zero count. 467 uint64_t NumFileMappings; 468 if (Error Err = readSize(NumFileMappings)) 469 return std::move(Err); 470 if (NumFileMappings != 1) 471 return false; 472 // We don't expect any specific value for the filename index, just skip it. 473 uint64_t FilenameIndex; 474 if (Error Err = 475 readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) 476 return std::move(Err); 477 uint64_t NumExpressions; 478 if (Error Err = readSize(NumExpressions)) 479 return std::move(Err); 480 if (NumExpressions != 0) 481 return false; 482 uint64_t NumRegions; 483 if (Error Err = readSize(NumRegions)) 484 return std::move(Err); 485 if (NumRegions != 1) 486 return false; 487 uint64_t EncodedCounterAndRegion; 488 if (Error Err = readIntMax(EncodedCounterAndRegion, 489 std::numeric_limits<unsigned>::max())) 490 return std::move(Err); 491 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 492 return Tag == Counter::Zero; 493 } 494 495 Error InstrProfSymtab::create(SectionRef &Section) { 496 Expected<StringRef> DataOrErr = Section.getContents(); 497 if (!DataOrErr) 498 return DataOrErr.takeError(); 499 Data = *DataOrErr; 500 Address = Section.getAddress(); 501 502 // If this is a linked PE/COFF file, then we have to skip over the null byte 503 // that is allocated in the .lprfn$A section in the LLVM profiling runtime. 504 // If the name section is .lprfcovnames, it doesn't have the null byte at the 505 // beginning. 506 const ObjectFile *Obj = Section.getObject(); 507 if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject()) 508 if (Expected<StringRef> NameOrErr = Section.getName()) 509 if (*NameOrErr != getInstrProfSectionName(IPSK_covname, Triple::COFF)) 510 Data = Data.drop_front(1); 511 512 return Error::success(); 513 } 514 515 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { 516 if (Pointer < Address) 517 return StringRef(); 518 auto Offset = Pointer - Address; 519 if (Offset + Size > Data.size()) 520 return StringRef(); 521 return Data.substr(Pointer - Address, Size); 522 } 523 524 // Check if the mapping data is a dummy, i.e. is emitted for an unused function. 525 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { 526 // The hash value of dummy mapping records is always zero. 527 if (Hash) 528 return false; 529 return RawCoverageMappingDummyChecker(Mapping).isDummy(); 530 } 531 532 /// A range of filename indices. Used to specify the location of a batch of 533 /// filenames in a vector-like container. 534 struct FilenameRange { 535 unsigned StartingIndex; 536 unsigned Length; 537 538 FilenameRange(unsigned StartingIndex, unsigned Length) 539 : StartingIndex(StartingIndex), Length(Length) {} 540 541 void markInvalid() { Length = 0; } 542 bool isInvalid() const { return Length == 0; } 543 }; 544 545 namespace { 546 547 /// The interface to read coverage mapping function records for a module. 548 struct CovMapFuncRecordReader { 549 virtual ~CovMapFuncRecordReader() = default; 550 551 // Read a coverage header. 552 // 553 // \p CovBuf points to the buffer containing the \c CovHeader of the coverage 554 // mapping data associated with the module. 555 // 556 // Returns a pointer to the next \c CovHeader if it exists, or to an address 557 // greater than \p CovEnd if not. 558 virtual Expected<const char *> readCoverageHeader(const char *CovBuf, 559 const char *CovBufEnd) = 0; 560 561 // Read function records. 562 // 563 // \p FuncRecBuf points to the buffer containing a batch of function records. 564 // \p FuncRecBufEnd points past the end of the batch of records. 565 // 566 // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames 567 // associated with the function records. It is unused in Version4. 568 // 569 // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage 570 // mappings associated with the function records. It is unused in Version4. 571 virtual Error 572 readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 573 std::optional<FilenameRange> OutOfLineFileRange, 574 const char *OutOfLineMappingBuf, 575 const char *OutOfLineMappingBufEnd) = 0; 576 577 template <class IntPtrT, llvm::endianness Endian> 578 static Expected<std::unique_ptr<CovMapFuncRecordReader>> 579 get(CovMapVersion Version, InstrProfSymtab &P, 580 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 581 std::vector<std::string> &F); 582 }; 583 584 // A class for reading coverage mapping function records for a module. 585 template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian> 586 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { 587 using FuncRecordType = 588 typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType; 589 using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType; 590 591 // Maps function's name references to the indexes of their records 592 // in \c Records. 593 DenseMap<NameRefType, size_t> FunctionRecords; 594 InstrProfSymtab &ProfileNames; 595 StringRef CompilationDir; 596 std::vector<std::string> &Filenames; 597 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; 598 599 // Maps a hash of the filenames in a TU to a \c FileRange. The range 600 // specifies the location of the hashed filenames in \c Filenames. 601 DenseMap<uint64_t, FilenameRange> FileRangeMap; 602 603 // Add the record to the collection if we don't already have a record that 604 // points to the same function name. This is useful to ignore the redundant 605 // records for the functions with ODR linkage. 606 // In addition, prefer records with real coverage mapping data to dummy 607 // records, which were emitted for inline functions which were seen but 608 // not used in the corresponding translation unit. 609 Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, 610 StringRef Mapping, 611 FilenameRange FileRange) { 612 ++CovMapNumRecords; 613 uint64_t FuncHash = CFR->template getFuncHash<Endian>(); 614 NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); 615 auto InsertResult = 616 FunctionRecords.insert(std::make_pair(NameRef, Records.size())); 617 if (InsertResult.second) { 618 StringRef FuncName; 619 if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) 620 return Err; 621 if (FuncName.empty()) 622 return make_error<InstrProfError>(instrprof_error::malformed, 623 "function name is empty"); 624 ++CovMapNumUsedRecords; 625 Records.emplace_back(Version, FuncName, FuncHash, Mapping, 626 FileRange.StartingIndex, FileRange.Length); 627 return Error::success(); 628 } 629 // Update the existing record if it's a dummy and the new record is real. 630 size_t OldRecordIndex = InsertResult.first->second; 631 BinaryCoverageReader::ProfileMappingRecord &OldRecord = 632 Records[OldRecordIndex]; 633 Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( 634 OldRecord.FunctionHash, OldRecord.CoverageMapping); 635 if (Error Err = OldIsDummyExpected.takeError()) 636 return Err; 637 if (!*OldIsDummyExpected) 638 return Error::success(); 639 Expected<bool> NewIsDummyExpected = 640 isCoverageMappingDummy(FuncHash, Mapping); 641 if (Error Err = NewIsDummyExpected.takeError()) 642 return Err; 643 if (*NewIsDummyExpected) 644 return Error::success(); 645 ++CovMapNumUsedRecords; 646 OldRecord.FunctionHash = FuncHash; 647 OldRecord.CoverageMapping = Mapping; 648 OldRecord.FilenamesBegin = FileRange.StartingIndex; 649 OldRecord.FilenamesSize = FileRange.Length; 650 return Error::success(); 651 } 652 653 public: 654 VersionedCovMapFuncRecordReader( 655 InstrProfSymtab &P, 656 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 657 std::vector<std::string> &F) 658 : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {} 659 660 ~VersionedCovMapFuncRecordReader() override = default; 661 662 Expected<const char *> readCoverageHeader(const char *CovBuf, 663 const char *CovBufEnd) override { 664 using namespace support; 665 666 if (CovBuf + sizeof(CovMapHeader) > CovBufEnd) 667 return make_error<CoverageMapError>( 668 coveragemap_error::malformed, 669 "coverage mapping header section is larger than buffer size"); 670 auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf); 671 uint32_t NRecords = CovHeader->getNRecords<Endian>(); 672 uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); 673 uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); 674 assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); 675 CovBuf = reinterpret_cast<const char *>(CovHeader + 1); 676 677 // Skip past the function records, saving the start and end for later. 678 // This is a no-op in Version4 (function records are read after all headers 679 // are read). 680 const char *FuncRecBuf = nullptr; 681 const char *FuncRecBufEnd = nullptr; 682 if (Version < CovMapVersion::Version4) 683 FuncRecBuf = CovBuf; 684 CovBuf += NRecords * sizeof(FuncRecordType); 685 if (Version < CovMapVersion::Version4) 686 FuncRecBufEnd = CovBuf; 687 688 // Get the filenames. 689 if (CovBuf + FilenamesSize > CovBufEnd) 690 return make_error<CoverageMapError>( 691 coveragemap_error::malformed, 692 "filenames section is larger than buffer size"); 693 size_t FilenamesBegin = Filenames.size(); 694 StringRef FilenameRegion(CovBuf, FilenamesSize); 695 RawCoverageFilenamesReader Reader(FilenameRegion, Filenames, 696 CompilationDir); 697 if (auto Err = Reader.read(Version)) 698 return std::move(Err); 699 CovBuf += FilenamesSize; 700 FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin); 701 702 if (Version >= CovMapVersion::Version4) { 703 // Map a hash of the filenames region to the filename range associated 704 // with this coverage header. 705 int64_t FilenamesRef = 706 llvm::IndexedInstrProf::ComputeHash(FilenameRegion); 707 auto Insert = 708 FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange)); 709 if (!Insert.second) { 710 // The same filenames ref was encountered twice. It's possible that 711 // the associated filenames are the same. 712 auto It = Filenames.begin(); 713 FilenameRange &OrigRange = Insert.first->getSecond(); 714 if (std::equal(It + OrigRange.StartingIndex, 715 It + OrigRange.StartingIndex + OrigRange.Length, 716 It + FileRange.StartingIndex, 717 It + FileRange.StartingIndex + FileRange.Length)) 718 // Map the new range to the original one. 719 FileRange = OrigRange; 720 else 721 // This is a hash collision. Mark the filenames ref invalid. 722 OrigRange.markInvalid(); 723 } 724 } 725 726 // We'll read the coverage mapping records in the loop below. 727 // This is a no-op in Version4 (coverage mappings are not affixed to the 728 // coverage header). 729 const char *MappingBuf = CovBuf; 730 if (Version >= CovMapVersion::Version4 && CoverageSize != 0) 731 return make_error<CoverageMapError>(coveragemap_error::malformed, 732 "coverage mapping size is not zero"); 733 CovBuf += CoverageSize; 734 const char *MappingEnd = CovBuf; 735 736 if (CovBuf > CovBufEnd) 737 return make_error<CoverageMapError>( 738 coveragemap_error::malformed, 739 "function records section is larger than buffer size"); 740 741 if (Version < CovMapVersion::Version4) { 742 // Read each function record. 743 if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange, 744 MappingBuf, MappingEnd)) 745 return std::move(E); 746 } 747 748 // Each coverage map has an alignment of 8, so we need to adjust alignment 749 // before reading the next map. 750 CovBuf += offsetToAlignedAddr(CovBuf, Align(8)); 751 752 return CovBuf; 753 } 754 755 Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 756 std::optional<FilenameRange> OutOfLineFileRange, 757 const char *OutOfLineMappingBuf, 758 const char *OutOfLineMappingBufEnd) override { 759 auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf); 760 while ((const char *)CFR < FuncRecBufEnd) { 761 // Validate the length of the coverage mapping for this function. 762 const char *NextMappingBuf; 763 const FuncRecordType *NextCFR; 764 std::tie(NextMappingBuf, NextCFR) = 765 CFR->template advanceByOne<Endian>(OutOfLineMappingBuf); 766 if (Version < CovMapVersion::Version4) 767 if (NextMappingBuf > OutOfLineMappingBufEnd) 768 return make_error<CoverageMapError>( 769 coveragemap_error::malformed, 770 "next mapping buffer is larger than buffer size"); 771 772 // Look up the set of filenames associated with this function record. 773 std::optional<FilenameRange> FileRange; 774 if (Version < CovMapVersion::Version4) { 775 FileRange = OutOfLineFileRange; 776 } else { 777 uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>(); 778 auto It = FileRangeMap.find(FilenamesRef); 779 if (It == FileRangeMap.end()) 780 return make_error<CoverageMapError>( 781 coveragemap_error::malformed, 782 "no filename found for function with hash=0x" + 783 Twine::utohexstr(FilenamesRef)); 784 else 785 FileRange = It->getSecond(); 786 } 787 788 // Now, read the coverage data. 789 if (FileRange && !FileRange->isInvalid()) { 790 StringRef Mapping = 791 CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf); 792 if (Version >= CovMapVersion::Version4 && 793 Mapping.data() + Mapping.size() > FuncRecBufEnd) 794 return make_error<CoverageMapError>( 795 coveragemap_error::malformed, 796 "coverage mapping data is larger than buffer size"); 797 if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange)) 798 return Err; 799 } 800 801 std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR); 802 } 803 return Error::success(); 804 } 805 }; 806 807 } // end anonymous namespace 808 809 template <class IntPtrT, llvm::endianness Endian> 810 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( 811 CovMapVersion Version, InstrProfSymtab &P, 812 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 813 std::vector<std::string> &F) { 814 using namespace coverage; 815 816 switch (Version) { 817 case CovMapVersion::Version1: 818 return std::make_unique<VersionedCovMapFuncRecordReader< 819 CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F); 820 case CovMapVersion::Version2: 821 case CovMapVersion::Version3: 822 case CovMapVersion::Version4: 823 case CovMapVersion::Version5: 824 case CovMapVersion::Version6: 825 case CovMapVersion::Version7: 826 // Decompress the name data. 827 if (Error E = P.create(P.getNameData())) 828 return std::move(E); 829 if (Version == CovMapVersion::Version2) 830 return std::make_unique<VersionedCovMapFuncRecordReader< 831 CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F); 832 else if (Version == CovMapVersion::Version3) 833 return std::make_unique<VersionedCovMapFuncRecordReader< 834 CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F); 835 else if (Version == CovMapVersion::Version4) 836 return std::make_unique<VersionedCovMapFuncRecordReader< 837 CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F); 838 else if (Version == CovMapVersion::Version5) 839 return std::make_unique<VersionedCovMapFuncRecordReader< 840 CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F); 841 else if (Version == CovMapVersion::Version6) 842 return std::make_unique<VersionedCovMapFuncRecordReader< 843 CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F); 844 else if (Version == CovMapVersion::Version7) 845 return std::make_unique<VersionedCovMapFuncRecordReader< 846 CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F); 847 } 848 llvm_unreachable("Unsupported version"); 849 } 850 851 template <typename T, llvm::endianness Endian> 852 static Error readCoverageMappingData( 853 InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords, 854 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, 855 StringRef CompilationDir, std::vector<std::string> &Filenames) { 856 using namespace coverage; 857 858 // Read the records in the coverage data section. 859 auto CovHeader = 860 reinterpret_cast<const CovMapHeader *>(CovMap.data()); 861 CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); 862 if (Version > CovMapVersion::CurrentVersion) 863 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 864 Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = 865 CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, 866 CompilationDir, Filenames); 867 if (Error E = ReaderExpected.takeError()) 868 return E; 869 auto Reader = std::move(ReaderExpected.get()); 870 const char *CovBuf = CovMap.data(); 871 const char *CovBufEnd = CovBuf + CovMap.size(); 872 const char *FuncRecBuf = FuncRecords.data(); 873 const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size(); 874 while (CovBuf < CovBufEnd) { 875 // Read the current coverage header & filename data. 876 // 877 // Prior to Version4, this also reads all function records affixed to the 878 // header. 879 // 880 // Return a pointer to the next coverage header. 881 auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd); 882 if (auto E = NextOrErr.takeError()) 883 return E; 884 CovBuf = NextOrErr.get(); 885 } 886 // In Version4, function records are not affixed to coverage headers. Read 887 // the records from their dedicated section. 888 if (Version >= CovMapVersion::Version4) 889 return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt, 890 nullptr, nullptr); 891 return Error::success(); 892 } 893 894 Expected<std::unique_ptr<BinaryCoverageReader>> 895 BinaryCoverageReader::createCoverageReaderFromBuffer( 896 StringRef Coverage, FuncRecordsStorage &&FuncRecords, 897 std::unique_ptr<InstrProfSymtab> ProfileNamesPtr, uint8_t BytesInAddress, 898 llvm::endianness Endian, StringRef CompilationDir) { 899 if (ProfileNamesPtr == nullptr) 900 return make_error<CoverageMapError>(coveragemap_error::malformed, 901 "Caller must provide ProfileNames"); 902 std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader( 903 std::move(ProfileNamesPtr), std::move(FuncRecords))); 904 InstrProfSymtab &ProfileNames = *Reader->ProfileNames; 905 StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer(); 906 if (BytesInAddress == 4 && Endian == llvm::endianness::little) { 907 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>( 908 ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords, 909 CompilationDir, Reader->Filenames)) 910 return std::move(E); 911 } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) { 912 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>( 913 ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords, 914 CompilationDir, Reader->Filenames)) 915 return std::move(E); 916 } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) { 917 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>( 918 ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords, 919 CompilationDir, Reader->Filenames)) 920 return std::move(E); 921 } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) { 922 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>( 923 ProfileNames, Coverage, FuncRecordsRef, Reader->MappingRecords, 924 CompilationDir, Reader->Filenames)) 925 return std::move(E); 926 } else 927 return make_error<CoverageMapError>( 928 coveragemap_error::malformed, 929 "not supported endianness or bytes in address"); 930 return std::move(Reader); 931 } 932 933 static Expected<std::unique_ptr<BinaryCoverageReader>> 934 loadTestingFormat(StringRef Data, StringRef CompilationDir) { 935 uint8_t BytesInAddress = 8; 936 llvm::endianness Endian = llvm::endianness::little; 937 938 // Read the magic and version. 939 Data = Data.substr(sizeof(TestingFormatMagic)); 940 if (Data.size() < sizeof(uint64_t)) 941 return make_error<CoverageMapError>(coveragemap_error::malformed, 942 "the size of data is too small"); 943 auto TestingVersion = 944 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 945 *reinterpret_cast<const uint64_t *>(Data.data())); 946 Data = Data.substr(sizeof(uint64_t)); 947 948 // Read the ProfileNames data. 949 if (Data.empty()) 950 return make_error<CoverageMapError>(coveragemap_error::truncated); 951 unsigned N = 0; 952 uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N); 953 if (N > Data.size()) 954 return make_error<CoverageMapError>( 955 coveragemap_error::malformed, 956 "the size of TestingFormatMagic is too big"); 957 Data = Data.substr(N); 958 if (Data.empty()) 959 return make_error<CoverageMapError>(coveragemap_error::truncated); 960 N = 0; 961 uint64_t Address = decodeULEB128(Data.bytes_begin(), &N); 962 if (N > Data.size()) 963 return make_error<CoverageMapError>(coveragemap_error::malformed, 964 "the size of ULEB128 is too big"); 965 Data = Data.substr(N); 966 if (Data.size() < ProfileNamesSize) 967 return make_error<CoverageMapError>(coveragemap_error::malformed, 968 "the size of ProfileNames is too big"); 969 auto ProfileNames = std::make_unique<InstrProfSymtab>(); 970 if (Error E = ProfileNames->create(Data.substr(0, ProfileNamesSize), Address)) 971 return std::move(E); 972 Data = Data.substr(ProfileNamesSize); 973 974 // In Version2, the size of CoverageMapping is stored directly. 975 uint64_t CoverageMappingSize; 976 if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) { 977 N = 0; 978 CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N); 979 if (N > Data.size()) 980 return make_error<CoverageMapError>(coveragemap_error::malformed, 981 "the size of ULEB128 is too big"); 982 Data = Data.substr(N); 983 if (CoverageMappingSize < sizeof(CovMapHeader)) 984 return make_error<CoverageMapError>( 985 coveragemap_error::malformed, 986 "the size of CoverageMapping is teoo small"); 987 } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) { 988 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 989 } 990 991 // Skip the padding bytes because coverage map data has an alignment of 8. 992 auto Pad = offsetToAlignedAddr(Data.data(), Align(8)); 993 if (Data.size() < Pad) 994 return make_error<CoverageMapError>(coveragemap_error::malformed, 995 "insufficient padding"); 996 Data = Data.substr(Pad); 997 if (Data.size() < sizeof(CovMapHeader)) 998 return make_error<CoverageMapError>( 999 coveragemap_error::malformed, 1000 "coverage mapping header section is larger than data size"); 1001 auto const *CovHeader = reinterpret_cast<const CovMapHeader *>( 1002 Data.substr(0, sizeof(CovMapHeader)).data()); 1003 auto Version = 1004 CovMapVersion(CovHeader->getVersion<llvm::endianness::little>()); 1005 1006 // In Version1, the size of CoverageMapping is calculated. 1007 if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) { 1008 if (Version < CovMapVersion::Version4) { 1009 CoverageMappingSize = Data.size(); 1010 } else { 1011 auto FilenamesSize = 1012 CovHeader->getFilenamesSize<llvm::endianness::little>(); 1013 CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize; 1014 } 1015 } 1016 1017 auto CoverageMapping = Data.substr(0, CoverageMappingSize); 1018 Data = Data.substr(CoverageMappingSize); 1019 1020 // Read the CoverageRecords data. 1021 if (Version < CovMapVersion::Version4) { 1022 if (!Data.empty()) 1023 return make_error<CoverageMapError>(coveragemap_error::malformed, 1024 "data is not empty"); 1025 } else { 1026 // Skip the padding bytes because coverage records data has an alignment 1027 // of 8. 1028 Pad = offsetToAlignedAddr(Data.data(), Align(8)); 1029 if (Data.size() < Pad) 1030 return make_error<CoverageMapError>(coveragemap_error::malformed, 1031 "insufficient padding"); 1032 Data = Data.substr(Pad); 1033 } 1034 BinaryCoverageReader::FuncRecordsStorage CoverageRecords = 1035 MemoryBuffer::getMemBuffer(Data); 1036 1037 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1038 CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames), 1039 BytesInAddress, Endian, CompilationDir); 1040 } 1041 1042 /// Find all sections that match \p IPSK name. There may be more than one if 1043 /// comdats are in use, e.g. for the __llvm_covfun section on ELF. 1044 static Expected<std::vector<SectionRef>> 1045 lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) { 1046 auto ObjFormat = OF.getTripleObjectFormat(); 1047 auto Name = 1048 getInstrProfSectionName(IPSK, ObjFormat, /*AddSegmentInfo=*/false); 1049 // On COFF, the object file section name may end in "$M". This tells the 1050 // linker to sort these sections between "$A" and "$Z". The linker removes the 1051 // dollar and everything after it in the final binary. Do the same to match. 1052 bool IsCOFF = isa<COFFObjectFile>(OF); 1053 auto stripSuffix = [IsCOFF](StringRef N) { 1054 return IsCOFF ? N.split('$').first : N; 1055 }; 1056 Name = stripSuffix(Name); 1057 1058 std::vector<SectionRef> Sections; 1059 for (const auto &Section : OF.sections()) { 1060 Expected<StringRef> NameOrErr = Section.getName(); 1061 if (!NameOrErr) 1062 return NameOrErr.takeError(); 1063 if (stripSuffix(*NameOrErr) == Name) { 1064 // COFF profile name section contains two null bytes indicating the 1065 // start/end of the section. If its size is 2 bytes, it's empty. 1066 if (IsCOFF && IPSK == IPSK_name && Section.getSize() == 2) 1067 continue; 1068 Sections.push_back(Section); 1069 } 1070 } 1071 if (Sections.empty()) 1072 return make_error<CoverageMapError>(coveragemap_error::no_data_found); 1073 return Sections; 1074 } 1075 1076 static Expected<std::unique_ptr<BinaryCoverageReader>> 1077 loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch, 1078 StringRef CompilationDir = "", 1079 object::BuildIDRef *BinaryID = nullptr) { 1080 std::unique_ptr<ObjectFile> OF; 1081 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1082 // If we have a universal binary, try to look up the object for the 1083 // appropriate architecture. 1084 auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch); 1085 if (!ObjectFileOrErr) 1086 return ObjectFileOrErr.takeError(); 1087 OF = std::move(ObjectFileOrErr.get()); 1088 } else if (isa<ObjectFile>(Bin.get())) { 1089 // For any other object file, upcast and take ownership. 1090 OF.reset(cast<ObjectFile>(Bin.release())); 1091 // If we've asked for a particular arch, make sure they match. 1092 if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) 1093 return errorCodeToError(object_error::arch_not_found); 1094 } else 1095 // We can only handle object files. 1096 return make_error<CoverageMapError>(coveragemap_error::malformed, 1097 "binary is not an object file"); 1098 1099 // The coverage uses native pointer sizes for the object it's written in. 1100 uint8_t BytesInAddress = OF->getBytesInAddress(); 1101 llvm::endianness Endian = 1102 OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1103 1104 // Look for the sections that we are interested in. 1105 auto ProfileNames = std::make_unique<InstrProfSymtab>(); 1106 std::vector<SectionRef> NamesSectionRefs; 1107 // If IPSK_name is not found, fallback to search for IPK_covname, which is 1108 // used when binary correlation is enabled. 1109 auto NamesSection = lookupSections(*OF, IPSK_name); 1110 if (auto E = NamesSection.takeError()) { 1111 consumeError(std::move(E)); 1112 NamesSection = lookupSections(*OF, IPSK_covname); 1113 if (auto E = NamesSection.takeError()) 1114 return std::move(E); 1115 } 1116 NamesSectionRefs = *NamesSection; 1117 1118 if (NamesSectionRefs.size() != 1) 1119 return make_error<CoverageMapError>( 1120 coveragemap_error::malformed, 1121 "the size of coverage mapping section is not one"); 1122 if (Error E = ProfileNames->create(NamesSectionRefs.back())) 1123 return std::move(E); 1124 1125 auto CoverageSection = lookupSections(*OF, IPSK_covmap); 1126 if (auto E = CoverageSection.takeError()) 1127 return std::move(E); 1128 std::vector<SectionRef> CoverageSectionRefs = *CoverageSection; 1129 if (CoverageSectionRefs.size() != 1) 1130 return make_error<CoverageMapError>(coveragemap_error::malformed, 1131 "the size of name section is not one"); 1132 auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents(); 1133 if (!CoverageMappingOrErr) 1134 return CoverageMappingOrErr.takeError(); 1135 StringRef CoverageMapping = CoverageMappingOrErr.get(); 1136 1137 // Look for the coverage records section (Version4 only). 1138 auto CoverageRecordsSections = lookupSections(*OF, IPSK_covfun); 1139 1140 BinaryCoverageReader::FuncRecordsStorage FuncRecords; 1141 if (auto E = CoverageRecordsSections.takeError()) { 1142 consumeError(std::move(E)); 1143 FuncRecords = MemoryBuffer::getMemBuffer(""); 1144 } else { 1145 // Compute the FuncRecordsBuffer of the buffer, taking into account the 1146 // padding between each record, and making sure the first block is aligned 1147 // in memory to maintain consistency between buffer address and size 1148 // alignment. 1149 const Align RecordAlignment(8); 1150 uint64_t FuncRecordsSize = 0; 1151 for (SectionRef Section : *CoverageRecordsSections) { 1152 auto CoverageRecordsOrErr = Section.getContents(); 1153 if (!CoverageRecordsOrErr) 1154 return CoverageRecordsOrErr.takeError(); 1155 FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment); 1156 } 1157 auto WritableBuffer = 1158 WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize); 1159 char *FuncRecordsBuffer = WritableBuffer->getBufferStart(); 1160 assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) && 1161 "Allocated memory is correctly aligned"); 1162 1163 for (SectionRef Section : *CoverageRecordsSections) { 1164 auto CoverageRecordsOrErr = Section.getContents(); 1165 if (!CoverageRecordsOrErr) 1166 return CoverageRecordsOrErr.takeError(); 1167 const auto &CoverageRecords = CoverageRecordsOrErr.get(); 1168 FuncRecordsBuffer = std::copy(CoverageRecords.begin(), 1169 CoverageRecords.end(), FuncRecordsBuffer); 1170 FuncRecordsBuffer = 1171 std::fill_n(FuncRecordsBuffer, 1172 alignAddr(FuncRecordsBuffer, RecordAlignment) - 1173 (uintptr_t)FuncRecordsBuffer, 1174 '\0'); 1175 } 1176 assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() && 1177 "consistent init"); 1178 FuncRecords = std::move(WritableBuffer); 1179 } 1180 1181 if (BinaryID) 1182 *BinaryID = getBuildID(OF.get()); 1183 1184 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1185 CoverageMapping, std::move(FuncRecords), std::move(ProfileNames), 1186 BytesInAddress, Endian, CompilationDir); 1187 } 1188 1189 /// Determine whether \p Arch is invalid or empty, given \p Bin. 1190 static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) { 1191 // If we have a universal binary and Arch doesn't identify any of its slices, 1192 // it's user error. 1193 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) { 1194 for (auto &ObjForArch : Universal->objects()) 1195 if (Arch == ObjForArch.getArchFlagName()) 1196 return false; 1197 return true; 1198 } 1199 return false; 1200 } 1201 1202 Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>> 1203 BinaryCoverageReader::create( 1204 MemoryBufferRef ObjectBuffer, StringRef Arch, 1205 SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers, 1206 StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) { 1207 std::vector<std::unique_ptr<BinaryCoverageReader>> Readers; 1208 1209 if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) { 1210 uint64_t Magic = 1211 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 1212 *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart())); 1213 if (Magic == TestingFormatMagic) { 1214 // This is a special format used for testing. 1215 auto ReaderOrErr = 1216 loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir); 1217 if (!ReaderOrErr) 1218 return ReaderOrErr.takeError(); 1219 Readers.push_back(std::move(ReaderOrErr.get())); 1220 return std::move(Readers); 1221 } 1222 } 1223 1224 auto BinOrErr = createBinary(ObjectBuffer); 1225 if (!BinOrErr) 1226 return BinOrErr.takeError(); 1227 std::unique_ptr<Binary> Bin = std::move(BinOrErr.get()); 1228 1229 if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch)) 1230 return make_error<CoverageMapError>( 1231 coveragemap_error::invalid_or_missing_arch_specifier); 1232 1233 // MachO universal binaries which contain archives need to be treated as 1234 // archives, not as regular binaries. 1235 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1236 for (auto &ObjForArch : Universal->objects()) { 1237 // Skip slices within the universal binary which target the wrong arch. 1238 std::string ObjArch = ObjForArch.getArchFlagName(); 1239 if (Arch != ObjArch) 1240 continue; 1241 1242 auto ArchiveOrErr = ObjForArch.getAsArchive(); 1243 if (!ArchiveOrErr) { 1244 // If this is not an archive, try treating it as a regular object. 1245 consumeError(ArchiveOrErr.takeError()); 1246 break; 1247 } 1248 1249 return BinaryCoverageReader::create( 1250 ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers, 1251 CompilationDir, BinaryIDs); 1252 } 1253 } 1254 1255 // Load coverage out of archive members. 1256 if (auto *Ar = dyn_cast<Archive>(Bin.get())) { 1257 Error Err = Error::success(); 1258 for (auto &Child : Ar->children(Err)) { 1259 Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef(); 1260 if (!ChildBufOrErr) 1261 return ChildBufOrErr.takeError(); 1262 1263 auto ChildReadersOrErr = BinaryCoverageReader::create( 1264 ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir, 1265 BinaryIDs); 1266 if (!ChildReadersOrErr) 1267 return ChildReadersOrErr.takeError(); 1268 for (auto &Reader : ChildReadersOrErr.get()) 1269 Readers.push_back(std::move(Reader)); 1270 } 1271 if (Err) 1272 return std::move(Err); 1273 1274 // Thin archives reference object files outside of the archive file, i.e. 1275 // files which reside in memory not owned by the caller. Transfer ownership 1276 // to the caller. 1277 if (Ar->isThin()) 1278 for (auto &Buffer : Ar->takeThinBuffers()) 1279 ObjectFileBuffers.push_back(std::move(Buffer)); 1280 1281 return std::move(Readers); 1282 } 1283 1284 object::BuildIDRef BinaryID; 1285 auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir, 1286 BinaryIDs ? &BinaryID : nullptr); 1287 if (!ReaderOrErr) 1288 return ReaderOrErr.takeError(); 1289 Readers.push_back(std::move(ReaderOrErr.get())); 1290 if (!BinaryID.empty()) 1291 BinaryIDs->push_back(BinaryID); 1292 return std::move(Readers); 1293 } 1294 1295 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { 1296 if (CurrentRecord >= MappingRecords.size()) 1297 return make_error<CoverageMapError>(coveragemap_error::eof); 1298 1299 FunctionsFilenames.clear(); 1300 Expressions.clear(); 1301 MappingRegions.clear(); 1302 auto &R = MappingRecords[CurrentRecord]; 1303 auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize); 1304 RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames, 1305 Expressions, MappingRegions); 1306 if (auto Err = Reader.read()) 1307 return Err; 1308 1309 Record.FunctionName = R.FunctionName; 1310 Record.FunctionHash = R.FunctionHash; 1311 Record.Filenames = FunctionsFilenames; 1312 Record.Expressions = Expressions; 1313 Record.MappingRegions = MappingRegions; 1314 1315 ++CurrentRecord; 1316 return Error::success(); 1317 } 1318