1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for reading coverage mapping data for 10 // instrumentation based coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/Archive.h" 22 #include "llvm/Object/Binary.h" 23 #include "llvm/Object/COFF.h" 24 #include "llvm/Object/Error.h" 25 #include "llvm/Object/MachOUniversal.h" 26 #include "llvm/Object/ObjectFile.h" 27 #include "llvm/ProfileData/InstrProf.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Compression.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Endian.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/TargetParser/Triple.h" 39 #include <vector> 40 41 using namespace llvm; 42 using namespace coverage; 43 using namespace object; 44 45 #define DEBUG_TYPE "coverage-mapping" 46 47 STATISTIC(CovMapNumRecords, "The # of coverage function records"); 48 STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records"); 49 50 void CoverageMappingIterator::increment() { 51 if (ReadErr != coveragemap_error::success) 52 return; 53 54 // Check if all the records were read or if an error occurred while reading 55 // the next record. 56 if (auto E = Reader->readNextRecord(Record)) 57 handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { 58 if (CME.get() == coveragemap_error::eof) 59 *this = CoverageMappingIterator(); 60 else 61 ReadErr = CME.get(); 62 }); 63 } 64 65 Error RawCoverageReader::readULEB128(uint64_t &Result) { 66 if (Data.empty()) 67 return make_error<CoverageMapError>(coveragemap_error::truncated); 68 unsigned N = 0; 69 Result = decodeULEB128(Data.bytes_begin(), &N); 70 if (N > Data.size()) 71 return make_error<CoverageMapError>(coveragemap_error::malformed, 72 "the size of ULEB128 is too big"); 73 Data = Data.substr(N); 74 return Error::success(); 75 } 76 77 Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { 78 if (auto Err = readULEB128(Result)) 79 return Err; 80 if (Result >= MaxPlus1) 81 return make_error<CoverageMapError>( 82 coveragemap_error::malformed, 83 "the value of ULEB128 is greater than or equal to MaxPlus1"); 84 return Error::success(); 85 } 86 87 Error RawCoverageReader::readSize(uint64_t &Result) { 88 if (auto Err = readULEB128(Result)) 89 return Err; 90 if (Result > Data.size()) 91 return make_error<CoverageMapError>(coveragemap_error::malformed, 92 "the value of ULEB128 is too big"); 93 return Error::success(); 94 } 95 96 Error RawCoverageReader::readString(StringRef &Result) { 97 uint64_t Length; 98 if (auto Err = readSize(Length)) 99 return Err; 100 Result = Data.substr(0, Length); 101 Data = Data.substr(Length); 102 return Error::success(); 103 } 104 105 Error RawCoverageFilenamesReader::read(CovMapVersion Version) { 106 uint64_t NumFilenames; 107 if (auto Err = readSize(NumFilenames)) 108 return Err; 109 if (!NumFilenames) 110 return make_error<CoverageMapError>(coveragemap_error::malformed, 111 "number of filenames is zero"); 112 113 if (Version < CovMapVersion::Version4) 114 return readUncompressed(Version, NumFilenames); 115 116 // The uncompressed length may exceed the size of the encoded filenames. 117 // Skip size validation. 118 uint64_t UncompressedLen; 119 if (auto Err = readULEB128(UncompressedLen)) 120 return Err; 121 122 uint64_t CompressedLen; 123 if (auto Err = readSize(CompressedLen)) 124 return Err; 125 126 if (CompressedLen > 0) { 127 if (!compression::zlib::isAvailable()) 128 return make_error<CoverageMapError>( 129 coveragemap_error::decompression_failed); 130 131 // Allocate memory for the decompressed filenames. 132 SmallVector<uint8_t, 0> StorageBuf; 133 134 // Read compressed filenames. 135 StringRef CompressedFilenames = Data.substr(0, CompressedLen); 136 Data = Data.substr(CompressedLen); 137 auto Err = compression::zlib::decompress( 138 arrayRefFromStringRef(CompressedFilenames), StorageBuf, 139 UncompressedLen); 140 if (Err) { 141 consumeError(std::move(Err)); 142 return make_error<CoverageMapError>( 143 coveragemap_error::decompression_failed); 144 } 145 146 RawCoverageFilenamesReader Delegate(toStringRef(StorageBuf), Filenames, 147 CompilationDir); 148 return Delegate.readUncompressed(Version, NumFilenames); 149 } 150 151 return readUncompressed(Version, NumFilenames); 152 } 153 154 Error RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version, 155 uint64_t NumFilenames) { 156 // Read uncompressed filenames. 157 if (Version < CovMapVersion::Version6) { 158 for (size_t I = 0; I < NumFilenames; ++I) { 159 StringRef Filename; 160 if (auto Err = readString(Filename)) 161 return Err; 162 Filenames.push_back(Filename.str()); 163 } 164 } else { 165 StringRef CWD; 166 if (auto Err = readString(CWD)) 167 return Err; 168 Filenames.push_back(CWD.str()); 169 170 for (size_t I = 1; I < NumFilenames; ++I) { 171 StringRef Filename; 172 if (auto Err = readString(Filename)) 173 return Err; 174 if (sys::path::is_absolute(Filename)) { 175 Filenames.push_back(Filename.str()); 176 } else { 177 SmallString<256> P; 178 if (!CompilationDir.empty()) 179 P.assign(CompilationDir); 180 else 181 P.assign(CWD); 182 llvm::sys::path::append(P, Filename); 183 sys::path::remove_dots(P, /*remove_dot_dot=*/true); 184 Filenames.push_back(static_cast<std::string>(P.str())); 185 } 186 } 187 } 188 return Error::success(); 189 } 190 191 Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { 192 auto Tag = Value & Counter::EncodingTagMask; 193 switch (Tag) { 194 case Counter::Zero: 195 C = Counter::getZero(); 196 return Error::success(); 197 case Counter::CounterValueReference: 198 C = Counter::getCounter(Value >> Counter::EncodingTagBits); 199 return Error::success(); 200 default: 201 break; 202 } 203 Tag -= Counter::Expression; 204 switch (Tag) { 205 case CounterExpression::Subtract: 206 case CounterExpression::Add: { 207 auto ID = Value >> Counter::EncodingTagBits; 208 if (ID >= Expressions.size()) 209 return make_error<CoverageMapError>(coveragemap_error::malformed, 210 "counter expression is invalid"); 211 Expressions[ID].Kind = CounterExpression::ExprKind(Tag); 212 C = Counter::getExpression(ID); 213 break; 214 } 215 default: 216 return make_error<CoverageMapError>(coveragemap_error::malformed, 217 "counter expression kind is invalid"); 218 } 219 return Error::success(); 220 } 221 222 Error RawCoverageMappingReader::readCounter(Counter &C) { 223 uint64_t EncodedCounter; 224 if (auto Err = 225 readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) 226 return Err; 227 if (auto Err = decodeCounter(EncodedCounter, C)) 228 return Err; 229 return Error::success(); 230 } 231 232 static const unsigned EncodingExpansionRegionBit = 1 233 << Counter::EncodingTagBits; 234 235 /// Read the sub-array of regions for the given inferred file id. 236 /// \param NumFileIDs the number of file ids that are defined for this 237 /// function. 238 Error RawCoverageMappingReader::readMappingRegionsSubArray( 239 std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, 240 size_t NumFileIDs) { 241 uint64_t NumRegions; 242 if (auto Err = readSize(NumRegions)) 243 return Err; 244 unsigned LineStart = 0; 245 for (size_t I = 0; I < NumRegions; ++I) { 246 Counter C, C2; 247 uint64_t BIDX = 0, NC = 0, ID = 0, TID = 0, FID = 0; 248 CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; 249 250 // Read the combined counter + region kind. 251 uint64_t EncodedCounterAndRegion; 252 if (auto Err = readIntMax(EncodedCounterAndRegion, 253 std::numeric_limits<unsigned>::max())) 254 return Err; 255 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 256 uint64_t ExpandedFileID = 0; 257 258 // If Tag does not represent a ZeroCounter, then it is understood to refer 259 // to a counter or counter expression with region kind assumed to be 260 // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the 261 // referenced counter or counter expression (and nothing else). 262 // 263 // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set, 264 // then EncodedCounterAndRegion is interpreted to represent an 265 // ExpansionRegion. In all other cases, EncodedCounterAndRegion is 266 // interpreted to refer to a specific region kind, after which additional 267 // fields may be read (e.g. BranchRegions have two encoded counters that 268 // follow an encoded region kind value). 269 if (Tag != Counter::Zero) { 270 if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) 271 return Err; 272 } else { 273 // Is it an expansion region? 274 if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { 275 Kind = CounterMappingRegion::ExpansionRegion; 276 ExpandedFileID = EncodedCounterAndRegion >> 277 Counter::EncodingCounterTagAndExpansionRegionTagBits; 278 if (ExpandedFileID >= NumFileIDs) 279 return make_error<CoverageMapError>(coveragemap_error::malformed, 280 "ExpandedFileID is invalid"); 281 } else { 282 switch (EncodedCounterAndRegion >> 283 Counter::EncodingCounterTagAndExpansionRegionTagBits) { 284 case CounterMappingRegion::CodeRegion: 285 // Don't do anything when we have a code region with a zero counter. 286 break; 287 case CounterMappingRegion::SkippedRegion: 288 Kind = CounterMappingRegion::SkippedRegion; 289 break; 290 case CounterMappingRegion::BranchRegion: 291 // For a Branch Region, read two successive counters. 292 Kind = CounterMappingRegion::BranchRegion; 293 if (auto Err = readCounter(C)) 294 return Err; 295 if (auto Err = readCounter(C2)) 296 return Err; 297 break; 298 case CounterMappingRegion::MCDCBranchRegion: 299 // For a MCDC Branch Region, read two successive counters and 3 IDs. 300 Kind = CounterMappingRegion::MCDCBranchRegion; 301 if (auto Err = readCounter(C)) 302 return Err; 303 if (auto Err = readCounter(C2)) 304 return Err; 305 if (auto Err = readIntMax(ID, std::numeric_limits<unsigned>::max())) 306 return Err; 307 if (auto Err = readIntMax(TID, std::numeric_limits<unsigned>::max())) 308 return Err; 309 if (auto Err = readIntMax(FID, std::numeric_limits<unsigned>::max())) 310 return Err; 311 break; 312 case CounterMappingRegion::MCDCDecisionRegion: 313 Kind = CounterMappingRegion::MCDCDecisionRegion; 314 if (auto Err = readIntMax(BIDX, std::numeric_limits<unsigned>::max())) 315 return Err; 316 if (auto Err = readIntMax(NC, std::numeric_limits<unsigned>::max())) 317 return Err; 318 break; 319 default: 320 return make_error<CoverageMapError>(coveragemap_error::malformed, 321 "region kind is incorrect"); 322 } 323 } 324 } 325 326 // Read the source range. 327 uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; 328 if (auto Err = 329 readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) 330 return Err; 331 if (auto Err = readULEB128(ColumnStart)) 332 return Err; 333 if (ColumnStart > std::numeric_limits<unsigned>::max()) 334 return make_error<CoverageMapError>(coveragemap_error::malformed, 335 "start column is too big"); 336 if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) 337 return Err; 338 if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) 339 return Err; 340 LineStart += LineStartDelta; 341 342 // If the high bit of ColumnEnd is set, this is a gap region. 343 if (ColumnEnd & (1U << 31)) { 344 Kind = CounterMappingRegion::GapRegion; 345 ColumnEnd &= ~(1U << 31); 346 } 347 348 // Adjust the column locations for the empty regions that are supposed to 349 // cover whole lines. Those regions should be encoded with the 350 // column range (1 -> std::numeric_limits<unsigned>::max()), but because 351 // the encoded std::numeric_limits<unsigned>::max() is several bytes long, 352 // we set the column range to (0 -> 0) to ensure that the column start and 353 // column end take up one byte each. 354 // The std::numeric_limits<unsigned>::max() is used to represent a column 355 // position at the end of the line without knowing the length of that line. 356 if (ColumnStart == 0 && ColumnEnd == 0) { 357 ColumnStart = 1; 358 ColumnEnd = std::numeric_limits<unsigned>::max(); 359 } 360 361 LLVM_DEBUG({ 362 dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" 363 << ColumnStart << " -> " << (LineStart + NumLines) << ":" 364 << ColumnEnd << ", "; 365 if (Kind == CounterMappingRegion::ExpansionRegion) 366 dbgs() << "Expands to file " << ExpandedFileID; 367 else 368 CounterMappingContext(Expressions).dump(C, dbgs()); 369 dbgs() << "\n"; 370 }); 371 372 auto CMR = CounterMappingRegion( 373 C, C2, 374 CounterMappingRegion::MCDCParameters{ 375 static_cast<unsigned>(BIDX), static_cast<unsigned>(NC), 376 static_cast<unsigned>(ID), static_cast<unsigned>(TID), 377 static_cast<unsigned>(FID)}, 378 InferredFileID, ExpandedFileID, LineStart, ColumnStart, 379 LineStart + NumLines, ColumnEnd, Kind); 380 if (CMR.startLoc() > CMR.endLoc()) 381 return make_error<CoverageMapError>( 382 coveragemap_error::malformed, 383 "counter mapping region locations are incorrect"); 384 MappingRegions.push_back(CMR); 385 } 386 return Error::success(); 387 } 388 389 Error RawCoverageMappingReader::read() { 390 // Read the virtual file mapping. 391 SmallVector<unsigned, 8> VirtualFileMapping; 392 uint64_t NumFileMappings; 393 if (auto Err = readSize(NumFileMappings)) 394 return Err; 395 for (size_t I = 0; I < NumFileMappings; ++I) { 396 uint64_t FilenameIndex; 397 if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) 398 return Err; 399 VirtualFileMapping.push_back(FilenameIndex); 400 } 401 402 // Construct the files using unique filenames and virtual file mapping. 403 for (auto I : VirtualFileMapping) { 404 Filenames.push_back(TranslationUnitFilenames[I]); 405 } 406 407 // Read the expressions. 408 uint64_t NumExpressions; 409 if (auto Err = readSize(NumExpressions)) 410 return Err; 411 // Create an array of dummy expressions that get the proper counters 412 // when the expressions are read, and the proper kinds when the counters 413 // are decoded. 414 Expressions.resize( 415 NumExpressions, 416 CounterExpression(CounterExpression::Subtract, Counter(), Counter())); 417 for (size_t I = 0; I < NumExpressions; ++I) { 418 if (auto Err = readCounter(Expressions[I].LHS)) 419 return Err; 420 if (auto Err = readCounter(Expressions[I].RHS)) 421 return Err; 422 } 423 424 // Read the mapping regions sub-arrays. 425 for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); 426 InferredFileID < S; ++InferredFileID) { 427 if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, 428 VirtualFileMapping.size())) 429 return Err; 430 } 431 432 // Set the counters for the expansion regions. 433 // i.e. Counter of expansion region = counter of the first region 434 // from the expanded file. 435 // Perform multiple passes to correctly propagate the counters through 436 // all the nested expansion regions. 437 SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; 438 FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); 439 for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { 440 for (auto &R : MappingRegions) { 441 if (R.Kind != CounterMappingRegion::ExpansionRegion) 442 continue; 443 assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); 444 FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; 445 } 446 for (auto &R : MappingRegions) { 447 if (FileIDExpansionRegionMapping[R.FileID]) { 448 FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; 449 FileIDExpansionRegionMapping[R.FileID] = nullptr; 450 } 451 } 452 } 453 454 return Error::success(); 455 } 456 457 Expected<bool> RawCoverageMappingDummyChecker::isDummy() { 458 // A dummy coverage mapping data consists of just one region with zero count. 459 uint64_t NumFileMappings; 460 if (Error Err = readSize(NumFileMappings)) 461 return std::move(Err); 462 if (NumFileMappings != 1) 463 return false; 464 // We don't expect any specific value for the filename index, just skip it. 465 uint64_t FilenameIndex; 466 if (Error Err = 467 readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) 468 return std::move(Err); 469 uint64_t NumExpressions; 470 if (Error Err = readSize(NumExpressions)) 471 return std::move(Err); 472 if (NumExpressions != 0) 473 return false; 474 uint64_t NumRegions; 475 if (Error Err = readSize(NumRegions)) 476 return std::move(Err); 477 if (NumRegions != 1) 478 return false; 479 uint64_t EncodedCounterAndRegion; 480 if (Error Err = readIntMax(EncodedCounterAndRegion, 481 std::numeric_limits<unsigned>::max())) 482 return std::move(Err); 483 unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; 484 return Tag == Counter::Zero; 485 } 486 487 Error InstrProfSymtab::create(SectionRef &Section) { 488 Expected<StringRef> DataOrErr = Section.getContents(); 489 if (!DataOrErr) 490 return DataOrErr.takeError(); 491 Data = *DataOrErr; 492 Address = Section.getAddress(); 493 494 // If this is a linked PE/COFF file, then we have to skip over the null byte 495 // that is allocated in the .lprfn$A section in the LLVM profiling runtime. 496 // If the name section is .lprfcovnames, it doesn't have the null byte at the 497 // beginning. 498 const ObjectFile *Obj = Section.getObject(); 499 if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject()) 500 if (Expected<StringRef> NameOrErr = Section.getName()) 501 if (*NameOrErr != getInstrProfSectionName(IPSK_covname, Triple::COFF)) 502 Data = Data.drop_front(1); 503 504 return Error::success(); 505 } 506 507 StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { 508 if (Pointer < Address) 509 return StringRef(); 510 auto Offset = Pointer - Address; 511 if (Offset + Size > Data.size()) 512 return StringRef(); 513 return Data.substr(Pointer - Address, Size); 514 } 515 516 // Check if the mapping data is a dummy, i.e. is emitted for an unused function. 517 static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { 518 // The hash value of dummy mapping records is always zero. 519 if (Hash) 520 return false; 521 return RawCoverageMappingDummyChecker(Mapping).isDummy(); 522 } 523 524 /// A range of filename indices. Used to specify the location of a batch of 525 /// filenames in a vector-like container. 526 struct FilenameRange { 527 unsigned StartingIndex; 528 unsigned Length; 529 530 FilenameRange(unsigned StartingIndex, unsigned Length) 531 : StartingIndex(StartingIndex), Length(Length) {} 532 533 void markInvalid() { Length = 0; } 534 bool isInvalid() const { return Length == 0; } 535 }; 536 537 namespace { 538 539 /// The interface to read coverage mapping function records for a module. 540 struct CovMapFuncRecordReader { 541 virtual ~CovMapFuncRecordReader() = default; 542 543 // Read a coverage header. 544 // 545 // \p CovBuf points to the buffer containing the \c CovHeader of the coverage 546 // mapping data associated with the module. 547 // 548 // Returns a pointer to the next \c CovHeader if it exists, or to an address 549 // greater than \p CovEnd if not. 550 virtual Expected<const char *> readCoverageHeader(const char *CovBuf, 551 const char *CovBufEnd) = 0; 552 553 // Read function records. 554 // 555 // \p FuncRecBuf points to the buffer containing a batch of function records. 556 // \p FuncRecBufEnd points past the end of the batch of records. 557 // 558 // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames 559 // associated with the function records. It is unused in Version4. 560 // 561 // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage 562 // mappings associated with the function records. It is unused in Version4. 563 virtual Error 564 readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 565 std::optional<FilenameRange> OutOfLineFileRange, 566 const char *OutOfLineMappingBuf, 567 const char *OutOfLineMappingBufEnd) = 0; 568 569 template <class IntPtrT, llvm::endianness Endian> 570 static Expected<std::unique_ptr<CovMapFuncRecordReader>> 571 get(CovMapVersion Version, InstrProfSymtab &P, 572 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 573 std::vector<std::string> &F); 574 }; 575 576 // A class for reading coverage mapping function records for a module. 577 template <CovMapVersion Version, class IntPtrT, llvm::endianness Endian> 578 class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { 579 using FuncRecordType = 580 typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType; 581 using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType; 582 583 // Maps function's name references to the indexes of their records 584 // in \c Records. 585 DenseMap<NameRefType, size_t> FunctionRecords; 586 InstrProfSymtab &ProfileNames; 587 StringRef CompilationDir; 588 std::vector<std::string> &Filenames; 589 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; 590 591 // Maps a hash of the filenames in a TU to a \c FileRange. The range 592 // specifies the location of the hashed filenames in \c Filenames. 593 DenseMap<uint64_t, FilenameRange> FileRangeMap; 594 595 // Add the record to the collection if we don't already have a record that 596 // points to the same function name. This is useful to ignore the redundant 597 // records for the functions with ODR linkage. 598 // In addition, prefer records with real coverage mapping data to dummy 599 // records, which were emitted for inline functions which were seen but 600 // not used in the corresponding translation unit. 601 Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, 602 StringRef Mapping, 603 FilenameRange FileRange) { 604 ++CovMapNumRecords; 605 uint64_t FuncHash = CFR->template getFuncHash<Endian>(); 606 NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); 607 auto InsertResult = 608 FunctionRecords.insert(std::make_pair(NameRef, Records.size())); 609 if (InsertResult.second) { 610 StringRef FuncName; 611 if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) 612 return Err; 613 if (FuncName.empty()) 614 return make_error<InstrProfError>(instrprof_error::malformed, 615 "function name is empty"); 616 ++CovMapNumUsedRecords; 617 Records.emplace_back(Version, FuncName, FuncHash, Mapping, 618 FileRange.StartingIndex, FileRange.Length); 619 return Error::success(); 620 } 621 // Update the existing record if it's a dummy and the new record is real. 622 size_t OldRecordIndex = InsertResult.first->second; 623 BinaryCoverageReader::ProfileMappingRecord &OldRecord = 624 Records[OldRecordIndex]; 625 Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( 626 OldRecord.FunctionHash, OldRecord.CoverageMapping); 627 if (Error Err = OldIsDummyExpected.takeError()) 628 return Err; 629 if (!*OldIsDummyExpected) 630 return Error::success(); 631 Expected<bool> NewIsDummyExpected = 632 isCoverageMappingDummy(FuncHash, Mapping); 633 if (Error Err = NewIsDummyExpected.takeError()) 634 return Err; 635 if (*NewIsDummyExpected) 636 return Error::success(); 637 ++CovMapNumUsedRecords; 638 OldRecord.FunctionHash = FuncHash; 639 OldRecord.CoverageMapping = Mapping; 640 OldRecord.FilenamesBegin = FileRange.StartingIndex; 641 OldRecord.FilenamesSize = FileRange.Length; 642 return Error::success(); 643 } 644 645 public: 646 VersionedCovMapFuncRecordReader( 647 InstrProfSymtab &P, 648 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 649 std::vector<std::string> &F) 650 : ProfileNames(P), CompilationDir(D), Filenames(F), Records(R) {} 651 652 ~VersionedCovMapFuncRecordReader() override = default; 653 654 Expected<const char *> readCoverageHeader(const char *CovBuf, 655 const char *CovBufEnd) override { 656 using namespace support; 657 658 if (CovBuf + sizeof(CovMapHeader) > CovBufEnd) 659 return make_error<CoverageMapError>( 660 coveragemap_error::malformed, 661 "coverage mapping header section is larger than buffer size"); 662 auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf); 663 uint32_t NRecords = CovHeader->getNRecords<Endian>(); 664 uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); 665 uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); 666 assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); 667 CovBuf = reinterpret_cast<const char *>(CovHeader + 1); 668 669 // Skip past the function records, saving the start and end for later. 670 // This is a no-op in Version4 (function records are read after all headers 671 // are read). 672 const char *FuncRecBuf = nullptr; 673 const char *FuncRecBufEnd = nullptr; 674 if (Version < CovMapVersion::Version4) 675 FuncRecBuf = CovBuf; 676 CovBuf += NRecords * sizeof(FuncRecordType); 677 if (Version < CovMapVersion::Version4) 678 FuncRecBufEnd = CovBuf; 679 680 // Get the filenames. 681 if (CovBuf + FilenamesSize > CovBufEnd) 682 return make_error<CoverageMapError>( 683 coveragemap_error::malformed, 684 "filenames section is larger than buffer size"); 685 size_t FilenamesBegin = Filenames.size(); 686 StringRef FilenameRegion(CovBuf, FilenamesSize); 687 RawCoverageFilenamesReader Reader(FilenameRegion, Filenames, 688 CompilationDir); 689 if (auto Err = Reader.read(Version)) 690 return std::move(Err); 691 CovBuf += FilenamesSize; 692 FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin); 693 694 if (Version >= CovMapVersion::Version4) { 695 // Map a hash of the filenames region to the filename range associated 696 // with this coverage header. 697 int64_t FilenamesRef = 698 llvm::IndexedInstrProf::ComputeHash(FilenameRegion); 699 auto Insert = 700 FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange)); 701 if (!Insert.second) { 702 // The same filenames ref was encountered twice. It's possible that 703 // the associated filenames are the same. 704 auto It = Filenames.begin(); 705 FilenameRange &OrigRange = Insert.first->getSecond(); 706 if (std::equal(It + OrigRange.StartingIndex, 707 It + OrigRange.StartingIndex + OrigRange.Length, 708 It + FileRange.StartingIndex, 709 It + FileRange.StartingIndex + FileRange.Length)) 710 // Map the new range to the original one. 711 FileRange = OrigRange; 712 else 713 // This is a hash collision. Mark the filenames ref invalid. 714 OrigRange.markInvalid(); 715 } 716 } 717 718 // We'll read the coverage mapping records in the loop below. 719 // This is a no-op in Version4 (coverage mappings are not affixed to the 720 // coverage header). 721 const char *MappingBuf = CovBuf; 722 if (Version >= CovMapVersion::Version4 && CoverageSize != 0) 723 return make_error<CoverageMapError>(coveragemap_error::malformed, 724 "coverage mapping size is not zero"); 725 CovBuf += CoverageSize; 726 const char *MappingEnd = CovBuf; 727 728 if (CovBuf > CovBufEnd) 729 return make_error<CoverageMapError>( 730 coveragemap_error::malformed, 731 "function records section is larger than buffer size"); 732 733 if (Version < CovMapVersion::Version4) { 734 // Read each function record. 735 if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange, 736 MappingBuf, MappingEnd)) 737 return std::move(E); 738 } 739 740 // Each coverage map has an alignment of 8, so we need to adjust alignment 741 // before reading the next map. 742 CovBuf += offsetToAlignedAddr(CovBuf, Align(8)); 743 744 return CovBuf; 745 } 746 747 Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd, 748 std::optional<FilenameRange> OutOfLineFileRange, 749 const char *OutOfLineMappingBuf, 750 const char *OutOfLineMappingBufEnd) override { 751 auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf); 752 while ((const char *)CFR < FuncRecBufEnd) { 753 // Validate the length of the coverage mapping for this function. 754 const char *NextMappingBuf; 755 const FuncRecordType *NextCFR; 756 std::tie(NextMappingBuf, NextCFR) = 757 CFR->template advanceByOne<Endian>(OutOfLineMappingBuf); 758 if (Version < CovMapVersion::Version4) 759 if (NextMappingBuf > OutOfLineMappingBufEnd) 760 return make_error<CoverageMapError>( 761 coveragemap_error::malformed, 762 "next mapping buffer is larger than buffer size"); 763 764 // Look up the set of filenames associated with this function record. 765 std::optional<FilenameRange> FileRange; 766 if (Version < CovMapVersion::Version4) { 767 FileRange = OutOfLineFileRange; 768 } else { 769 uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>(); 770 auto It = FileRangeMap.find(FilenamesRef); 771 if (It == FileRangeMap.end()) 772 return make_error<CoverageMapError>( 773 coveragemap_error::malformed, 774 "no filename found for function with hash=0x" + 775 Twine::utohexstr(FilenamesRef)); 776 else 777 FileRange = It->getSecond(); 778 } 779 780 // Now, read the coverage data. 781 if (FileRange && !FileRange->isInvalid()) { 782 StringRef Mapping = 783 CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf); 784 if (Version >= CovMapVersion::Version4 && 785 Mapping.data() + Mapping.size() > FuncRecBufEnd) 786 return make_error<CoverageMapError>( 787 coveragemap_error::malformed, 788 "coverage mapping data is larger than buffer size"); 789 if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange)) 790 return Err; 791 } 792 793 std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR); 794 } 795 return Error::success(); 796 } 797 }; 798 799 } // end anonymous namespace 800 801 template <class IntPtrT, llvm::endianness Endian> 802 Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( 803 CovMapVersion Version, InstrProfSymtab &P, 804 std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, StringRef D, 805 std::vector<std::string> &F) { 806 using namespace coverage; 807 808 switch (Version) { 809 case CovMapVersion::Version1: 810 return std::make_unique<VersionedCovMapFuncRecordReader< 811 CovMapVersion::Version1, IntPtrT, Endian>>(P, R, D, F); 812 case CovMapVersion::Version2: 813 case CovMapVersion::Version3: 814 case CovMapVersion::Version4: 815 case CovMapVersion::Version5: 816 case CovMapVersion::Version6: 817 case CovMapVersion::Version7: 818 // Decompress the name data. 819 if (Error E = P.create(P.getNameData())) 820 return std::move(E); 821 if (Version == CovMapVersion::Version2) 822 return std::make_unique<VersionedCovMapFuncRecordReader< 823 CovMapVersion::Version2, IntPtrT, Endian>>(P, R, D, F); 824 else if (Version == CovMapVersion::Version3) 825 return std::make_unique<VersionedCovMapFuncRecordReader< 826 CovMapVersion::Version3, IntPtrT, Endian>>(P, R, D, F); 827 else if (Version == CovMapVersion::Version4) 828 return std::make_unique<VersionedCovMapFuncRecordReader< 829 CovMapVersion::Version4, IntPtrT, Endian>>(P, R, D, F); 830 else if (Version == CovMapVersion::Version5) 831 return std::make_unique<VersionedCovMapFuncRecordReader< 832 CovMapVersion::Version5, IntPtrT, Endian>>(P, R, D, F); 833 else if (Version == CovMapVersion::Version6) 834 return std::make_unique<VersionedCovMapFuncRecordReader< 835 CovMapVersion::Version6, IntPtrT, Endian>>(P, R, D, F); 836 else if (Version == CovMapVersion::Version7) 837 return std::make_unique<VersionedCovMapFuncRecordReader< 838 CovMapVersion::Version7, IntPtrT, Endian>>(P, R, D, F); 839 } 840 llvm_unreachable("Unsupported version"); 841 } 842 843 template <typename T, llvm::endianness Endian> 844 static Error readCoverageMappingData( 845 InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords, 846 std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, 847 StringRef CompilationDir, std::vector<std::string> &Filenames) { 848 using namespace coverage; 849 850 // Read the records in the coverage data section. 851 auto CovHeader = 852 reinterpret_cast<const CovMapHeader *>(CovMap.data()); 853 CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); 854 if (Version > CovMapVersion::CurrentVersion) 855 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 856 Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = 857 CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, 858 CompilationDir, Filenames); 859 if (Error E = ReaderExpected.takeError()) 860 return E; 861 auto Reader = std::move(ReaderExpected.get()); 862 const char *CovBuf = CovMap.data(); 863 const char *CovBufEnd = CovBuf + CovMap.size(); 864 const char *FuncRecBuf = FuncRecords.data(); 865 const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size(); 866 while (CovBuf < CovBufEnd) { 867 // Read the current coverage header & filename data. 868 // 869 // Prior to Version4, this also reads all function records affixed to the 870 // header. 871 // 872 // Return a pointer to the next coverage header. 873 auto NextOrErr = Reader->readCoverageHeader(CovBuf, CovBufEnd); 874 if (auto E = NextOrErr.takeError()) 875 return E; 876 CovBuf = NextOrErr.get(); 877 } 878 // In Version4, function records are not affixed to coverage headers. Read 879 // the records from their dedicated section. 880 if (Version >= CovMapVersion::Version4) 881 return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, std::nullopt, 882 nullptr, nullptr); 883 return Error::success(); 884 } 885 886 Expected<std::unique_ptr<BinaryCoverageReader>> 887 BinaryCoverageReader::createCoverageReaderFromBuffer( 888 StringRef Coverage, FuncRecordsStorage &&FuncRecords, 889 InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress, 890 llvm::endianness Endian, StringRef CompilationDir) { 891 std::unique_ptr<BinaryCoverageReader> Reader( 892 new BinaryCoverageReader(std::move(FuncRecords))); 893 Reader->ProfileNames = std::move(ProfileNames); 894 StringRef FuncRecordsRef = Reader->FuncRecords->getBuffer(); 895 if (BytesInAddress == 4 && Endian == llvm::endianness::little) { 896 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::little>( 897 Reader->ProfileNames, Coverage, FuncRecordsRef, 898 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 899 return std::move(E); 900 } else if (BytesInAddress == 4 && Endian == llvm::endianness::big) { 901 if (Error E = readCoverageMappingData<uint32_t, llvm::endianness::big>( 902 Reader->ProfileNames, Coverage, FuncRecordsRef, 903 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 904 return std::move(E); 905 } else if (BytesInAddress == 8 && Endian == llvm::endianness::little) { 906 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::little>( 907 Reader->ProfileNames, Coverage, FuncRecordsRef, 908 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 909 return std::move(E); 910 } else if (BytesInAddress == 8 && Endian == llvm::endianness::big) { 911 if (Error E = readCoverageMappingData<uint64_t, llvm::endianness::big>( 912 Reader->ProfileNames, Coverage, FuncRecordsRef, 913 Reader->MappingRecords, CompilationDir, Reader->Filenames)) 914 return std::move(E); 915 } else 916 return make_error<CoverageMapError>( 917 coveragemap_error::malformed, 918 "not supported endianness or bytes in address"); 919 return std::move(Reader); 920 } 921 922 static Expected<std::unique_ptr<BinaryCoverageReader>> 923 loadTestingFormat(StringRef Data, StringRef CompilationDir) { 924 uint8_t BytesInAddress = 8; 925 llvm::endianness Endian = llvm::endianness::little; 926 927 // Read the magic and version. 928 Data = Data.substr(sizeof(TestingFormatMagic)); 929 if (Data.size() < sizeof(uint64_t)) 930 return make_error<CoverageMapError>(coveragemap_error::malformed, 931 "the size of data is too small"); 932 auto TestingVersion = 933 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 934 *reinterpret_cast<const uint64_t *>(Data.data())); 935 Data = Data.substr(sizeof(uint64_t)); 936 937 // Read the ProfileNames data. 938 if (Data.empty()) 939 return make_error<CoverageMapError>(coveragemap_error::truncated); 940 unsigned N = 0; 941 uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N); 942 if (N > Data.size()) 943 return make_error<CoverageMapError>( 944 coveragemap_error::malformed, 945 "the size of TestingFormatMagic is too big"); 946 Data = Data.substr(N); 947 if (Data.empty()) 948 return make_error<CoverageMapError>(coveragemap_error::truncated); 949 N = 0; 950 uint64_t Address = decodeULEB128(Data.bytes_begin(), &N); 951 if (N > Data.size()) 952 return make_error<CoverageMapError>(coveragemap_error::malformed, 953 "the size of ULEB128 is too big"); 954 Data = Data.substr(N); 955 if (Data.size() < ProfileNamesSize) 956 return make_error<CoverageMapError>(coveragemap_error::malformed, 957 "the size of ProfileNames is too big"); 958 InstrProfSymtab ProfileNames; 959 if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address)) 960 return std::move(E); 961 Data = Data.substr(ProfileNamesSize); 962 963 // In Version2, the size of CoverageMapping is stored directly. 964 uint64_t CoverageMappingSize; 965 if (TestingVersion == uint64_t(TestingFormatVersion::Version2)) { 966 N = 0; 967 CoverageMappingSize = decodeULEB128(Data.bytes_begin(), &N); 968 if (N > Data.size()) 969 return make_error<CoverageMapError>(coveragemap_error::malformed, 970 "the size of ULEB128 is too big"); 971 Data = Data.substr(N); 972 if (CoverageMappingSize < sizeof(CovMapHeader)) 973 return make_error<CoverageMapError>( 974 coveragemap_error::malformed, 975 "the size of CoverageMapping is teoo small"); 976 } else if (TestingVersion != uint64_t(TestingFormatVersion::Version1)) { 977 return make_error<CoverageMapError>(coveragemap_error::unsupported_version); 978 } 979 980 // Skip the padding bytes because coverage map data has an alignment of 8. 981 auto Pad = offsetToAlignedAddr(Data.data(), Align(8)); 982 if (Data.size() < Pad) 983 return make_error<CoverageMapError>(coveragemap_error::malformed, 984 "insufficient padding"); 985 Data = Data.substr(Pad); 986 if (Data.size() < sizeof(CovMapHeader)) 987 return make_error<CoverageMapError>( 988 coveragemap_error::malformed, 989 "coverage mapping header section is larger than data size"); 990 auto const *CovHeader = reinterpret_cast<const CovMapHeader *>( 991 Data.substr(0, sizeof(CovMapHeader)).data()); 992 auto Version = 993 CovMapVersion(CovHeader->getVersion<llvm::endianness::little>()); 994 995 // In Version1, the size of CoverageMapping is calculated. 996 if (TestingVersion == uint64_t(TestingFormatVersion::Version1)) { 997 if (Version < CovMapVersion::Version4) { 998 CoverageMappingSize = Data.size(); 999 } else { 1000 auto FilenamesSize = 1001 CovHeader->getFilenamesSize<llvm::endianness::little>(); 1002 CoverageMappingSize = sizeof(CovMapHeader) + FilenamesSize; 1003 } 1004 } 1005 1006 auto CoverageMapping = Data.substr(0, CoverageMappingSize); 1007 Data = Data.substr(CoverageMappingSize); 1008 1009 // Read the CoverageRecords data. 1010 if (Version < CovMapVersion::Version4) { 1011 if (!Data.empty()) 1012 return make_error<CoverageMapError>(coveragemap_error::malformed, 1013 "data is not empty"); 1014 } else { 1015 // Skip the padding bytes because coverage records data has an alignment 1016 // of 8. 1017 Pad = offsetToAlignedAddr(Data.data(), Align(8)); 1018 if (Data.size() < Pad) 1019 return make_error<CoverageMapError>(coveragemap_error::malformed, 1020 "insufficient padding"); 1021 Data = Data.substr(Pad); 1022 } 1023 BinaryCoverageReader::FuncRecordsStorage CoverageRecords = 1024 MemoryBuffer::getMemBuffer(Data); 1025 1026 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1027 CoverageMapping, std::move(CoverageRecords), std::move(ProfileNames), 1028 BytesInAddress, Endian, CompilationDir); 1029 } 1030 1031 /// Find all sections that match \p IPSK name. There may be more than one if 1032 /// comdats are in use, e.g. for the __llvm_covfun section on ELF. 1033 static Expected<std::vector<SectionRef>> 1034 lookupSections(ObjectFile &OF, InstrProfSectKind IPSK) { 1035 auto ObjFormat = OF.getTripleObjectFormat(); 1036 auto Name = 1037 getInstrProfSectionName(IPSK, ObjFormat, /*AddSegmentInfo=*/false); 1038 // On COFF, the object file section name may end in "$M". This tells the 1039 // linker to sort these sections between "$A" and "$Z". The linker removes the 1040 // dollar and everything after it in the final binary. Do the same to match. 1041 bool IsCOFF = isa<COFFObjectFile>(OF); 1042 auto stripSuffix = [IsCOFF](StringRef N) { 1043 return IsCOFF ? N.split('$').first : N; 1044 }; 1045 Name = stripSuffix(Name); 1046 1047 std::vector<SectionRef> Sections; 1048 for (const auto &Section : OF.sections()) { 1049 Expected<StringRef> NameOrErr = Section.getName(); 1050 if (!NameOrErr) 1051 return NameOrErr.takeError(); 1052 if (stripSuffix(*NameOrErr) == Name) { 1053 // COFF profile name section contains two null bytes indicating the 1054 // start/end of the section. If its size is 2 bytes, it's empty. 1055 if (IsCOFF && IPSK == IPSK_name && Section.getSize() == 2) 1056 continue; 1057 Sections.push_back(Section); 1058 } 1059 } 1060 if (Sections.empty()) 1061 return make_error<CoverageMapError>(coveragemap_error::no_data_found); 1062 return Sections; 1063 } 1064 1065 static Expected<std::unique_ptr<BinaryCoverageReader>> 1066 loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch, 1067 StringRef CompilationDir = "", 1068 object::BuildIDRef *BinaryID = nullptr) { 1069 std::unique_ptr<ObjectFile> OF; 1070 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1071 // If we have a universal binary, try to look up the object for the 1072 // appropriate architecture. 1073 auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch); 1074 if (!ObjectFileOrErr) 1075 return ObjectFileOrErr.takeError(); 1076 OF = std::move(ObjectFileOrErr.get()); 1077 } else if (isa<ObjectFile>(Bin.get())) { 1078 // For any other object file, upcast and take ownership. 1079 OF.reset(cast<ObjectFile>(Bin.release())); 1080 // If we've asked for a particular arch, make sure they match. 1081 if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) 1082 return errorCodeToError(object_error::arch_not_found); 1083 } else 1084 // We can only handle object files. 1085 return make_error<CoverageMapError>(coveragemap_error::malformed, 1086 "binary is not an object file"); 1087 1088 // The coverage uses native pointer sizes for the object it's written in. 1089 uint8_t BytesInAddress = OF->getBytesInAddress(); 1090 llvm::endianness Endian = 1091 OF->isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1092 1093 // Look for the sections that we are interested in. 1094 InstrProfSymtab ProfileNames; 1095 std::vector<SectionRef> NamesSectionRefs; 1096 // If IPSK_name is not found, fallback to search for IPK_covname, which is 1097 // used when binary correlation is enabled. 1098 auto NamesSection = lookupSections(*OF, IPSK_name); 1099 if (auto E = NamesSection.takeError()) { 1100 consumeError(std::move(E)); 1101 NamesSection = lookupSections(*OF, IPSK_covname); 1102 if (auto E = NamesSection.takeError()) 1103 return std::move(E); 1104 } 1105 NamesSectionRefs = *NamesSection; 1106 1107 if (NamesSectionRefs.size() != 1) 1108 return make_error<CoverageMapError>( 1109 coveragemap_error::malformed, 1110 "the size of coverage mapping section is not one"); 1111 if (Error E = ProfileNames.create(NamesSectionRefs.back())) 1112 return std::move(E); 1113 1114 auto CoverageSection = lookupSections(*OF, IPSK_covmap); 1115 if (auto E = CoverageSection.takeError()) 1116 return std::move(E); 1117 std::vector<SectionRef> CoverageSectionRefs = *CoverageSection; 1118 if (CoverageSectionRefs.size() != 1) 1119 return make_error<CoverageMapError>(coveragemap_error::malformed, 1120 "the size of name section is not one"); 1121 auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents(); 1122 if (!CoverageMappingOrErr) 1123 return CoverageMappingOrErr.takeError(); 1124 StringRef CoverageMapping = CoverageMappingOrErr.get(); 1125 1126 // Look for the coverage records section (Version4 only). 1127 auto CoverageRecordsSections = lookupSections(*OF, IPSK_covfun); 1128 1129 BinaryCoverageReader::FuncRecordsStorage FuncRecords; 1130 if (auto E = CoverageRecordsSections.takeError()) { 1131 consumeError(std::move(E)); 1132 FuncRecords = MemoryBuffer::getMemBuffer(""); 1133 } else { 1134 // Compute the FuncRecordsBuffer of the buffer, taking into account the 1135 // padding between each record, and making sure the first block is aligned 1136 // in memory to maintain consistency between buffer address and size 1137 // alignment. 1138 const Align RecordAlignment(8); 1139 uint64_t FuncRecordsSize = 0; 1140 for (SectionRef Section : *CoverageRecordsSections) { 1141 auto CoverageRecordsOrErr = Section.getContents(); 1142 if (!CoverageRecordsOrErr) 1143 return CoverageRecordsOrErr.takeError(); 1144 FuncRecordsSize += alignTo(CoverageRecordsOrErr->size(), RecordAlignment); 1145 } 1146 auto WritableBuffer = 1147 WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize); 1148 char *FuncRecordsBuffer = WritableBuffer->getBufferStart(); 1149 assert(isAddrAligned(RecordAlignment, FuncRecordsBuffer) && 1150 "Allocated memory is correctly aligned"); 1151 1152 for (SectionRef Section : *CoverageRecordsSections) { 1153 auto CoverageRecordsOrErr = Section.getContents(); 1154 if (!CoverageRecordsOrErr) 1155 return CoverageRecordsOrErr.takeError(); 1156 const auto &CoverageRecords = CoverageRecordsOrErr.get(); 1157 FuncRecordsBuffer = std::copy(CoverageRecords.begin(), 1158 CoverageRecords.end(), FuncRecordsBuffer); 1159 FuncRecordsBuffer = 1160 std::fill_n(FuncRecordsBuffer, 1161 alignAddr(FuncRecordsBuffer, RecordAlignment) - 1162 (uintptr_t)FuncRecordsBuffer, 1163 '\0'); 1164 } 1165 assert(FuncRecordsBuffer == WritableBuffer->getBufferEnd() && 1166 "consistent init"); 1167 FuncRecords = std::move(WritableBuffer); 1168 } 1169 1170 if (BinaryID) 1171 *BinaryID = getBuildID(OF.get()); 1172 1173 return BinaryCoverageReader::createCoverageReaderFromBuffer( 1174 CoverageMapping, std::move(FuncRecords), std::move(ProfileNames), 1175 BytesInAddress, Endian, CompilationDir); 1176 } 1177 1178 /// Determine whether \p Arch is invalid or empty, given \p Bin. 1179 static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) { 1180 // If we have a universal binary and Arch doesn't identify any of its slices, 1181 // it's user error. 1182 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) { 1183 for (auto &ObjForArch : Universal->objects()) 1184 if (Arch == ObjForArch.getArchFlagName()) 1185 return false; 1186 return true; 1187 } 1188 return false; 1189 } 1190 1191 Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>> 1192 BinaryCoverageReader::create( 1193 MemoryBufferRef ObjectBuffer, StringRef Arch, 1194 SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers, 1195 StringRef CompilationDir, SmallVectorImpl<object::BuildIDRef> *BinaryIDs) { 1196 std::vector<std::unique_ptr<BinaryCoverageReader>> Readers; 1197 1198 if (ObjectBuffer.getBuffer().size() > sizeof(TestingFormatMagic)) { 1199 uint64_t Magic = 1200 support::endian::byte_swap<uint64_t, llvm::endianness::little>( 1201 *reinterpret_cast<const uint64_t *>(ObjectBuffer.getBufferStart())); 1202 if (Magic == TestingFormatMagic) { 1203 // This is a special format used for testing. 1204 auto ReaderOrErr = 1205 loadTestingFormat(ObjectBuffer.getBuffer(), CompilationDir); 1206 if (!ReaderOrErr) 1207 return ReaderOrErr.takeError(); 1208 Readers.push_back(std::move(ReaderOrErr.get())); 1209 return std::move(Readers); 1210 } 1211 } 1212 1213 auto BinOrErr = createBinary(ObjectBuffer); 1214 if (!BinOrErr) 1215 return BinOrErr.takeError(); 1216 std::unique_ptr<Binary> Bin = std::move(BinOrErr.get()); 1217 1218 if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch)) 1219 return make_error<CoverageMapError>( 1220 coveragemap_error::invalid_or_missing_arch_specifier); 1221 1222 // MachO universal binaries which contain archives need to be treated as 1223 // archives, not as regular binaries. 1224 if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) { 1225 for (auto &ObjForArch : Universal->objects()) { 1226 // Skip slices within the universal binary which target the wrong arch. 1227 std::string ObjArch = ObjForArch.getArchFlagName(); 1228 if (Arch != ObjArch) 1229 continue; 1230 1231 auto ArchiveOrErr = ObjForArch.getAsArchive(); 1232 if (!ArchiveOrErr) { 1233 // If this is not an archive, try treating it as a regular object. 1234 consumeError(ArchiveOrErr.takeError()); 1235 break; 1236 } 1237 1238 return BinaryCoverageReader::create( 1239 ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers, 1240 CompilationDir, BinaryIDs); 1241 } 1242 } 1243 1244 // Load coverage out of archive members. 1245 if (auto *Ar = dyn_cast<Archive>(Bin.get())) { 1246 Error Err = Error::success(); 1247 for (auto &Child : Ar->children(Err)) { 1248 Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef(); 1249 if (!ChildBufOrErr) 1250 return ChildBufOrErr.takeError(); 1251 1252 auto ChildReadersOrErr = BinaryCoverageReader::create( 1253 ChildBufOrErr.get(), Arch, ObjectFileBuffers, CompilationDir, 1254 BinaryIDs); 1255 if (!ChildReadersOrErr) 1256 return ChildReadersOrErr.takeError(); 1257 for (auto &Reader : ChildReadersOrErr.get()) 1258 Readers.push_back(std::move(Reader)); 1259 } 1260 if (Err) 1261 return std::move(Err); 1262 1263 // Thin archives reference object files outside of the archive file, i.e. 1264 // files which reside in memory not owned by the caller. Transfer ownership 1265 // to the caller. 1266 if (Ar->isThin()) 1267 for (auto &Buffer : Ar->takeThinBuffers()) 1268 ObjectFileBuffers.push_back(std::move(Buffer)); 1269 1270 return std::move(Readers); 1271 } 1272 1273 object::BuildIDRef BinaryID; 1274 auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch, CompilationDir, 1275 BinaryIDs ? &BinaryID : nullptr); 1276 if (!ReaderOrErr) 1277 return ReaderOrErr.takeError(); 1278 Readers.push_back(std::move(ReaderOrErr.get())); 1279 if (!BinaryID.empty()) 1280 BinaryIDs->push_back(BinaryID); 1281 return std::move(Readers); 1282 } 1283 1284 Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { 1285 if (CurrentRecord >= MappingRecords.size()) 1286 return make_error<CoverageMapError>(coveragemap_error::eof); 1287 1288 FunctionsFilenames.clear(); 1289 Expressions.clear(); 1290 MappingRegions.clear(); 1291 auto &R = MappingRecords[CurrentRecord]; 1292 auto F = ArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize); 1293 RawCoverageMappingReader Reader(R.CoverageMapping, F, FunctionsFilenames, 1294 Expressions, MappingRegions); 1295 if (auto Err = Reader.read()) 1296 return Err; 1297 1298 Record.FunctionName = R.FunctionName; 1299 Record.FunctionHash = R.FunctionHash; 1300 Record.Filenames = FunctionsFilenames; 1301 Record.Expressions = Expressions; 1302 Record.MappingRegions = MappingRegions; 1303 1304 ++CurrentRecord; 1305 return Error::success(); 1306 } 1307