xref: /freebsd/contrib/llvm-project/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's and llvm's instrumentation based
10 // code coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/Coverage/CoverageMapping.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
23 #include "llvm/ProfileData/InstrProfReader.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Errc.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <iterator>
35 #include <map>
36 #include <memory>
37 #include <string>
38 #include <system_error>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace coverage;
44 
45 #define DEBUG_TYPE "coverage-mapping"
46 
47 Counter CounterExpressionBuilder::get(const CounterExpression &E) {
48   auto It = ExpressionIndices.find(E);
49   if (It != ExpressionIndices.end())
50     return Counter::getExpression(It->second);
51   unsigned I = Expressions.size();
52   Expressions.push_back(E);
53   ExpressionIndices[E] = I;
54   return Counter::getExpression(I);
55 }
56 
57 void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
58                                             SmallVectorImpl<Term> &Terms) {
59   switch (C.getKind()) {
60   case Counter::Zero:
61     break;
62   case Counter::CounterValueReference:
63     Terms.emplace_back(C.getCounterID(), Factor);
64     break;
65   case Counter::Expression:
66     const auto &E = Expressions[C.getExpressionID()];
67     extractTerms(E.LHS, Factor, Terms);
68     extractTerms(
69         E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
70     break;
71   }
72 }
73 
74 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
75   // Gather constant terms.
76   SmallVector<Term, 32> Terms;
77   extractTerms(ExpressionTree, +1, Terms);
78 
79   // If there are no terms, this is just a zero. The algorithm below assumes at
80   // least one term.
81   if (Terms.size() == 0)
82     return Counter::getZero();
83 
84   // Group the terms by counter ID.
85   llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
86     return LHS.CounterID < RHS.CounterID;
87   });
88 
89   // Combine terms by counter ID to eliminate counters that sum to zero.
90   auto Prev = Terms.begin();
91   for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
92     if (I->CounterID == Prev->CounterID) {
93       Prev->Factor += I->Factor;
94       continue;
95     }
96     ++Prev;
97     *Prev = *I;
98   }
99   Terms.erase(++Prev, Terms.end());
100 
101   Counter C;
102   // Create additions. We do this before subtractions to avoid constructs like
103   // ((0 - X) + Y), as opposed to (Y - X).
104   for (auto T : Terms) {
105     if (T.Factor <= 0)
106       continue;
107     for (int I = 0; I < T.Factor; ++I)
108       if (C.isZero())
109         C = Counter::getCounter(T.CounterID);
110       else
111         C = get(CounterExpression(CounterExpression::Add, C,
112                                   Counter::getCounter(T.CounterID)));
113   }
114 
115   // Create subtractions.
116   for (auto T : Terms) {
117     if (T.Factor >= 0)
118       continue;
119     for (int I = 0; I < -T.Factor; ++I)
120       C = get(CounterExpression(CounterExpression::Subtract, C,
121                                 Counter::getCounter(T.CounterID)));
122   }
123   return C;
124 }
125 
126 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
127   return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
128 }
129 
130 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
131   return simplify(
132       get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
133 }
134 
135 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
136   switch (C.getKind()) {
137   case Counter::Zero:
138     OS << '0';
139     return;
140   case Counter::CounterValueReference:
141     OS << '#' << C.getCounterID();
142     break;
143   case Counter::Expression: {
144     if (C.getExpressionID() >= Expressions.size())
145       return;
146     const auto &E = Expressions[C.getExpressionID()];
147     OS << '(';
148     dump(E.LHS, OS);
149     OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
150     dump(E.RHS, OS);
151     OS << ')';
152     break;
153   }
154   }
155   if (CounterValues.empty())
156     return;
157   Expected<int64_t> Value = evaluate(C);
158   if (auto E = Value.takeError()) {
159     consumeError(std::move(E));
160     return;
161   }
162   OS << '[' << *Value << ']';
163 }
164 
165 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
166   switch (C.getKind()) {
167   case Counter::Zero:
168     return 0;
169   case Counter::CounterValueReference:
170     if (C.getCounterID() >= CounterValues.size())
171       return errorCodeToError(errc::argument_out_of_domain);
172     return CounterValues[C.getCounterID()];
173   case Counter::Expression: {
174     if (C.getExpressionID() >= Expressions.size())
175       return errorCodeToError(errc::argument_out_of_domain);
176     const auto &E = Expressions[C.getExpressionID()];
177     Expected<int64_t> LHS = evaluate(E.LHS);
178     if (!LHS)
179       return LHS;
180     Expected<int64_t> RHS = evaluate(E.RHS);
181     if (!RHS)
182       return RHS;
183     return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
184   }
185   }
186   llvm_unreachable("Unhandled CounterKind");
187 }
188 
189 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
190   switch (C.getKind()) {
191   case Counter::Zero:
192     return 0;
193   case Counter::CounterValueReference:
194     return C.getCounterID();
195   case Counter::Expression: {
196     if (C.getExpressionID() >= Expressions.size())
197       return 0;
198     const auto &E = Expressions[C.getExpressionID()];
199     return std::max(getMaxCounterID(E.LHS), getMaxCounterID(E.RHS));
200   }
201   }
202   llvm_unreachable("Unhandled CounterKind");
203 }
204 
205 void FunctionRecordIterator::skipOtherFiles() {
206   while (Current != Records.end() && !Filename.empty() &&
207          Filename != Current->Filenames[0])
208     ++Current;
209   if (Current == Records.end())
210     *this = FunctionRecordIterator();
211 }
212 
213 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
214     StringRef Filename) const {
215   size_t FilenameHash = hash_value(Filename);
216   auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
217   if (RecordIt == FilenameHash2RecordIndices.end())
218     return {};
219   return RecordIt->second;
220 }
221 
222 static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
223                                 const CoverageMappingRecord &Record) {
224   unsigned MaxCounterID = 0;
225   for (const auto &Region : Record.MappingRegions) {
226     MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
227   }
228   return MaxCounterID;
229 }
230 
231 Error CoverageMapping::loadFunctionRecord(
232     const CoverageMappingRecord &Record,
233     IndexedInstrProfReader &ProfileReader) {
234   StringRef OrigFuncName = Record.FunctionName;
235   if (OrigFuncName.empty())
236     return make_error<CoverageMapError>(coveragemap_error::malformed);
237 
238   if (Record.Filenames.empty())
239     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
240   else
241     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
242 
243   CounterMappingContext Ctx(Record.Expressions);
244 
245   std::vector<uint64_t> Counts;
246   if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
247                                                 Record.FunctionHash, Counts)) {
248     instrprof_error IPE = InstrProfError::take(std::move(E));
249     if (IPE == instrprof_error::hash_mismatch) {
250       FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
251                                       Record.FunctionHash);
252       return Error::success();
253     } else if (IPE != instrprof_error::unknown_function)
254       return make_error<InstrProfError>(IPE);
255     Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
256   }
257   Ctx.setCounts(Counts);
258 
259   assert(!Record.MappingRegions.empty() && "Function has no regions");
260 
261   // This coverage record is a zero region for a function that's unused in
262   // some TU, but used in a different TU. Ignore it. The coverage maps from the
263   // the other TU will either be loaded (providing full region counts) or they
264   // won't (in which case we don't unintuitively report functions as uncovered
265   // when they have non-zero counts in the profile).
266   if (Record.MappingRegions.size() == 1 &&
267       Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
268     return Error::success();
269 
270   FunctionRecord Function(OrigFuncName, Record.Filenames);
271   for (const auto &Region : Record.MappingRegions) {
272     Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
273     if (auto E = ExecutionCount.takeError()) {
274       consumeError(std::move(E));
275       return Error::success();
276     }
277     Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
278     if (auto E = AltExecutionCount.takeError()) {
279       consumeError(std::move(E));
280       return Error::success();
281     }
282     Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount);
283   }
284 
285   // Don't create records for (filenames, function) pairs we've already seen.
286   auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
287                                           Record.Filenames.end());
288   if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
289     return Error::success();
290 
291   Functions.push_back(std::move(Function));
292 
293   // Performance optimization: keep track of the indices of the function records
294   // which correspond to each filename. This can be used to substantially speed
295   // up queries for coverage info in a file.
296   unsigned RecordIndex = Functions.size() - 1;
297   for (StringRef Filename : Record.Filenames) {
298     auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
299     // Note that there may be duplicates in the filename set for a function
300     // record, because of e.g. macro expansions in the function in which both
301     // the macro and the function are defined in the same file.
302     if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
303       RecordIndices.push_back(RecordIndex);
304   }
305 
306   return Error::success();
307 }
308 
309 // This function is for memory optimization by shortening the lifetimes
310 // of CoverageMappingReader instances.
311 Error CoverageMapping::loadFromReaders(
312     ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
313     IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
314   for (const auto &CoverageReader : CoverageReaders) {
315     for (auto RecordOrErr : *CoverageReader) {
316       if (Error E = RecordOrErr.takeError())
317         return E;
318       const auto &Record = *RecordOrErr;
319       if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
320         return E;
321     }
322   }
323   return Error::success();
324 }
325 
326 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
327     ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
328     IndexedInstrProfReader &ProfileReader) {
329   auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
330   if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
331     return std::move(E);
332   return std::move(Coverage);
333 }
334 
335 // If E is a no_data_found error, returns success. Otherwise returns E.
336 static Error handleMaybeNoDataFoundError(Error E) {
337   return handleErrors(
338       std::move(E), [](const CoverageMapError &CME) {
339         if (CME.get() == coveragemap_error::no_data_found)
340           return static_cast<Error>(Error::success());
341         return make_error<CoverageMapError>(CME.get());
342       });
343 }
344 
345 Expected<std::unique_ptr<CoverageMapping>>
346 CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
347                       StringRef ProfileFilename, ArrayRef<StringRef> Arches,
348                       StringRef CompilationDir) {
349   auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
350   if (Error E = ProfileReaderOrErr.takeError())
351     return std::move(E);
352   auto ProfileReader = std::move(ProfileReaderOrErr.get());
353   auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
354   bool DataFound = false;
355 
356   for (const auto &File : llvm::enumerate(ObjectFilenames)) {
357     auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
358         File.value(), /*IsText=*/false, /*RequiresNullTerminator=*/false);
359     if (std::error_code EC = CovMappingBufOrErr.getError())
360       return errorCodeToError(EC);
361     StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
362     MemoryBufferRef CovMappingBufRef =
363         CovMappingBufOrErr.get()->getMemBufferRef();
364     SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
365     auto CoverageReadersOrErr = BinaryCoverageReader::create(
366         CovMappingBufRef, Arch, Buffers, CompilationDir);
367     if (Error E = CoverageReadersOrErr.takeError()) {
368       E = handleMaybeNoDataFoundError(std::move(E));
369       if (E)
370         return std::move(E);
371       // E == success (originally a no_data_found error).
372       continue;
373     }
374 
375     SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
376     for (auto &Reader : CoverageReadersOrErr.get())
377       Readers.push_back(std::move(Reader));
378     DataFound |= !Readers.empty();
379     if (Error E = loadFromReaders(Readers, *ProfileReader, *Coverage))
380       return std::move(E);
381   }
382   // If no readers were created, either no objects were provided or none of them
383   // had coverage data. Return an error in the latter case.
384   if (!DataFound && !ObjectFilenames.empty())
385     return make_error<CoverageMapError>(coveragemap_error::no_data_found);
386   return std::move(Coverage);
387 }
388 
389 namespace {
390 
391 /// Distributes functions into instantiation sets.
392 ///
393 /// An instantiation set is a collection of functions that have the same source
394 /// code, ie, template functions specializations.
395 class FunctionInstantiationSetCollector {
396   using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
397   MapT InstantiatedFunctions;
398 
399 public:
400   void insert(const FunctionRecord &Function, unsigned FileID) {
401     auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
402     while (I != E && I->FileID != FileID)
403       ++I;
404     assert(I != E && "function does not cover the given file");
405     auto &Functions = InstantiatedFunctions[I->startLoc()];
406     Functions.push_back(&Function);
407   }
408 
409   MapT::iterator begin() { return InstantiatedFunctions.begin(); }
410   MapT::iterator end() { return InstantiatedFunctions.end(); }
411 };
412 
413 class SegmentBuilder {
414   std::vector<CoverageSegment> &Segments;
415   SmallVector<const CountedRegion *, 8> ActiveRegions;
416 
417   SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
418 
419   /// Emit a segment with the count from \p Region starting at \p StartLoc.
420   //
421   /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
422   /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
423   void startSegment(const CountedRegion &Region, LineColPair StartLoc,
424                     bool IsRegionEntry, bool EmitSkippedRegion = false) {
425     bool HasCount = !EmitSkippedRegion &&
426                     (Region.Kind != CounterMappingRegion::SkippedRegion);
427 
428     // If the new segment wouldn't affect coverage rendering, skip it.
429     if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
430       const auto &Last = Segments.back();
431       if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
432           !Last.IsRegionEntry)
433         return;
434     }
435 
436     if (HasCount)
437       Segments.emplace_back(StartLoc.first, StartLoc.second,
438                             Region.ExecutionCount, IsRegionEntry,
439                             Region.Kind == CounterMappingRegion::GapRegion);
440     else
441       Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
442 
443     LLVM_DEBUG({
444       const auto &Last = Segments.back();
445       dbgs() << "Segment at " << Last.Line << ":" << Last.Col
446              << " (count = " << Last.Count << ")"
447              << (Last.IsRegionEntry ? ", RegionEntry" : "")
448              << (!Last.HasCount ? ", Skipped" : "")
449              << (Last.IsGapRegion ? ", Gap" : "") << "\n";
450     });
451   }
452 
453   /// Emit segments for active regions which end before \p Loc.
454   ///
455   /// \p Loc: The start location of the next region. If None, all active
456   /// regions are completed.
457   /// \p FirstCompletedRegion: Index of the first completed region.
458   void completeRegionsUntil(Optional<LineColPair> Loc,
459                             unsigned FirstCompletedRegion) {
460     // Sort the completed regions by end location. This makes it simple to
461     // emit closing segments in sorted order.
462     auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
463     std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
464                       [](const CountedRegion *L, const CountedRegion *R) {
465                         return L->endLoc() < R->endLoc();
466                       });
467 
468     // Emit segments for all completed regions.
469     for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
470          ++I) {
471       const auto *CompletedRegion = ActiveRegions[I];
472       assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
473              "Completed region ends after start of new region");
474 
475       const auto *PrevCompletedRegion = ActiveRegions[I - 1];
476       auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
477 
478       // Don't emit any more segments if they start where the new region begins.
479       if (Loc && CompletedSegmentLoc == *Loc)
480         break;
481 
482       // Don't emit a segment if the next completed region ends at the same
483       // location as this one.
484       if (CompletedSegmentLoc == CompletedRegion->endLoc())
485         continue;
486 
487       // Use the count from the last completed region which ends at this loc.
488       for (unsigned J = I + 1; J < E; ++J)
489         if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
490           CompletedRegion = ActiveRegions[J];
491 
492       startSegment(*CompletedRegion, CompletedSegmentLoc, false);
493     }
494 
495     auto Last = ActiveRegions.back();
496     if (FirstCompletedRegion && Last->endLoc() != *Loc) {
497       // If there's a gap after the end of the last completed region and the
498       // start of the new region, use the last active region to fill the gap.
499       startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
500                    false);
501     } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
502       // Emit a skipped segment if there are no more active regions. This
503       // ensures that gaps between functions are marked correctly.
504       startSegment(*Last, Last->endLoc(), false, true);
505     }
506 
507     // Pop the completed regions.
508     ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
509   }
510 
511   void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
512     for (const auto &CR : enumerate(Regions)) {
513       auto CurStartLoc = CR.value().startLoc();
514 
515       // Active regions which end before the current region need to be popped.
516       auto CompletedRegions =
517           std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
518                                 [&](const CountedRegion *Region) {
519                                   return !(Region->endLoc() <= CurStartLoc);
520                                 });
521       if (CompletedRegions != ActiveRegions.end()) {
522         unsigned FirstCompletedRegion =
523             std::distance(ActiveRegions.begin(), CompletedRegions);
524         completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
525       }
526 
527       bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
528 
529       // Try to emit a segment for the current region.
530       if (CurStartLoc == CR.value().endLoc()) {
531         // Avoid making zero-length regions active. If it's the last region,
532         // emit a skipped segment. Otherwise use its predecessor's count.
533         const bool Skipped =
534             (CR.index() + 1) == Regions.size() ||
535             CR.value().Kind == CounterMappingRegion::SkippedRegion;
536         startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
537                      CurStartLoc, !GapRegion, Skipped);
538         // If it is skipped segment, create a segment with last pushed
539         // regions's count at CurStartLoc.
540         if (Skipped && !ActiveRegions.empty())
541           startSegment(*ActiveRegions.back(), CurStartLoc, false);
542         continue;
543       }
544       if (CR.index() + 1 == Regions.size() ||
545           CurStartLoc != Regions[CR.index() + 1].startLoc()) {
546         // Emit a segment if the next region doesn't start at the same location
547         // as this one.
548         startSegment(CR.value(), CurStartLoc, !GapRegion);
549       }
550 
551       // This region is active (i.e not completed).
552       ActiveRegions.push_back(&CR.value());
553     }
554 
555     // Complete any remaining active regions.
556     if (!ActiveRegions.empty())
557       completeRegionsUntil(None, 0);
558   }
559 
560   /// Sort a nested sequence of regions from a single file.
561   static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
562     llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
563       if (LHS.startLoc() != RHS.startLoc())
564         return LHS.startLoc() < RHS.startLoc();
565       if (LHS.endLoc() != RHS.endLoc())
566         // When LHS completely contains RHS, we sort LHS first.
567         return RHS.endLoc() < LHS.endLoc();
568       // If LHS and RHS cover the same area, we need to sort them according
569       // to their kinds so that the most suitable region will become "active"
570       // in combineRegions(). Because we accumulate counter values only from
571       // regions of the same kind as the first region of the area, prefer
572       // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
573       static_assert(CounterMappingRegion::CodeRegion <
574                             CounterMappingRegion::ExpansionRegion &&
575                         CounterMappingRegion::ExpansionRegion <
576                             CounterMappingRegion::SkippedRegion,
577                     "Unexpected order of region kind values");
578       return LHS.Kind < RHS.Kind;
579     });
580   }
581 
582   /// Combine counts of regions which cover the same area.
583   static ArrayRef<CountedRegion>
584   combineRegions(MutableArrayRef<CountedRegion> Regions) {
585     if (Regions.empty())
586       return Regions;
587     auto Active = Regions.begin();
588     auto End = Regions.end();
589     for (auto I = Regions.begin() + 1; I != End; ++I) {
590       if (Active->startLoc() != I->startLoc() ||
591           Active->endLoc() != I->endLoc()) {
592         // Shift to the next region.
593         ++Active;
594         if (Active != I)
595           *Active = *I;
596         continue;
597       }
598       // Merge duplicate region.
599       // If CodeRegions and ExpansionRegions cover the same area, it's probably
600       // a macro which is fully expanded to another macro. In that case, we need
601       // to accumulate counts only from CodeRegions, or else the area will be
602       // counted twice.
603       // On the other hand, a macro may have a nested macro in its body. If the
604       // outer macro is used several times, the ExpansionRegion for the nested
605       // macro will also be added several times. These ExpansionRegions cover
606       // the same source locations and have to be combined to reach the correct
607       // value for that area.
608       // We add counts of the regions of the same kind as the active region
609       // to handle the both situations.
610       if (I->Kind == Active->Kind)
611         Active->ExecutionCount += I->ExecutionCount;
612     }
613     return Regions.drop_back(std::distance(++Active, End));
614   }
615 
616 public:
617   /// Build a sorted list of CoverageSegments from a list of Regions.
618   static std::vector<CoverageSegment>
619   buildSegments(MutableArrayRef<CountedRegion> Regions) {
620     std::vector<CoverageSegment> Segments;
621     SegmentBuilder Builder(Segments);
622 
623     sortNestedRegions(Regions);
624     ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
625 
626     LLVM_DEBUG({
627       dbgs() << "Combined regions:\n";
628       for (const auto &CR : CombinedRegions)
629         dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
630                << CR.LineEnd << ":" << CR.ColumnEnd
631                << " (count=" << CR.ExecutionCount << ")\n";
632     });
633 
634     Builder.buildSegmentsImpl(CombinedRegions);
635 
636 #ifndef NDEBUG
637     for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
638       const auto &L = Segments[I - 1];
639       const auto &R = Segments[I];
640       if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
641         if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
642           continue;
643         LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
644                           << " followed by " << R.Line << ":" << R.Col << "\n");
645         assert(false && "Coverage segments not unique or sorted");
646       }
647     }
648 #endif
649 
650     return Segments;
651   }
652 };
653 
654 } // end anonymous namespace
655 
656 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
657   std::vector<StringRef> Filenames;
658   for (const auto &Function : getCoveredFunctions())
659     llvm::append_range(Filenames, Function.Filenames);
660   llvm::sort(Filenames);
661   auto Last = std::unique(Filenames.begin(), Filenames.end());
662   Filenames.erase(Last, Filenames.end());
663   return Filenames;
664 }
665 
666 static SmallBitVector gatherFileIDs(StringRef SourceFile,
667                                     const FunctionRecord &Function) {
668   SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
669   for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
670     if (SourceFile == Function.Filenames[I])
671       FilenameEquivalence[I] = true;
672   return FilenameEquivalence;
673 }
674 
675 /// Return the ID of the file where the definition of the function is located.
676 static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
677   SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
678   for (const auto &CR : Function.CountedRegions)
679     if (CR.Kind == CounterMappingRegion::ExpansionRegion)
680       IsNotExpandedFile[CR.ExpandedFileID] = false;
681   int I = IsNotExpandedFile.find_first();
682   if (I == -1)
683     return None;
684   return I;
685 }
686 
687 /// Check if SourceFile is the file that contains the definition of
688 /// the Function. Return the ID of the file in that case or None otherwise.
689 static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
690                                              const FunctionRecord &Function) {
691   Optional<unsigned> I = findMainViewFileID(Function);
692   if (I && SourceFile == Function.Filenames[*I])
693     return I;
694   return None;
695 }
696 
697 static bool isExpansion(const CountedRegion &R, unsigned FileID) {
698   return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
699 }
700 
701 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
702   CoverageData FileCoverage(Filename);
703   std::vector<CountedRegion> Regions;
704 
705   // Look up the function records in the given file. Due to hash collisions on
706   // the filename, we may get back some records that are not in the file.
707   ArrayRef<unsigned> RecordIndices =
708       getImpreciseRecordIndicesForFilename(Filename);
709   for (unsigned RecordIndex : RecordIndices) {
710     const FunctionRecord &Function = Functions[RecordIndex];
711     auto MainFileID = findMainViewFileID(Filename, Function);
712     auto FileIDs = gatherFileIDs(Filename, Function);
713     for (const auto &CR : Function.CountedRegions)
714       if (FileIDs.test(CR.FileID)) {
715         Regions.push_back(CR);
716         if (MainFileID && isExpansion(CR, *MainFileID))
717           FileCoverage.Expansions.emplace_back(CR, Function);
718       }
719     // Capture branch regions specific to the function (excluding expansions).
720     for (const auto &CR : Function.CountedBranchRegions)
721       if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
722         FileCoverage.BranchRegions.push_back(CR);
723   }
724 
725   LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
726   FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
727 
728   return FileCoverage;
729 }
730 
731 std::vector<InstantiationGroup>
732 CoverageMapping::getInstantiationGroups(StringRef Filename) const {
733   FunctionInstantiationSetCollector InstantiationSetCollector;
734   // Look up the function records in the given file. Due to hash collisions on
735   // the filename, we may get back some records that are not in the file.
736   ArrayRef<unsigned> RecordIndices =
737       getImpreciseRecordIndicesForFilename(Filename);
738   for (unsigned RecordIndex : RecordIndices) {
739     const FunctionRecord &Function = Functions[RecordIndex];
740     auto MainFileID = findMainViewFileID(Filename, Function);
741     if (!MainFileID)
742       continue;
743     InstantiationSetCollector.insert(Function, *MainFileID);
744   }
745 
746   std::vector<InstantiationGroup> Result;
747   for (auto &InstantiationSet : InstantiationSetCollector) {
748     InstantiationGroup IG{InstantiationSet.first.first,
749                           InstantiationSet.first.second,
750                           std::move(InstantiationSet.second)};
751     Result.emplace_back(std::move(IG));
752   }
753   return Result;
754 }
755 
756 CoverageData
757 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
758   auto MainFileID = findMainViewFileID(Function);
759   if (!MainFileID)
760     return CoverageData();
761 
762   CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
763   std::vector<CountedRegion> Regions;
764   for (const auto &CR : Function.CountedRegions)
765     if (CR.FileID == *MainFileID) {
766       Regions.push_back(CR);
767       if (isExpansion(CR, *MainFileID))
768         FunctionCoverage.Expansions.emplace_back(CR, Function);
769     }
770   // Capture branch regions specific to the function (excluding expansions).
771   for (const auto &CR : Function.CountedBranchRegions)
772     if (CR.FileID == *MainFileID)
773       FunctionCoverage.BranchRegions.push_back(CR);
774 
775   LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
776                     << "\n");
777   FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
778 
779   return FunctionCoverage;
780 }
781 
782 CoverageData CoverageMapping::getCoverageForExpansion(
783     const ExpansionRecord &Expansion) const {
784   CoverageData ExpansionCoverage(
785       Expansion.Function.Filenames[Expansion.FileID]);
786   std::vector<CountedRegion> Regions;
787   for (const auto &CR : Expansion.Function.CountedRegions)
788     if (CR.FileID == Expansion.FileID) {
789       Regions.push_back(CR);
790       if (isExpansion(CR, Expansion.FileID))
791         ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
792     }
793   for (const auto &CR : Expansion.Function.CountedBranchRegions)
794     // Capture branch regions that only pertain to the corresponding expansion.
795     if (CR.FileID == Expansion.FileID)
796       ExpansionCoverage.BranchRegions.push_back(CR);
797 
798   LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
799                     << Expansion.FileID << "\n");
800   ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
801 
802   return ExpansionCoverage;
803 }
804 
805 LineCoverageStats::LineCoverageStats(
806     ArrayRef<const CoverageSegment *> LineSegments,
807     const CoverageSegment *WrappedSegment, unsigned Line)
808     : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
809       LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
810   // Find the minimum number of regions which start in this line.
811   unsigned MinRegionCount = 0;
812   auto isStartOfRegion = [](const CoverageSegment *S) {
813     return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
814   };
815   for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
816     if (isStartOfRegion(LineSegments[I]))
817       ++MinRegionCount;
818 
819   bool StartOfSkippedRegion = !LineSegments.empty() &&
820                               !LineSegments.front()->HasCount &&
821                               LineSegments.front()->IsRegionEntry;
822 
823   HasMultipleRegions = MinRegionCount > 1;
824   Mapped =
825       !StartOfSkippedRegion &&
826       ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
827 
828   if (!Mapped)
829     return;
830 
831   // Pick the max count from the non-gap, region entry segments and the
832   // wrapped count.
833   if (WrappedSegment)
834     ExecutionCount = WrappedSegment->Count;
835   if (!MinRegionCount)
836     return;
837   for (const auto *LS : LineSegments)
838     if (isStartOfRegion(LS))
839       ExecutionCount = std::max(ExecutionCount, LS->Count);
840 }
841 
842 LineCoverageIterator &LineCoverageIterator::operator++() {
843   if (Next == CD.end()) {
844     Stats = LineCoverageStats();
845     Ended = true;
846     return *this;
847   }
848   if (Segments.size())
849     WrappedSegment = Segments.back();
850   Segments.clear();
851   while (Next != CD.end() && Next->Line == Line)
852     Segments.push_back(&*Next++);
853   Stats = LineCoverageStats(Segments, WrappedSegment, Line);
854   ++Line;
855   return *this;
856 }
857 
858 static std::string getCoverageMapErrString(coveragemap_error Err) {
859   switch (Err) {
860   case coveragemap_error::success:
861     return "Success";
862   case coveragemap_error::eof:
863     return "End of File";
864   case coveragemap_error::no_data_found:
865     return "No coverage data found";
866   case coveragemap_error::unsupported_version:
867     return "Unsupported coverage format version";
868   case coveragemap_error::truncated:
869     return "Truncated coverage data";
870   case coveragemap_error::malformed:
871     return "Malformed coverage data";
872   case coveragemap_error::decompression_failed:
873     return "Failed to decompress coverage data (zlib)";
874   case coveragemap_error::invalid_or_missing_arch_specifier:
875     return "`-arch` specifier is invalid or missing for universal binary";
876   }
877   llvm_unreachable("A value of coveragemap_error has no message.");
878 }
879 
880 namespace {
881 
882 // FIXME: This class is only here to support the transition to llvm::Error. It
883 // will be removed once this transition is complete. Clients should prefer to
884 // deal with the Error value directly, rather than converting to error_code.
885 class CoverageMappingErrorCategoryType : public std::error_category {
886   const char *name() const noexcept override { return "llvm.coveragemap"; }
887   std::string message(int IE) const override {
888     return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
889   }
890 };
891 
892 } // end anonymous namespace
893 
894 std::string CoverageMapError::message() const {
895   return getCoverageMapErrString(Err);
896 }
897 
898 static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
899 
900 const std::error_category &llvm::coverage::coveragemap_category() {
901   return *ErrorCategory;
902 }
903 
904 char CoverageMapError::ID = 0;
905