1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Object/BuildID.h" 22 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 23 #include "llvm/ProfileData/InstrProfReader.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Errc.h" 26 #include "llvm/Support/Error.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/VirtualFileSystem.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cmath> 34 #include <cstdint> 35 #include <iterator> 36 #include <map> 37 #include <memory> 38 #include <optional> 39 #include <string> 40 #include <system_error> 41 #include <utility> 42 #include <vector> 43 44 using namespace llvm; 45 using namespace coverage; 46 47 #define DEBUG_TYPE "coverage-mapping" 48 49 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 50 auto It = ExpressionIndices.find(E); 51 if (It != ExpressionIndices.end()) 52 return Counter::getExpression(It->second); 53 unsigned I = Expressions.size(); 54 Expressions.push_back(E); 55 ExpressionIndices[E] = I; 56 return Counter::getExpression(I); 57 } 58 59 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 60 SmallVectorImpl<Term> &Terms) { 61 switch (C.getKind()) { 62 case Counter::Zero: 63 break; 64 case Counter::CounterValueReference: 65 Terms.emplace_back(C.getCounterID(), Factor); 66 break; 67 case Counter::Expression: 68 const auto &E = Expressions[C.getExpressionID()]; 69 extractTerms(E.LHS, Factor, Terms); 70 extractTerms( 71 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 72 break; 73 } 74 } 75 76 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 77 // Gather constant terms. 78 SmallVector<Term, 32> Terms; 79 extractTerms(ExpressionTree, +1, Terms); 80 81 // If there are no terms, this is just a zero. The algorithm below assumes at 82 // least one term. 83 if (Terms.size() == 0) 84 return Counter::getZero(); 85 86 // Group the terms by counter ID. 87 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 88 return LHS.CounterID < RHS.CounterID; 89 }); 90 91 // Combine terms by counter ID to eliminate counters that sum to zero. 92 auto Prev = Terms.begin(); 93 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 94 if (I->CounterID == Prev->CounterID) { 95 Prev->Factor += I->Factor; 96 continue; 97 } 98 ++Prev; 99 *Prev = *I; 100 } 101 Terms.erase(++Prev, Terms.end()); 102 103 Counter C; 104 // Create additions. We do this before subtractions to avoid constructs like 105 // ((0 - X) + Y), as opposed to (Y - X). 106 for (auto T : Terms) { 107 if (T.Factor <= 0) 108 continue; 109 for (int I = 0; I < T.Factor; ++I) 110 if (C.isZero()) 111 C = Counter::getCounter(T.CounterID); 112 else 113 C = get(CounterExpression(CounterExpression::Add, C, 114 Counter::getCounter(T.CounterID))); 115 } 116 117 // Create subtractions. 118 for (auto T : Terms) { 119 if (T.Factor >= 0) 120 continue; 121 for (int I = 0; I < -T.Factor; ++I) 122 C = get(CounterExpression(CounterExpression::Subtract, C, 123 Counter::getCounter(T.CounterID))); 124 } 125 return C; 126 } 127 128 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 129 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 130 return Simplify ? simplify(Cnt) : Cnt; 131 } 132 133 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 134 bool Simplify) { 135 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 136 return Simplify ? simplify(Cnt) : Cnt; 137 } 138 139 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 140 switch (C.getKind()) { 141 case Counter::Zero: 142 OS << '0'; 143 return; 144 case Counter::CounterValueReference: 145 OS << '#' << C.getCounterID(); 146 break; 147 case Counter::Expression: { 148 if (C.getExpressionID() >= Expressions.size()) 149 return; 150 const auto &E = Expressions[C.getExpressionID()]; 151 OS << '('; 152 dump(E.LHS, OS); 153 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 154 dump(E.RHS, OS); 155 OS << ')'; 156 break; 157 } 158 } 159 if (CounterValues.empty()) 160 return; 161 Expected<int64_t> Value = evaluate(C); 162 if (auto E = Value.takeError()) { 163 consumeError(std::move(E)); 164 return; 165 } 166 OS << '[' << *Value << ']'; 167 } 168 169 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 170 struct StackElem { 171 Counter ICounter; 172 int64_t LHS = 0; 173 enum { 174 KNeverVisited = 0, 175 KVisitedOnce = 1, 176 KVisitedTwice = 2, 177 } VisitCount = KNeverVisited; 178 }; 179 180 std::stack<StackElem> CounterStack; 181 CounterStack.push({C}); 182 183 int64_t LastPoppedValue; 184 185 while (!CounterStack.empty()) { 186 StackElem &Current = CounterStack.top(); 187 188 switch (Current.ICounter.getKind()) { 189 case Counter::Zero: 190 LastPoppedValue = 0; 191 CounterStack.pop(); 192 break; 193 case Counter::CounterValueReference: 194 if (Current.ICounter.getCounterID() >= CounterValues.size()) 195 return errorCodeToError(errc::argument_out_of_domain); 196 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 197 CounterStack.pop(); 198 break; 199 case Counter::Expression: { 200 if (Current.ICounter.getExpressionID() >= Expressions.size()) 201 return errorCodeToError(errc::argument_out_of_domain); 202 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 203 if (Current.VisitCount == StackElem::KNeverVisited) { 204 CounterStack.push(StackElem{E.LHS}); 205 Current.VisitCount = StackElem::KVisitedOnce; 206 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 207 Current.LHS = LastPoppedValue; 208 CounterStack.push(StackElem{E.RHS}); 209 Current.VisitCount = StackElem::KVisitedTwice; 210 } else { 211 int64_t LHS = Current.LHS; 212 int64_t RHS = LastPoppedValue; 213 LastPoppedValue = 214 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 215 CounterStack.pop(); 216 } 217 break; 218 } 219 } 220 } 221 222 return LastPoppedValue; 223 } 224 225 Expected<BitVector> CounterMappingContext::evaluateBitmap( 226 const CounterMappingRegion *MCDCDecision) const { 227 unsigned ID = MCDCDecision->MCDCParams.BitmapIdx; 228 unsigned NC = MCDCDecision->MCDCParams.NumConditions; 229 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT); 230 unsigned SizeInBytes = SizeInBits / CHAR_BIT; 231 232 ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes); 233 234 // Mask each bitmap byte into the BitVector. Go in reverse so that the 235 // bitvector can just be shifted over by one byte on each iteration. 236 BitVector Result(SizeInBits, false); 237 for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) { 238 uint32_t Data = *Byte; 239 Result <<= CHAR_BIT; 240 Result.setBitsInMask(&Data, 1); 241 } 242 return Result; 243 } 244 245 class MCDCRecordProcessor { 246 /// A bitmap representing the executed test vectors for a boolean expression. 247 /// Each index of the bitmap corresponds to a possible test vector. An index 248 /// with a bit value of '1' indicates that the corresponding Test Vector 249 /// identified by that index was executed. 250 BitVector &ExecutedTestVectorBitmap; 251 252 /// Decision Region to which the ExecutedTestVectorBitmap applies. 253 CounterMappingRegion &Region; 254 255 /// Array of branch regions corresponding each conditions in the boolean 256 /// expression. 257 ArrayRef<CounterMappingRegion> Branches; 258 259 /// Total number of conditions in the boolean expression. 260 unsigned NumConditions; 261 262 /// Mapping of a condition ID to its corresponding branch region. 263 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map; 264 265 /// Vector used to track whether a condition is constant folded. 266 MCDCRecord::BoolVector Folded; 267 268 /// Mapping of calculated MC/DC Independence Pairs for each condition. 269 MCDCRecord::TVPairMap IndependencePairs; 270 271 /// Total number of possible Test Vectors for the boolean expression. 272 MCDCRecord::TestVectors TestVectors; 273 274 /// Actual executed Test Vectors for the boolean expression, based on 275 /// ExecutedTestVectorBitmap. 276 MCDCRecord::TestVectors ExecVectors; 277 278 public: 279 MCDCRecordProcessor(BitVector &Bitmap, CounterMappingRegion &Region, 280 ArrayRef<CounterMappingRegion> Branches) 281 : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches), 282 NumConditions(Region.MCDCParams.NumConditions), 283 Folded(NumConditions, false), IndependencePairs(NumConditions), 284 TestVectors((size_t)1 << NumConditions) {} 285 286 private: 287 void recordTestVector(MCDCRecord::TestVector &TV, 288 MCDCRecord::CondState Result) { 289 // Calculate an index that is used to identify the test vector in a vector 290 // of test vectors. This index also corresponds to the index values of an 291 // MCDC Region's bitmap (see findExecutedTestVectors()). 292 unsigned Index = 0; 293 for (auto Cond = std::rbegin(TV); Cond != std::rend(TV); ++Cond) { 294 Index <<= 1; 295 Index |= (*Cond == MCDCRecord::MCDC_True) ? 0x1 : 0x0; 296 } 297 298 // Copy the completed test vector to the vector of testvectors. 299 TestVectors[Index] = TV; 300 301 // The final value (T,F) is equal to the last non-dontcare state on the 302 // path (in a short-circuiting system). 303 TestVectors[Index].push_back(Result); 304 } 305 306 void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector &TV, 307 unsigned ID) { 308 // Branch regions are hashed based on an ID. 309 const CounterMappingRegion *Branch = Map[ID]; 310 311 TV[ID - 1] = MCDCRecord::MCDC_True; 312 if (Branch->MCDCParams.TrueID > 0) 313 buildTestVector(TV, Branch->MCDCParams.TrueID); 314 else 315 recordTestVector(TV, MCDCRecord::MCDC_True); 316 } 317 318 void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector &TV, 319 unsigned ID) { 320 // Branch regions are hashed based on an ID. 321 const CounterMappingRegion *Branch = Map[ID]; 322 323 TV[ID - 1] = MCDCRecord::MCDC_False; 324 if (Branch->MCDCParams.FalseID > 0) 325 buildTestVector(TV, Branch->MCDCParams.FalseID); 326 else 327 recordTestVector(TV, MCDCRecord::MCDC_False); 328 } 329 330 /// Starting with the base test vector, build a comprehensive list of 331 /// possible test vectors by recursively walking the branch condition IDs 332 /// provided. Once an end node is reached, record the test vector in a vector 333 /// of test vectors that can be matched against during MC/DC analysis, and 334 /// then reset the positions to 'DontCare'. 335 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID = 1) { 336 shouldCopyOffTestVectorForTruePath(TV, ID); 337 shouldCopyOffTestVectorForFalsePath(TV, ID); 338 339 // Reset back to DontCare. 340 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 341 } 342 343 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 344 /// vector at the corresponding index was executed during a test run. 345 void findExecutedTestVectors(BitVector &ExecutedTestVectorBitmap) { 346 for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) { 347 if (ExecutedTestVectorBitmap[Idx] == 0) 348 continue; 349 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist."); 350 ExecVectors.push_back(TestVectors[Idx]); 351 } 352 } 353 354 /// For a given condition and two executed Test Vectors, A and B, see if the 355 /// two test vectors match forming an Independence Pair for the condition. 356 /// For two test vectors to match, the following must be satisfied: 357 /// - The condition's value in each test vector must be opposite. 358 /// - The result's value in each test vector must be opposite. 359 /// - All other conditions' values must be equal or marked as "don't care". 360 bool matchTestVectors(unsigned Aidx, unsigned Bidx, unsigned ConditionIdx) { 361 const MCDCRecord::TestVector &A = ExecVectors[Aidx]; 362 const MCDCRecord::TestVector &B = ExecVectors[Bidx]; 363 364 // If condition values in both A and B aren't opposites, no match. 365 // Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check 366 // that "XOR != 1" will ensure that the values are opposites and that 367 // neither of them is a DontCare. 368 // 1 XOR 0 == 1 | 0 XOR 0 == 0 | -1 XOR 0 == -1 369 // 1 XOR 1 == 0 | 0 XOR 1 == 1 | -1 XOR 1 == -2 370 // 1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 == 0 371 if ((A[ConditionIdx] ^ B[ConditionIdx]) != 1) 372 return false; 373 374 // If the results of both A and B aren't opposites, no match. 375 if ((A[NumConditions] ^ B[NumConditions]) != 1) 376 return false; 377 378 for (unsigned Idx = 0; Idx < NumConditions; ++Idx) { 379 // Look for other conditions that don't match. Skip over the given 380 // Condition as well as any conditions marked as "don't care". 381 const auto ARecordTyForCond = A[Idx]; 382 const auto BRecordTyForCond = B[Idx]; 383 if (Idx == ConditionIdx || 384 ARecordTyForCond == MCDCRecord::MCDC_DontCare || 385 BRecordTyForCond == MCDCRecord::MCDC_DontCare) 386 continue; 387 388 // If there is a condition mismatch with any of the other conditions, 389 // there is no match for the test vectors. 390 if (ARecordTyForCond != BRecordTyForCond) 391 return false; 392 } 393 394 // Otherwise, match. 395 return true; 396 } 397 398 /// Find all possible Independence Pairs for a boolean expression given its 399 /// executed Test Vectors. This process involves looking at each condition 400 /// and attempting to find two Test Vectors that "match", giving us a pair. 401 void findIndependencePairs() { 402 unsigned NumTVs = ExecVectors.size(); 403 404 // For each condition. 405 for (unsigned C = 0; C < NumConditions; ++C) { 406 bool PairFound = false; 407 408 // For each executed test vector. 409 for (unsigned I = 0; !PairFound && I < NumTVs; ++I) { 410 // Compared to every other executed test vector. 411 for (unsigned J = 0; !PairFound && J < NumTVs; ++J) { 412 if (I == J) 413 continue; 414 415 // If a matching pair of vectors is found, record them. 416 if ((PairFound = matchTestVectors(I, J, C))) 417 IndependencePairs[C] = std::make_pair(I + 1, J + 1); 418 } 419 } 420 } 421 } 422 423 public: 424 /// Process the MC/DC Record in order to produce a result for a boolean 425 /// expression. This process includes tracking the conditions that comprise 426 /// the decision region, calculating the list of all possible test vectors, 427 /// marking the executed test vectors, and then finding an Independence Pair 428 /// out of the executed test vectors for each condition in the boolean 429 /// expression. A condition is tracked to ensure that its ID can be mapped to 430 /// its ordinal position in the boolean expression. The condition's source 431 /// location is also tracked, as well as whether it is constant folded (in 432 /// which case it is excuded from the metric). 433 MCDCRecord processMCDCRecord() { 434 unsigned I = 0; 435 MCDCRecord::CondIDMap PosToID; 436 MCDCRecord::LineColPairMap CondLoc; 437 438 // Walk the Record's BranchRegions (representing Conditions) in order to: 439 // - Hash the condition based on its corresponding ID. This will be used to 440 // calculate the test vectors. 441 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 442 // actual ID. This will be used to visualize the conditions in the 443 // correct order. 444 // - Keep track of the condition source location. This will be used to 445 // visualize where the condition is. 446 // - Record whether the condition is constant folded so that we exclude it 447 // from being measured. 448 for (const auto &B : Branches) { 449 Map[B.MCDCParams.ID] = &B; 450 PosToID[I] = B.MCDCParams.ID - 1; 451 CondLoc[I] = B.startLoc(); 452 Folded[I++] = (B.Count.isZero() && B.FalseCount.isZero()); 453 } 454 455 // Initialize a base test vector as 'DontCare'. 456 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 457 458 // Use the base test vector to build the list of all possible test vectors. 459 buildTestVector(TV); 460 461 // Using Profile Bitmap from runtime, mark the executed test vectors. 462 findExecutedTestVectors(ExecutedTestVectorBitmap); 463 464 // Compare executed test vectors against each other to find an independence 465 // pairs for each condition. This processing takes the most time. 466 findIndependencePairs(); 467 468 // Record Test vectors, executed vectors, and independence pairs. 469 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID, 470 CondLoc); 471 return Res; 472 } 473 }; 474 475 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 476 CounterMappingRegion Region, BitVector ExecutedTestVectorBitmap, 477 ArrayRef<CounterMappingRegion> Branches) { 478 479 MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches); 480 return MCDCProcessor.processMCDCRecord(); 481 } 482 483 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 484 struct StackElem { 485 Counter ICounter; 486 int64_t LHS = 0; 487 enum { 488 KNeverVisited = 0, 489 KVisitedOnce = 1, 490 KVisitedTwice = 2, 491 } VisitCount = KNeverVisited; 492 }; 493 494 std::stack<StackElem> CounterStack; 495 CounterStack.push({C}); 496 497 int64_t LastPoppedValue; 498 499 while (!CounterStack.empty()) { 500 StackElem &Current = CounterStack.top(); 501 502 switch (Current.ICounter.getKind()) { 503 case Counter::Zero: 504 LastPoppedValue = 0; 505 CounterStack.pop(); 506 break; 507 case Counter::CounterValueReference: 508 LastPoppedValue = Current.ICounter.getCounterID(); 509 CounterStack.pop(); 510 break; 511 case Counter::Expression: { 512 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 513 LastPoppedValue = 0; 514 CounterStack.pop(); 515 } else { 516 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 517 if (Current.VisitCount == StackElem::KNeverVisited) { 518 CounterStack.push(StackElem{E.LHS}); 519 Current.VisitCount = StackElem::KVisitedOnce; 520 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 521 Current.LHS = LastPoppedValue; 522 CounterStack.push(StackElem{E.RHS}); 523 Current.VisitCount = StackElem::KVisitedTwice; 524 } else { 525 int64_t LHS = Current.LHS; 526 int64_t RHS = LastPoppedValue; 527 LastPoppedValue = std::max(LHS, RHS); 528 CounterStack.pop(); 529 } 530 } 531 break; 532 } 533 } 534 } 535 536 return LastPoppedValue; 537 } 538 539 void FunctionRecordIterator::skipOtherFiles() { 540 while (Current != Records.end() && !Filename.empty() && 541 Filename != Current->Filenames[0]) 542 ++Current; 543 if (Current == Records.end()) 544 *this = FunctionRecordIterator(); 545 } 546 547 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 548 StringRef Filename) const { 549 size_t FilenameHash = hash_value(Filename); 550 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 551 if (RecordIt == FilenameHash2RecordIndices.end()) 552 return {}; 553 return RecordIt->second; 554 } 555 556 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 557 const CoverageMappingRecord &Record) { 558 unsigned MaxCounterID = 0; 559 for (const auto &Region : Record.MappingRegions) { 560 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 561 } 562 return MaxCounterID; 563 } 564 565 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 566 const CoverageMappingRecord &Record) { 567 unsigned MaxBitmapID = 0; 568 unsigned NumConditions = 0; 569 // The last DecisionRegion has the highest bitmap byte index used in the 570 // function, which when combined with its number of conditions, yields the 571 // full bitmap size. 572 for (const auto &Region : reverse(Record.MappingRegions)) { 573 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 574 MaxBitmapID = Region.MCDCParams.BitmapIdx; 575 NumConditions = Region.MCDCParams.NumConditions; 576 break; 577 } 578 } 579 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 580 return MaxBitmapID + (SizeInBits / CHAR_BIT); 581 } 582 583 Error CoverageMapping::loadFunctionRecord( 584 const CoverageMappingRecord &Record, 585 IndexedInstrProfReader &ProfileReader) { 586 StringRef OrigFuncName = Record.FunctionName; 587 if (OrigFuncName.empty()) 588 return make_error<CoverageMapError>(coveragemap_error::malformed, 589 "record function name is empty"); 590 591 if (Record.Filenames.empty()) 592 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 593 else 594 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 595 596 CounterMappingContext Ctx(Record.Expressions); 597 598 std::vector<uint64_t> Counts; 599 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 600 Record.FunctionHash, Counts)) { 601 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 602 if (IPE == instrprof_error::hash_mismatch) { 603 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 604 Record.FunctionHash); 605 return Error::success(); 606 } 607 if (IPE != instrprof_error::unknown_function) 608 return make_error<InstrProfError>(IPE); 609 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 610 } 611 Ctx.setCounts(Counts); 612 613 std::vector<uint8_t> BitmapBytes; 614 if (Error E = ProfileReader.getFunctionBitmapBytes( 615 Record.FunctionName, Record.FunctionHash, BitmapBytes)) { 616 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 617 if (IPE == instrprof_error::hash_mismatch) { 618 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 619 Record.FunctionHash); 620 return Error::success(); 621 } 622 if (IPE != instrprof_error::unknown_function) 623 return make_error<InstrProfError>(IPE); 624 BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0); 625 } 626 Ctx.setBitmapBytes(BitmapBytes); 627 628 assert(!Record.MappingRegions.empty() && "Function has no regions"); 629 630 // This coverage record is a zero region for a function that's unused in 631 // some TU, but used in a different TU. Ignore it. The coverage maps from the 632 // the other TU will either be loaded (providing full region counts) or they 633 // won't (in which case we don't unintuitively report functions as uncovered 634 // when they have non-zero counts in the profile). 635 if (Record.MappingRegions.size() == 1 && 636 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 637 return Error::success(); 638 639 unsigned NumConds = 0; 640 const CounterMappingRegion *MCDCDecision; 641 std::vector<CounterMappingRegion> MCDCBranches; 642 643 FunctionRecord Function(OrigFuncName, Record.Filenames); 644 for (const auto &Region : Record.MappingRegions) { 645 // If an MCDCDecisionRegion is seen, track the BranchRegions that follow 646 // it according to Region.NumConditions. 647 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 648 assert(NumConds == 0); 649 MCDCDecision = &Region; 650 NumConds = Region.MCDCParams.NumConditions; 651 continue; 652 } 653 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 654 if (auto E = ExecutionCount.takeError()) { 655 consumeError(std::move(E)); 656 return Error::success(); 657 } 658 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 659 if (auto E = AltExecutionCount.takeError()) { 660 consumeError(std::move(E)); 661 return Error::success(); 662 } 663 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 664 665 // If a MCDCDecisionRegion was seen, store the BranchRegions that 666 // correspond to it in a vector, according to the number of conditions 667 // recorded for the region (tracked by NumConds). 668 if (NumConds > 0 && Region.Kind == CounterMappingRegion::MCDCBranchRegion) { 669 MCDCBranches.push_back(Region); 670 671 // As we move through all of the MCDCBranchRegions that follow the 672 // MCDCDecisionRegion, decrement NumConds to make sure we account for 673 // them all before we calculate the bitmap of executed test vectors. 674 if (--NumConds == 0) { 675 // Evaluating the test vector bitmap for the decision region entails 676 // calculating precisely what bits are pertinent to this region alone. 677 // This is calculated based on the recorded offset into the global 678 // profile bitmap; the length is calculated based on the recorded 679 // number of conditions. 680 Expected<BitVector> ExecutedTestVectorBitmap = 681 Ctx.evaluateBitmap(MCDCDecision); 682 if (auto E = ExecutedTestVectorBitmap.takeError()) { 683 consumeError(std::move(E)); 684 return Error::success(); 685 } 686 687 // Since the bitmap identifies the executed test vectors for an MC/DC 688 // DecisionRegion, all of the information is now available to process. 689 // This is where the bulk of the MC/DC progressing takes place. 690 Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion( 691 *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches); 692 if (auto E = Record.takeError()) { 693 consumeError(std::move(E)); 694 return Error::success(); 695 } 696 697 // Save the MC/DC Record so that it can be visualized later. 698 Function.pushMCDCRecord(*Record); 699 MCDCBranches.clear(); 700 } 701 } 702 } 703 704 // Don't create records for (filenames, function) pairs we've already seen. 705 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 706 Record.Filenames.end()); 707 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 708 return Error::success(); 709 710 Functions.push_back(std::move(Function)); 711 712 // Performance optimization: keep track of the indices of the function records 713 // which correspond to each filename. This can be used to substantially speed 714 // up queries for coverage info in a file. 715 unsigned RecordIndex = Functions.size() - 1; 716 for (StringRef Filename : Record.Filenames) { 717 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 718 // Note that there may be duplicates in the filename set for a function 719 // record, because of e.g. macro expansions in the function in which both 720 // the macro and the function are defined in the same file. 721 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 722 RecordIndices.push_back(RecordIndex); 723 } 724 725 return Error::success(); 726 } 727 728 // This function is for memory optimization by shortening the lifetimes 729 // of CoverageMappingReader instances. 730 Error CoverageMapping::loadFromReaders( 731 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 732 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 733 for (const auto &CoverageReader : CoverageReaders) { 734 for (auto RecordOrErr : *CoverageReader) { 735 if (Error E = RecordOrErr.takeError()) 736 return E; 737 const auto &Record = *RecordOrErr; 738 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 739 return E; 740 } 741 } 742 return Error::success(); 743 } 744 745 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 746 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 747 IndexedInstrProfReader &ProfileReader) { 748 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 749 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 750 return std::move(E); 751 return std::move(Coverage); 752 } 753 754 // If E is a no_data_found error, returns success. Otherwise returns E. 755 static Error handleMaybeNoDataFoundError(Error E) { 756 return handleErrors( 757 std::move(E), [](const CoverageMapError &CME) { 758 if (CME.get() == coveragemap_error::no_data_found) 759 return static_cast<Error>(Error::success()); 760 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 761 }); 762 } 763 764 Error CoverageMapping::loadFromFile( 765 StringRef Filename, StringRef Arch, StringRef CompilationDir, 766 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 767 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 768 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 769 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 770 if (std::error_code EC = CovMappingBufOrErr.getError()) 771 return createFileError(Filename, errorCodeToError(EC)); 772 MemoryBufferRef CovMappingBufRef = 773 CovMappingBufOrErr.get()->getMemBufferRef(); 774 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 775 776 SmallVector<object::BuildIDRef> BinaryIDs; 777 auto CoverageReadersOrErr = BinaryCoverageReader::create( 778 CovMappingBufRef, Arch, Buffers, CompilationDir, 779 FoundBinaryIDs ? &BinaryIDs : nullptr); 780 if (Error E = CoverageReadersOrErr.takeError()) { 781 E = handleMaybeNoDataFoundError(std::move(E)); 782 if (E) 783 return createFileError(Filename, std::move(E)); 784 return E; 785 } 786 787 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 788 for (auto &Reader : CoverageReadersOrErr.get()) 789 Readers.push_back(std::move(Reader)); 790 if (FoundBinaryIDs && !Readers.empty()) { 791 llvm::append_range(*FoundBinaryIDs, 792 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 793 return object::BuildID(BID); 794 })); 795 } 796 DataFound |= !Readers.empty(); 797 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 798 return createFileError(Filename, std::move(E)); 799 return Error::success(); 800 } 801 802 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 803 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 804 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 805 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 806 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 807 if (Error E = ProfileReaderOrErr.takeError()) 808 return createFileError(ProfileFilename, std::move(E)); 809 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 810 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 811 bool DataFound = false; 812 813 auto GetArch = [&](size_t Idx) { 814 if (Arches.empty()) 815 return StringRef(); 816 if (Arches.size() == 1) 817 return Arches.front(); 818 return Arches[Idx]; 819 }; 820 821 SmallVector<object::BuildID> FoundBinaryIDs; 822 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 823 if (Error E = 824 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 825 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 826 return std::move(E); 827 } 828 829 if (BIDFetcher) { 830 std::vector<object::BuildID> ProfileBinaryIDs; 831 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 832 return createFileError(ProfileFilename, std::move(E)); 833 834 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 835 if (!ProfileBinaryIDs.empty()) { 836 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 837 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 838 B.end()); 839 }; 840 llvm::sort(FoundBinaryIDs, Compare); 841 std::set_difference( 842 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 843 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 844 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 845 } 846 847 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 848 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 849 if (PathOpt) { 850 std::string Path = std::move(*PathOpt); 851 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 852 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 853 *Coverage, DataFound)) 854 return std::move(E); 855 } else if (CheckBinaryIDs) { 856 return createFileError( 857 ProfileFilename, 858 createStringError(errc::no_such_file_or_directory, 859 "Missing binary ID: " + 860 llvm::toHex(BinaryID, /*LowerCase=*/true))); 861 } 862 } 863 } 864 865 if (!DataFound) 866 return createFileError( 867 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 868 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 869 return std::move(Coverage); 870 } 871 872 namespace { 873 874 /// Distributes functions into instantiation sets. 875 /// 876 /// An instantiation set is a collection of functions that have the same source 877 /// code, ie, template functions specializations. 878 class FunctionInstantiationSetCollector { 879 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 880 MapT InstantiatedFunctions; 881 882 public: 883 void insert(const FunctionRecord &Function, unsigned FileID) { 884 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 885 while (I != E && I->FileID != FileID) 886 ++I; 887 assert(I != E && "function does not cover the given file"); 888 auto &Functions = InstantiatedFunctions[I->startLoc()]; 889 Functions.push_back(&Function); 890 } 891 892 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 893 MapT::iterator end() { return InstantiatedFunctions.end(); } 894 }; 895 896 class SegmentBuilder { 897 std::vector<CoverageSegment> &Segments; 898 SmallVector<const CountedRegion *, 8> ActiveRegions; 899 900 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 901 902 /// Emit a segment with the count from \p Region starting at \p StartLoc. 903 // 904 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 905 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 906 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 907 bool IsRegionEntry, bool EmitSkippedRegion = false) { 908 bool HasCount = !EmitSkippedRegion && 909 (Region.Kind != CounterMappingRegion::SkippedRegion); 910 911 // If the new segment wouldn't affect coverage rendering, skip it. 912 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 913 const auto &Last = Segments.back(); 914 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 915 !Last.IsRegionEntry) 916 return; 917 } 918 919 if (HasCount) 920 Segments.emplace_back(StartLoc.first, StartLoc.second, 921 Region.ExecutionCount, IsRegionEntry, 922 Region.Kind == CounterMappingRegion::GapRegion); 923 else 924 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 925 926 LLVM_DEBUG({ 927 const auto &Last = Segments.back(); 928 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 929 << " (count = " << Last.Count << ")" 930 << (Last.IsRegionEntry ? ", RegionEntry" : "") 931 << (!Last.HasCount ? ", Skipped" : "") 932 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 933 }); 934 } 935 936 /// Emit segments for active regions which end before \p Loc. 937 /// 938 /// \p Loc: The start location of the next region. If std::nullopt, all active 939 /// regions are completed. 940 /// \p FirstCompletedRegion: Index of the first completed region. 941 void completeRegionsUntil(std::optional<LineColPair> Loc, 942 unsigned FirstCompletedRegion) { 943 // Sort the completed regions by end location. This makes it simple to 944 // emit closing segments in sorted order. 945 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 946 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 947 [](const CountedRegion *L, const CountedRegion *R) { 948 return L->endLoc() < R->endLoc(); 949 }); 950 951 // Emit segments for all completed regions. 952 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 953 ++I) { 954 const auto *CompletedRegion = ActiveRegions[I]; 955 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 956 "Completed region ends after start of new region"); 957 958 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 959 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 960 961 // Don't emit any more segments if they start where the new region begins. 962 if (Loc && CompletedSegmentLoc == *Loc) 963 break; 964 965 // Don't emit a segment if the next completed region ends at the same 966 // location as this one. 967 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 968 continue; 969 970 // Use the count from the last completed region which ends at this loc. 971 for (unsigned J = I + 1; J < E; ++J) 972 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 973 CompletedRegion = ActiveRegions[J]; 974 975 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 976 } 977 978 auto Last = ActiveRegions.back(); 979 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 980 // If there's a gap after the end of the last completed region and the 981 // start of the new region, use the last active region to fill the gap. 982 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 983 false); 984 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 985 // Emit a skipped segment if there are no more active regions. This 986 // ensures that gaps between functions are marked correctly. 987 startSegment(*Last, Last->endLoc(), false, true); 988 } 989 990 // Pop the completed regions. 991 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 992 } 993 994 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 995 for (const auto &CR : enumerate(Regions)) { 996 auto CurStartLoc = CR.value().startLoc(); 997 998 // Active regions which end before the current region need to be popped. 999 auto CompletedRegions = 1000 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1001 [&](const CountedRegion *Region) { 1002 return !(Region->endLoc() <= CurStartLoc); 1003 }); 1004 if (CompletedRegions != ActiveRegions.end()) { 1005 unsigned FirstCompletedRegion = 1006 std::distance(ActiveRegions.begin(), CompletedRegions); 1007 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1008 } 1009 1010 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1011 1012 // Try to emit a segment for the current region. 1013 if (CurStartLoc == CR.value().endLoc()) { 1014 // Avoid making zero-length regions active. If it's the last region, 1015 // emit a skipped segment. Otherwise use its predecessor's count. 1016 const bool Skipped = 1017 (CR.index() + 1) == Regions.size() || 1018 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1019 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1020 CurStartLoc, !GapRegion, Skipped); 1021 // If it is skipped segment, create a segment with last pushed 1022 // regions's count at CurStartLoc. 1023 if (Skipped && !ActiveRegions.empty()) 1024 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1025 continue; 1026 } 1027 if (CR.index() + 1 == Regions.size() || 1028 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1029 // Emit a segment if the next region doesn't start at the same location 1030 // as this one. 1031 startSegment(CR.value(), CurStartLoc, !GapRegion); 1032 } 1033 1034 // This region is active (i.e not completed). 1035 ActiveRegions.push_back(&CR.value()); 1036 } 1037 1038 // Complete any remaining active regions. 1039 if (!ActiveRegions.empty()) 1040 completeRegionsUntil(std::nullopt, 0); 1041 } 1042 1043 /// Sort a nested sequence of regions from a single file. 1044 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1045 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1046 if (LHS.startLoc() != RHS.startLoc()) 1047 return LHS.startLoc() < RHS.startLoc(); 1048 if (LHS.endLoc() != RHS.endLoc()) 1049 // When LHS completely contains RHS, we sort LHS first. 1050 return RHS.endLoc() < LHS.endLoc(); 1051 // If LHS and RHS cover the same area, we need to sort them according 1052 // to their kinds so that the most suitable region will become "active" 1053 // in combineRegions(). Because we accumulate counter values only from 1054 // regions of the same kind as the first region of the area, prefer 1055 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1056 static_assert(CounterMappingRegion::CodeRegion < 1057 CounterMappingRegion::ExpansionRegion && 1058 CounterMappingRegion::ExpansionRegion < 1059 CounterMappingRegion::SkippedRegion, 1060 "Unexpected order of region kind values"); 1061 return LHS.Kind < RHS.Kind; 1062 }); 1063 } 1064 1065 /// Combine counts of regions which cover the same area. 1066 static ArrayRef<CountedRegion> 1067 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1068 if (Regions.empty()) 1069 return Regions; 1070 auto Active = Regions.begin(); 1071 auto End = Regions.end(); 1072 for (auto I = Regions.begin() + 1; I != End; ++I) { 1073 if (Active->startLoc() != I->startLoc() || 1074 Active->endLoc() != I->endLoc()) { 1075 // Shift to the next region. 1076 ++Active; 1077 if (Active != I) 1078 *Active = *I; 1079 continue; 1080 } 1081 // Merge duplicate region. 1082 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1083 // a macro which is fully expanded to another macro. In that case, we need 1084 // to accumulate counts only from CodeRegions, or else the area will be 1085 // counted twice. 1086 // On the other hand, a macro may have a nested macro in its body. If the 1087 // outer macro is used several times, the ExpansionRegion for the nested 1088 // macro will also be added several times. These ExpansionRegions cover 1089 // the same source locations and have to be combined to reach the correct 1090 // value for that area. 1091 // We add counts of the regions of the same kind as the active region 1092 // to handle the both situations. 1093 if (I->Kind == Active->Kind) 1094 Active->ExecutionCount += I->ExecutionCount; 1095 } 1096 return Regions.drop_back(std::distance(++Active, End)); 1097 } 1098 1099 public: 1100 /// Build a sorted list of CoverageSegments from a list of Regions. 1101 static std::vector<CoverageSegment> 1102 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1103 std::vector<CoverageSegment> Segments; 1104 SegmentBuilder Builder(Segments); 1105 1106 sortNestedRegions(Regions); 1107 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1108 1109 LLVM_DEBUG({ 1110 dbgs() << "Combined regions:\n"; 1111 for (const auto &CR : CombinedRegions) 1112 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1113 << CR.LineEnd << ":" << CR.ColumnEnd 1114 << " (count=" << CR.ExecutionCount << ")\n"; 1115 }); 1116 1117 Builder.buildSegmentsImpl(CombinedRegions); 1118 1119 #ifndef NDEBUG 1120 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1121 const auto &L = Segments[I - 1]; 1122 const auto &R = Segments[I]; 1123 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1124 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1125 continue; 1126 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1127 << " followed by " << R.Line << ":" << R.Col << "\n"); 1128 assert(false && "Coverage segments not unique or sorted"); 1129 } 1130 } 1131 #endif 1132 1133 return Segments; 1134 } 1135 }; 1136 1137 } // end anonymous namespace 1138 1139 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1140 std::vector<StringRef> Filenames; 1141 for (const auto &Function : getCoveredFunctions()) 1142 llvm::append_range(Filenames, Function.Filenames); 1143 llvm::sort(Filenames); 1144 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1145 Filenames.erase(Last, Filenames.end()); 1146 return Filenames; 1147 } 1148 1149 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1150 const FunctionRecord &Function) { 1151 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1152 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1153 if (SourceFile == Function.Filenames[I]) 1154 FilenameEquivalence[I] = true; 1155 return FilenameEquivalence; 1156 } 1157 1158 /// Return the ID of the file where the definition of the function is located. 1159 static std::optional<unsigned> 1160 findMainViewFileID(const FunctionRecord &Function) { 1161 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1162 for (const auto &CR : Function.CountedRegions) 1163 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1164 IsNotExpandedFile[CR.ExpandedFileID] = false; 1165 int I = IsNotExpandedFile.find_first(); 1166 if (I == -1) 1167 return std::nullopt; 1168 return I; 1169 } 1170 1171 /// Check if SourceFile is the file that contains the definition of 1172 /// the Function. Return the ID of the file in that case or std::nullopt 1173 /// otherwise. 1174 static std::optional<unsigned> 1175 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1176 std::optional<unsigned> I = findMainViewFileID(Function); 1177 if (I && SourceFile == Function.Filenames[*I]) 1178 return I; 1179 return std::nullopt; 1180 } 1181 1182 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1183 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1184 } 1185 1186 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1187 CoverageData FileCoverage(Filename); 1188 std::vector<CountedRegion> Regions; 1189 1190 // Look up the function records in the given file. Due to hash collisions on 1191 // the filename, we may get back some records that are not in the file. 1192 ArrayRef<unsigned> RecordIndices = 1193 getImpreciseRecordIndicesForFilename(Filename); 1194 for (unsigned RecordIndex : RecordIndices) { 1195 const FunctionRecord &Function = Functions[RecordIndex]; 1196 auto MainFileID = findMainViewFileID(Filename, Function); 1197 auto FileIDs = gatherFileIDs(Filename, Function); 1198 for (const auto &CR : Function.CountedRegions) 1199 if (FileIDs.test(CR.FileID)) { 1200 Regions.push_back(CR); 1201 if (MainFileID && isExpansion(CR, *MainFileID)) 1202 FileCoverage.Expansions.emplace_back(CR, Function); 1203 } 1204 // Capture branch regions specific to the function (excluding expansions). 1205 for (const auto &CR : Function.CountedBranchRegions) 1206 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1207 FileCoverage.BranchRegions.push_back(CR); 1208 // Capture MCDC records specific to the function. 1209 for (const auto &MR : Function.MCDCRecords) 1210 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1211 FileCoverage.MCDCRecords.push_back(MR); 1212 } 1213 1214 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1215 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1216 1217 return FileCoverage; 1218 } 1219 1220 std::vector<InstantiationGroup> 1221 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1222 FunctionInstantiationSetCollector InstantiationSetCollector; 1223 // Look up the function records in the given file. Due to hash collisions on 1224 // the filename, we may get back some records that are not in the file. 1225 ArrayRef<unsigned> RecordIndices = 1226 getImpreciseRecordIndicesForFilename(Filename); 1227 for (unsigned RecordIndex : RecordIndices) { 1228 const FunctionRecord &Function = Functions[RecordIndex]; 1229 auto MainFileID = findMainViewFileID(Filename, Function); 1230 if (!MainFileID) 1231 continue; 1232 InstantiationSetCollector.insert(Function, *MainFileID); 1233 } 1234 1235 std::vector<InstantiationGroup> Result; 1236 for (auto &InstantiationSet : InstantiationSetCollector) { 1237 InstantiationGroup IG{InstantiationSet.first.first, 1238 InstantiationSet.first.second, 1239 std::move(InstantiationSet.second)}; 1240 Result.emplace_back(std::move(IG)); 1241 } 1242 return Result; 1243 } 1244 1245 CoverageData 1246 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1247 auto MainFileID = findMainViewFileID(Function); 1248 if (!MainFileID) 1249 return CoverageData(); 1250 1251 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1252 std::vector<CountedRegion> Regions; 1253 for (const auto &CR : Function.CountedRegions) 1254 if (CR.FileID == *MainFileID) { 1255 Regions.push_back(CR); 1256 if (isExpansion(CR, *MainFileID)) 1257 FunctionCoverage.Expansions.emplace_back(CR, Function); 1258 } 1259 // Capture branch regions specific to the function (excluding expansions). 1260 for (const auto &CR : Function.CountedBranchRegions) 1261 if (CR.FileID == *MainFileID) 1262 FunctionCoverage.BranchRegions.push_back(CR); 1263 1264 // Capture MCDC records specific to the function. 1265 for (const auto &MR : Function.MCDCRecords) 1266 if (MR.getDecisionRegion().FileID == *MainFileID) 1267 FunctionCoverage.MCDCRecords.push_back(MR); 1268 1269 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1270 << "\n"); 1271 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1272 1273 return FunctionCoverage; 1274 } 1275 1276 CoverageData CoverageMapping::getCoverageForExpansion( 1277 const ExpansionRecord &Expansion) const { 1278 CoverageData ExpansionCoverage( 1279 Expansion.Function.Filenames[Expansion.FileID]); 1280 std::vector<CountedRegion> Regions; 1281 for (const auto &CR : Expansion.Function.CountedRegions) 1282 if (CR.FileID == Expansion.FileID) { 1283 Regions.push_back(CR); 1284 if (isExpansion(CR, Expansion.FileID)) 1285 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1286 } 1287 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1288 // Capture branch regions that only pertain to the corresponding expansion. 1289 if (CR.FileID == Expansion.FileID) 1290 ExpansionCoverage.BranchRegions.push_back(CR); 1291 1292 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1293 << Expansion.FileID << "\n"); 1294 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1295 1296 return ExpansionCoverage; 1297 } 1298 1299 LineCoverageStats::LineCoverageStats( 1300 ArrayRef<const CoverageSegment *> LineSegments, 1301 const CoverageSegment *WrappedSegment, unsigned Line) 1302 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1303 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1304 // Find the minimum number of regions which start in this line. 1305 unsigned MinRegionCount = 0; 1306 auto isStartOfRegion = [](const CoverageSegment *S) { 1307 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1308 }; 1309 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1310 if (isStartOfRegion(LineSegments[I])) 1311 ++MinRegionCount; 1312 1313 bool StartOfSkippedRegion = !LineSegments.empty() && 1314 !LineSegments.front()->HasCount && 1315 LineSegments.front()->IsRegionEntry; 1316 1317 HasMultipleRegions = MinRegionCount > 1; 1318 Mapped = 1319 !StartOfSkippedRegion && 1320 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1321 1322 if (!Mapped) 1323 return; 1324 1325 // Pick the max count from the non-gap, region entry segments and the 1326 // wrapped count. 1327 if (WrappedSegment) 1328 ExecutionCount = WrappedSegment->Count; 1329 if (!MinRegionCount) 1330 return; 1331 for (const auto *LS : LineSegments) 1332 if (isStartOfRegion(LS)) 1333 ExecutionCount = std::max(ExecutionCount, LS->Count); 1334 } 1335 1336 LineCoverageIterator &LineCoverageIterator::operator++() { 1337 if (Next == CD.end()) { 1338 Stats = LineCoverageStats(); 1339 Ended = true; 1340 return *this; 1341 } 1342 if (Segments.size()) 1343 WrappedSegment = Segments.back(); 1344 Segments.clear(); 1345 while (Next != CD.end() && Next->Line == Line) 1346 Segments.push_back(&*Next++); 1347 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1348 ++Line; 1349 return *this; 1350 } 1351 1352 static std::string getCoverageMapErrString(coveragemap_error Err, 1353 const std::string &ErrMsg = "") { 1354 std::string Msg; 1355 raw_string_ostream OS(Msg); 1356 1357 switch (Err) { 1358 case coveragemap_error::success: 1359 OS << "success"; 1360 break; 1361 case coveragemap_error::eof: 1362 OS << "end of File"; 1363 break; 1364 case coveragemap_error::no_data_found: 1365 OS << "no coverage data found"; 1366 break; 1367 case coveragemap_error::unsupported_version: 1368 OS << "unsupported coverage format version"; 1369 break; 1370 case coveragemap_error::truncated: 1371 OS << "truncated coverage data"; 1372 break; 1373 case coveragemap_error::malformed: 1374 OS << "malformed coverage data"; 1375 break; 1376 case coveragemap_error::decompression_failed: 1377 OS << "failed to decompress coverage data (zlib)"; 1378 break; 1379 case coveragemap_error::invalid_or_missing_arch_specifier: 1380 OS << "`-arch` specifier is invalid or missing for universal binary"; 1381 break; 1382 } 1383 1384 // If optional error message is not empty, append it to the message. 1385 if (!ErrMsg.empty()) 1386 OS << ": " << ErrMsg; 1387 1388 return Msg; 1389 } 1390 1391 namespace { 1392 1393 // FIXME: This class is only here to support the transition to llvm::Error. It 1394 // will be removed once this transition is complete. Clients should prefer to 1395 // deal with the Error value directly, rather than converting to error_code. 1396 class CoverageMappingErrorCategoryType : public std::error_category { 1397 const char *name() const noexcept override { return "llvm.coveragemap"; } 1398 std::string message(int IE) const override { 1399 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1400 } 1401 }; 1402 1403 } // end anonymous namespace 1404 1405 std::string CoverageMapError::message() const { 1406 return getCoverageMapErrString(Err, Msg); 1407 } 1408 1409 const std::error_category &llvm::coverage::coveragemap_category() { 1410 static CoverageMappingErrorCategoryType ErrorCategory; 1411 return ErrorCategory; 1412 } 1413 1414 char CoverageMapError::ID = 0; 1415