1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 Expected<BitVector> CounterMappingContext::evaluateBitmap( 227 const CounterMappingRegion *MCDCDecision) const { 228 unsigned ID = MCDCDecision->MCDCParams.BitmapIdx; 229 unsigned NC = MCDCDecision->MCDCParams.NumConditions; 230 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT); 231 unsigned SizeInBytes = SizeInBits / CHAR_BIT; 232 233 assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun"); 234 ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes); 235 236 // Mask each bitmap byte into the BitVector. Go in reverse so that the 237 // bitvector can just be shifted over by one byte on each iteration. 238 BitVector Result(SizeInBits, false); 239 for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) { 240 uint32_t Data = *Byte; 241 Result <<= CHAR_BIT; 242 Result.setBitsInMask(&Data, 1); 243 } 244 return Result; 245 } 246 247 class MCDCRecordProcessor { 248 /// A bitmap representing the executed test vectors for a boolean expression. 249 /// Each index of the bitmap corresponds to a possible test vector. An index 250 /// with a bit value of '1' indicates that the corresponding Test Vector 251 /// identified by that index was executed. 252 const BitVector &ExecutedTestVectorBitmap; 253 254 /// Decision Region to which the ExecutedTestVectorBitmap applies. 255 const CounterMappingRegion &Region; 256 257 /// Array of branch regions corresponding each conditions in the boolean 258 /// expression. 259 ArrayRef<const CounterMappingRegion *> Branches; 260 261 /// Total number of conditions in the boolean expression. 262 unsigned NumConditions; 263 264 /// Mapping of a condition ID to its corresponding branch region. 265 llvm::DenseMap<unsigned, const CounterMappingRegion *> Map; 266 267 /// Vector used to track whether a condition is constant folded. 268 MCDCRecord::BoolVector Folded; 269 270 /// Mapping of calculated MC/DC Independence Pairs for each condition. 271 MCDCRecord::TVPairMap IndependencePairs; 272 273 /// Total number of possible Test Vectors for the boolean expression. 274 MCDCRecord::TestVectors TestVectors; 275 276 /// Actual executed Test Vectors for the boolean expression, based on 277 /// ExecutedTestVectorBitmap. 278 MCDCRecord::TestVectors ExecVectors; 279 280 public: 281 MCDCRecordProcessor(const BitVector &Bitmap, 282 const CounterMappingRegion &Region, 283 ArrayRef<const CounterMappingRegion *> Branches) 284 : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches), 285 NumConditions(Region.MCDCParams.NumConditions), 286 Folded(NumConditions, false), IndependencePairs(NumConditions), 287 TestVectors((size_t)1 << NumConditions) {} 288 289 private: 290 void recordTestVector(MCDCRecord::TestVector &TV, 291 MCDCRecord::CondState Result) { 292 // Calculate an index that is used to identify the test vector in a vector 293 // of test vectors. This index also corresponds to the index values of an 294 // MCDC Region's bitmap (see findExecutedTestVectors()). 295 unsigned Index = 0; 296 for (auto Cond = std::rbegin(TV); Cond != std::rend(TV); ++Cond) { 297 Index <<= 1; 298 Index |= (*Cond == MCDCRecord::MCDC_True) ? 0x1 : 0x0; 299 } 300 301 // Copy the completed test vector to the vector of testvectors. 302 TestVectors[Index] = TV; 303 304 // The final value (T,F) is equal to the last non-dontcare state on the 305 // path (in a short-circuiting system). 306 TestVectors[Index].push_back(Result); 307 } 308 309 void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector &TV, 310 unsigned ID) { 311 // Branch regions are hashed based on an ID. 312 const CounterMappingRegion *Branch = Map[ID]; 313 314 TV[ID - 1] = MCDCRecord::MCDC_True; 315 if (Branch->MCDCParams.TrueID > 0) 316 buildTestVector(TV, Branch->MCDCParams.TrueID); 317 else 318 recordTestVector(TV, MCDCRecord::MCDC_True); 319 } 320 321 void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector &TV, 322 unsigned ID) { 323 // Branch regions are hashed based on an ID. 324 const CounterMappingRegion *Branch = Map[ID]; 325 326 TV[ID - 1] = MCDCRecord::MCDC_False; 327 if (Branch->MCDCParams.FalseID > 0) 328 buildTestVector(TV, Branch->MCDCParams.FalseID); 329 else 330 recordTestVector(TV, MCDCRecord::MCDC_False); 331 } 332 333 /// Starting with the base test vector, build a comprehensive list of 334 /// possible test vectors by recursively walking the branch condition IDs 335 /// provided. Once an end node is reached, record the test vector in a vector 336 /// of test vectors that can be matched against during MC/DC analysis, and 337 /// then reset the positions to 'DontCare'. 338 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID = 1) { 339 shouldCopyOffTestVectorForTruePath(TV, ID); 340 shouldCopyOffTestVectorForFalsePath(TV, ID); 341 342 // Reset back to DontCare. 343 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 344 } 345 346 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 347 /// vector at the corresponding index was executed during a test run. 348 void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) { 349 for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) { 350 if (ExecutedTestVectorBitmap[Idx] == 0) 351 continue; 352 assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist."); 353 ExecVectors.push_back(TestVectors[Idx]); 354 } 355 } 356 357 /// For a given condition and two executed Test Vectors, A and B, see if the 358 /// two test vectors match forming an Independence Pair for the condition. 359 /// For two test vectors to match, the following must be satisfied: 360 /// - The condition's value in each test vector must be opposite. 361 /// - The result's value in each test vector must be opposite. 362 /// - All other conditions' values must be equal or marked as "don't care". 363 bool matchTestVectors(unsigned Aidx, unsigned Bidx, unsigned ConditionIdx) { 364 const MCDCRecord::TestVector &A = ExecVectors[Aidx]; 365 const MCDCRecord::TestVector &B = ExecVectors[Bidx]; 366 367 // If condition values in both A and B aren't opposites, no match. 368 // Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check 369 // that "XOR != 1" will ensure that the values are opposites and that 370 // neither of them is a DontCare. 371 // 1 XOR 0 == 1 | 0 XOR 0 == 0 | -1 XOR 0 == -1 372 // 1 XOR 1 == 0 | 0 XOR 1 == 1 | -1 XOR 1 == -2 373 // 1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 == 0 374 if ((A[ConditionIdx] ^ B[ConditionIdx]) != 1) 375 return false; 376 377 // If the results of both A and B aren't opposites, no match. 378 if ((A[NumConditions] ^ B[NumConditions]) != 1) 379 return false; 380 381 for (unsigned Idx = 0; Idx < NumConditions; ++Idx) { 382 // Look for other conditions that don't match. Skip over the given 383 // Condition as well as any conditions marked as "don't care". 384 const auto ARecordTyForCond = A[Idx]; 385 const auto BRecordTyForCond = B[Idx]; 386 if (Idx == ConditionIdx || 387 ARecordTyForCond == MCDCRecord::MCDC_DontCare || 388 BRecordTyForCond == MCDCRecord::MCDC_DontCare) 389 continue; 390 391 // If there is a condition mismatch with any of the other conditions, 392 // there is no match for the test vectors. 393 if (ARecordTyForCond != BRecordTyForCond) 394 return false; 395 } 396 397 // Otherwise, match. 398 return true; 399 } 400 401 /// Find all possible Independence Pairs for a boolean expression given its 402 /// executed Test Vectors. This process involves looking at each condition 403 /// and attempting to find two Test Vectors that "match", giving us a pair. 404 void findIndependencePairs() { 405 unsigned NumTVs = ExecVectors.size(); 406 407 // For each condition. 408 for (unsigned C = 0; C < NumConditions; ++C) { 409 bool PairFound = false; 410 411 // For each executed test vector. 412 for (unsigned I = 0; !PairFound && I < NumTVs; ++I) { 413 // Compared to every other executed test vector. 414 for (unsigned J = 0; !PairFound && J < NumTVs; ++J) { 415 if (I == J) 416 continue; 417 418 // If a matching pair of vectors is found, record them. 419 if ((PairFound = matchTestVectors(I, J, C))) 420 IndependencePairs[C] = std::make_pair(I + 1, J + 1); 421 } 422 } 423 } 424 } 425 426 public: 427 /// Process the MC/DC Record in order to produce a result for a boolean 428 /// expression. This process includes tracking the conditions that comprise 429 /// the decision region, calculating the list of all possible test vectors, 430 /// marking the executed test vectors, and then finding an Independence Pair 431 /// out of the executed test vectors for each condition in the boolean 432 /// expression. A condition is tracked to ensure that its ID can be mapped to 433 /// its ordinal position in the boolean expression. The condition's source 434 /// location is also tracked, as well as whether it is constant folded (in 435 /// which case it is excuded from the metric). 436 MCDCRecord processMCDCRecord() { 437 unsigned I = 0; 438 MCDCRecord::CondIDMap PosToID; 439 MCDCRecord::LineColPairMap CondLoc; 440 441 // Walk the Record's BranchRegions (representing Conditions) in order to: 442 // - Hash the condition based on its corresponding ID. This will be used to 443 // calculate the test vectors. 444 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 445 // actual ID. This will be used to visualize the conditions in the 446 // correct order. 447 // - Keep track of the condition source location. This will be used to 448 // visualize where the condition is. 449 // - Record whether the condition is constant folded so that we exclude it 450 // from being measured. 451 for (const auto *B : Branches) { 452 Map[B->MCDCParams.ID] = B; 453 PosToID[I] = B->MCDCParams.ID - 1; 454 CondLoc[I] = B->startLoc(); 455 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 456 } 457 458 // Initialize a base test vector as 'DontCare'. 459 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 460 461 // Use the base test vector to build the list of all possible test vectors. 462 buildTestVector(TV); 463 464 // Using Profile Bitmap from runtime, mark the executed test vectors. 465 findExecutedTestVectors(ExecutedTestVectorBitmap); 466 467 // Compare executed test vectors against each other to find an independence 468 // pairs for each condition. This processing takes the most time. 469 findIndependencePairs(); 470 471 // Record Test vectors, executed vectors, and independence pairs. 472 MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID, 473 CondLoc); 474 return Res; 475 } 476 }; 477 478 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 479 const CounterMappingRegion &Region, 480 const BitVector &ExecutedTestVectorBitmap, 481 ArrayRef<const CounterMappingRegion *> Branches) { 482 483 MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches); 484 return MCDCProcessor.processMCDCRecord(); 485 } 486 487 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 488 struct StackElem { 489 Counter ICounter; 490 int64_t LHS = 0; 491 enum { 492 KNeverVisited = 0, 493 KVisitedOnce = 1, 494 KVisitedTwice = 2, 495 } VisitCount = KNeverVisited; 496 }; 497 498 std::stack<StackElem> CounterStack; 499 CounterStack.push({C}); 500 501 int64_t LastPoppedValue; 502 503 while (!CounterStack.empty()) { 504 StackElem &Current = CounterStack.top(); 505 506 switch (Current.ICounter.getKind()) { 507 case Counter::Zero: 508 LastPoppedValue = 0; 509 CounterStack.pop(); 510 break; 511 case Counter::CounterValueReference: 512 LastPoppedValue = Current.ICounter.getCounterID(); 513 CounterStack.pop(); 514 break; 515 case Counter::Expression: { 516 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 517 LastPoppedValue = 0; 518 CounterStack.pop(); 519 } else { 520 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 521 if (Current.VisitCount == StackElem::KNeverVisited) { 522 CounterStack.push(StackElem{E.LHS}); 523 Current.VisitCount = StackElem::KVisitedOnce; 524 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 525 Current.LHS = LastPoppedValue; 526 CounterStack.push(StackElem{E.RHS}); 527 Current.VisitCount = StackElem::KVisitedTwice; 528 } else { 529 int64_t LHS = Current.LHS; 530 int64_t RHS = LastPoppedValue; 531 LastPoppedValue = std::max(LHS, RHS); 532 CounterStack.pop(); 533 } 534 } 535 break; 536 } 537 } 538 } 539 540 return LastPoppedValue; 541 } 542 543 void FunctionRecordIterator::skipOtherFiles() { 544 while (Current != Records.end() && !Filename.empty() && 545 Filename != Current->Filenames[0]) 546 ++Current; 547 if (Current == Records.end()) 548 *this = FunctionRecordIterator(); 549 } 550 551 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 552 StringRef Filename) const { 553 size_t FilenameHash = hash_value(Filename); 554 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 555 if (RecordIt == FilenameHash2RecordIndices.end()) 556 return {}; 557 return RecordIt->second; 558 } 559 560 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 561 const CoverageMappingRecord &Record) { 562 unsigned MaxCounterID = 0; 563 for (const auto &Region : Record.MappingRegions) { 564 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 565 } 566 return MaxCounterID; 567 } 568 569 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 570 const CoverageMappingRecord &Record) { 571 unsigned MaxBitmapID = 0; 572 unsigned NumConditions = 0; 573 // Scan max(BitmapIdx). 574 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 575 // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record. 576 for (const auto &Region : reverse(Record.MappingRegions)) { 577 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion && 578 MaxBitmapID <= Region.MCDCParams.BitmapIdx) { 579 MaxBitmapID = Region.MCDCParams.BitmapIdx; 580 NumConditions = Region.MCDCParams.NumConditions; 581 } 582 } 583 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 584 return MaxBitmapID + (SizeInBits / CHAR_BIT); 585 } 586 587 namespace { 588 589 /// Collect Decisions, Branchs, and Expansions and associate them. 590 class MCDCDecisionRecorder { 591 private: 592 /// This holds the DecisionRegion and MCDCBranches under it. 593 /// Also traverses Expansion(s). 594 /// The Decision has the number of MCDCBranches and will complete 595 /// when it is filled with unique ConditionID of MCDCBranches. 596 struct DecisionRecord { 597 const CounterMappingRegion *DecisionRegion; 598 599 /// They are reflected from DecisionRegion for convenience. 600 LineColPair DecisionStartLoc; 601 LineColPair DecisionEndLoc; 602 603 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 604 /// to`ArrayRef<const CounterMappingRegion *>`. 605 SmallVector<const CounterMappingRegion *> MCDCBranches; 606 607 /// IDs that are stored in MCDCBranches 608 /// Complete when all IDs (1 to NumConditions) are met. 609 DenseSet<CounterMappingRegion::MCDCConditionID> ConditionIDs; 610 611 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 612 /// and its children (via expansions). 613 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 614 /// the location in the expansion doesn't matter. 615 DenseSet<unsigned> ExpandedFileIDs; 616 617 DecisionRecord(const CounterMappingRegion &Decision) 618 : DecisionRegion(&Decision), DecisionStartLoc(Decision.startLoc()), 619 DecisionEndLoc(Decision.endLoc()) { 620 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 621 } 622 623 /// Determine whether DecisionRecord dominates `R`. 624 bool dominates(const CounterMappingRegion &R) const { 625 // Determine whether `R` is included in `DecisionRegion`. 626 if (R.FileID == DecisionRegion->FileID && 627 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 628 return true; 629 630 // Determine whether `R` is pointed by any of Expansions. 631 return ExpandedFileIDs.contains(R.FileID); 632 } 633 634 enum Result { 635 NotProcessed = 0, /// Irrelevant to this Decision 636 Processed, /// Added to this Decision 637 Completed, /// Added and filled this Decision 638 }; 639 640 /// Add Branch into the Decision 641 /// \param Branch expects MCDCBranchRegion 642 /// \returns NotProcessed/Processed/Completed 643 Result addBranch(const CounterMappingRegion &Branch) { 644 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 645 646 auto ConditionID = Branch.MCDCParams.ID; 647 assert(ConditionID > 0 && "ConditionID should begin with 1"); 648 649 if (ConditionIDs.contains(ConditionID) || 650 ConditionID > DecisionRegion->MCDCParams.NumConditions) 651 return NotProcessed; 652 653 if (!this->dominates(Branch)) 654 return NotProcessed; 655 656 assert(MCDCBranches.size() < DecisionRegion->MCDCParams.NumConditions); 657 658 // Put `ID=1` in front of `MCDCBranches` for convenience 659 // even if `MCDCBranches` is not topological. 660 if (ConditionID == 1) 661 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 662 else 663 MCDCBranches.push_back(&Branch); 664 665 // Mark `ID` as `assigned`. 666 ConditionIDs.insert(ConditionID); 667 668 // `Completed` when `MCDCBranches` is full 669 return (MCDCBranches.size() == DecisionRegion->MCDCParams.NumConditions 670 ? Completed 671 : Processed); 672 } 673 674 /// Record Expansion if it is relevant to this Decision. 675 /// Each `Expansion` may nest. 676 /// \returns true if recorded. 677 bool recordExpansion(const CounterMappingRegion &Expansion) { 678 if (!this->dominates(Expansion)) 679 return false; 680 681 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 682 return true; 683 } 684 }; 685 686 private: 687 /// Decisions in progress 688 /// DecisionRecord is added for each MCDCDecisionRegion. 689 /// DecisionRecord is removed when Decision is completed. 690 SmallVector<DecisionRecord> Decisions; 691 692 public: 693 ~MCDCDecisionRecorder() { 694 assert(Decisions.empty() && "All Decisions have not been resolved"); 695 } 696 697 /// Register Region and start recording. 698 void registerDecision(const CounterMappingRegion &Decision) { 699 Decisions.emplace_back(Decision); 700 } 701 702 void recordExpansion(const CounterMappingRegion &Expansion) { 703 any_of(Decisions, [&Expansion](auto &Decision) { 704 return Decision.recordExpansion(Expansion); 705 }); 706 } 707 708 using DecisionAndBranches = 709 std::pair<const CounterMappingRegion *, /// Decision 710 SmallVector<const CounterMappingRegion *> /// Branches 711 >; 712 713 /// Add MCDCBranchRegion to DecisionRecord. 714 /// \param Branch to be processed 715 /// \returns DecisionsAndBranches if DecisionRecord completed. 716 /// Or returns nullopt. 717 std::optional<DecisionAndBranches> 718 processBranch(const CounterMappingRegion &Branch) { 719 // Seek each Decision and apply Region to it. 720 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 721 DecisionIter != DecisionEnd; ++DecisionIter) 722 switch (DecisionIter->addBranch(Branch)) { 723 case DecisionRecord::NotProcessed: 724 continue; 725 case DecisionRecord::Processed: 726 return std::nullopt; 727 case DecisionRecord::Completed: 728 DecisionAndBranches Result = 729 std::make_pair(DecisionIter->DecisionRegion, 730 std::move(DecisionIter->MCDCBranches)); 731 Decisions.erase(DecisionIter); // No longer used. 732 return Result; 733 } 734 735 llvm_unreachable("Branch not found in Decisions"); 736 } 737 }; 738 739 } // namespace 740 741 Error CoverageMapping::loadFunctionRecord( 742 const CoverageMappingRecord &Record, 743 IndexedInstrProfReader &ProfileReader) { 744 StringRef OrigFuncName = Record.FunctionName; 745 if (OrigFuncName.empty()) 746 return make_error<CoverageMapError>(coveragemap_error::malformed, 747 "record function name is empty"); 748 749 if (Record.Filenames.empty()) 750 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 751 else 752 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 753 754 CounterMappingContext Ctx(Record.Expressions); 755 756 std::vector<uint64_t> Counts; 757 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 758 Record.FunctionHash, Counts)) { 759 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 760 if (IPE == instrprof_error::hash_mismatch) { 761 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 762 Record.FunctionHash); 763 return Error::success(); 764 } 765 if (IPE != instrprof_error::unknown_function) 766 return make_error<InstrProfError>(IPE); 767 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 768 } 769 Ctx.setCounts(Counts); 770 771 std::vector<uint8_t> BitmapBytes; 772 if (Error E = ProfileReader.getFunctionBitmapBytes( 773 Record.FunctionName, Record.FunctionHash, BitmapBytes)) { 774 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 775 if (IPE == instrprof_error::hash_mismatch) { 776 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 777 Record.FunctionHash); 778 return Error::success(); 779 } 780 if (IPE != instrprof_error::unknown_function) 781 return make_error<InstrProfError>(IPE); 782 BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0); 783 } 784 Ctx.setBitmapBytes(BitmapBytes); 785 786 assert(!Record.MappingRegions.empty() && "Function has no regions"); 787 788 // This coverage record is a zero region for a function that's unused in 789 // some TU, but used in a different TU. Ignore it. The coverage maps from the 790 // the other TU will either be loaded (providing full region counts) or they 791 // won't (in which case we don't unintuitively report functions as uncovered 792 // when they have non-zero counts in the profile). 793 if (Record.MappingRegions.size() == 1 && 794 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 795 return Error::success(); 796 797 MCDCDecisionRecorder MCDCDecisions; 798 FunctionRecord Function(OrigFuncName, Record.Filenames); 799 for (const auto &Region : Record.MappingRegions) { 800 // MCDCDecisionRegion should be handled first since it overlaps with 801 // others inside. 802 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 803 MCDCDecisions.registerDecision(Region); 804 continue; 805 } 806 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 807 if (auto E = ExecutionCount.takeError()) { 808 consumeError(std::move(E)); 809 return Error::success(); 810 } 811 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 812 if (auto E = AltExecutionCount.takeError()) { 813 consumeError(std::move(E)); 814 return Error::success(); 815 } 816 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 817 818 // Record ExpansionRegion. 819 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 820 MCDCDecisions.recordExpansion(Region); 821 continue; 822 } 823 824 // Do nothing unless MCDCBranchRegion. 825 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 826 continue; 827 828 auto Result = MCDCDecisions.processBranch(Region); 829 if (!Result) // Any Decision doesn't complete. 830 continue; 831 832 auto MCDCDecision = Result->first; 833 auto &MCDCBranches = Result->second; 834 835 // Evaluating the test vector bitmap for the decision region entails 836 // calculating precisely what bits are pertinent to this region alone. 837 // This is calculated based on the recorded offset into the global 838 // profile bitmap; the length is calculated based on the recorded 839 // number of conditions. 840 Expected<BitVector> ExecutedTestVectorBitmap = 841 Ctx.evaluateBitmap(MCDCDecision); 842 if (auto E = ExecutedTestVectorBitmap.takeError()) { 843 consumeError(std::move(E)); 844 return Error::success(); 845 } 846 847 // Since the bitmap identifies the executed test vectors for an MC/DC 848 // DecisionRegion, all of the information is now available to process. 849 // This is where the bulk of the MC/DC progressing takes place. 850 Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion( 851 *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches); 852 if (auto E = Record.takeError()) { 853 consumeError(std::move(E)); 854 return Error::success(); 855 } 856 857 // Save the MC/DC Record so that it can be visualized later. 858 Function.pushMCDCRecord(*Record); 859 } 860 861 // Don't create records for (filenames, function) pairs we've already seen. 862 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 863 Record.Filenames.end()); 864 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 865 return Error::success(); 866 867 Functions.push_back(std::move(Function)); 868 869 // Performance optimization: keep track of the indices of the function records 870 // which correspond to each filename. This can be used to substantially speed 871 // up queries for coverage info in a file. 872 unsigned RecordIndex = Functions.size() - 1; 873 for (StringRef Filename : Record.Filenames) { 874 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 875 // Note that there may be duplicates in the filename set for a function 876 // record, because of e.g. macro expansions in the function in which both 877 // the macro and the function are defined in the same file. 878 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 879 RecordIndices.push_back(RecordIndex); 880 } 881 882 return Error::success(); 883 } 884 885 // This function is for memory optimization by shortening the lifetimes 886 // of CoverageMappingReader instances. 887 Error CoverageMapping::loadFromReaders( 888 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 889 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 890 for (const auto &CoverageReader : CoverageReaders) { 891 for (auto RecordOrErr : *CoverageReader) { 892 if (Error E = RecordOrErr.takeError()) 893 return E; 894 const auto &Record = *RecordOrErr; 895 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 896 return E; 897 } 898 } 899 return Error::success(); 900 } 901 902 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 903 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 904 IndexedInstrProfReader &ProfileReader) { 905 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 906 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 907 return std::move(E); 908 return std::move(Coverage); 909 } 910 911 // If E is a no_data_found error, returns success. Otherwise returns E. 912 static Error handleMaybeNoDataFoundError(Error E) { 913 return handleErrors( 914 std::move(E), [](const CoverageMapError &CME) { 915 if (CME.get() == coveragemap_error::no_data_found) 916 return static_cast<Error>(Error::success()); 917 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 918 }); 919 } 920 921 Error CoverageMapping::loadFromFile( 922 StringRef Filename, StringRef Arch, StringRef CompilationDir, 923 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 924 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 925 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 926 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 927 if (std::error_code EC = CovMappingBufOrErr.getError()) 928 return createFileError(Filename, errorCodeToError(EC)); 929 MemoryBufferRef CovMappingBufRef = 930 CovMappingBufOrErr.get()->getMemBufferRef(); 931 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 932 933 SmallVector<object::BuildIDRef> BinaryIDs; 934 auto CoverageReadersOrErr = BinaryCoverageReader::create( 935 CovMappingBufRef, Arch, Buffers, CompilationDir, 936 FoundBinaryIDs ? &BinaryIDs : nullptr); 937 if (Error E = CoverageReadersOrErr.takeError()) { 938 E = handleMaybeNoDataFoundError(std::move(E)); 939 if (E) 940 return createFileError(Filename, std::move(E)); 941 return E; 942 } 943 944 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 945 for (auto &Reader : CoverageReadersOrErr.get()) 946 Readers.push_back(std::move(Reader)); 947 if (FoundBinaryIDs && !Readers.empty()) { 948 llvm::append_range(*FoundBinaryIDs, 949 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 950 return object::BuildID(BID); 951 })); 952 } 953 DataFound |= !Readers.empty(); 954 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 955 return createFileError(Filename, std::move(E)); 956 return Error::success(); 957 } 958 959 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 960 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 961 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 962 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 963 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 964 if (Error E = ProfileReaderOrErr.takeError()) 965 return createFileError(ProfileFilename, std::move(E)); 966 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 967 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 968 bool DataFound = false; 969 970 auto GetArch = [&](size_t Idx) { 971 if (Arches.empty()) 972 return StringRef(); 973 if (Arches.size() == 1) 974 return Arches.front(); 975 return Arches[Idx]; 976 }; 977 978 SmallVector<object::BuildID> FoundBinaryIDs; 979 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 980 if (Error E = 981 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 982 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 983 return std::move(E); 984 } 985 986 if (BIDFetcher) { 987 std::vector<object::BuildID> ProfileBinaryIDs; 988 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 989 return createFileError(ProfileFilename, std::move(E)); 990 991 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 992 if (!ProfileBinaryIDs.empty()) { 993 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 994 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 995 B.end()); 996 }; 997 llvm::sort(FoundBinaryIDs, Compare); 998 std::set_difference( 999 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1000 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1001 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1002 } 1003 1004 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1005 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1006 if (PathOpt) { 1007 std::string Path = std::move(*PathOpt); 1008 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1009 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1010 *Coverage, DataFound)) 1011 return std::move(E); 1012 } else if (CheckBinaryIDs) { 1013 return createFileError( 1014 ProfileFilename, 1015 createStringError(errc::no_such_file_or_directory, 1016 "Missing binary ID: " + 1017 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1018 } 1019 } 1020 } 1021 1022 if (!DataFound) 1023 return createFileError( 1024 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1025 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1026 return std::move(Coverage); 1027 } 1028 1029 namespace { 1030 1031 /// Distributes functions into instantiation sets. 1032 /// 1033 /// An instantiation set is a collection of functions that have the same source 1034 /// code, ie, template functions specializations. 1035 class FunctionInstantiationSetCollector { 1036 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1037 MapT InstantiatedFunctions; 1038 1039 public: 1040 void insert(const FunctionRecord &Function, unsigned FileID) { 1041 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1042 while (I != E && I->FileID != FileID) 1043 ++I; 1044 assert(I != E && "function does not cover the given file"); 1045 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1046 Functions.push_back(&Function); 1047 } 1048 1049 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1050 MapT::iterator end() { return InstantiatedFunctions.end(); } 1051 }; 1052 1053 class SegmentBuilder { 1054 std::vector<CoverageSegment> &Segments; 1055 SmallVector<const CountedRegion *, 8> ActiveRegions; 1056 1057 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1058 1059 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1060 // 1061 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1062 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1063 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1064 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1065 bool HasCount = !EmitSkippedRegion && 1066 (Region.Kind != CounterMappingRegion::SkippedRegion); 1067 1068 // If the new segment wouldn't affect coverage rendering, skip it. 1069 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1070 const auto &Last = Segments.back(); 1071 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1072 !Last.IsRegionEntry) 1073 return; 1074 } 1075 1076 if (HasCount) 1077 Segments.emplace_back(StartLoc.first, StartLoc.second, 1078 Region.ExecutionCount, IsRegionEntry, 1079 Region.Kind == CounterMappingRegion::GapRegion); 1080 else 1081 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1082 1083 LLVM_DEBUG({ 1084 const auto &Last = Segments.back(); 1085 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1086 << " (count = " << Last.Count << ")" 1087 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1088 << (!Last.HasCount ? ", Skipped" : "") 1089 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1090 }); 1091 } 1092 1093 /// Emit segments for active regions which end before \p Loc. 1094 /// 1095 /// \p Loc: The start location of the next region. If std::nullopt, all active 1096 /// regions are completed. 1097 /// \p FirstCompletedRegion: Index of the first completed region. 1098 void completeRegionsUntil(std::optional<LineColPair> Loc, 1099 unsigned FirstCompletedRegion) { 1100 // Sort the completed regions by end location. This makes it simple to 1101 // emit closing segments in sorted order. 1102 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1103 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1104 [](const CountedRegion *L, const CountedRegion *R) { 1105 return L->endLoc() < R->endLoc(); 1106 }); 1107 1108 // Emit segments for all completed regions. 1109 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1110 ++I) { 1111 const auto *CompletedRegion = ActiveRegions[I]; 1112 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1113 "Completed region ends after start of new region"); 1114 1115 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1116 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1117 1118 // Don't emit any more segments if they start where the new region begins. 1119 if (Loc && CompletedSegmentLoc == *Loc) 1120 break; 1121 1122 // Don't emit a segment if the next completed region ends at the same 1123 // location as this one. 1124 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1125 continue; 1126 1127 // Use the count from the last completed region which ends at this loc. 1128 for (unsigned J = I + 1; J < E; ++J) 1129 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1130 CompletedRegion = ActiveRegions[J]; 1131 1132 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1133 } 1134 1135 auto Last = ActiveRegions.back(); 1136 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1137 // If there's a gap after the end of the last completed region and the 1138 // start of the new region, use the last active region to fill the gap. 1139 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1140 false); 1141 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1142 // Emit a skipped segment if there are no more active regions. This 1143 // ensures that gaps between functions are marked correctly. 1144 startSegment(*Last, Last->endLoc(), false, true); 1145 } 1146 1147 // Pop the completed regions. 1148 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1149 } 1150 1151 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1152 for (const auto &CR : enumerate(Regions)) { 1153 auto CurStartLoc = CR.value().startLoc(); 1154 1155 // Active regions which end before the current region need to be popped. 1156 auto CompletedRegions = 1157 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1158 [&](const CountedRegion *Region) { 1159 return !(Region->endLoc() <= CurStartLoc); 1160 }); 1161 if (CompletedRegions != ActiveRegions.end()) { 1162 unsigned FirstCompletedRegion = 1163 std::distance(ActiveRegions.begin(), CompletedRegions); 1164 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1165 } 1166 1167 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1168 1169 // Try to emit a segment for the current region. 1170 if (CurStartLoc == CR.value().endLoc()) { 1171 // Avoid making zero-length regions active. If it's the last region, 1172 // emit a skipped segment. Otherwise use its predecessor's count. 1173 const bool Skipped = 1174 (CR.index() + 1) == Regions.size() || 1175 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1176 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1177 CurStartLoc, !GapRegion, Skipped); 1178 // If it is skipped segment, create a segment with last pushed 1179 // regions's count at CurStartLoc. 1180 if (Skipped && !ActiveRegions.empty()) 1181 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1182 continue; 1183 } 1184 if (CR.index() + 1 == Regions.size() || 1185 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1186 // Emit a segment if the next region doesn't start at the same location 1187 // as this one. 1188 startSegment(CR.value(), CurStartLoc, !GapRegion); 1189 } 1190 1191 // This region is active (i.e not completed). 1192 ActiveRegions.push_back(&CR.value()); 1193 } 1194 1195 // Complete any remaining active regions. 1196 if (!ActiveRegions.empty()) 1197 completeRegionsUntil(std::nullopt, 0); 1198 } 1199 1200 /// Sort a nested sequence of regions from a single file. 1201 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1202 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1203 if (LHS.startLoc() != RHS.startLoc()) 1204 return LHS.startLoc() < RHS.startLoc(); 1205 if (LHS.endLoc() != RHS.endLoc()) 1206 // When LHS completely contains RHS, we sort LHS first. 1207 return RHS.endLoc() < LHS.endLoc(); 1208 // If LHS and RHS cover the same area, we need to sort them according 1209 // to their kinds so that the most suitable region will become "active" 1210 // in combineRegions(). Because we accumulate counter values only from 1211 // regions of the same kind as the first region of the area, prefer 1212 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1213 static_assert(CounterMappingRegion::CodeRegion < 1214 CounterMappingRegion::ExpansionRegion && 1215 CounterMappingRegion::ExpansionRegion < 1216 CounterMappingRegion::SkippedRegion, 1217 "Unexpected order of region kind values"); 1218 return LHS.Kind < RHS.Kind; 1219 }); 1220 } 1221 1222 /// Combine counts of regions which cover the same area. 1223 static ArrayRef<CountedRegion> 1224 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1225 if (Regions.empty()) 1226 return Regions; 1227 auto Active = Regions.begin(); 1228 auto End = Regions.end(); 1229 for (auto I = Regions.begin() + 1; I != End; ++I) { 1230 if (Active->startLoc() != I->startLoc() || 1231 Active->endLoc() != I->endLoc()) { 1232 // Shift to the next region. 1233 ++Active; 1234 if (Active != I) 1235 *Active = *I; 1236 continue; 1237 } 1238 // Merge duplicate region. 1239 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1240 // a macro which is fully expanded to another macro. In that case, we need 1241 // to accumulate counts only from CodeRegions, or else the area will be 1242 // counted twice. 1243 // On the other hand, a macro may have a nested macro in its body. If the 1244 // outer macro is used several times, the ExpansionRegion for the nested 1245 // macro will also be added several times. These ExpansionRegions cover 1246 // the same source locations and have to be combined to reach the correct 1247 // value for that area. 1248 // We add counts of the regions of the same kind as the active region 1249 // to handle the both situations. 1250 if (I->Kind == Active->Kind) 1251 Active->ExecutionCount += I->ExecutionCount; 1252 } 1253 return Regions.drop_back(std::distance(++Active, End)); 1254 } 1255 1256 public: 1257 /// Build a sorted list of CoverageSegments from a list of Regions. 1258 static std::vector<CoverageSegment> 1259 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1260 std::vector<CoverageSegment> Segments; 1261 SegmentBuilder Builder(Segments); 1262 1263 sortNestedRegions(Regions); 1264 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1265 1266 LLVM_DEBUG({ 1267 dbgs() << "Combined regions:\n"; 1268 for (const auto &CR : CombinedRegions) 1269 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1270 << CR.LineEnd << ":" << CR.ColumnEnd 1271 << " (count=" << CR.ExecutionCount << ")\n"; 1272 }); 1273 1274 Builder.buildSegmentsImpl(CombinedRegions); 1275 1276 #ifndef NDEBUG 1277 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1278 const auto &L = Segments[I - 1]; 1279 const auto &R = Segments[I]; 1280 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1281 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1282 continue; 1283 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1284 << " followed by " << R.Line << ":" << R.Col << "\n"); 1285 assert(false && "Coverage segments not unique or sorted"); 1286 } 1287 } 1288 #endif 1289 1290 return Segments; 1291 } 1292 }; 1293 1294 } // end anonymous namespace 1295 1296 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1297 std::vector<StringRef> Filenames; 1298 for (const auto &Function : getCoveredFunctions()) 1299 llvm::append_range(Filenames, Function.Filenames); 1300 llvm::sort(Filenames); 1301 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1302 Filenames.erase(Last, Filenames.end()); 1303 return Filenames; 1304 } 1305 1306 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1307 const FunctionRecord &Function) { 1308 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1309 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1310 if (SourceFile == Function.Filenames[I]) 1311 FilenameEquivalence[I] = true; 1312 return FilenameEquivalence; 1313 } 1314 1315 /// Return the ID of the file where the definition of the function is located. 1316 static std::optional<unsigned> 1317 findMainViewFileID(const FunctionRecord &Function) { 1318 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1319 for (const auto &CR : Function.CountedRegions) 1320 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1321 IsNotExpandedFile[CR.ExpandedFileID] = false; 1322 int I = IsNotExpandedFile.find_first(); 1323 if (I == -1) 1324 return std::nullopt; 1325 return I; 1326 } 1327 1328 /// Check if SourceFile is the file that contains the definition of 1329 /// the Function. Return the ID of the file in that case or std::nullopt 1330 /// otherwise. 1331 static std::optional<unsigned> 1332 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1333 std::optional<unsigned> I = findMainViewFileID(Function); 1334 if (I && SourceFile == Function.Filenames[*I]) 1335 return I; 1336 return std::nullopt; 1337 } 1338 1339 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1340 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1341 } 1342 1343 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1344 CoverageData FileCoverage(Filename); 1345 std::vector<CountedRegion> Regions; 1346 1347 // Look up the function records in the given file. Due to hash collisions on 1348 // the filename, we may get back some records that are not in the file. 1349 ArrayRef<unsigned> RecordIndices = 1350 getImpreciseRecordIndicesForFilename(Filename); 1351 for (unsigned RecordIndex : RecordIndices) { 1352 const FunctionRecord &Function = Functions[RecordIndex]; 1353 auto MainFileID = findMainViewFileID(Filename, Function); 1354 auto FileIDs = gatherFileIDs(Filename, Function); 1355 for (const auto &CR : Function.CountedRegions) 1356 if (FileIDs.test(CR.FileID)) { 1357 Regions.push_back(CR); 1358 if (MainFileID && isExpansion(CR, *MainFileID)) 1359 FileCoverage.Expansions.emplace_back(CR, Function); 1360 } 1361 // Capture branch regions specific to the function (excluding expansions). 1362 for (const auto &CR : Function.CountedBranchRegions) 1363 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1364 FileCoverage.BranchRegions.push_back(CR); 1365 // Capture MCDC records specific to the function. 1366 for (const auto &MR : Function.MCDCRecords) 1367 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1368 FileCoverage.MCDCRecords.push_back(MR); 1369 } 1370 1371 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1372 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1373 1374 return FileCoverage; 1375 } 1376 1377 std::vector<InstantiationGroup> 1378 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1379 FunctionInstantiationSetCollector InstantiationSetCollector; 1380 // Look up the function records in the given file. Due to hash collisions on 1381 // the filename, we may get back some records that are not in the file. 1382 ArrayRef<unsigned> RecordIndices = 1383 getImpreciseRecordIndicesForFilename(Filename); 1384 for (unsigned RecordIndex : RecordIndices) { 1385 const FunctionRecord &Function = Functions[RecordIndex]; 1386 auto MainFileID = findMainViewFileID(Filename, Function); 1387 if (!MainFileID) 1388 continue; 1389 InstantiationSetCollector.insert(Function, *MainFileID); 1390 } 1391 1392 std::vector<InstantiationGroup> Result; 1393 for (auto &InstantiationSet : InstantiationSetCollector) { 1394 InstantiationGroup IG{InstantiationSet.first.first, 1395 InstantiationSet.first.second, 1396 std::move(InstantiationSet.second)}; 1397 Result.emplace_back(std::move(IG)); 1398 } 1399 return Result; 1400 } 1401 1402 CoverageData 1403 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1404 auto MainFileID = findMainViewFileID(Function); 1405 if (!MainFileID) 1406 return CoverageData(); 1407 1408 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1409 std::vector<CountedRegion> Regions; 1410 for (const auto &CR : Function.CountedRegions) 1411 if (CR.FileID == *MainFileID) { 1412 Regions.push_back(CR); 1413 if (isExpansion(CR, *MainFileID)) 1414 FunctionCoverage.Expansions.emplace_back(CR, Function); 1415 } 1416 // Capture branch regions specific to the function (excluding expansions). 1417 for (const auto &CR : Function.CountedBranchRegions) 1418 if (CR.FileID == *MainFileID) 1419 FunctionCoverage.BranchRegions.push_back(CR); 1420 1421 // Capture MCDC records specific to the function. 1422 for (const auto &MR : Function.MCDCRecords) 1423 if (MR.getDecisionRegion().FileID == *MainFileID) 1424 FunctionCoverage.MCDCRecords.push_back(MR); 1425 1426 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1427 << "\n"); 1428 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1429 1430 return FunctionCoverage; 1431 } 1432 1433 CoverageData CoverageMapping::getCoverageForExpansion( 1434 const ExpansionRecord &Expansion) const { 1435 CoverageData ExpansionCoverage( 1436 Expansion.Function.Filenames[Expansion.FileID]); 1437 std::vector<CountedRegion> Regions; 1438 for (const auto &CR : Expansion.Function.CountedRegions) 1439 if (CR.FileID == Expansion.FileID) { 1440 Regions.push_back(CR); 1441 if (isExpansion(CR, Expansion.FileID)) 1442 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1443 } 1444 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1445 // Capture branch regions that only pertain to the corresponding expansion. 1446 if (CR.FileID == Expansion.FileID) 1447 ExpansionCoverage.BranchRegions.push_back(CR); 1448 1449 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1450 << Expansion.FileID << "\n"); 1451 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1452 1453 return ExpansionCoverage; 1454 } 1455 1456 LineCoverageStats::LineCoverageStats( 1457 ArrayRef<const CoverageSegment *> LineSegments, 1458 const CoverageSegment *WrappedSegment, unsigned Line) 1459 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1460 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1461 // Find the minimum number of regions which start in this line. 1462 unsigned MinRegionCount = 0; 1463 auto isStartOfRegion = [](const CoverageSegment *S) { 1464 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1465 }; 1466 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1467 if (isStartOfRegion(LineSegments[I])) 1468 ++MinRegionCount; 1469 1470 bool StartOfSkippedRegion = !LineSegments.empty() && 1471 !LineSegments.front()->HasCount && 1472 LineSegments.front()->IsRegionEntry; 1473 1474 HasMultipleRegions = MinRegionCount > 1; 1475 Mapped = 1476 !StartOfSkippedRegion && 1477 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1478 1479 // if there is any starting segment at this line with a counter, it must be 1480 // mapped 1481 Mapped |= std::any_of( 1482 LineSegments.begin(), LineSegments.end(), 1483 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1484 1485 if (!Mapped) { 1486 return; 1487 } 1488 1489 // Pick the max count from the non-gap, region entry segments and the 1490 // wrapped count. 1491 if (WrappedSegment) 1492 ExecutionCount = WrappedSegment->Count; 1493 if (!MinRegionCount) 1494 return; 1495 for (const auto *LS : LineSegments) 1496 if (isStartOfRegion(LS)) 1497 ExecutionCount = std::max(ExecutionCount, LS->Count); 1498 } 1499 1500 LineCoverageIterator &LineCoverageIterator::operator++() { 1501 if (Next == CD.end()) { 1502 Stats = LineCoverageStats(); 1503 Ended = true; 1504 return *this; 1505 } 1506 if (Segments.size()) 1507 WrappedSegment = Segments.back(); 1508 Segments.clear(); 1509 while (Next != CD.end() && Next->Line == Line) 1510 Segments.push_back(&*Next++); 1511 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1512 ++Line; 1513 return *this; 1514 } 1515 1516 static std::string getCoverageMapErrString(coveragemap_error Err, 1517 const std::string &ErrMsg = "") { 1518 std::string Msg; 1519 raw_string_ostream OS(Msg); 1520 1521 switch (Err) { 1522 case coveragemap_error::success: 1523 OS << "success"; 1524 break; 1525 case coveragemap_error::eof: 1526 OS << "end of File"; 1527 break; 1528 case coveragemap_error::no_data_found: 1529 OS << "no coverage data found"; 1530 break; 1531 case coveragemap_error::unsupported_version: 1532 OS << "unsupported coverage format version"; 1533 break; 1534 case coveragemap_error::truncated: 1535 OS << "truncated coverage data"; 1536 break; 1537 case coveragemap_error::malformed: 1538 OS << "malformed coverage data"; 1539 break; 1540 case coveragemap_error::decompression_failed: 1541 OS << "failed to decompress coverage data (zlib)"; 1542 break; 1543 case coveragemap_error::invalid_or_missing_arch_specifier: 1544 OS << "`-arch` specifier is invalid or missing for universal binary"; 1545 break; 1546 } 1547 1548 // If optional error message is not empty, append it to the message. 1549 if (!ErrMsg.empty()) 1550 OS << ": " << ErrMsg; 1551 1552 return Msg; 1553 } 1554 1555 namespace { 1556 1557 // FIXME: This class is only here to support the transition to llvm::Error. It 1558 // will be removed once this transition is complete. Clients should prefer to 1559 // deal with the Error value directly, rather than converting to error_code. 1560 class CoverageMappingErrorCategoryType : public std::error_category { 1561 const char *name() const noexcept override { return "llvm.coveragemap"; } 1562 std::string message(int IE) const override { 1563 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1564 } 1565 }; 1566 1567 } // end anonymous namespace 1568 1569 std::string CoverageMapError::message() const { 1570 return getCoverageMapErrString(Err, Msg); 1571 } 1572 1573 const std::error_category &llvm::coverage::coveragemap_category() { 1574 static CoverageMappingErrorCategoryType ErrorCategory; 1575 return ErrorCategory; 1576 } 1577 1578 char CoverageMapError::ID = 0; 1579