xref: /freebsd/contrib/llvm-project/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp (revision 66bee50af774673bfaeb4c66a5a82e0ac99e70a4)
1  //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file contains support for clang's and llvm's instrumentation based
10  // code coverage.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/ProfileData/Coverage/CoverageMapping.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/DenseMap.h"
17  #include "llvm/ADT/STLExtras.h"
18  #include "llvm/ADT/SmallBitVector.h"
19  #include "llvm/ADT/SmallVector.h"
20  #include "llvm/ADT/StringExtras.h"
21  #include "llvm/ADT/StringRef.h"
22  #include "llvm/Object/BuildID.h"
23  #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
24  #include "llvm/ProfileData/InstrProfReader.h"
25  #include "llvm/Support/Debug.h"
26  #include "llvm/Support/Errc.h"
27  #include "llvm/Support/Error.h"
28  #include "llvm/Support/ErrorHandling.h"
29  #include "llvm/Support/MemoryBuffer.h"
30  #include "llvm/Support/VirtualFileSystem.h"
31  #include "llvm/Support/raw_ostream.h"
32  #include <algorithm>
33  #include <cassert>
34  #include <cmath>
35  #include <cstdint>
36  #include <iterator>
37  #include <map>
38  #include <memory>
39  #include <optional>
40  #include <string>
41  #include <system_error>
42  #include <utility>
43  #include <vector>
44  
45  using namespace llvm;
46  using namespace coverage;
47  
48  #define DEBUG_TYPE "coverage-mapping"
49  
50  Counter CounterExpressionBuilder::get(const CounterExpression &E) {
51    auto It = ExpressionIndices.find(E);
52    if (It != ExpressionIndices.end())
53      return Counter::getExpression(It->second);
54    unsigned I = Expressions.size();
55    Expressions.push_back(E);
56    ExpressionIndices[E] = I;
57    return Counter::getExpression(I);
58  }
59  
60  void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
61                                              SmallVectorImpl<Term> &Terms) {
62    switch (C.getKind()) {
63    case Counter::Zero:
64      break;
65    case Counter::CounterValueReference:
66      Terms.emplace_back(C.getCounterID(), Factor);
67      break;
68    case Counter::Expression:
69      const auto &E = Expressions[C.getExpressionID()];
70      extractTerms(E.LHS, Factor, Terms);
71      extractTerms(
72          E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
73      break;
74    }
75  }
76  
77  Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
78    // Gather constant terms.
79    SmallVector<Term, 32> Terms;
80    extractTerms(ExpressionTree, +1, Terms);
81  
82    // If there are no terms, this is just a zero. The algorithm below assumes at
83    // least one term.
84    if (Terms.size() == 0)
85      return Counter::getZero();
86  
87    // Group the terms by counter ID.
88    llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
89      return LHS.CounterID < RHS.CounterID;
90    });
91  
92    // Combine terms by counter ID to eliminate counters that sum to zero.
93    auto Prev = Terms.begin();
94    for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
95      if (I->CounterID == Prev->CounterID) {
96        Prev->Factor += I->Factor;
97        continue;
98      }
99      ++Prev;
100      *Prev = *I;
101    }
102    Terms.erase(++Prev, Terms.end());
103  
104    Counter C;
105    // Create additions. We do this before subtractions to avoid constructs like
106    // ((0 - X) + Y), as opposed to (Y - X).
107    for (auto T : Terms) {
108      if (T.Factor <= 0)
109        continue;
110      for (int I = 0; I < T.Factor; ++I)
111        if (C.isZero())
112          C = Counter::getCounter(T.CounterID);
113        else
114          C = get(CounterExpression(CounterExpression::Add, C,
115                                    Counter::getCounter(T.CounterID)));
116    }
117  
118    // Create subtractions.
119    for (auto T : Terms) {
120      if (T.Factor >= 0)
121        continue;
122      for (int I = 0; I < -T.Factor; ++I)
123        C = get(CounterExpression(CounterExpression::Subtract, C,
124                                  Counter::getCounter(T.CounterID)));
125    }
126    return C;
127  }
128  
129  Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
130    auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
131    return Simplify ? simplify(Cnt) : Cnt;
132  }
133  
134  Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
135                                             bool Simplify) {
136    auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
137    return Simplify ? simplify(Cnt) : Cnt;
138  }
139  
140  void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
141    switch (C.getKind()) {
142    case Counter::Zero:
143      OS << '0';
144      return;
145    case Counter::CounterValueReference:
146      OS << '#' << C.getCounterID();
147      break;
148    case Counter::Expression: {
149      if (C.getExpressionID() >= Expressions.size())
150        return;
151      const auto &E = Expressions[C.getExpressionID()];
152      OS << '(';
153      dump(E.LHS, OS);
154      OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
155      dump(E.RHS, OS);
156      OS << ')';
157      break;
158    }
159    }
160    if (CounterValues.empty())
161      return;
162    Expected<int64_t> Value = evaluate(C);
163    if (auto E = Value.takeError()) {
164      consumeError(std::move(E));
165      return;
166    }
167    OS << '[' << *Value << ']';
168  }
169  
170  Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
171    struct StackElem {
172      Counter ICounter;
173      int64_t LHS = 0;
174      enum {
175        KNeverVisited = 0,
176        KVisitedOnce = 1,
177        KVisitedTwice = 2,
178      } VisitCount = KNeverVisited;
179    };
180  
181    std::stack<StackElem> CounterStack;
182    CounterStack.push({C});
183  
184    int64_t LastPoppedValue;
185  
186    while (!CounterStack.empty()) {
187      StackElem &Current = CounterStack.top();
188  
189      switch (Current.ICounter.getKind()) {
190      case Counter::Zero:
191        LastPoppedValue = 0;
192        CounterStack.pop();
193        break;
194      case Counter::CounterValueReference:
195        if (Current.ICounter.getCounterID() >= CounterValues.size())
196          return errorCodeToError(errc::argument_out_of_domain);
197        LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
198        CounterStack.pop();
199        break;
200      case Counter::Expression: {
201        if (Current.ICounter.getExpressionID() >= Expressions.size())
202          return errorCodeToError(errc::argument_out_of_domain);
203        const auto &E = Expressions[Current.ICounter.getExpressionID()];
204        if (Current.VisitCount == StackElem::KNeverVisited) {
205          CounterStack.push(StackElem{E.LHS});
206          Current.VisitCount = StackElem::KVisitedOnce;
207        } else if (Current.VisitCount == StackElem::KVisitedOnce) {
208          Current.LHS = LastPoppedValue;
209          CounterStack.push(StackElem{E.RHS});
210          Current.VisitCount = StackElem::KVisitedTwice;
211        } else {
212          int64_t LHS = Current.LHS;
213          int64_t RHS = LastPoppedValue;
214          LastPoppedValue =
215              E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
216          CounterStack.pop();
217        }
218        break;
219      }
220      }
221    }
222  
223    return LastPoppedValue;
224  }
225  
226  Expected<BitVector> CounterMappingContext::evaluateBitmap(
227      const CounterMappingRegion *MCDCDecision) const {
228    unsigned ID = MCDCDecision->MCDCParams.BitmapIdx;
229    unsigned NC = MCDCDecision->MCDCParams.NumConditions;
230    unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT);
231    unsigned SizeInBytes = SizeInBits / CHAR_BIT;
232  
233    assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun");
234    ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes);
235  
236    // Mask each bitmap byte into the BitVector. Go in reverse so that the
237    // bitvector can just be shifted over by one byte on each iteration.
238    BitVector Result(SizeInBits, false);
239    for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) {
240      uint32_t Data = *Byte;
241      Result <<= CHAR_BIT;
242      Result.setBitsInMask(&Data, 1);
243    }
244    return Result;
245  }
246  
247  class MCDCRecordProcessor {
248    /// A bitmap representing the executed test vectors for a boolean expression.
249    /// Each index of the bitmap corresponds to a possible test vector. An index
250    /// with a bit value of '1' indicates that the corresponding Test Vector
251    /// identified by that index was executed.
252    const BitVector &ExecutedTestVectorBitmap;
253  
254    /// Decision Region to which the ExecutedTestVectorBitmap applies.
255    const CounterMappingRegion &Region;
256  
257    /// Array of branch regions corresponding each conditions in the boolean
258    /// expression.
259    ArrayRef<const CounterMappingRegion *> Branches;
260  
261    /// Total number of conditions in the boolean expression.
262    unsigned NumConditions;
263  
264    /// Mapping of a condition ID to its corresponding branch region.
265    llvm::DenseMap<unsigned, const CounterMappingRegion *> Map;
266  
267    /// Vector used to track whether a condition is constant folded.
268    MCDCRecord::BoolVector Folded;
269  
270    /// Mapping of calculated MC/DC Independence Pairs for each condition.
271    MCDCRecord::TVPairMap IndependencePairs;
272  
273    /// Total number of possible Test Vectors for the boolean expression.
274    MCDCRecord::TestVectors TestVectors;
275  
276    /// Actual executed Test Vectors for the boolean expression, based on
277    /// ExecutedTestVectorBitmap.
278    MCDCRecord::TestVectors ExecVectors;
279  
280  public:
281    MCDCRecordProcessor(const BitVector &Bitmap,
282                        const CounterMappingRegion &Region,
283                        ArrayRef<const CounterMappingRegion *> Branches)
284        : ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches),
285          NumConditions(Region.MCDCParams.NumConditions),
286          Folded(NumConditions, false), IndependencePairs(NumConditions),
287          TestVectors((size_t)1 << NumConditions) {}
288  
289  private:
290    void recordTestVector(MCDCRecord::TestVector &TV,
291                          MCDCRecord::CondState Result) {
292      // Calculate an index that is used to identify the test vector in a vector
293      // of test vectors.  This index also corresponds to the index values of an
294      // MCDC Region's bitmap (see findExecutedTestVectors()).
295      unsigned Index = 0;
296      for (auto Cond = std::rbegin(TV); Cond != std::rend(TV); ++Cond) {
297        Index <<= 1;
298        Index |= (*Cond == MCDCRecord::MCDC_True) ? 0x1 : 0x0;
299      }
300  
301      // Copy the completed test vector to the vector of testvectors.
302      TestVectors[Index] = TV;
303  
304      // The final value (T,F) is equal to the last non-dontcare state on the
305      // path (in a short-circuiting system).
306      TestVectors[Index].push_back(Result);
307    }
308  
309    void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector &TV,
310                                            unsigned ID) {
311      // Branch regions are hashed based on an ID.
312      const CounterMappingRegion *Branch = Map[ID];
313  
314      TV[ID - 1] = MCDCRecord::MCDC_True;
315      if (Branch->MCDCParams.TrueID > 0)
316        buildTestVector(TV, Branch->MCDCParams.TrueID);
317      else
318        recordTestVector(TV, MCDCRecord::MCDC_True);
319    }
320  
321    void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector &TV,
322                                             unsigned ID) {
323      // Branch regions are hashed based on an ID.
324      const CounterMappingRegion *Branch = Map[ID];
325  
326      TV[ID - 1] = MCDCRecord::MCDC_False;
327      if (Branch->MCDCParams.FalseID > 0)
328        buildTestVector(TV, Branch->MCDCParams.FalseID);
329      else
330        recordTestVector(TV, MCDCRecord::MCDC_False);
331    }
332  
333    /// Starting with the base test vector, build a comprehensive list of
334    /// possible test vectors by recursively walking the branch condition IDs
335    /// provided. Once an end node is reached, record the test vector in a vector
336    /// of test vectors that can be matched against during MC/DC analysis, and
337    /// then reset the positions to 'DontCare'.
338    void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID = 1) {
339      shouldCopyOffTestVectorForTruePath(TV, ID);
340      shouldCopyOffTestVectorForFalsePath(TV, ID);
341  
342      // Reset back to DontCare.
343      TV[ID - 1] = MCDCRecord::MCDC_DontCare;
344    }
345  
346    /// Walk the bits in the bitmap.  A bit set to '1' indicates that the test
347    /// vector at the corresponding index was executed during a test run.
348    void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) {
349      for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) {
350        if (ExecutedTestVectorBitmap[Idx] == 0)
351          continue;
352        assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist.");
353        ExecVectors.push_back(TestVectors[Idx]);
354      }
355    }
356  
357    /// For a given condition and two executed Test Vectors, A and B, see if the
358    /// two test vectors match forming an Independence Pair for the condition.
359    /// For two test vectors to match, the following must be satisfied:
360    /// - The condition's value in each test vector must be opposite.
361    /// - The result's value in each test vector must be opposite.
362    /// - All other conditions' values must be equal or marked as "don't care".
363    bool matchTestVectors(unsigned Aidx, unsigned Bidx, unsigned ConditionIdx) {
364      const MCDCRecord::TestVector &A = ExecVectors[Aidx];
365      const MCDCRecord::TestVector &B = ExecVectors[Bidx];
366  
367      // If condition values in both A and B aren't opposites, no match.
368      // Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check
369      // that "XOR != 1" will ensure that the values are opposites and that
370      // neither of them is a DontCare.
371      //  1 XOR  0 ==  1 | 0 XOR  0 ==  0 | -1 XOR  0 == -1
372      //  1 XOR  1 ==  0 | 0 XOR  1 ==  1 | -1 XOR  1 == -2
373      //  1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 ==  0
374      if ((A[ConditionIdx] ^ B[ConditionIdx]) != 1)
375        return false;
376  
377      // If the results of both A and B aren't opposites, no match.
378      if ((A[NumConditions] ^ B[NumConditions]) != 1)
379        return false;
380  
381      for (unsigned Idx = 0; Idx < NumConditions; ++Idx) {
382        // Look for other conditions that don't match. Skip over the given
383        // Condition as well as any conditions marked as "don't care".
384        const auto ARecordTyForCond = A[Idx];
385        const auto BRecordTyForCond = B[Idx];
386        if (Idx == ConditionIdx ||
387            ARecordTyForCond == MCDCRecord::MCDC_DontCare ||
388            BRecordTyForCond == MCDCRecord::MCDC_DontCare)
389          continue;
390  
391        // If there is a condition mismatch with any of the other conditions,
392        // there is no match for the test vectors.
393        if (ARecordTyForCond != BRecordTyForCond)
394          return false;
395      }
396  
397      // Otherwise, match.
398      return true;
399    }
400  
401    /// Find all possible Independence Pairs for a boolean expression given its
402    /// executed Test Vectors.  This process involves looking at each condition
403    /// and attempting to find two Test Vectors that "match", giving us a pair.
404    void findIndependencePairs() {
405      unsigned NumTVs = ExecVectors.size();
406  
407      // For each condition.
408      for (unsigned C = 0; C < NumConditions; ++C) {
409        bool PairFound = false;
410  
411        // For each executed test vector.
412        for (unsigned I = 0; !PairFound && I < NumTVs; ++I) {
413          // Compared to every other executed test vector.
414          for (unsigned J = 0; !PairFound && J < NumTVs; ++J) {
415            if (I == J)
416              continue;
417  
418            // If a matching pair of vectors is found, record them.
419            if ((PairFound = matchTestVectors(I, J, C)))
420              IndependencePairs[C] = std::make_pair(I + 1, J + 1);
421          }
422        }
423      }
424    }
425  
426  public:
427    /// Process the MC/DC Record in order to produce a result for a boolean
428    /// expression. This process includes tracking the conditions that comprise
429    /// the decision region, calculating the list of all possible test vectors,
430    /// marking the executed test vectors, and then finding an Independence Pair
431    /// out of the executed test vectors for each condition in the boolean
432    /// expression. A condition is tracked to ensure that its ID can be mapped to
433    /// its ordinal position in the boolean expression. The condition's source
434    /// location is also tracked, as well as whether it is constant folded (in
435    /// which case it is excuded from the metric).
436    MCDCRecord processMCDCRecord() {
437      unsigned I = 0;
438      MCDCRecord::CondIDMap PosToID;
439      MCDCRecord::LineColPairMap CondLoc;
440  
441      // Walk the Record's BranchRegions (representing Conditions) in order to:
442      // - Hash the condition based on its corresponding ID. This will be used to
443      //   calculate the test vectors.
444      // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
445      //   actual ID.  This will be used to visualize the conditions in the
446      //   correct order.
447      // - Keep track of the condition source location. This will be used to
448      //   visualize where the condition is.
449      // - Record whether the condition is constant folded so that we exclude it
450      //   from being measured.
451      for (const auto *B : Branches) {
452        Map[B->MCDCParams.ID] = B;
453        PosToID[I] = B->MCDCParams.ID - 1;
454        CondLoc[I] = B->startLoc();
455        Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
456      }
457  
458      // Initialize a base test vector as 'DontCare'.
459      MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare);
460  
461      // Use the base test vector to build the list of all possible test vectors.
462      buildTestVector(TV);
463  
464      // Using Profile Bitmap from runtime, mark the executed test vectors.
465      findExecutedTestVectors(ExecutedTestVectorBitmap);
466  
467      // Compare executed test vectors against each other to find an independence
468      // pairs for each condition.  This processing takes the most time.
469      findIndependencePairs();
470  
471      // Record Test vectors, executed vectors, and independence pairs.
472      MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID,
473                     CondLoc);
474      return Res;
475    }
476  };
477  
478  Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
479      const CounterMappingRegion &Region,
480      const BitVector &ExecutedTestVectorBitmap,
481      ArrayRef<const CounterMappingRegion *> Branches) {
482  
483    MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches);
484    return MCDCProcessor.processMCDCRecord();
485  }
486  
487  unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
488    struct StackElem {
489      Counter ICounter;
490      int64_t LHS = 0;
491      enum {
492        KNeverVisited = 0,
493        KVisitedOnce = 1,
494        KVisitedTwice = 2,
495      } VisitCount = KNeverVisited;
496    };
497  
498    std::stack<StackElem> CounterStack;
499    CounterStack.push({C});
500  
501    int64_t LastPoppedValue;
502  
503    while (!CounterStack.empty()) {
504      StackElem &Current = CounterStack.top();
505  
506      switch (Current.ICounter.getKind()) {
507      case Counter::Zero:
508        LastPoppedValue = 0;
509        CounterStack.pop();
510        break;
511      case Counter::CounterValueReference:
512        LastPoppedValue = Current.ICounter.getCounterID();
513        CounterStack.pop();
514        break;
515      case Counter::Expression: {
516        if (Current.ICounter.getExpressionID() >= Expressions.size()) {
517          LastPoppedValue = 0;
518          CounterStack.pop();
519        } else {
520          const auto &E = Expressions[Current.ICounter.getExpressionID()];
521          if (Current.VisitCount == StackElem::KNeverVisited) {
522            CounterStack.push(StackElem{E.LHS});
523            Current.VisitCount = StackElem::KVisitedOnce;
524          } else if (Current.VisitCount == StackElem::KVisitedOnce) {
525            Current.LHS = LastPoppedValue;
526            CounterStack.push(StackElem{E.RHS});
527            Current.VisitCount = StackElem::KVisitedTwice;
528          } else {
529            int64_t LHS = Current.LHS;
530            int64_t RHS = LastPoppedValue;
531            LastPoppedValue = std::max(LHS, RHS);
532            CounterStack.pop();
533          }
534        }
535        break;
536      }
537      }
538    }
539  
540    return LastPoppedValue;
541  }
542  
543  void FunctionRecordIterator::skipOtherFiles() {
544    while (Current != Records.end() && !Filename.empty() &&
545           Filename != Current->Filenames[0])
546      ++Current;
547    if (Current == Records.end())
548      *this = FunctionRecordIterator();
549  }
550  
551  ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
552      StringRef Filename) const {
553    size_t FilenameHash = hash_value(Filename);
554    auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
555    if (RecordIt == FilenameHash2RecordIndices.end())
556      return {};
557    return RecordIt->second;
558  }
559  
560  static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
561                                  const CoverageMappingRecord &Record) {
562    unsigned MaxCounterID = 0;
563    for (const auto &Region : Record.MappingRegions) {
564      MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
565    }
566    return MaxCounterID;
567  }
568  
569  static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx,
570                                   const CoverageMappingRecord &Record) {
571    unsigned MaxBitmapID = 0;
572    unsigned NumConditions = 0;
573    // Scan max(BitmapIdx).
574    // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
575    // and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record.
576    for (const auto &Region : reverse(Record.MappingRegions)) {
577      if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion &&
578          MaxBitmapID <= Region.MCDCParams.BitmapIdx) {
579        MaxBitmapID = Region.MCDCParams.BitmapIdx;
580        NumConditions = Region.MCDCParams.NumConditions;
581      }
582    }
583    unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
584    return MaxBitmapID + (SizeInBits / CHAR_BIT);
585  }
586  
587  namespace {
588  
589  /// Collect Decisions, Branchs, and Expansions and associate them.
590  class MCDCDecisionRecorder {
591  private:
592    /// This holds the DecisionRegion and MCDCBranches under it.
593    /// Also traverses Expansion(s).
594    /// The Decision has the number of MCDCBranches and will complete
595    /// when it is filled with unique ConditionID of MCDCBranches.
596    struct DecisionRecord {
597      const CounterMappingRegion *DecisionRegion;
598  
599      /// They are reflected from DecisionRegion for convenience.
600      LineColPair DecisionStartLoc;
601      LineColPair DecisionEndLoc;
602  
603      /// This is passed to `MCDCRecordProcessor`, so this should be compatible
604      /// to`ArrayRef<const CounterMappingRegion *>`.
605      SmallVector<const CounterMappingRegion *> MCDCBranches;
606  
607      /// IDs that are stored in MCDCBranches
608      /// Complete when all IDs (1 to NumConditions) are met.
609      DenseSet<CounterMappingRegion::MCDCConditionID> ConditionIDs;
610  
611      /// Set of IDs of Expansion(s) that are relevant to DecisionRegion
612      /// and its children (via expansions).
613      /// FileID  pointed by ExpandedFileID is dedicated to the expansion, so
614      /// the location in the expansion doesn't matter.
615      DenseSet<unsigned> ExpandedFileIDs;
616  
617      DecisionRecord(const CounterMappingRegion &Decision)
618          : DecisionRegion(&Decision), DecisionStartLoc(Decision.startLoc()),
619            DecisionEndLoc(Decision.endLoc()) {
620        assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
621      }
622  
623      /// Determine whether DecisionRecord dominates `R`.
624      bool dominates(const CounterMappingRegion &R) const {
625        // Determine whether `R` is included in `DecisionRegion`.
626        if (R.FileID == DecisionRegion->FileID &&
627            R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
628          return true;
629  
630        // Determine whether `R` is pointed by any of Expansions.
631        return ExpandedFileIDs.contains(R.FileID);
632      }
633  
634      enum Result {
635        NotProcessed = 0, /// Irrelevant to this Decision
636        Processed,        /// Added to this Decision
637        Completed,        /// Added and filled this Decision
638      };
639  
640      /// Add Branch into the Decision
641      /// \param Branch expects MCDCBranchRegion
642      /// \returns NotProcessed/Processed/Completed
643      Result addBranch(const CounterMappingRegion &Branch) {
644        assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
645  
646        auto ConditionID = Branch.MCDCParams.ID;
647        assert(ConditionID > 0 && "ConditionID should begin with 1");
648  
649        if (ConditionIDs.contains(ConditionID) ||
650            ConditionID > DecisionRegion->MCDCParams.NumConditions)
651          return NotProcessed;
652  
653        if (!this->dominates(Branch))
654          return NotProcessed;
655  
656        assert(MCDCBranches.size() < DecisionRegion->MCDCParams.NumConditions);
657  
658        // Put `ID=1` in front of `MCDCBranches` for convenience
659        // even if `MCDCBranches` is not topological.
660        if (ConditionID == 1)
661          MCDCBranches.insert(MCDCBranches.begin(), &Branch);
662        else
663          MCDCBranches.push_back(&Branch);
664  
665        // Mark `ID` as `assigned`.
666        ConditionIDs.insert(ConditionID);
667  
668        // `Completed` when `MCDCBranches` is full
669        return (MCDCBranches.size() == DecisionRegion->MCDCParams.NumConditions
670                    ? Completed
671                    : Processed);
672      }
673  
674      /// Record Expansion if it is relevant to this Decision.
675      /// Each `Expansion` may nest.
676      /// \returns true if recorded.
677      bool recordExpansion(const CounterMappingRegion &Expansion) {
678        if (!this->dominates(Expansion))
679          return false;
680  
681        ExpandedFileIDs.insert(Expansion.ExpandedFileID);
682        return true;
683      }
684    };
685  
686  private:
687    /// Decisions in progress
688    /// DecisionRecord is added for each MCDCDecisionRegion.
689    /// DecisionRecord is removed when Decision is completed.
690    SmallVector<DecisionRecord> Decisions;
691  
692  public:
693    ~MCDCDecisionRecorder() {
694      assert(Decisions.empty() && "All Decisions have not been resolved");
695    }
696  
697    /// Register Region and start recording.
698    void registerDecision(const CounterMappingRegion &Decision) {
699      Decisions.emplace_back(Decision);
700    }
701  
702    void recordExpansion(const CounterMappingRegion &Expansion) {
703      any_of(Decisions, [&Expansion](auto &Decision) {
704        return Decision.recordExpansion(Expansion);
705      });
706    }
707  
708    using DecisionAndBranches =
709        std::pair<const CounterMappingRegion *,             /// Decision
710                  SmallVector<const CounterMappingRegion *> /// Branches
711                  >;
712  
713    /// Add MCDCBranchRegion to DecisionRecord.
714    /// \param Branch to be processed
715    /// \returns DecisionsAndBranches if DecisionRecord completed.
716    ///     Or returns nullopt.
717    std::optional<DecisionAndBranches>
718    processBranch(const CounterMappingRegion &Branch) {
719      // Seek each Decision and apply Region to it.
720      for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
721           DecisionIter != DecisionEnd; ++DecisionIter)
722        switch (DecisionIter->addBranch(Branch)) {
723        case DecisionRecord::NotProcessed:
724          continue;
725        case DecisionRecord::Processed:
726          return std::nullopt;
727        case DecisionRecord::Completed:
728          DecisionAndBranches Result =
729              std::make_pair(DecisionIter->DecisionRegion,
730                             std::move(DecisionIter->MCDCBranches));
731          Decisions.erase(DecisionIter); // No longer used.
732          return Result;
733        }
734  
735      llvm_unreachable("Branch not found in Decisions");
736    }
737  };
738  
739  } // namespace
740  
741  Error CoverageMapping::loadFunctionRecord(
742      const CoverageMappingRecord &Record,
743      IndexedInstrProfReader &ProfileReader) {
744    StringRef OrigFuncName = Record.FunctionName;
745    if (OrigFuncName.empty())
746      return make_error<CoverageMapError>(coveragemap_error::malformed,
747                                          "record function name is empty");
748  
749    if (Record.Filenames.empty())
750      OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
751    else
752      OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
753  
754    CounterMappingContext Ctx(Record.Expressions);
755  
756    std::vector<uint64_t> Counts;
757    if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
758                                                  Record.FunctionHash, Counts)) {
759      instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
760      if (IPE == instrprof_error::hash_mismatch) {
761        FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
762                                        Record.FunctionHash);
763        return Error::success();
764      }
765      if (IPE != instrprof_error::unknown_function)
766        return make_error<InstrProfError>(IPE);
767      Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
768    }
769    Ctx.setCounts(Counts);
770  
771    std::vector<uint8_t> BitmapBytes;
772    if (Error E = ProfileReader.getFunctionBitmapBytes(
773            Record.FunctionName, Record.FunctionHash, BitmapBytes)) {
774      instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
775      if (IPE == instrprof_error::hash_mismatch) {
776        FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
777                                        Record.FunctionHash);
778        return Error::success();
779      }
780      if (IPE != instrprof_error::unknown_function)
781        return make_error<InstrProfError>(IPE);
782      BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0);
783    }
784    Ctx.setBitmapBytes(BitmapBytes);
785  
786    assert(!Record.MappingRegions.empty() && "Function has no regions");
787  
788    // This coverage record is a zero region for a function that's unused in
789    // some TU, but used in a different TU. Ignore it. The coverage maps from the
790    // the other TU will either be loaded (providing full region counts) or they
791    // won't (in which case we don't unintuitively report functions as uncovered
792    // when they have non-zero counts in the profile).
793    if (Record.MappingRegions.size() == 1 &&
794        Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
795      return Error::success();
796  
797    MCDCDecisionRecorder MCDCDecisions;
798    FunctionRecord Function(OrigFuncName, Record.Filenames);
799    for (const auto &Region : Record.MappingRegions) {
800      // MCDCDecisionRegion should be handled first since it overlaps with
801      // others inside.
802      if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
803        MCDCDecisions.registerDecision(Region);
804        continue;
805      }
806      Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
807      if (auto E = ExecutionCount.takeError()) {
808        consumeError(std::move(E));
809        return Error::success();
810      }
811      Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
812      if (auto E = AltExecutionCount.takeError()) {
813        consumeError(std::move(E));
814        return Error::success();
815      }
816      Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount);
817  
818      // Record ExpansionRegion.
819      if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
820        MCDCDecisions.recordExpansion(Region);
821        continue;
822      }
823  
824      // Do nothing unless MCDCBranchRegion.
825      if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
826        continue;
827  
828      auto Result = MCDCDecisions.processBranch(Region);
829      if (!Result) // Any Decision doesn't complete.
830        continue;
831  
832      auto MCDCDecision = Result->first;
833      auto &MCDCBranches = Result->second;
834  
835      // Evaluating the test vector bitmap for the decision region entails
836      // calculating precisely what bits are pertinent to this region alone.
837      // This is calculated based on the recorded offset into the global
838      // profile bitmap; the length is calculated based on the recorded
839      // number of conditions.
840      Expected<BitVector> ExecutedTestVectorBitmap =
841          Ctx.evaluateBitmap(MCDCDecision);
842      if (auto E = ExecutedTestVectorBitmap.takeError()) {
843        consumeError(std::move(E));
844        return Error::success();
845      }
846  
847      // Since the bitmap identifies the executed test vectors for an MC/DC
848      // DecisionRegion, all of the information is now available to process.
849      // This is where the bulk of the MC/DC progressing takes place.
850      Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion(
851          *MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches);
852      if (auto E = Record.takeError()) {
853        consumeError(std::move(E));
854        return Error::success();
855      }
856  
857      // Save the MC/DC Record so that it can be visualized later.
858      Function.pushMCDCRecord(*Record);
859    }
860  
861    // Don't create records for (filenames, function) pairs we've already seen.
862    auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
863                                            Record.Filenames.end());
864    if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
865      return Error::success();
866  
867    Functions.push_back(std::move(Function));
868  
869    // Performance optimization: keep track of the indices of the function records
870    // which correspond to each filename. This can be used to substantially speed
871    // up queries for coverage info in a file.
872    unsigned RecordIndex = Functions.size() - 1;
873    for (StringRef Filename : Record.Filenames) {
874      auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
875      // Note that there may be duplicates in the filename set for a function
876      // record, because of e.g. macro expansions in the function in which both
877      // the macro and the function are defined in the same file.
878      if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
879        RecordIndices.push_back(RecordIndex);
880    }
881  
882    return Error::success();
883  }
884  
885  // This function is for memory optimization by shortening the lifetimes
886  // of CoverageMappingReader instances.
887  Error CoverageMapping::loadFromReaders(
888      ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
889      IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
890    for (const auto &CoverageReader : CoverageReaders) {
891      for (auto RecordOrErr : *CoverageReader) {
892        if (Error E = RecordOrErr.takeError())
893          return E;
894        const auto &Record = *RecordOrErr;
895        if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
896          return E;
897      }
898    }
899    return Error::success();
900  }
901  
902  Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
903      ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
904      IndexedInstrProfReader &ProfileReader) {
905    auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
906    if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
907      return std::move(E);
908    return std::move(Coverage);
909  }
910  
911  // If E is a no_data_found error, returns success. Otherwise returns E.
912  static Error handleMaybeNoDataFoundError(Error E) {
913    return handleErrors(
914        std::move(E), [](const CoverageMapError &CME) {
915          if (CME.get() == coveragemap_error::no_data_found)
916            return static_cast<Error>(Error::success());
917          return make_error<CoverageMapError>(CME.get(), CME.getMessage());
918        });
919  }
920  
921  Error CoverageMapping::loadFromFile(
922      StringRef Filename, StringRef Arch, StringRef CompilationDir,
923      IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
924      bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
925    auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
926        Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
927    if (std::error_code EC = CovMappingBufOrErr.getError())
928      return createFileError(Filename, errorCodeToError(EC));
929    MemoryBufferRef CovMappingBufRef =
930        CovMappingBufOrErr.get()->getMemBufferRef();
931    SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
932  
933    SmallVector<object::BuildIDRef> BinaryIDs;
934    auto CoverageReadersOrErr = BinaryCoverageReader::create(
935        CovMappingBufRef, Arch, Buffers, CompilationDir,
936        FoundBinaryIDs ? &BinaryIDs : nullptr);
937    if (Error E = CoverageReadersOrErr.takeError()) {
938      E = handleMaybeNoDataFoundError(std::move(E));
939      if (E)
940        return createFileError(Filename, std::move(E));
941      return E;
942    }
943  
944    SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
945    for (auto &Reader : CoverageReadersOrErr.get())
946      Readers.push_back(std::move(Reader));
947    if (FoundBinaryIDs && !Readers.empty()) {
948      llvm::append_range(*FoundBinaryIDs,
949                         llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
950                           return object::BuildID(BID);
951                         }));
952    }
953    DataFound |= !Readers.empty();
954    if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
955      return createFileError(Filename, std::move(E));
956    return Error::success();
957  }
958  
959  Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
960      ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
961      vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
962      const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
963    auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
964    if (Error E = ProfileReaderOrErr.takeError())
965      return createFileError(ProfileFilename, std::move(E));
966    auto ProfileReader = std::move(ProfileReaderOrErr.get());
967    auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
968    bool DataFound = false;
969  
970    auto GetArch = [&](size_t Idx) {
971      if (Arches.empty())
972        return StringRef();
973      if (Arches.size() == 1)
974        return Arches.front();
975      return Arches[Idx];
976    };
977  
978    SmallVector<object::BuildID> FoundBinaryIDs;
979    for (const auto &File : llvm::enumerate(ObjectFilenames)) {
980      if (Error E =
981              loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
982                           *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
983        return std::move(E);
984    }
985  
986    if (BIDFetcher) {
987      std::vector<object::BuildID> ProfileBinaryIDs;
988      if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
989        return createFileError(ProfileFilename, std::move(E));
990  
991      SmallVector<object::BuildIDRef> BinaryIDsToFetch;
992      if (!ProfileBinaryIDs.empty()) {
993        const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
994          return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
995                                              B.end());
996        };
997        llvm::sort(FoundBinaryIDs, Compare);
998        std::set_difference(
999            ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
1000            FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
1001            std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
1002      }
1003  
1004      for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
1005        std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
1006        if (PathOpt) {
1007          std::string Path = std::move(*PathOpt);
1008          StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
1009          if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
1010                                    *Coverage, DataFound))
1011            return std::move(E);
1012        } else if (CheckBinaryIDs) {
1013          return createFileError(
1014              ProfileFilename,
1015              createStringError(errc::no_such_file_or_directory,
1016                                "Missing binary ID: " +
1017                                    llvm::toHex(BinaryID, /*LowerCase=*/true)));
1018        }
1019      }
1020    }
1021  
1022    if (!DataFound)
1023      return createFileError(
1024          join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
1025          make_error<CoverageMapError>(coveragemap_error::no_data_found));
1026    return std::move(Coverage);
1027  }
1028  
1029  namespace {
1030  
1031  /// Distributes functions into instantiation sets.
1032  ///
1033  /// An instantiation set is a collection of functions that have the same source
1034  /// code, ie, template functions specializations.
1035  class FunctionInstantiationSetCollector {
1036    using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
1037    MapT InstantiatedFunctions;
1038  
1039  public:
1040    void insert(const FunctionRecord &Function, unsigned FileID) {
1041      auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
1042      while (I != E && I->FileID != FileID)
1043        ++I;
1044      assert(I != E && "function does not cover the given file");
1045      auto &Functions = InstantiatedFunctions[I->startLoc()];
1046      Functions.push_back(&Function);
1047    }
1048  
1049    MapT::iterator begin() { return InstantiatedFunctions.begin(); }
1050    MapT::iterator end() { return InstantiatedFunctions.end(); }
1051  };
1052  
1053  class SegmentBuilder {
1054    std::vector<CoverageSegment> &Segments;
1055    SmallVector<const CountedRegion *, 8> ActiveRegions;
1056  
1057    SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
1058  
1059    /// Emit a segment with the count from \p Region starting at \p StartLoc.
1060    //
1061    /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
1062    /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
1063    void startSegment(const CountedRegion &Region, LineColPair StartLoc,
1064                      bool IsRegionEntry, bool EmitSkippedRegion = false) {
1065      bool HasCount = !EmitSkippedRegion &&
1066                      (Region.Kind != CounterMappingRegion::SkippedRegion);
1067  
1068      // If the new segment wouldn't affect coverage rendering, skip it.
1069      if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
1070        const auto &Last = Segments.back();
1071        if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
1072            !Last.IsRegionEntry)
1073          return;
1074      }
1075  
1076      if (HasCount)
1077        Segments.emplace_back(StartLoc.first, StartLoc.second,
1078                              Region.ExecutionCount, IsRegionEntry,
1079                              Region.Kind == CounterMappingRegion::GapRegion);
1080      else
1081        Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
1082  
1083      LLVM_DEBUG({
1084        const auto &Last = Segments.back();
1085        dbgs() << "Segment at " << Last.Line << ":" << Last.Col
1086               << " (count = " << Last.Count << ")"
1087               << (Last.IsRegionEntry ? ", RegionEntry" : "")
1088               << (!Last.HasCount ? ", Skipped" : "")
1089               << (Last.IsGapRegion ? ", Gap" : "") << "\n";
1090      });
1091    }
1092  
1093    /// Emit segments for active regions which end before \p Loc.
1094    ///
1095    /// \p Loc: The start location of the next region. If std::nullopt, all active
1096    /// regions are completed.
1097    /// \p FirstCompletedRegion: Index of the first completed region.
1098    void completeRegionsUntil(std::optional<LineColPair> Loc,
1099                              unsigned FirstCompletedRegion) {
1100      // Sort the completed regions by end location. This makes it simple to
1101      // emit closing segments in sorted order.
1102      auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
1103      std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
1104                        [](const CountedRegion *L, const CountedRegion *R) {
1105                          return L->endLoc() < R->endLoc();
1106                        });
1107  
1108      // Emit segments for all completed regions.
1109      for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
1110           ++I) {
1111        const auto *CompletedRegion = ActiveRegions[I];
1112        assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
1113               "Completed region ends after start of new region");
1114  
1115        const auto *PrevCompletedRegion = ActiveRegions[I - 1];
1116        auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
1117  
1118        // Don't emit any more segments if they start where the new region begins.
1119        if (Loc && CompletedSegmentLoc == *Loc)
1120          break;
1121  
1122        // Don't emit a segment if the next completed region ends at the same
1123        // location as this one.
1124        if (CompletedSegmentLoc == CompletedRegion->endLoc())
1125          continue;
1126  
1127        // Use the count from the last completed region which ends at this loc.
1128        for (unsigned J = I + 1; J < E; ++J)
1129          if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
1130            CompletedRegion = ActiveRegions[J];
1131  
1132        startSegment(*CompletedRegion, CompletedSegmentLoc, false);
1133      }
1134  
1135      auto Last = ActiveRegions.back();
1136      if (FirstCompletedRegion && Last->endLoc() != *Loc) {
1137        // If there's a gap after the end of the last completed region and the
1138        // start of the new region, use the last active region to fill the gap.
1139        startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
1140                     false);
1141      } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
1142        // Emit a skipped segment if there are no more active regions. This
1143        // ensures that gaps between functions are marked correctly.
1144        startSegment(*Last, Last->endLoc(), false, true);
1145      }
1146  
1147      // Pop the completed regions.
1148      ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
1149    }
1150  
1151    void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
1152      for (const auto &CR : enumerate(Regions)) {
1153        auto CurStartLoc = CR.value().startLoc();
1154  
1155        // Active regions which end before the current region need to be popped.
1156        auto CompletedRegions =
1157            std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
1158                                  [&](const CountedRegion *Region) {
1159                                    return !(Region->endLoc() <= CurStartLoc);
1160                                  });
1161        if (CompletedRegions != ActiveRegions.end()) {
1162          unsigned FirstCompletedRegion =
1163              std::distance(ActiveRegions.begin(), CompletedRegions);
1164          completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
1165        }
1166  
1167        bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
1168  
1169        // Try to emit a segment for the current region.
1170        if (CurStartLoc == CR.value().endLoc()) {
1171          // Avoid making zero-length regions active. If it's the last region,
1172          // emit a skipped segment. Otherwise use its predecessor's count.
1173          const bool Skipped =
1174              (CR.index() + 1) == Regions.size() ||
1175              CR.value().Kind == CounterMappingRegion::SkippedRegion;
1176          startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
1177                       CurStartLoc, !GapRegion, Skipped);
1178          // If it is skipped segment, create a segment with last pushed
1179          // regions's count at CurStartLoc.
1180          if (Skipped && !ActiveRegions.empty())
1181            startSegment(*ActiveRegions.back(), CurStartLoc, false);
1182          continue;
1183        }
1184        if (CR.index() + 1 == Regions.size() ||
1185            CurStartLoc != Regions[CR.index() + 1].startLoc()) {
1186          // Emit a segment if the next region doesn't start at the same location
1187          // as this one.
1188          startSegment(CR.value(), CurStartLoc, !GapRegion);
1189        }
1190  
1191        // This region is active (i.e not completed).
1192        ActiveRegions.push_back(&CR.value());
1193      }
1194  
1195      // Complete any remaining active regions.
1196      if (!ActiveRegions.empty())
1197        completeRegionsUntil(std::nullopt, 0);
1198    }
1199  
1200    /// Sort a nested sequence of regions from a single file.
1201    static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
1202      llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
1203        if (LHS.startLoc() != RHS.startLoc())
1204          return LHS.startLoc() < RHS.startLoc();
1205        if (LHS.endLoc() != RHS.endLoc())
1206          // When LHS completely contains RHS, we sort LHS first.
1207          return RHS.endLoc() < LHS.endLoc();
1208        // If LHS and RHS cover the same area, we need to sort them according
1209        // to their kinds so that the most suitable region will become "active"
1210        // in combineRegions(). Because we accumulate counter values only from
1211        // regions of the same kind as the first region of the area, prefer
1212        // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
1213        static_assert(CounterMappingRegion::CodeRegion <
1214                              CounterMappingRegion::ExpansionRegion &&
1215                          CounterMappingRegion::ExpansionRegion <
1216                              CounterMappingRegion::SkippedRegion,
1217                      "Unexpected order of region kind values");
1218        return LHS.Kind < RHS.Kind;
1219      });
1220    }
1221  
1222    /// Combine counts of regions which cover the same area.
1223    static ArrayRef<CountedRegion>
1224    combineRegions(MutableArrayRef<CountedRegion> Regions) {
1225      if (Regions.empty())
1226        return Regions;
1227      auto Active = Regions.begin();
1228      auto End = Regions.end();
1229      for (auto I = Regions.begin() + 1; I != End; ++I) {
1230        if (Active->startLoc() != I->startLoc() ||
1231            Active->endLoc() != I->endLoc()) {
1232          // Shift to the next region.
1233          ++Active;
1234          if (Active != I)
1235            *Active = *I;
1236          continue;
1237        }
1238        // Merge duplicate region.
1239        // If CodeRegions and ExpansionRegions cover the same area, it's probably
1240        // a macro which is fully expanded to another macro. In that case, we need
1241        // to accumulate counts only from CodeRegions, or else the area will be
1242        // counted twice.
1243        // On the other hand, a macro may have a nested macro in its body. If the
1244        // outer macro is used several times, the ExpansionRegion for the nested
1245        // macro will also be added several times. These ExpansionRegions cover
1246        // the same source locations and have to be combined to reach the correct
1247        // value for that area.
1248        // We add counts of the regions of the same kind as the active region
1249        // to handle the both situations.
1250        if (I->Kind == Active->Kind)
1251          Active->ExecutionCount += I->ExecutionCount;
1252      }
1253      return Regions.drop_back(std::distance(++Active, End));
1254    }
1255  
1256  public:
1257    /// Build a sorted list of CoverageSegments from a list of Regions.
1258    static std::vector<CoverageSegment>
1259    buildSegments(MutableArrayRef<CountedRegion> Regions) {
1260      std::vector<CoverageSegment> Segments;
1261      SegmentBuilder Builder(Segments);
1262  
1263      sortNestedRegions(Regions);
1264      ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
1265  
1266      LLVM_DEBUG({
1267        dbgs() << "Combined regions:\n";
1268        for (const auto &CR : CombinedRegions)
1269          dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
1270                 << CR.LineEnd << ":" << CR.ColumnEnd
1271                 << " (count=" << CR.ExecutionCount << ")\n";
1272      });
1273  
1274      Builder.buildSegmentsImpl(CombinedRegions);
1275  
1276  #ifndef NDEBUG
1277      for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
1278        const auto &L = Segments[I - 1];
1279        const auto &R = Segments[I];
1280        if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
1281          if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
1282            continue;
1283          LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
1284                            << " followed by " << R.Line << ":" << R.Col << "\n");
1285          assert(false && "Coverage segments not unique or sorted");
1286        }
1287      }
1288  #endif
1289  
1290      return Segments;
1291    }
1292  };
1293  
1294  } // end anonymous namespace
1295  
1296  std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
1297    std::vector<StringRef> Filenames;
1298    for (const auto &Function : getCoveredFunctions())
1299      llvm::append_range(Filenames, Function.Filenames);
1300    llvm::sort(Filenames);
1301    auto Last = std::unique(Filenames.begin(), Filenames.end());
1302    Filenames.erase(Last, Filenames.end());
1303    return Filenames;
1304  }
1305  
1306  static SmallBitVector gatherFileIDs(StringRef SourceFile,
1307                                      const FunctionRecord &Function) {
1308    SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
1309    for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
1310      if (SourceFile == Function.Filenames[I])
1311        FilenameEquivalence[I] = true;
1312    return FilenameEquivalence;
1313  }
1314  
1315  /// Return the ID of the file where the definition of the function is located.
1316  static std::optional<unsigned>
1317  findMainViewFileID(const FunctionRecord &Function) {
1318    SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
1319    for (const auto &CR : Function.CountedRegions)
1320      if (CR.Kind == CounterMappingRegion::ExpansionRegion)
1321        IsNotExpandedFile[CR.ExpandedFileID] = false;
1322    int I = IsNotExpandedFile.find_first();
1323    if (I == -1)
1324      return std::nullopt;
1325    return I;
1326  }
1327  
1328  /// Check if SourceFile is the file that contains the definition of
1329  /// the Function. Return the ID of the file in that case or std::nullopt
1330  /// otherwise.
1331  static std::optional<unsigned>
1332  findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
1333    std::optional<unsigned> I = findMainViewFileID(Function);
1334    if (I && SourceFile == Function.Filenames[*I])
1335      return I;
1336    return std::nullopt;
1337  }
1338  
1339  static bool isExpansion(const CountedRegion &R, unsigned FileID) {
1340    return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
1341  }
1342  
1343  CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
1344    CoverageData FileCoverage(Filename);
1345    std::vector<CountedRegion> Regions;
1346  
1347    // Look up the function records in the given file. Due to hash collisions on
1348    // the filename, we may get back some records that are not in the file.
1349    ArrayRef<unsigned> RecordIndices =
1350        getImpreciseRecordIndicesForFilename(Filename);
1351    for (unsigned RecordIndex : RecordIndices) {
1352      const FunctionRecord &Function = Functions[RecordIndex];
1353      auto MainFileID = findMainViewFileID(Filename, Function);
1354      auto FileIDs = gatherFileIDs(Filename, Function);
1355      for (const auto &CR : Function.CountedRegions)
1356        if (FileIDs.test(CR.FileID)) {
1357          Regions.push_back(CR);
1358          if (MainFileID && isExpansion(CR, *MainFileID))
1359            FileCoverage.Expansions.emplace_back(CR, Function);
1360        }
1361      // Capture branch regions specific to the function (excluding expansions).
1362      for (const auto &CR : Function.CountedBranchRegions)
1363        if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
1364          FileCoverage.BranchRegions.push_back(CR);
1365      // Capture MCDC records specific to the function.
1366      for (const auto &MR : Function.MCDCRecords)
1367        if (FileIDs.test(MR.getDecisionRegion().FileID))
1368          FileCoverage.MCDCRecords.push_back(MR);
1369    }
1370  
1371    LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
1372    FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1373  
1374    return FileCoverage;
1375  }
1376  
1377  std::vector<InstantiationGroup>
1378  CoverageMapping::getInstantiationGroups(StringRef Filename) const {
1379    FunctionInstantiationSetCollector InstantiationSetCollector;
1380    // Look up the function records in the given file. Due to hash collisions on
1381    // the filename, we may get back some records that are not in the file.
1382    ArrayRef<unsigned> RecordIndices =
1383        getImpreciseRecordIndicesForFilename(Filename);
1384    for (unsigned RecordIndex : RecordIndices) {
1385      const FunctionRecord &Function = Functions[RecordIndex];
1386      auto MainFileID = findMainViewFileID(Filename, Function);
1387      if (!MainFileID)
1388        continue;
1389      InstantiationSetCollector.insert(Function, *MainFileID);
1390    }
1391  
1392    std::vector<InstantiationGroup> Result;
1393    for (auto &InstantiationSet : InstantiationSetCollector) {
1394      InstantiationGroup IG{InstantiationSet.first.first,
1395                            InstantiationSet.first.second,
1396                            std::move(InstantiationSet.second)};
1397      Result.emplace_back(std::move(IG));
1398    }
1399    return Result;
1400  }
1401  
1402  CoverageData
1403  CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
1404    auto MainFileID = findMainViewFileID(Function);
1405    if (!MainFileID)
1406      return CoverageData();
1407  
1408    CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
1409    std::vector<CountedRegion> Regions;
1410    for (const auto &CR : Function.CountedRegions)
1411      if (CR.FileID == *MainFileID) {
1412        Regions.push_back(CR);
1413        if (isExpansion(CR, *MainFileID))
1414          FunctionCoverage.Expansions.emplace_back(CR, Function);
1415      }
1416    // Capture branch regions specific to the function (excluding expansions).
1417    for (const auto &CR : Function.CountedBranchRegions)
1418      if (CR.FileID == *MainFileID)
1419        FunctionCoverage.BranchRegions.push_back(CR);
1420  
1421    // Capture MCDC records specific to the function.
1422    for (const auto &MR : Function.MCDCRecords)
1423      if (MR.getDecisionRegion().FileID == *MainFileID)
1424        FunctionCoverage.MCDCRecords.push_back(MR);
1425  
1426    LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
1427                      << "\n");
1428    FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1429  
1430    return FunctionCoverage;
1431  }
1432  
1433  CoverageData CoverageMapping::getCoverageForExpansion(
1434      const ExpansionRecord &Expansion) const {
1435    CoverageData ExpansionCoverage(
1436        Expansion.Function.Filenames[Expansion.FileID]);
1437    std::vector<CountedRegion> Regions;
1438    for (const auto &CR : Expansion.Function.CountedRegions)
1439      if (CR.FileID == Expansion.FileID) {
1440        Regions.push_back(CR);
1441        if (isExpansion(CR, Expansion.FileID))
1442          ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
1443      }
1444    for (const auto &CR : Expansion.Function.CountedBranchRegions)
1445      // Capture branch regions that only pertain to the corresponding expansion.
1446      if (CR.FileID == Expansion.FileID)
1447        ExpansionCoverage.BranchRegions.push_back(CR);
1448  
1449    LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
1450                      << Expansion.FileID << "\n");
1451    ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1452  
1453    return ExpansionCoverage;
1454  }
1455  
1456  LineCoverageStats::LineCoverageStats(
1457      ArrayRef<const CoverageSegment *> LineSegments,
1458      const CoverageSegment *WrappedSegment, unsigned Line)
1459      : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
1460        LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
1461    // Find the minimum number of regions which start in this line.
1462    unsigned MinRegionCount = 0;
1463    auto isStartOfRegion = [](const CoverageSegment *S) {
1464      return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
1465    };
1466    for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
1467      if (isStartOfRegion(LineSegments[I]))
1468        ++MinRegionCount;
1469  
1470    bool StartOfSkippedRegion = !LineSegments.empty() &&
1471                                !LineSegments.front()->HasCount &&
1472                                LineSegments.front()->IsRegionEntry;
1473  
1474    HasMultipleRegions = MinRegionCount > 1;
1475    Mapped =
1476        !StartOfSkippedRegion &&
1477        ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
1478  
1479    // if there is any starting segment at this line with a counter, it must be
1480    // mapped
1481    Mapped |= std::any_of(
1482        LineSegments.begin(), LineSegments.end(),
1483        [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
1484  
1485    if (!Mapped) {
1486      return;
1487    }
1488  
1489    // Pick the max count from the non-gap, region entry segments and the
1490    // wrapped count.
1491    if (WrappedSegment)
1492      ExecutionCount = WrappedSegment->Count;
1493    if (!MinRegionCount)
1494      return;
1495    for (const auto *LS : LineSegments)
1496      if (isStartOfRegion(LS))
1497        ExecutionCount = std::max(ExecutionCount, LS->Count);
1498  }
1499  
1500  LineCoverageIterator &LineCoverageIterator::operator++() {
1501    if (Next == CD.end()) {
1502      Stats = LineCoverageStats();
1503      Ended = true;
1504      return *this;
1505    }
1506    if (Segments.size())
1507      WrappedSegment = Segments.back();
1508    Segments.clear();
1509    while (Next != CD.end() && Next->Line == Line)
1510      Segments.push_back(&*Next++);
1511    Stats = LineCoverageStats(Segments, WrappedSegment, Line);
1512    ++Line;
1513    return *this;
1514  }
1515  
1516  static std::string getCoverageMapErrString(coveragemap_error Err,
1517                                             const std::string &ErrMsg = "") {
1518    std::string Msg;
1519    raw_string_ostream OS(Msg);
1520  
1521    switch (Err) {
1522    case coveragemap_error::success:
1523      OS << "success";
1524      break;
1525    case coveragemap_error::eof:
1526      OS << "end of File";
1527      break;
1528    case coveragemap_error::no_data_found:
1529      OS << "no coverage data found";
1530      break;
1531    case coveragemap_error::unsupported_version:
1532      OS << "unsupported coverage format version";
1533      break;
1534    case coveragemap_error::truncated:
1535      OS << "truncated coverage data";
1536      break;
1537    case coveragemap_error::malformed:
1538      OS << "malformed coverage data";
1539      break;
1540    case coveragemap_error::decompression_failed:
1541      OS << "failed to decompress coverage data (zlib)";
1542      break;
1543    case coveragemap_error::invalid_or_missing_arch_specifier:
1544      OS << "`-arch` specifier is invalid or missing for universal binary";
1545      break;
1546    }
1547  
1548    // If optional error message is not empty, append it to the message.
1549    if (!ErrMsg.empty())
1550      OS << ": " << ErrMsg;
1551  
1552    return Msg;
1553  }
1554  
1555  namespace {
1556  
1557  // FIXME: This class is only here to support the transition to llvm::Error. It
1558  // will be removed once this transition is complete. Clients should prefer to
1559  // deal with the Error value directly, rather than converting to error_code.
1560  class CoverageMappingErrorCategoryType : public std::error_category {
1561    const char *name() const noexcept override { return "llvm.coveragemap"; }
1562    std::string message(int IE) const override {
1563      return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
1564    }
1565  };
1566  
1567  } // end anonymous namespace
1568  
1569  std::string CoverageMapError::message() const {
1570    return getCoverageMapErrString(Err, Msg);
1571  }
1572  
1573  const std::error_category &llvm::coverage::coveragemap_category() {
1574    static CoverageMappingErrorCategoryType ErrorCategory;
1575    return ErrorCategory;
1576  }
1577  
1578  char CoverageMapError::ID = 0;
1579