xref: /freebsd/contrib/llvm-project/llvm/lib/Passes/PassBuilderPipelines.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- Construction of pass pipelines -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides the implementation of the PassBuilder based on our
11 /// static pass registry as well as related functionality. It also provides
12 /// helpers to aid in analyzing, debugging, and testing passes and pass
13 /// pipelines.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/BasicAliasAnalysis.h"
20 #include "llvm/Analysis/CGSCCPassManager.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineAdvisor.h"
23 #include "llvm/Analysis/ProfileSummaryInfo.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Passes/OptimizationLevel.h"
28 #include "llvm/Passes/PassBuilder.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/PGOOptions.h"
32 #include "llvm/Support/VirtualFileSystem.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
35 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
36 #include "llvm/Transforms/Coroutines/CoroConditionalWrapper.h"
37 #include "llvm/Transforms/Coroutines/CoroEarly.h"
38 #include "llvm/Transforms/Coroutines/CoroElide.h"
39 #include "llvm/Transforms/Coroutines/CoroSplit.h"
40 #include "llvm/Transforms/HipStdPar/HipStdPar.h"
41 #include "llvm/Transforms/IPO/AlwaysInliner.h"
42 #include "llvm/Transforms/IPO/Annotation2Metadata.h"
43 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
44 #include "llvm/Transforms/IPO/Attributor.h"
45 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
46 #include "llvm/Transforms/IPO/ConstantMerge.h"
47 #include "llvm/Transforms/IPO/CrossDSOCFI.h"
48 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
49 #include "llvm/Transforms/IPO/ElimAvailExtern.h"
50 #include "llvm/Transforms/IPO/EmbedBitcodePass.h"
51 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
52 #include "llvm/Transforms/IPO/FunctionAttrs.h"
53 #include "llvm/Transforms/IPO/GlobalDCE.h"
54 #include "llvm/Transforms/IPO/GlobalOpt.h"
55 #include "llvm/Transforms/IPO/GlobalSplit.h"
56 #include "llvm/Transforms/IPO/HotColdSplitting.h"
57 #include "llvm/Transforms/IPO/IROutliner.h"
58 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
59 #include "llvm/Transforms/IPO/Inliner.h"
60 #include "llvm/Transforms/IPO/LowerTypeTests.h"
61 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
62 #include "llvm/Transforms/IPO/MergeFunctions.h"
63 #include "llvm/Transforms/IPO/ModuleInliner.h"
64 #include "llvm/Transforms/IPO/OpenMPOpt.h"
65 #include "llvm/Transforms/IPO/PartialInlining.h"
66 #include "llvm/Transforms/IPO/SCCP.h"
67 #include "llvm/Transforms/IPO/SampleProfile.h"
68 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
69 #include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
70 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
71 #include "llvm/Transforms/InstCombine/InstCombine.h"
72 #include "llvm/Transforms/Instrumentation/CGProfile.h"
73 #include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
74 #include "llvm/Transforms/Instrumentation/InstrOrderFile.h"
75 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
76 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
77 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
78 #include "llvm/Transforms/Scalar/ADCE.h"
79 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
80 #include "llvm/Transforms/Scalar/AnnotationRemarks.h"
81 #include "llvm/Transforms/Scalar/BDCE.h"
82 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
83 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
84 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
85 #include "llvm/Transforms/Scalar/DFAJumpThreading.h"
86 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
87 #include "llvm/Transforms/Scalar/DivRemPairs.h"
88 #include "llvm/Transforms/Scalar/EarlyCSE.h"
89 #include "llvm/Transforms/Scalar/Float2Int.h"
90 #include "llvm/Transforms/Scalar/GVN.h"
91 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
92 #include "llvm/Transforms/Scalar/InferAlignment.h"
93 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
94 #include "llvm/Transforms/Scalar/JumpThreading.h"
95 #include "llvm/Transforms/Scalar/LICM.h"
96 #include "llvm/Transforms/Scalar/LoopDeletion.h"
97 #include "llvm/Transforms/Scalar/LoopDistribute.h"
98 #include "llvm/Transforms/Scalar/LoopFlatten.h"
99 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
100 #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
101 #include "llvm/Transforms/Scalar/LoopInterchange.h"
102 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
103 #include "llvm/Transforms/Scalar/LoopPassManager.h"
104 #include "llvm/Transforms/Scalar/LoopRotation.h"
105 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
106 #include "llvm/Transforms/Scalar/LoopSink.h"
107 #include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
108 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
109 #include "llvm/Transforms/Scalar/LoopVersioningLICM.h"
110 #include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
111 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
112 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
113 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
114 #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
115 #include "llvm/Transforms/Scalar/NewGVN.h"
116 #include "llvm/Transforms/Scalar/Reassociate.h"
117 #include "llvm/Transforms/Scalar/SCCP.h"
118 #include "llvm/Transforms/Scalar/SROA.h"
119 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
120 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
121 #include "llvm/Transforms/Scalar/SpeculativeExecution.h"
122 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
123 #include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
124 #include "llvm/Transforms/Utils/AddDiscriminators.h"
125 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
126 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
127 #include "llvm/Transforms/Utils/CountVisits.h"
128 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
129 #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
130 #include "llvm/Transforms/Utils/Mem2Reg.h"
131 #include "llvm/Transforms/Utils/MoveAutoInit.h"
132 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
133 #include "llvm/Transforms/Utils/RelLookupTableConverter.h"
134 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
135 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
136 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
137 #include "llvm/Transforms/Vectorize/VectorCombine.h"
138 
139 using namespace llvm;
140 
141 static cl::opt<InliningAdvisorMode> UseInlineAdvisor(
142     "enable-ml-inliner", cl::init(InliningAdvisorMode::Default), cl::Hidden,
143     cl::desc("Enable ML policy for inliner. Currently trained for -Oz only"),
144     cl::values(clEnumValN(InliningAdvisorMode::Default, "default",
145                           "Heuristics-based inliner version"),
146                clEnumValN(InliningAdvisorMode::Development, "development",
147                           "Use development mode (runtime-loadable model)"),
148                clEnumValN(InliningAdvisorMode::Release, "release",
149                           "Use release mode (AOT-compiled model)")));
150 
151 static cl::opt<bool> EnableSyntheticCounts(
152     "enable-npm-synthetic-counts", cl::Hidden,
153     cl::desc("Run synthetic function entry count generation "
154              "pass"));
155 
156 /// Flag to enable inline deferral during PGO.
157 static cl::opt<bool>
158     EnablePGOInlineDeferral("enable-npm-pgo-inline-deferral", cl::init(true),
159                             cl::Hidden,
160                             cl::desc("Enable inline deferral during PGO"));
161 
162 static cl::opt<bool> EnableModuleInliner("enable-module-inliner",
163                                          cl::init(false), cl::Hidden,
164                                          cl::desc("Enable module inliner"));
165 
166 static cl::opt<bool> PerformMandatoryInliningsFirst(
167     "mandatory-inlining-first", cl::init(false), cl::Hidden,
168     cl::desc("Perform mandatory inlinings module-wide, before performing "
169              "inlining"));
170 
171 static cl::opt<bool> EnableEagerlyInvalidateAnalyses(
172     "eagerly-invalidate-analyses", cl::init(true), cl::Hidden,
173     cl::desc("Eagerly invalidate more analyses in default pipelines"));
174 
175 static cl::opt<bool> EnableMergeFunctions(
176     "enable-merge-functions", cl::init(false), cl::Hidden,
177     cl::desc("Enable function merging as part of the optimization pipeline"));
178 
179 static cl::opt<bool> EnablePostPGOLoopRotation(
180     "enable-post-pgo-loop-rotation", cl::init(true), cl::Hidden,
181     cl::desc("Run the loop rotation transformation after PGO instrumentation"));
182 
183 static cl::opt<bool> EnableGlobalAnalyses(
184     "enable-global-analyses", cl::init(true), cl::Hidden,
185     cl::desc("Enable inter-procedural analyses"));
186 
187 static cl::opt<bool>
188     RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
189                        cl::desc("Run Partial inlinining pass"));
190 
191 static cl::opt<bool> ExtraVectorizerPasses(
192     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
193     cl::desc("Run cleanup optimization passes after vectorization"));
194 
195 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
196                                cl::desc("Run the NewGVN pass"));
197 
198 static cl::opt<bool> EnableLoopInterchange(
199     "enable-loopinterchange", cl::init(false), cl::Hidden,
200     cl::desc("Enable the experimental LoopInterchange Pass"));
201 
202 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
203                                         cl::init(false), cl::Hidden,
204                                         cl::desc("Enable Unroll And Jam Pass"));
205 
206 static cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
207                                        cl::Hidden,
208                                        cl::desc("Enable the LoopFlatten Pass"));
209 
210 static cl::opt<bool>
211     EnableDFAJumpThreading("enable-dfa-jump-thread",
212                            cl::desc("Enable DFA jump threading"),
213                            cl::init(false), cl::Hidden);
214 
215 static cl::opt<bool>
216     EnableHotColdSplit("hot-cold-split",
217                        cl::desc("Enable hot-cold splitting pass"));
218 
219 static cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false),
220                                       cl::Hidden,
221                                       cl::desc("Enable ir outliner pass"));
222 
223 static cl::opt<bool>
224     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
225                       cl::desc("Disable pre-instrumentation inliner"));
226 
227 static cl::opt<int> PreInlineThreshold(
228     "preinline-threshold", cl::Hidden, cl::init(75),
229     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
230              "(default = 75)"));
231 
232 static cl::opt<bool>
233     EnableGVNHoist("enable-gvn-hoist",
234                    cl::desc("Enable the GVN hoisting pass (default = off)"));
235 
236 static cl::opt<bool>
237     EnableGVNSink("enable-gvn-sink",
238                   cl::desc("Enable the GVN sinking pass (default = off)"));
239 
240 // This option is used in simplifying testing SampleFDO optimizations for
241 // profile loading.
242 static cl::opt<bool>
243     EnableCHR("enable-chr", cl::init(true), cl::Hidden,
244               cl::desc("Enable control height reduction optimization (CHR)"));
245 
246 static cl::opt<bool> FlattenedProfileUsed(
247     "flattened-profile-used", cl::init(false), cl::Hidden,
248     cl::desc("Indicate the sample profile being used is flattened, i.e., "
249              "no inline hierachy exists in the profile"));
250 
251 static cl::opt<bool> EnableOrderFileInstrumentation(
252     "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
253     cl::desc("Enable order file instrumentation (default = off)"));
254 
255 static cl::opt<bool>
256     EnableMatrix("enable-matrix", cl::init(false), cl::Hidden,
257                  cl::desc("Enable lowering of the matrix intrinsics"));
258 
259 static cl::opt<bool> EnableConstraintElimination(
260     "enable-constraint-elimination", cl::init(true), cl::Hidden,
261     cl::desc(
262         "Enable pass to eliminate conditions based on linear constraints"));
263 
264 static cl::opt<AttributorRunOption> AttributorRun(
265     "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
266     cl::desc("Enable the attributor inter-procedural deduction pass"),
267     cl::values(clEnumValN(AttributorRunOption::ALL, "all",
268                           "enable all attributor runs"),
269                clEnumValN(AttributorRunOption::MODULE, "module",
270                           "enable module-wide attributor runs"),
271                clEnumValN(AttributorRunOption::CGSCC, "cgscc",
272                           "enable call graph SCC attributor runs"),
273                clEnumValN(AttributorRunOption::NONE, "none",
274                           "disable attributor runs")));
275 
276 static cl::opt<bool> UseLoopVersioningLICM(
277     "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
278     cl::desc("Enable the experimental Loop Versioning LICM pass"));
279 
280 namespace llvm {
281 cl::opt<bool> EnableMemProfContextDisambiguation(
282     "enable-memprof-context-disambiguation", cl::init(false), cl::Hidden,
283     cl::ZeroOrMore, cl::desc("Enable MemProf context disambiguation"));
284 
285 extern cl::opt<bool> EnableInferAlignmentPass;
286 } // namespace llvm
287 
288 PipelineTuningOptions::PipelineTuningOptions() {
289   LoopInterleaving = true;
290   LoopVectorization = true;
291   SLPVectorization = false;
292   LoopUnrolling = true;
293   ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
294   LicmMssaOptCap = SetLicmMssaOptCap;
295   LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
296   CallGraphProfile = true;
297   UnifiedLTO = false;
298   MergeFunctions = EnableMergeFunctions;
299   InlinerThreshold = -1;
300   EagerlyInvalidateAnalyses = EnableEagerlyInvalidateAnalyses;
301 }
302 
303 namespace llvm {
304 extern cl::opt<unsigned> MaxDevirtIterations;
305 } // namespace llvm
306 
307 void PassBuilder::invokePeepholeEPCallbacks(FunctionPassManager &FPM,
308                                             OptimizationLevel Level) {
309   for (auto &C : PeepholeEPCallbacks)
310     C(FPM, Level);
311 }
312 void PassBuilder::invokeLateLoopOptimizationsEPCallbacks(
313     LoopPassManager &LPM, OptimizationLevel Level) {
314   for (auto &C : LateLoopOptimizationsEPCallbacks)
315     C(LPM, Level);
316 }
317 void PassBuilder::invokeLoopOptimizerEndEPCallbacks(LoopPassManager &LPM,
318                                                     OptimizationLevel Level) {
319   for (auto &C : LoopOptimizerEndEPCallbacks)
320     C(LPM, Level);
321 }
322 void PassBuilder::invokeScalarOptimizerLateEPCallbacks(
323     FunctionPassManager &FPM, OptimizationLevel Level) {
324   for (auto &C : ScalarOptimizerLateEPCallbacks)
325     C(FPM, Level);
326 }
327 void PassBuilder::invokeCGSCCOptimizerLateEPCallbacks(CGSCCPassManager &CGPM,
328                                                       OptimizationLevel Level) {
329   for (auto &C : CGSCCOptimizerLateEPCallbacks)
330     C(CGPM, Level);
331 }
332 void PassBuilder::invokeVectorizerStartEPCallbacks(FunctionPassManager &FPM,
333                                                    OptimizationLevel Level) {
334   for (auto &C : VectorizerStartEPCallbacks)
335     C(FPM, Level);
336 }
337 void PassBuilder::invokeOptimizerEarlyEPCallbacks(ModulePassManager &MPM,
338                                                   OptimizationLevel Level) {
339   for (auto &C : OptimizerEarlyEPCallbacks)
340     C(MPM, Level);
341 }
342 void PassBuilder::invokeOptimizerLastEPCallbacks(ModulePassManager &MPM,
343                                                  OptimizationLevel Level) {
344   for (auto &C : OptimizerLastEPCallbacks)
345     C(MPM, Level);
346 }
347 void PassBuilder::invokeFullLinkTimeOptimizationEarlyEPCallbacks(
348     ModulePassManager &MPM, OptimizationLevel Level) {
349   for (auto &C : FullLinkTimeOptimizationEarlyEPCallbacks)
350     C(MPM, Level);
351 }
352 void PassBuilder::invokeFullLinkTimeOptimizationLastEPCallbacks(
353     ModulePassManager &MPM, OptimizationLevel Level) {
354   for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
355     C(MPM, Level);
356 }
357 void PassBuilder::invokePipelineStartEPCallbacks(ModulePassManager &MPM,
358                                                  OptimizationLevel Level) {
359   for (auto &C : PipelineStartEPCallbacks)
360     C(MPM, Level);
361 }
362 void PassBuilder::invokePipelineEarlySimplificationEPCallbacks(
363     ModulePassManager &MPM, OptimizationLevel Level) {
364   for (auto &C : PipelineEarlySimplificationEPCallbacks)
365     C(MPM, Level);
366 }
367 
368 // Helper to add AnnotationRemarksPass.
369 static void addAnnotationRemarksPass(ModulePassManager &MPM) {
370   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
371 }
372 
373 // Helper to check if the current compilation phase is preparing for LTO
374 static bool isLTOPreLink(ThinOrFullLTOPhase Phase) {
375   return Phase == ThinOrFullLTOPhase::ThinLTOPreLink ||
376          Phase == ThinOrFullLTOPhase::FullLTOPreLink;
377 }
378 
379 // TODO: Investigate the cost/benefit of tail call elimination on debugging.
380 FunctionPassManager
381 PassBuilder::buildO1FunctionSimplificationPipeline(OptimizationLevel Level,
382                                                    ThinOrFullLTOPhase Phase) {
383 
384   FunctionPassManager FPM;
385 
386   if (AreStatisticsEnabled())
387     FPM.addPass(CountVisitsPass());
388 
389   // Form SSA out of local memory accesses after breaking apart aggregates into
390   // scalars.
391   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
392 
393   // Catch trivial redundancies
394   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
395 
396   // Hoisting of scalars and load expressions.
397   FPM.addPass(
398       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
399   FPM.addPass(InstCombinePass());
400 
401   FPM.addPass(LibCallsShrinkWrapPass());
402 
403   invokePeepholeEPCallbacks(FPM, Level);
404 
405   FPM.addPass(
406       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
407 
408   // Form canonically associated expression trees, and simplify the trees using
409   // basic mathematical properties. For example, this will form (nearly)
410   // minimal multiplication trees.
411   FPM.addPass(ReassociatePass());
412 
413   // Add the primary loop simplification pipeline.
414   // FIXME: Currently this is split into two loop pass pipelines because we run
415   // some function passes in between them. These can and should be removed
416   // and/or replaced by scheduling the loop pass equivalents in the correct
417   // positions. But those equivalent passes aren't powerful enough yet.
418   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
419   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
420   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
421   // `LoopInstSimplify`.
422   LoopPassManager LPM1, LPM2;
423 
424   // Simplify the loop body. We do this initially to clean up after other loop
425   // passes run, either when iterating on a loop or on inner loops with
426   // implications on the outer loop.
427   LPM1.addPass(LoopInstSimplifyPass());
428   LPM1.addPass(LoopSimplifyCFGPass());
429 
430   // Try to remove as much code from the loop header as possible,
431   // to reduce amount of IR that will have to be duplicated. However,
432   // do not perform speculative hoisting the first time as LICM
433   // will destroy metadata that may not need to be destroyed if run
434   // after loop rotation.
435   // TODO: Investigate promotion cap for O1.
436   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
437                         /*AllowSpeculation=*/false));
438 
439   LPM1.addPass(LoopRotatePass(/* Disable header duplication */ true,
440                               isLTOPreLink(Phase)));
441   // TODO: Investigate promotion cap for O1.
442   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
443                         /*AllowSpeculation=*/true));
444   LPM1.addPass(SimpleLoopUnswitchPass());
445   if (EnableLoopFlatten)
446     LPM1.addPass(LoopFlattenPass());
447 
448   LPM2.addPass(LoopIdiomRecognizePass());
449   LPM2.addPass(IndVarSimplifyPass());
450 
451   invokeLateLoopOptimizationsEPCallbacks(LPM2, Level);
452 
453   LPM2.addPass(LoopDeletionPass());
454 
455   if (EnableLoopInterchange)
456     LPM2.addPass(LoopInterchangePass());
457 
458   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
459   // because it changes IR to makes profile annotation in back compile
460   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
461   // attributes so we need to make sure and allow the full unroll pass to pay
462   // attention to it.
463   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
464       PGOOpt->Action != PGOOptions::SampleUse)
465     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
466                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
467                                     PTO.ForgetAllSCEVInLoopUnroll));
468 
469   invokeLoopOptimizerEndEPCallbacks(LPM2, Level);
470 
471   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
472                                               /*UseMemorySSA=*/true,
473                                               /*UseBlockFrequencyInfo=*/true));
474   FPM.addPass(
475       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
476   FPM.addPass(InstCombinePass());
477   // The loop passes in LPM2 (LoopFullUnrollPass) do not preserve MemorySSA.
478   // *All* loop passes must preserve it, in order to be able to use it.
479   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
480                                               /*UseMemorySSA=*/false,
481                                               /*UseBlockFrequencyInfo=*/false));
482 
483   // Delete small array after loop unroll.
484   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
485 
486   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
487   FPM.addPass(MemCpyOptPass());
488 
489   // Sparse conditional constant propagation.
490   // FIXME: It isn't clear why we do this *after* loop passes rather than
491   // before...
492   FPM.addPass(SCCPPass());
493 
494   // Delete dead bit computations (instcombine runs after to fold away the dead
495   // computations, and then ADCE will run later to exploit any new DCE
496   // opportunities that creates).
497   FPM.addPass(BDCEPass());
498 
499   // Run instcombine after redundancy and dead bit elimination to exploit
500   // opportunities opened up by them.
501   FPM.addPass(InstCombinePass());
502   invokePeepholeEPCallbacks(FPM, Level);
503 
504   FPM.addPass(CoroElidePass());
505 
506   invokeScalarOptimizerLateEPCallbacks(FPM, Level);
507 
508   // Finally, do an expensive DCE pass to catch all the dead code exposed by
509   // the simplifications and basic cleanup after all the simplifications.
510   // TODO: Investigate if this is too expensive.
511   FPM.addPass(ADCEPass());
512   FPM.addPass(
513       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
514   FPM.addPass(InstCombinePass());
515   invokePeepholeEPCallbacks(FPM, Level);
516 
517   return FPM;
518 }
519 
520 FunctionPassManager
521 PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
522                                                  ThinOrFullLTOPhase Phase) {
523   assert(Level != OptimizationLevel::O0 && "Must request optimizations!");
524 
525   // The O1 pipeline has a separate pipeline creation function to simplify
526   // construction readability.
527   if (Level.getSpeedupLevel() == 1)
528     return buildO1FunctionSimplificationPipeline(Level, Phase);
529 
530   FunctionPassManager FPM;
531 
532   if (AreStatisticsEnabled())
533     FPM.addPass(CountVisitsPass());
534 
535   // Form SSA out of local memory accesses after breaking apart aggregates into
536   // scalars.
537   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
538 
539   // Catch trivial redundancies
540   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
541   if (EnableKnowledgeRetention)
542     FPM.addPass(AssumeSimplifyPass());
543 
544   // Hoisting of scalars and load expressions.
545   if (EnableGVNHoist)
546     FPM.addPass(GVNHoistPass());
547 
548   // Global value numbering based sinking.
549   if (EnableGVNSink) {
550     FPM.addPass(GVNSinkPass());
551     FPM.addPass(
552         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
553   }
554 
555   // Speculative execution if the target has divergent branches; otherwise nop.
556   FPM.addPass(SpeculativeExecutionPass(/* OnlyIfDivergentTarget =*/true));
557 
558   // Optimize based on known information about branches, and cleanup afterward.
559   FPM.addPass(JumpThreadingPass());
560   FPM.addPass(CorrelatedValuePropagationPass());
561 
562   FPM.addPass(
563       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
564   FPM.addPass(InstCombinePass());
565   FPM.addPass(AggressiveInstCombinePass());
566 
567   if (!Level.isOptimizingForSize())
568     FPM.addPass(LibCallsShrinkWrapPass());
569 
570   invokePeepholeEPCallbacks(FPM, Level);
571 
572   // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
573   // using the size value profile. Don't perform this when optimizing for size.
574   if (PGOOpt && PGOOpt->Action == PGOOptions::IRUse &&
575       !Level.isOptimizingForSize())
576     FPM.addPass(PGOMemOPSizeOpt());
577 
578   FPM.addPass(TailCallElimPass());
579   FPM.addPass(
580       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
581 
582   // Form canonically associated expression trees, and simplify the trees using
583   // basic mathematical properties. For example, this will form (nearly)
584   // minimal multiplication trees.
585   FPM.addPass(ReassociatePass());
586 
587   if (EnableConstraintElimination)
588     FPM.addPass(ConstraintEliminationPass());
589 
590   // Add the primary loop simplification pipeline.
591   // FIXME: Currently this is split into two loop pass pipelines because we run
592   // some function passes in between them. These can and should be removed
593   // and/or replaced by scheduling the loop pass equivalents in the correct
594   // positions. But those equivalent passes aren't powerful enough yet.
595   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
596   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
597   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
598   // `LoopInstSimplify`.
599   LoopPassManager LPM1, LPM2;
600 
601   // Simplify the loop body. We do this initially to clean up after other loop
602   // passes run, either when iterating on a loop or on inner loops with
603   // implications on the outer loop.
604   LPM1.addPass(LoopInstSimplifyPass());
605   LPM1.addPass(LoopSimplifyCFGPass());
606 
607   // Try to remove as much code from the loop header as possible,
608   // to reduce amount of IR that will have to be duplicated. However,
609   // do not perform speculative hoisting the first time as LICM
610   // will destroy metadata that may not need to be destroyed if run
611   // after loop rotation.
612   // TODO: Investigate promotion cap for O1.
613   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
614                         /*AllowSpeculation=*/false));
615 
616   // Disable header duplication in loop rotation at -Oz.
617   LPM1.addPass(
618       LoopRotatePass(Level != OptimizationLevel::Oz, isLTOPreLink(Phase)));
619   // TODO: Investigate promotion cap for O1.
620   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
621                         /*AllowSpeculation=*/true));
622   LPM1.addPass(
623       SimpleLoopUnswitchPass(/* NonTrivial */ Level == OptimizationLevel::O3));
624   if (EnableLoopFlatten)
625     LPM1.addPass(LoopFlattenPass());
626 
627   LPM2.addPass(LoopIdiomRecognizePass());
628   LPM2.addPass(IndVarSimplifyPass());
629 
630   invokeLateLoopOptimizationsEPCallbacks(LPM2, Level);
631 
632   LPM2.addPass(LoopDeletionPass());
633 
634   if (EnableLoopInterchange)
635     LPM2.addPass(LoopInterchangePass());
636 
637   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
638   // because it changes IR to makes profile annotation in back compile
639   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
640   // attributes so we need to make sure and allow the full unroll pass to pay
641   // attention to it.
642   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
643       PGOOpt->Action != PGOOptions::SampleUse)
644     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
645                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
646                                     PTO.ForgetAllSCEVInLoopUnroll));
647 
648   invokeLoopOptimizerEndEPCallbacks(LPM2, Level);
649 
650   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
651                                               /*UseMemorySSA=*/true,
652                                               /*UseBlockFrequencyInfo=*/true));
653   FPM.addPass(
654       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
655   FPM.addPass(InstCombinePass());
656   // The loop passes in LPM2 (LoopIdiomRecognizePass, IndVarSimplifyPass,
657   // LoopDeletionPass and LoopFullUnrollPass) do not preserve MemorySSA.
658   // *All* loop passes must preserve it, in order to be able to use it.
659   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
660                                               /*UseMemorySSA=*/false,
661                                               /*UseBlockFrequencyInfo=*/false));
662 
663   // Delete small array after loop unroll.
664   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
665 
666   // Try vectorization/scalarization transforms that are both improvements
667   // themselves and can allow further folds with GVN and InstCombine.
668   FPM.addPass(VectorCombinePass(/*TryEarlyFoldsOnly=*/true));
669 
670   // Eliminate redundancies.
671   FPM.addPass(MergedLoadStoreMotionPass());
672   if (RunNewGVN)
673     FPM.addPass(NewGVNPass());
674   else
675     FPM.addPass(GVNPass());
676 
677   // Sparse conditional constant propagation.
678   // FIXME: It isn't clear why we do this *after* loop passes rather than
679   // before...
680   FPM.addPass(SCCPPass());
681 
682   // Delete dead bit computations (instcombine runs after to fold away the dead
683   // computations, and then ADCE will run later to exploit any new DCE
684   // opportunities that creates).
685   FPM.addPass(BDCEPass());
686 
687   // Run instcombine after redundancy and dead bit elimination to exploit
688   // opportunities opened up by them.
689   FPM.addPass(InstCombinePass());
690   invokePeepholeEPCallbacks(FPM, Level);
691 
692   // Re-consider control flow based optimizations after redundancy elimination,
693   // redo DCE, etc.
694   if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
695     FPM.addPass(DFAJumpThreadingPass());
696 
697   FPM.addPass(JumpThreadingPass());
698   FPM.addPass(CorrelatedValuePropagationPass());
699 
700   // Finally, do an expensive DCE pass to catch all the dead code exposed by
701   // the simplifications and basic cleanup after all the simplifications.
702   // TODO: Investigate if this is too expensive.
703   FPM.addPass(ADCEPass());
704 
705   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
706   FPM.addPass(MemCpyOptPass());
707 
708   FPM.addPass(DSEPass());
709   FPM.addPass(MoveAutoInitPass());
710 
711   FPM.addPass(createFunctionToLoopPassAdaptor(
712       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
713                /*AllowSpeculation=*/true),
714       /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
715 
716   FPM.addPass(CoroElidePass());
717 
718   invokeScalarOptimizerLateEPCallbacks(FPM, Level);
719 
720   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
721                                   .convertSwitchRangeToICmp(true)
722                                   .hoistCommonInsts(true)
723                                   .sinkCommonInsts(true)));
724   FPM.addPass(InstCombinePass());
725   invokePeepholeEPCallbacks(FPM, Level);
726 
727   return FPM;
728 }
729 
730 void PassBuilder::addRequiredLTOPreLinkPasses(ModulePassManager &MPM) {
731   MPM.addPass(CanonicalizeAliasesPass());
732   MPM.addPass(NameAnonGlobalPass());
733 }
734 
735 void PassBuilder::addPreInlinerPasses(ModulePassManager &MPM,
736                                       OptimizationLevel Level,
737                                       ThinOrFullLTOPhase LTOPhase) {
738   assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
739   if (DisablePreInliner)
740     return;
741   InlineParams IP;
742 
743   IP.DefaultThreshold = PreInlineThreshold;
744 
745   // FIXME: The hint threshold has the same value used by the regular inliner
746   // when not optimzing for size. This should probably be lowered after
747   // performance testing.
748   // FIXME: this comment is cargo culted from the old pass manager, revisit).
749   IP.HintThreshold = Level.isOptimizingForSize() ? PreInlineThreshold : 325;
750   ModuleInlinerWrapperPass MIWP(
751       IP, /* MandatoryFirst */ true,
752       InlineContext{LTOPhase, InlinePass::EarlyInliner});
753   CGSCCPassManager &CGPipeline = MIWP.getPM();
754 
755   FunctionPassManager FPM;
756   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
757   FPM.addPass(EarlyCSEPass()); // Catch trivial redundancies.
758   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
759       true)));                    // Merge & remove basic blocks.
760   FPM.addPass(InstCombinePass()); // Combine silly sequences.
761   invokePeepholeEPCallbacks(FPM, Level);
762 
763   CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
764       std::move(FPM), PTO.EagerlyInvalidateAnalyses));
765 
766   MPM.addPass(std::move(MIWP));
767 
768   // Delete anything that is now dead to make sure that we don't instrument
769   // dead code. Instrumentation can end up keeping dead code around and
770   // dramatically increase code size.
771   MPM.addPass(GlobalDCEPass());
772 }
773 
774 void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM,
775                                     OptimizationLevel Level, bool RunProfileGen,
776                                     bool IsCS, bool AtomicCounterUpdate,
777                                     std::string ProfileFile,
778                                     std::string ProfileRemappingFile,
779                                     IntrusiveRefCntPtr<vfs::FileSystem> FS) {
780   assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
781 
782   if (!RunProfileGen) {
783     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
784     MPM.addPass(
785         PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS, FS));
786     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
787     // RequireAnalysisPass for PSI before subsequent non-module passes.
788     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
789     return;
790   }
791 
792   // Perform PGO instrumentation.
793   MPM.addPass(PGOInstrumentationGen(IsCS));
794 
795   if (EnablePostPGOLoopRotation) {
796     // Disable header duplication in loop rotation at -Oz.
797     MPM.addPass(createModuleToFunctionPassAdaptor(
798         createFunctionToLoopPassAdaptor(
799             LoopRotatePass(Level != OptimizationLevel::Oz),
800             /*UseMemorySSA=*/false,
801             /*UseBlockFrequencyInfo=*/false),
802         PTO.EagerlyInvalidateAnalyses));
803   }
804 
805   // Add the profile lowering pass.
806   InstrProfOptions Options;
807   if (!ProfileFile.empty())
808     Options.InstrProfileOutput = ProfileFile;
809   // Do counter promotion at Level greater than O0.
810   Options.DoCounterPromotion = true;
811   Options.UseBFIInPromotion = IsCS;
812   Options.Atomic = AtomicCounterUpdate;
813   MPM.addPass(InstrProfilingLoweringPass(Options, IsCS));
814 }
815 
816 void PassBuilder::addPGOInstrPassesForO0(
817     ModulePassManager &MPM, bool RunProfileGen, bool IsCS,
818     bool AtomicCounterUpdate, std::string ProfileFile,
819     std::string ProfileRemappingFile, IntrusiveRefCntPtr<vfs::FileSystem> FS) {
820   if (!RunProfileGen) {
821     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
822     MPM.addPass(
823         PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS, FS));
824     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
825     // RequireAnalysisPass for PSI before subsequent non-module passes.
826     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
827     return;
828   }
829 
830   // Perform PGO instrumentation.
831   MPM.addPass(PGOInstrumentationGen(IsCS));
832   // Add the profile lowering pass.
833   InstrProfOptions Options;
834   if (!ProfileFile.empty())
835     Options.InstrProfileOutput = ProfileFile;
836   // Do not do counter promotion at O0.
837   Options.DoCounterPromotion = false;
838   Options.UseBFIInPromotion = IsCS;
839   Options.Atomic = AtomicCounterUpdate;
840   MPM.addPass(InstrProfilingLoweringPass(Options, IsCS));
841 }
842 
843 static InlineParams getInlineParamsFromOptLevel(OptimizationLevel Level) {
844   return getInlineParams(Level.getSpeedupLevel(), Level.getSizeLevel());
845 }
846 
847 ModuleInlinerWrapperPass
848 PassBuilder::buildInlinerPipeline(OptimizationLevel Level,
849                                   ThinOrFullLTOPhase Phase) {
850   InlineParams IP;
851   if (PTO.InlinerThreshold == -1)
852     IP = getInlineParamsFromOptLevel(Level);
853   else
854     IP = getInlineParams(PTO.InlinerThreshold);
855   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
856   // disable hot callsite inline (as much as possible [1]) because it makes
857   // profile annotation in the backend inaccurate.
858   //
859   // [1] Note the cost of a function could be below zero due to erased
860   // prologue / epilogue.
861   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
862       PGOOpt->Action == PGOOptions::SampleUse)
863     IP.HotCallSiteThreshold = 0;
864 
865   if (PGOOpt)
866     IP.EnableDeferral = EnablePGOInlineDeferral;
867 
868   ModuleInlinerWrapperPass MIWP(IP, PerformMandatoryInliningsFirst,
869                                 InlineContext{Phase, InlinePass::CGSCCInliner},
870                                 UseInlineAdvisor, MaxDevirtIterations);
871 
872   // Require the GlobalsAA analysis for the module so we can query it within
873   // the CGSCC pipeline.
874   if (EnableGlobalAnalyses) {
875     MIWP.addModulePass(RequireAnalysisPass<GlobalsAA, Module>());
876     // Invalidate AAManager so it can be recreated and pick up the newly
877     // available GlobalsAA.
878     MIWP.addModulePass(
879         createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
880   }
881 
882   // Require the ProfileSummaryAnalysis for the module so we can query it within
883   // the inliner pass.
884   MIWP.addModulePass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
885 
886   // Now begin the main postorder CGSCC pipeline.
887   // FIXME: The current CGSCC pipeline has its origins in the legacy pass
888   // manager and trying to emulate its precise behavior. Much of this doesn't
889   // make a lot of sense and we should revisit the core CGSCC structure.
890   CGSCCPassManager &MainCGPipeline = MIWP.getPM();
891 
892   // Note: historically, the PruneEH pass was run first to deduce nounwind and
893   // generally clean up exception handling overhead. It isn't clear this is
894   // valuable as the inliner doesn't currently care whether it is inlining an
895   // invoke or a call.
896 
897   if (AttributorRun & AttributorRunOption::CGSCC)
898     MainCGPipeline.addPass(AttributorCGSCCPass());
899 
900   // Deduce function attributes. We do another run of this after the function
901   // simplification pipeline, so this only needs to run when it could affect the
902   // function simplification pipeline, which is only the case with recursive
903   // functions.
904   MainCGPipeline.addPass(PostOrderFunctionAttrsPass(/*SkipNonRecursive*/ true));
905 
906   // When at O3 add argument promotion to the pass pipeline.
907   // FIXME: It isn't at all clear why this should be limited to O3.
908   if (Level == OptimizationLevel::O3)
909     MainCGPipeline.addPass(ArgumentPromotionPass());
910 
911   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
912   // there are no OpenMP runtime calls present in the module.
913   if (Level == OptimizationLevel::O2 || Level == OptimizationLevel::O3)
914     MainCGPipeline.addPass(OpenMPOptCGSCCPass());
915 
916   invokeCGSCCOptimizerLateEPCallbacks(MainCGPipeline, Level);
917 
918   // Add the core function simplification pipeline nested inside the
919   // CGSCC walk.
920   MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
921       buildFunctionSimplificationPipeline(Level, Phase),
922       PTO.EagerlyInvalidateAnalyses, /*NoRerun=*/true));
923 
924   // Finally, deduce any function attributes based on the fully simplified
925   // function.
926   MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
927 
928   // Mark that the function is fully simplified and that it shouldn't be
929   // simplified again if we somehow revisit it due to CGSCC mutations unless
930   // it's been modified since.
931   MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
932       RequireAnalysisPass<ShouldNotRunFunctionPassesAnalysis, Function>()));
933 
934   MainCGPipeline.addPass(CoroSplitPass(Level != OptimizationLevel::O0));
935 
936   // Make sure we don't affect potential future NoRerun CGSCC adaptors.
937   MIWP.addLateModulePass(createModuleToFunctionPassAdaptor(
938       InvalidateAnalysisPass<ShouldNotRunFunctionPassesAnalysis>()));
939 
940   return MIWP;
941 }
942 
943 ModulePassManager
944 PassBuilder::buildModuleInlinerPipeline(OptimizationLevel Level,
945                                         ThinOrFullLTOPhase Phase) {
946   ModulePassManager MPM;
947 
948   InlineParams IP = getInlineParamsFromOptLevel(Level);
949   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
950   // disable hot callsite inline (as much as possible [1]) because it makes
951   // profile annotation in the backend inaccurate.
952   //
953   // [1] Note the cost of a function could be below zero due to erased
954   // prologue / epilogue.
955   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
956       PGOOpt->Action == PGOOptions::SampleUse)
957     IP.HotCallSiteThreshold = 0;
958 
959   if (PGOOpt)
960     IP.EnableDeferral = EnablePGOInlineDeferral;
961 
962   // The inline deferral logic is used to avoid losing some
963   // inlining chance in future. It is helpful in SCC inliner, in which
964   // inlining is processed in bottom-up order.
965   // While in module inliner, the inlining order is a priority-based order
966   // by default. The inline deferral is unnecessary there. So we disable the
967   // inline deferral logic in module inliner.
968   IP.EnableDeferral = false;
969 
970   MPM.addPass(ModuleInlinerPass(IP, UseInlineAdvisor, Phase));
971 
972   MPM.addPass(createModuleToFunctionPassAdaptor(
973       buildFunctionSimplificationPipeline(Level, Phase),
974       PTO.EagerlyInvalidateAnalyses));
975 
976   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
977       CoroSplitPass(Level != OptimizationLevel::O0)));
978 
979   return MPM;
980 }
981 
982 ModulePassManager
983 PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
984                                                ThinOrFullLTOPhase Phase) {
985   assert(Level != OptimizationLevel::O0 &&
986          "Should not be used for O0 pipeline");
987 
988   assert(Phase != ThinOrFullLTOPhase::FullLTOPostLink &&
989          "FullLTOPostLink shouldn't call buildModuleSimplificationPipeline!");
990 
991   ModulePassManager MPM;
992 
993   // Place pseudo probe instrumentation as the first pass of the pipeline to
994   // minimize the impact of optimization changes.
995   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
996       Phase != ThinOrFullLTOPhase::ThinLTOPostLink)
997     MPM.addPass(SampleProfileProbePass(TM));
998 
999   bool HasSampleProfile = PGOOpt && (PGOOpt->Action == PGOOptions::SampleUse);
1000 
1001   // In ThinLTO mode, when flattened profile is used, all the available
1002   // profile information will be annotated in PreLink phase so there is
1003   // no need to load the profile again in PostLink.
1004   bool LoadSampleProfile =
1005       HasSampleProfile &&
1006       !(FlattenedProfileUsed && Phase == ThinOrFullLTOPhase::ThinLTOPostLink);
1007 
1008   // During the ThinLTO backend phase we perform early indirect call promotion
1009   // here, before globalopt. Otherwise imported available_externally functions
1010   // look unreferenced and are removed. If we are going to load the sample
1011   // profile then defer until later.
1012   // TODO: See if we can move later and consolidate with the location where
1013   // we perform ICP when we are loading a sample profile.
1014   // TODO: We pass HasSampleProfile (whether there was a sample profile file
1015   // passed to the compile) to the SamplePGO flag of ICP. This is used to
1016   // determine whether the new direct calls are annotated with prof metadata.
1017   // Ideally this should be determined from whether the IR is annotated with
1018   // sample profile, and not whether the a sample profile was provided on the
1019   // command line. E.g. for flattened profiles where we will not be reloading
1020   // the sample profile in the ThinLTO backend, we ideally shouldn't have to
1021   // provide the sample profile file.
1022   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink && !LoadSampleProfile)
1023     MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, HasSampleProfile));
1024 
1025   // Create an early function pass manager to cleanup the output of the
1026   // frontend. Not necessary with LTO post link pipelines since the pre link
1027   // pipeline already cleaned up the frontend output.
1028   if (Phase != ThinOrFullLTOPhase::ThinLTOPostLink) {
1029     // Do basic inference of function attributes from known properties of system
1030     // libraries and other oracles.
1031     MPM.addPass(InferFunctionAttrsPass());
1032     MPM.addPass(CoroEarlyPass());
1033 
1034     FunctionPassManager EarlyFPM;
1035     // Lower llvm.expect to metadata before attempting transforms.
1036     // Compare/branch metadata may alter the behavior of passes like
1037     // SimplifyCFG.
1038     EarlyFPM.addPass(LowerExpectIntrinsicPass());
1039     EarlyFPM.addPass(SimplifyCFGPass());
1040     EarlyFPM.addPass(SROAPass(SROAOptions::ModifyCFG));
1041     EarlyFPM.addPass(EarlyCSEPass());
1042     if (Level == OptimizationLevel::O3)
1043       EarlyFPM.addPass(CallSiteSplittingPass());
1044     MPM.addPass(createModuleToFunctionPassAdaptor(
1045         std::move(EarlyFPM), PTO.EagerlyInvalidateAnalyses));
1046   }
1047 
1048   if (LoadSampleProfile) {
1049     // Annotate sample profile right after early FPM to ensure freshness of
1050     // the debug info.
1051     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1052                                         PGOOpt->ProfileRemappingFile, Phase));
1053     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1054     // RequireAnalysisPass for PSI before subsequent non-module passes.
1055     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1056     // Do not invoke ICP in the LTOPrelink phase as it makes it hard
1057     // for the profile annotation to be accurate in the LTO backend.
1058     if (!isLTOPreLink(Phase))
1059       // We perform early indirect call promotion here, before globalopt.
1060       // This is important for the ThinLTO backend phase because otherwise
1061       // imported available_externally functions look unreferenced and are
1062       // removed.
1063       MPM.addPass(
1064           PGOIndirectCallPromotion(true /* IsInLTO */, true /* SamplePGO */));
1065   }
1066 
1067   // Try to perform OpenMP specific optimizations on the module. This is a
1068   // (quick!) no-op if there are no OpenMP runtime calls present in the module.
1069   MPM.addPass(OpenMPOptPass());
1070 
1071   if (AttributorRun & AttributorRunOption::MODULE)
1072     MPM.addPass(AttributorPass());
1073 
1074   // Lower type metadata and the type.test intrinsic in the ThinLTO
1075   // post link pipeline after ICP. This is to enable usage of the type
1076   // tests in ICP sequences.
1077   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink)
1078     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1079 
1080   invokePipelineEarlySimplificationEPCallbacks(MPM, Level);
1081 
1082   // Interprocedural constant propagation now that basic cleanup has occurred
1083   // and prior to optimizing globals.
1084   // FIXME: This position in the pipeline hasn't been carefully considered in
1085   // years, it should be re-analyzed.
1086   MPM.addPass(IPSCCPPass(
1087               IPSCCPOptions(/*AllowFuncSpec=*/
1088                             Level != OptimizationLevel::Os &&
1089                             Level != OptimizationLevel::Oz &&
1090                             !isLTOPreLink(Phase))));
1091 
1092   // Attach metadata to indirect call sites indicating the set of functions
1093   // they may target at run-time. This should follow IPSCCP.
1094   MPM.addPass(CalledValuePropagationPass());
1095 
1096   // Optimize globals to try and fold them into constants.
1097   MPM.addPass(GlobalOptPass());
1098 
1099   // Create a small function pass pipeline to cleanup after all the global
1100   // optimizations.
1101   FunctionPassManager GlobalCleanupPM;
1102   // FIXME: Should this instead by a run of SROA?
1103   GlobalCleanupPM.addPass(PromotePass());
1104   GlobalCleanupPM.addPass(InstCombinePass());
1105   invokePeepholeEPCallbacks(GlobalCleanupPM, Level);
1106   GlobalCleanupPM.addPass(
1107       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1108   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM),
1109                                                 PTO.EagerlyInvalidateAnalyses));
1110 
1111   // Invoke the pre-inliner passes for instrumentation PGO or MemProf.
1112   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1113       (PGOOpt->Action == PGOOptions::IRInstr ||
1114        PGOOpt->Action == PGOOptions::IRUse || !PGOOpt->MemoryProfile.empty()))
1115     addPreInlinerPasses(MPM, Level, Phase);
1116 
1117   // Add all the requested passes for instrumentation PGO, if requested.
1118   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1119       (PGOOpt->Action == PGOOptions::IRInstr ||
1120        PGOOpt->Action == PGOOptions::IRUse)) {
1121     addPGOInstrPasses(MPM, Level,
1122                       /*RunProfileGen=*/PGOOpt->Action == PGOOptions::IRInstr,
1123                       /*IsCS=*/false, PGOOpt->AtomicCounterUpdate,
1124                       PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1125                       PGOOpt->FS);
1126     MPM.addPass(PGOIndirectCallPromotion(false, false));
1127   }
1128   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1129       PGOOpt->CSAction == PGOOptions::CSIRInstr)
1130     MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->CSProfileGenFile));
1131 
1132   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1133       !PGOOpt->MemoryProfile.empty())
1134     MPM.addPass(MemProfUsePass(PGOOpt->MemoryProfile, PGOOpt->FS));
1135 
1136   // Synthesize function entry counts for non-PGO compilation.
1137   if (EnableSyntheticCounts && !PGOOpt)
1138     MPM.addPass(SyntheticCountsPropagation());
1139 
1140   MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/true));
1141 
1142   if (EnableModuleInliner)
1143     MPM.addPass(buildModuleInlinerPipeline(Level, Phase));
1144   else
1145     MPM.addPass(buildInlinerPipeline(Level, Phase));
1146 
1147   // Remove any dead arguments exposed by cleanups, constant folding globals,
1148   // and argument promotion.
1149   MPM.addPass(DeadArgumentEliminationPass());
1150 
1151   MPM.addPass(CoroCleanupPass());
1152 
1153   // Optimize globals now that functions are fully simplified.
1154   MPM.addPass(GlobalOptPass());
1155   MPM.addPass(GlobalDCEPass());
1156 
1157   return MPM;
1158 }
1159 
1160 /// TODO: Should LTO cause any differences to this set of passes?
1161 void PassBuilder::addVectorPasses(OptimizationLevel Level,
1162                                   FunctionPassManager &FPM, bool IsFullLTO) {
1163   FPM.addPass(LoopVectorizePass(
1164       LoopVectorizeOptions(!PTO.LoopInterleaving, !PTO.LoopVectorization)));
1165 
1166   if (EnableInferAlignmentPass)
1167     FPM.addPass(InferAlignmentPass());
1168   if (IsFullLTO) {
1169     // The vectorizer may have significantly shortened a loop body; unroll
1170     // again. Unroll small loops to hide loop backedge latency and saturate any
1171     // parallel execution resources of an out-of-order processor. We also then
1172     // need to clean up redundancies and loop invariant code.
1173     // FIXME: It would be really good to use a loop-integrated instruction
1174     // combiner for cleanup here so that the unrolling and LICM can be pipelined
1175     // across the loop nests.
1176     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1177     if (EnableUnrollAndJam && PTO.LoopUnrolling)
1178       FPM.addPass(createFunctionToLoopPassAdaptor(
1179           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1180     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1181         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1182         PTO.ForgetAllSCEVInLoopUnroll)));
1183     FPM.addPass(WarnMissedTransformationsPass());
1184     // Now that we are done with loop unrolling, be it either by LoopVectorizer,
1185     // or LoopUnroll passes, some variable-offset GEP's into alloca's could have
1186     // become constant-offset, thus enabling SROA and alloca promotion. Do so.
1187     // NOTE: we are very late in the pipeline, and we don't have any LICM
1188     // or SimplifyCFG passes scheduled after us, that would cleanup
1189     // the CFG mess this may created if allowed to modify CFG, so forbid that.
1190     FPM.addPass(SROAPass(SROAOptions::PreserveCFG));
1191   }
1192 
1193   if (!IsFullLTO) {
1194     // Eliminate loads by forwarding stores from the previous iteration to loads
1195     // of the current iteration.
1196     FPM.addPass(LoopLoadEliminationPass());
1197   }
1198   // Cleanup after the loop optimization passes.
1199   FPM.addPass(InstCombinePass());
1200 
1201   if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1202     ExtraVectorPassManager ExtraPasses;
1203     // At higher optimization levels, try to clean up any runtime overlap and
1204     // alignment checks inserted by the vectorizer. We want to track correlated
1205     // runtime checks for two inner loops in the same outer loop, fold any
1206     // common computations, hoist loop-invariant aspects out of any outer loop,
1207     // and unswitch the runtime checks if possible. Once hoisted, we may have
1208     // dead (or speculatable) control flows or more combining opportunities.
1209     ExtraPasses.addPass(EarlyCSEPass());
1210     ExtraPasses.addPass(CorrelatedValuePropagationPass());
1211     ExtraPasses.addPass(InstCombinePass());
1212     LoopPassManager LPM;
1213     LPM.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1214                          /*AllowSpeculation=*/true));
1215     LPM.addPass(SimpleLoopUnswitchPass(/* NonTrivial */ Level ==
1216                                        OptimizationLevel::O3));
1217     ExtraPasses.addPass(
1218         createFunctionToLoopPassAdaptor(std::move(LPM), /*UseMemorySSA=*/true,
1219                                         /*UseBlockFrequencyInfo=*/true));
1220     ExtraPasses.addPass(
1221         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1222     ExtraPasses.addPass(InstCombinePass());
1223     FPM.addPass(std::move(ExtraPasses));
1224   }
1225 
1226   // Now that we've formed fast to execute loop structures, we do further
1227   // optimizations. These are run afterward as they might block doing complex
1228   // analyses and transforms such as what are needed for loop vectorization.
1229 
1230   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
1231   // GVN, loop transforms, and others have already run, so it's now better to
1232   // convert to more optimized IR using more aggressive simplify CFG options.
1233   // The extra sinking transform can create larger basic blocks, so do this
1234   // before SLP vectorization.
1235   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
1236                                   .forwardSwitchCondToPhi(true)
1237                                   .convertSwitchRangeToICmp(true)
1238                                   .convertSwitchToLookupTable(true)
1239                                   .needCanonicalLoops(false)
1240                                   .hoistCommonInsts(true)
1241                                   .sinkCommonInsts(true)));
1242 
1243   if (IsFullLTO) {
1244     FPM.addPass(SCCPPass());
1245     FPM.addPass(InstCombinePass());
1246     FPM.addPass(BDCEPass());
1247   }
1248 
1249   // Optimize parallel scalar instruction chains into SIMD instructions.
1250   if (PTO.SLPVectorization) {
1251     FPM.addPass(SLPVectorizerPass());
1252     if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1253       FPM.addPass(EarlyCSEPass());
1254     }
1255   }
1256   // Enhance/cleanup vector code.
1257   FPM.addPass(VectorCombinePass());
1258 
1259   if (!IsFullLTO) {
1260     FPM.addPass(InstCombinePass());
1261     // Unroll small loops to hide loop backedge latency and saturate any
1262     // parallel execution resources of an out-of-order processor. We also then
1263     // need to clean up redundancies and loop invariant code.
1264     // FIXME: It would be really good to use a loop-integrated instruction
1265     // combiner for cleanup here so that the unrolling and LICM can be pipelined
1266     // across the loop nests.
1267     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1268     if (EnableUnrollAndJam && PTO.LoopUnrolling) {
1269       FPM.addPass(createFunctionToLoopPassAdaptor(
1270           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1271     }
1272     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1273         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1274         PTO.ForgetAllSCEVInLoopUnroll)));
1275     FPM.addPass(WarnMissedTransformationsPass());
1276     // Now that we are done with loop unrolling, be it either by LoopVectorizer,
1277     // or LoopUnroll passes, some variable-offset GEP's into alloca's could have
1278     // become constant-offset, thus enabling SROA and alloca promotion. Do so.
1279     // NOTE: we are very late in the pipeline, and we don't have any LICM
1280     // or SimplifyCFG passes scheduled after us, that would cleanup
1281     // the CFG mess this may created if allowed to modify CFG, so forbid that.
1282     FPM.addPass(SROAPass(SROAOptions::PreserveCFG));
1283   }
1284 
1285   if (EnableInferAlignmentPass)
1286     FPM.addPass(InferAlignmentPass());
1287   FPM.addPass(InstCombinePass());
1288 
1289   // This is needed for two reasons:
1290   //   1. It works around problems that instcombine introduces, such as sinking
1291   //      expensive FP divides into loops containing multiplications using the
1292   //      divide result.
1293   //   2. It helps to clean up some loop-invariant code created by the loop
1294   //      unroll pass when IsFullLTO=false.
1295   FPM.addPass(createFunctionToLoopPassAdaptor(
1296       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1297                /*AllowSpeculation=*/true),
1298       /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1299 
1300   // Now that we've vectorized and unrolled loops, we may have more refined
1301   // alignment information, try to re-derive it here.
1302   FPM.addPass(AlignmentFromAssumptionsPass());
1303 }
1304 
1305 ModulePassManager
1306 PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
1307                                              ThinOrFullLTOPhase LTOPhase) {
1308   const bool LTOPreLink = isLTOPreLink(LTOPhase);
1309   ModulePassManager MPM;
1310 
1311   // Run partial inlining pass to partially inline functions that have
1312   // large bodies.
1313   if (RunPartialInlining)
1314     MPM.addPass(PartialInlinerPass());
1315 
1316   // Remove avail extern fns and globals definitions since we aren't compiling
1317   // an object file for later LTO. For LTO we want to preserve these so they
1318   // are eligible for inlining at link-time. Note if they are unreferenced they
1319   // will be removed by GlobalDCE later, so this only impacts referenced
1320   // available externally globals. Eventually they will be suppressed during
1321   // codegen, but eliminating here enables more opportunity for GlobalDCE as it
1322   // may make globals referenced by available external functions dead and saves
1323   // running remaining passes on the eliminated functions. These should be
1324   // preserved during prelinking for link-time inlining decisions.
1325   if (!LTOPreLink)
1326     MPM.addPass(EliminateAvailableExternallyPass());
1327 
1328   if (EnableOrderFileInstrumentation)
1329     MPM.addPass(InstrOrderFilePass());
1330 
1331   // Do RPO function attribute inference across the module to forward-propagate
1332   // attributes where applicable.
1333   // FIXME: Is this really an optimization rather than a canonicalization?
1334   MPM.addPass(ReversePostOrderFunctionAttrsPass());
1335 
1336   // Do a post inline PGO instrumentation and use pass. This is a context
1337   // sensitive PGO pass. We don't want to do this in LTOPreLink phrase as
1338   // cross-module inline has not been done yet. The context sensitive
1339   // instrumentation is after all the inlines are done.
1340   if (!LTOPreLink && PGOOpt) {
1341     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1342       addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/true,
1343                         /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1344                         PGOOpt->CSProfileGenFile, PGOOpt->ProfileRemappingFile,
1345                         PGOOpt->FS);
1346     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1347       addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/false,
1348                         /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1349                         PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1350                         PGOOpt->FS);
1351   }
1352 
1353   // Re-compute GlobalsAA here prior to function passes. This is particularly
1354   // useful as the above will have inlined, DCE'ed, and function-attr
1355   // propagated everything. We should at this point have a reasonably minimal
1356   // and richly annotated call graph. By computing aliasing and mod/ref
1357   // information for all local globals here, the late loop passes and notably
1358   // the vectorizer will be able to use them to help recognize vectorizable
1359   // memory operations.
1360   if (EnableGlobalAnalyses)
1361     MPM.addPass(RecomputeGlobalsAAPass());
1362 
1363   invokeOptimizerEarlyEPCallbacks(MPM, Level);
1364 
1365   FunctionPassManager OptimizePM;
1366   // Scheduling LoopVersioningLICM when inlining is over, because after that
1367   // we may see more accurate aliasing. Reason to run this late is that too
1368   // early versioning may prevent further inlining due to increase of code
1369   // size. Other optimizations which runs later might get benefit of no-alias
1370   // assumption in clone loop.
1371   if (UseLoopVersioningLICM) {
1372     OptimizePM.addPass(
1373         createFunctionToLoopPassAdaptor(LoopVersioningLICMPass()));
1374     // LoopVersioningLICM pass might increase new LICM opportunities.
1375     OptimizePM.addPass(createFunctionToLoopPassAdaptor(
1376         LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1377                  /*AllowSpeculation=*/true),
1378         /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1379   }
1380 
1381   OptimizePM.addPass(Float2IntPass());
1382   OptimizePM.addPass(LowerConstantIntrinsicsPass());
1383 
1384   if (EnableMatrix) {
1385     OptimizePM.addPass(LowerMatrixIntrinsicsPass());
1386     OptimizePM.addPass(EarlyCSEPass());
1387   }
1388 
1389   // CHR pass should only be applied with the profile information.
1390   // The check is to check the profile summary information in CHR.
1391   if (EnableCHR && Level == OptimizationLevel::O3)
1392     OptimizePM.addPass(ControlHeightReductionPass());
1393 
1394   // FIXME: We need to run some loop optimizations to re-rotate loops after
1395   // simplifycfg and others undo their rotation.
1396 
1397   // Optimize the loop execution. These passes operate on entire loop nests
1398   // rather than on each loop in an inside-out manner, and so they are actually
1399   // function passes.
1400 
1401   invokeVectorizerStartEPCallbacks(OptimizePM, Level);
1402 
1403   LoopPassManager LPM;
1404   // First rotate loops that may have been un-rotated by prior passes.
1405   // Disable header duplication at -Oz.
1406   LPM.addPass(LoopRotatePass(Level != OptimizationLevel::Oz, LTOPreLink));
1407   // Some loops may have become dead by now. Try to delete them.
1408   // FIXME: see discussion in https://reviews.llvm.org/D112851,
1409   //        this may need to be revisited once we run GVN before loop deletion
1410   //        in the simplification pipeline.
1411   LPM.addPass(LoopDeletionPass());
1412   OptimizePM.addPass(createFunctionToLoopPassAdaptor(
1413       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/false));
1414 
1415   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
1416   // into separate loop that would otherwise inhibit vectorization.  This is
1417   // currently only performed for loops marked with the metadata
1418   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
1419   OptimizePM.addPass(LoopDistributePass());
1420 
1421   // Populates the VFABI attribute with the scalar-to-vector mappings
1422   // from the TargetLibraryInfo.
1423   OptimizePM.addPass(InjectTLIMappings());
1424 
1425   addVectorPasses(Level, OptimizePM, /* IsFullLTO */ false);
1426 
1427   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1428   // canonicalization pass that enables other optimizations. As a result,
1429   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1430   // result too early.
1431   OptimizePM.addPass(LoopSinkPass());
1432 
1433   // And finally clean up LCSSA form before generating code.
1434   OptimizePM.addPass(InstSimplifyPass());
1435 
1436   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1437   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1438   // flattening of blocks.
1439   OptimizePM.addPass(DivRemPairsPass());
1440 
1441   // Try to annotate calls that were created during optimization.
1442   OptimizePM.addPass(TailCallElimPass());
1443 
1444   // LoopSink (and other loop passes since the last simplifyCFG) might have
1445   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
1446   OptimizePM.addPass(
1447       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1448 
1449   // Add the core optimizing pipeline.
1450   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM),
1451                                                 PTO.EagerlyInvalidateAnalyses));
1452 
1453   invokeOptimizerLastEPCallbacks(MPM, Level);
1454 
1455   // Split out cold code. Splitting is done late to avoid hiding context from
1456   // other optimizations and inadvertently regressing performance. The tradeoff
1457   // is that this has a higher code size cost than splitting early.
1458   if (EnableHotColdSplit && !LTOPreLink)
1459     MPM.addPass(HotColdSplittingPass());
1460 
1461   // Search the code for similar regions of code. If enough similar regions can
1462   // be found where extracting the regions into their own function will decrease
1463   // the size of the program, we extract the regions, a deduplicate the
1464   // structurally similar regions.
1465   if (EnableIROutliner)
1466     MPM.addPass(IROutlinerPass());
1467 
1468   // Merge functions if requested.
1469   if (PTO.MergeFunctions)
1470     MPM.addPass(MergeFunctionsPass());
1471 
1472   // Now we need to do some global optimization transforms.
1473   // FIXME: It would seem like these should come first in the optimization
1474   // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
1475   // ordering here.
1476   MPM.addPass(GlobalDCEPass());
1477   MPM.addPass(ConstantMergePass());
1478 
1479   if (PTO.CallGraphProfile && !LTOPreLink)
1480     MPM.addPass(CGProfilePass(LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
1481                               LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink));
1482 
1483   // TODO: Relative look table converter pass caused an issue when full lto is
1484   // enabled. See https://reviews.llvm.org/D94355 for more details.
1485   // Until the issue fixed, disable this pass during pre-linking phase.
1486   if (!LTOPreLink)
1487     MPM.addPass(RelLookupTableConverterPass());
1488 
1489   return MPM;
1490 }
1491 
1492 ModulePassManager
1493 PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
1494                                            bool LTOPreLink) {
1495   if (Level == OptimizationLevel::O0)
1496     return buildO0DefaultPipeline(Level, LTOPreLink);
1497 
1498   ModulePassManager MPM;
1499 
1500   // Convert @llvm.global.annotations to !annotation metadata.
1501   MPM.addPass(Annotation2MetadataPass());
1502 
1503   // Force any function attributes we want the rest of the pipeline to observe.
1504   MPM.addPass(ForceFunctionAttrsPass());
1505 
1506   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1507     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1508 
1509   // Apply module pipeline start EP callback.
1510   invokePipelineStartEPCallbacks(MPM, Level);
1511 
1512   const ThinOrFullLTOPhase LTOPhase = LTOPreLink
1513                                           ? ThinOrFullLTOPhase::FullLTOPreLink
1514                                           : ThinOrFullLTOPhase::None;
1515   // Add the core simplification pipeline.
1516   MPM.addPass(buildModuleSimplificationPipeline(Level, LTOPhase));
1517 
1518   // Now add the optimization pipeline.
1519   MPM.addPass(buildModuleOptimizationPipeline(Level, LTOPhase));
1520 
1521   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1522       PGOOpt->Action == PGOOptions::SampleUse)
1523     MPM.addPass(PseudoProbeUpdatePass());
1524 
1525   // Emit annotation remarks.
1526   addAnnotationRemarksPass(MPM);
1527 
1528   if (LTOPreLink)
1529     addRequiredLTOPreLinkPasses(MPM);
1530   return MPM;
1531 }
1532 
1533 ModulePassManager
1534 PassBuilder::buildFatLTODefaultPipeline(OptimizationLevel Level, bool ThinLTO,
1535                                         bool EmitSummary) {
1536   ModulePassManager MPM;
1537   if (ThinLTO)
1538     MPM.addPass(buildThinLTOPreLinkDefaultPipeline(Level));
1539   else
1540     MPM.addPass(buildLTOPreLinkDefaultPipeline(Level));
1541   MPM.addPass(EmbedBitcodePass(ThinLTO, EmitSummary));
1542 
1543   // Use the ThinLTO post-link pipeline with sample profiling
1544   if (ThinLTO && PGOOpt && PGOOpt->Action == PGOOptions::SampleUse)
1545     MPM.addPass(buildThinLTODefaultPipeline(Level, /*ImportSummary=*/nullptr));
1546   else {
1547     // otherwise, just use module optimization
1548     MPM.addPass(
1549         buildModuleOptimizationPipeline(Level, ThinOrFullLTOPhase::None));
1550     // Emit annotation remarks.
1551     addAnnotationRemarksPass(MPM);
1552   }
1553   return MPM;
1554 }
1555 
1556 ModulePassManager
1557 PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1558   if (Level == OptimizationLevel::O0)
1559     return buildO0DefaultPipeline(Level, /*LTOPreLink*/true);
1560 
1561   ModulePassManager MPM;
1562 
1563   // Convert @llvm.global.annotations to !annotation metadata.
1564   MPM.addPass(Annotation2MetadataPass());
1565 
1566   // Force any function attributes we want the rest of the pipeline to observe.
1567   MPM.addPass(ForceFunctionAttrsPass());
1568 
1569   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1570     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1571 
1572   // Apply module pipeline start EP callback.
1573   invokePipelineStartEPCallbacks(MPM, Level);
1574 
1575   // If we are planning to perform ThinLTO later, we don't bloat the code with
1576   // unrolling/vectorization/... now. Just simplify the module as much as we
1577   // can.
1578   MPM.addPass(buildModuleSimplificationPipeline(
1579       Level, ThinOrFullLTOPhase::ThinLTOPreLink));
1580 
1581   // Run partial inlining pass to partially inline functions that have
1582   // large bodies.
1583   // FIXME: It isn't clear whether this is really the right place to run this
1584   // in ThinLTO. Because there is another canonicalization and simplification
1585   // phase that will run after the thin link, running this here ends up with
1586   // less information than will be available later and it may grow functions in
1587   // ways that aren't beneficial.
1588   if (RunPartialInlining)
1589     MPM.addPass(PartialInlinerPass());
1590 
1591   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1592       PGOOpt->Action == PGOOptions::SampleUse)
1593     MPM.addPass(PseudoProbeUpdatePass());
1594 
1595   // Handle Optimizer{Early,Last}EPCallbacks added by clang on PreLink. Actual
1596   // optimization is going to be done in PostLink stage, but clang can't add
1597   // callbacks there in case of in-process ThinLTO called by linker.
1598   invokeOptimizerEarlyEPCallbacks(MPM, Level);
1599   invokeOptimizerLastEPCallbacks(MPM, Level);
1600 
1601   // Emit annotation remarks.
1602   addAnnotationRemarksPass(MPM);
1603 
1604   addRequiredLTOPreLinkPasses(MPM);
1605 
1606   return MPM;
1607 }
1608 
1609 ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
1610     OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary) {
1611   ModulePassManager MPM;
1612 
1613   if (ImportSummary) {
1614     // For ThinLTO we must apply the context disambiguation decisions early, to
1615     // ensure we can correctly match the callsites to summary data.
1616     if (EnableMemProfContextDisambiguation)
1617       MPM.addPass(MemProfContextDisambiguation(ImportSummary));
1618 
1619     // These passes import type identifier resolutions for whole-program
1620     // devirtualization and CFI. They must run early because other passes may
1621     // disturb the specific instruction patterns that these passes look for,
1622     // creating dependencies on resolutions that may not appear in the summary.
1623     //
1624     // For example, GVN may transform the pattern assume(type.test) appearing in
1625     // two basic blocks into assume(phi(type.test, type.test)), which would
1626     // transform a dependency on a WPD resolution into a dependency on a type
1627     // identifier resolution for CFI.
1628     //
1629     // Also, WPD has access to more precise information than ICP and can
1630     // devirtualize more effectively, so it should operate on the IR first.
1631     //
1632     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1633     // metadata and intrinsics.
1634     MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
1635     MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
1636   }
1637 
1638   if (Level == OptimizationLevel::O0) {
1639     // Run a second time to clean up any type tests left behind by WPD for use
1640     // in ICP.
1641     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1642     // Drop available_externally and unreferenced globals. This is necessary
1643     // with ThinLTO in order to avoid leaving undefined references to dead
1644     // globals in the object file.
1645     MPM.addPass(EliminateAvailableExternallyPass());
1646     MPM.addPass(GlobalDCEPass());
1647     return MPM;
1648   }
1649 
1650   // Add the core simplification pipeline.
1651   MPM.addPass(buildModuleSimplificationPipeline(
1652       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1653 
1654   // Now add the optimization pipeline.
1655   MPM.addPass(buildModuleOptimizationPipeline(
1656       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1657 
1658   // Emit annotation remarks.
1659   addAnnotationRemarksPass(MPM);
1660 
1661   return MPM;
1662 }
1663 
1664 ModulePassManager
1665 PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1666   // FIXME: We should use a customized pre-link pipeline!
1667   return buildPerModuleDefaultPipeline(Level,
1668                                        /* LTOPreLink */ true);
1669 }
1670 
1671 ModulePassManager
1672 PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
1673                                      ModuleSummaryIndex *ExportSummary) {
1674   ModulePassManager MPM;
1675 
1676   invokeFullLinkTimeOptimizationEarlyEPCallbacks(MPM, Level);
1677 
1678   // Create a function that performs CFI checks for cross-DSO calls with targets
1679   // in the current module.
1680   MPM.addPass(CrossDSOCFIPass());
1681 
1682   if (Level == OptimizationLevel::O0) {
1683     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1684     // metadata and intrinsics.
1685     MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1686     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1687     // Run a second time to clean up any type tests left behind by WPD for use
1688     // in ICP.
1689     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1690 
1691     invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1692 
1693     // Emit annotation remarks.
1694     addAnnotationRemarksPass(MPM);
1695 
1696     return MPM;
1697   }
1698 
1699   if (PGOOpt && PGOOpt->Action == PGOOptions::SampleUse) {
1700     // Load sample profile before running the LTO optimization pipeline.
1701     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1702                                         PGOOpt->ProfileRemappingFile,
1703                                         ThinOrFullLTOPhase::FullLTOPostLink));
1704     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1705     // RequireAnalysisPass for PSI before subsequent non-module passes.
1706     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1707   }
1708 
1709   // Try to run OpenMP optimizations, quick no-op if no OpenMP metadata present.
1710   MPM.addPass(OpenMPOptPass(ThinOrFullLTOPhase::FullLTOPostLink));
1711 
1712   // Remove unused virtual tables to improve the quality of code generated by
1713   // whole-program devirtualization and bitset lowering.
1714   MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1715 
1716   // Do basic inference of function attributes from known properties of system
1717   // libraries and other oracles.
1718   MPM.addPass(InferFunctionAttrsPass());
1719 
1720   if (Level.getSpeedupLevel() > 1) {
1721     MPM.addPass(createModuleToFunctionPassAdaptor(
1722         CallSiteSplittingPass(), PTO.EagerlyInvalidateAnalyses));
1723 
1724     // Indirect call promotion. This should promote all the targets that are
1725     // left by the earlier promotion pass that promotes intra-module targets.
1726     // This two-step promotion is to save the compile time. For LTO, it should
1727     // produce the same result as if we only do promotion here.
1728     MPM.addPass(PGOIndirectCallPromotion(
1729         true /* InLTO */, PGOOpt && PGOOpt->Action == PGOOptions::SampleUse));
1730 
1731     // Propagate constants at call sites into the functions they call.  This
1732     // opens opportunities for globalopt (and inlining) by substituting function
1733     // pointers passed as arguments to direct uses of functions.
1734     MPM.addPass(IPSCCPPass(IPSCCPOptions(/*AllowFuncSpec=*/
1735                                          Level != OptimizationLevel::Os &&
1736                                          Level != OptimizationLevel::Oz)));
1737 
1738     // Attach metadata to indirect call sites indicating the set of functions
1739     // they may target at run-time. This should follow IPSCCP.
1740     MPM.addPass(CalledValuePropagationPass());
1741   }
1742 
1743   // Now deduce any function attributes based in the current code.
1744   MPM.addPass(
1745       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1746 
1747   // Do RPO function attribute inference across the module to forward-propagate
1748   // attributes where applicable.
1749   // FIXME: Is this really an optimization rather than a canonicalization?
1750   MPM.addPass(ReversePostOrderFunctionAttrsPass());
1751 
1752   // Use in-range annotations on GEP indices to split globals where beneficial.
1753   MPM.addPass(GlobalSplitPass());
1754 
1755   // Run whole program optimization of virtual call when the list of callees
1756   // is fixed.
1757   MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1758 
1759   // Stop here at -O1.
1760   if (Level == OptimizationLevel::O1) {
1761     // The LowerTypeTestsPass needs to run to lower type metadata and the
1762     // type.test intrinsics. The pass does nothing if CFI is disabled.
1763     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1764     // Run a second time to clean up any type tests left behind by WPD for use
1765     // in ICP (which is performed earlier than this in the regular LTO
1766     // pipeline).
1767     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1768 
1769     invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1770 
1771     // Emit annotation remarks.
1772     addAnnotationRemarksPass(MPM);
1773 
1774     return MPM;
1775   }
1776 
1777   // Optimize globals to try and fold them into constants.
1778   MPM.addPass(GlobalOptPass());
1779 
1780   // Promote any localized globals to SSA registers.
1781   MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
1782 
1783   // Linking modules together can lead to duplicate global constant, only
1784   // keep one copy of each constant.
1785   MPM.addPass(ConstantMergePass());
1786 
1787   // Remove unused arguments from functions.
1788   MPM.addPass(DeadArgumentEliminationPass());
1789 
1790   // Reduce the code after globalopt and ipsccp.  Both can open up significant
1791   // simplification opportunities, and both can propagate functions through
1792   // function pointers.  When this happens, we often have to resolve varargs
1793   // calls, etc, so let instcombine do this.
1794   FunctionPassManager PeepholeFPM;
1795   PeepholeFPM.addPass(InstCombinePass());
1796   if (Level.getSpeedupLevel() > 1)
1797     PeepholeFPM.addPass(AggressiveInstCombinePass());
1798   invokePeepholeEPCallbacks(PeepholeFPM, Level);
1799 
1800   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM),
1801                                                 PTO.EagerlyInvalidateAnalyses));
1802 
1803   // Note: historically, the PruneEH pass was run first to deduce nounwind and
1804   // generally clean up exception handling overhead. It isn't clear this is
1805   // valuable as the inliner doesn't currently care whether it is inlining an
1806   // invoke or a call.
1807   // Run the inliner now.
1808   if (EnableModuleInliner) {
1809     MPM.addPass(ModuleInlinerPass(getInlineParamsFromOptLevel(Level),
1810                                   UseInlineAdvisor,
1811                                   ThinOrFullLTOPhase::FullLTOPostLink));
1812   } else {
1813     MPM.addPass(ModuleInlinerWrapperPass(
1814         getInlineParamsFromOptLevel(Level),
1815         /* MandatoryFirst */ true,
1816         InlineContext{ThinOrFullLTOPhase::FullLTOPostLink,
1817                       InlinePass::CGSCCInliner}));
1818   }
1819 
1820   // Perform context disambiguation after inlining, since that would reduce the
1821   // amount of additional cloning required to distinguish the allocation
1822   // contexts.
1823   if (EnableMemProfContextDisambiguation)
1824     MPM.addPass(MemProfContextDisambiguation());
1825 
1826   // Optimize globals again after we ran the inliner.
1827   MPM.addPass(GlobalOptPass());
1828 
1829   // Run the OpenMPOpt pass again after global optimizations.
1830   MPM.addPass(OpenMPOptPass(ThinOrFullLTOPhase::FullLTOPostLink));
1831 
1832   // Garbage collect dead functions.
1833   MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1834 
1835   // If we didn't decide to inline a function, check to see if we can
1836   // transform it to pass arguments by value instead of by reference.
1837   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(ArgumentPromotionPass()));
1838 
1839   FunctionPassManager FPM;
1840   // The IPO Passes may leave cruft around. Clean up after them.
1841   FPM.addPass(InstCombinePass());
1842   invokePeepholeEPCallbacks(FPM, Level);
1843 
1844   if (EnableConstraintElimination)
1845     FPM.addPass(ConstraintEliminationPass());
1846 
1847   FPM.addPass(JumpThreadingPass());
1848 
1849   // Do a post inline PGO instrumentation and use pass. This is a context
1850   // sensitive PGO pass.
1851   if (PGOOpt) {
1852     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1853       addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/true,
1854                         /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1855                         PGOOpt->CSProfileGenFile, PGOOpt->ProfileRemappingFile,
1856                         PGOOpt->FS);
1857     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1858       addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/false,
1859                         /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1860                         PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1861                         PGOOpt->FS);
1862   }
1863 
1864   // Break up allocas
1865   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
1866 
1867   // LTO provides additional opportunities for tailcall elimination due to
1868   // link-time inlining, and visibility of nocapture attribute.
1869   FPM.addPass(TailCallElimPass());
1870 
1871   // Run a few AA driver optimizations here and now to cleanup the code.
1872   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM),
1873                                                 PTO.EagerlyInvalidateAnalyses));
1874 
1875   MPM.addPass(
1876       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1877 
1878   // Require the GlobalsAA analysis for the module so we can query it within
1879   // MainFPM.
1880   if (EnableGlobalAnalyses) {
1881     MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
1882     // Invalidate AAManager so it can be recreated and pick up the newly
1883     // available GlobalsAA.
1884     MPM.addPass(
1885         createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
1886   }
1887 
1888   FunctionPassManager MainFPM;
1889   MainFPM.addPass(createFunctionToLoopPassAdaptor(
1890       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1891                /*AllowSpeculation=*/true),
1892       /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1893 
1894   if (RunNewGVN)
1895     MainFPM.addPass(NewGVNPass());
1896   else
1897     MainFPM.addPass(GVNPass());
1898 
1899   // Remove dead memcpy()'s.
1900   MainFPM.addPass(MemCpyOptPass());
1901 
1902   // Nuke dead stores.
1903   MainFPM.addPass(DSEPass());
1904   MainFPM.addPass(MoveAutoInitPass());
1905   MainFPM.addPass(MergedLoadStoreMotionPass());
1906 
1907   LoopPassManager LPM;
1908   if (EnableLoopFlatten && Level.getSpeedupLevel() > 1)
1909     LPM.addPass(LoopFlattenPass());
1910   LPM.addPass(IndVarSimplifyPass());
1911   LPM.addPass(LoopDeletionPass());
1912   // FIXME: Add loop interchange.
1913 
1914   // Unroll small loops and perform peeling.
1915   LPM.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
1916                                  /* OnlyWhenForced= */ !PTO.LoopUnrolling,
1917                                  PTO.ForgetAllSCEVInLoopUnroll));
1918   // The loop passes in LPM (LoopFullUnrollPass) do not preserve MemorySSA.
1919   // *All* loop passes must preserve it, in order to be able to use it.
1920   MainFPM.addPass(createFunctionToLoopPassAdaptor(
1921       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/true));
1922 
1923   MainFPM.addPass(LoopDistributePass());
1924 
1925   addVectorPasses(Level, MainFPM, /* IsFullLTO */ true);
1926 
1927   // Run the OpenMPOpt CGSCC pass again late.
1928   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1929       OpenMPOptCGSCCPass(ThinOrFullLTOPhase::FullLTOPostLink)));
1930 
1931   invokePeepholeEPCallbacks(MainFPM, Level);
1932   MainFPM.addPass(JumpThreadingPass());
1933   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM),
1934                                                 PTO.EagerlyInvalidateAnalyses));
1935 
1936   // Lower type metadata and the type.test intrinsic. This pass supports
1937   // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
1938   // to be run at link time if CFI is enabled. This pass does nothing if
1939   // CFI is disabled.
1940   MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1941   // Run a second time to clean up any type tests left behind by WPD for use
1942   // in ICP (which is performed earlier than this in the regular LTO pipeline).
1943   MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1944 
1945   // Enable splitting late in the FullLTO post-link pipeline.
1946   if (EnableHotColdSplit)
1947     MPM.addPass(HotColdSplittingPass());
1948 
1949   // Add late LTO optimization passes.
1950   FunctionPassManager LateFPM;
1951 
1952   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1953   // canonicalization pass that enables other optimizations. As a result,
1954   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1955   // result too early.
1956   LateFPM.addPass(LoopSinkPass());
1957 
1958   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1959   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1960   // flattening of blocks.
1961   LateFPM.addPass(DivRemPairsPass());
1962 
1963   // Delete basic blocks, which optimization passes may have killed.
1964   LateFPM.addPass(SimplifyCFGPass(
1965       SimplifyCFGOptions().convertSwitchRangeToICmp(true).hoistCommonInsts(
1966           true)));
1967   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(LateFPM)));
1968 
1969   // Drop bodies of available eternally objects to improve GlobalDCE.
1970   MPM.addPass(EliminateAvailableExternallyPass());
1971 
1972   // Now that we have optimized the program, discard unreachable functions.
1973   MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1974 
1975   if (PTO.MergeFunctions)
1976     MPM.addPass(MergeFunctionsPass());
1977 
1978   if (PTO.CallGraphProfile)
1979     MPM.addPass(CGProfilePass(/*InLTOPostLink=*/true));
1980 
1981   invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1982 
1983   // Emit annotation remarks.
1984   addAnnotationRemarksPass(MPM);
1985 
1986   return MPM;
1987 }
1988 
1989 ModulePassManager PassBuilder::buildO0DefaultPipeline(OptimizationLevel Level,
1990                                                       bool LTOPreLink) {
1991   assert(Level == OptimizationLevel::O0 &&
1992          "buildO0DefaultPipeline should only be used with O0");
1993 
1994   ModulePassManager MPM;
1995 
1996   // Perform pseudo probe instrumentation in O0 mode. This is for the
1997   // consistency between different build modes. For example, a LTO build can be
1998   // mixed with an O0 prelink and an O2 postlink. Loading a sample profile in
1999   // the postlink will require pseudo probe instrumentation in the prelink.
2000   if (PGOOpt && PGOOpt->PseudoProbeForProfiling)
2001     MPM.addPass(SampleProfileProbePass(TM));
2002 
2003   if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
2004                  PGOOpt->Action == PGOOptions::IRUse))
2005     addPGOInstrPassesForO0(
2006         MPM,
2007         /*RunProfileGen=*/(PGOOpt->Action == PGOOptions::IRInstr),
2008         /*IsCS=*/false, PGOOpt->AtomicCounterUpdate, PGOOpt->ProfileFile,
2009         PGOOpt->ProfileRemappingFile, PGOOpt->FS);
2010 
2011   invokePipelineStartEPCallbacks(MPM, Level);
2012 
2013   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
2014     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
2015 
2016   invokePipelineEarlySimplificationEPCallbacks(MPM, Level);
2017 
2018   // Build a minimal pipeline based on the semantics required by LLVM,
2019   // which is just that always inlining occurs. Further, disable generating
2020   // lifetime intrinsics to avoid enabling further optimizations during
2021   // code generation.
2022   MPM.addPass(AlwaysInlinerPass(
2023       /*InsertLifetimeIntrinsics=*/false));
2024 
2025   if (PTO.MergeFunctions)
2026     MPM.addPass(MergeFunctionsPass());
2027 
2028   if (EnableMatrix)
2029     MPM.addPass(
2030         createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass(true)));
2031 
2032   if (!CGSCCOptimizerLateEPCallbacks.empty()) {
2033     CGSCCPassManager CGPM;
2034     invokeCGSCCOptimizerLateEPCallbacks(CGPM, Level);
2035     if (!CGPM.isEmpty())
2036       MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
2037   }
2038   if (!LateLoopOptimizationsEPCallbacks.empty()) {
2039     LoopPassManager LPM;
2040     invokeLateLoopOptimizationsEPCallbacks(LPM, Level);
2041     if (!LPM.isEmpty()) {
2042       MPM.addPass(createModuleToFunctionPassAdaptor(
2043           createFunctionToLoopPassAdaptor(std::move(LPM))));
2044     }
2045   }
2046   if (!LoopOptimizerEndEPCallbacks.empty()) {
2047     LoopPassManager LPM;
2048     invokeLoopOptimizerEndEPCallbacks(LPM, Level);
2049     if (!LPM.isEmpty()) {
2050       MPM.addPass(createModuleToFunctionPassAdaptor(
2051           createFunctionToLoopPassAdaptor(std::move(LPM))));
2052     }
2053   }
2054   if (!ScalarOptimizerLateEPCallbacks.empty()) {
2055     FunctionPassManager FPM;
2056     invokeScalarOptimizerLateEPCallbacks(FPM, Level);
2057     if (!FPM.isEmpty())
2058       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
2059   }
2060 
2061   invokeOptimizerEarlyEPCallbacks(MPM, Level);
2062 
2063   if (!VectorizerStartEPCallbacks.empty()) {
2064     FunctionPassManager FPM;
2065     invokeVectorizerStartEPCallbacks(FPM, Level);
2066     if (!FPM.isEmpty())
2067       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
2068   }
2069 
2070   ModulePassManager CoroPM;
2071   CoroPM.addPass(CoroEarlyPass());
2072   CGSCCPassManager CGPM;
2073   CGPM.addPass(CoroSplitPass());
2074   CoroPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
2075   CoroPM.addPass(CoroCleanupPass());
2076   CoroPM.addPass(GlobalDCEPass());
2077   MPM.addPass(CoroConditionalWrapper(std::move(CoroPM)));
2078 
2079   invokeOptimizerLastEPCallbacks(MPM, Level);
2080 
2081   if (LTOPreLink)
2082     addRequiredLTOPreLinkPasses(MPM);
2083 
2084   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
2085 
2086   return MPM;
2087 }
2088 
2089 AAManager PassBuilder::buildDefaultAAPipeline() {
2090   AAManager AA;
2091 
2092   // The order in which these are registered determines their priority when
2093   // being queried.
2094 
2095   // First we register the basic alias analysis that provides the majority of
2096   // per-function local AA logic. This is a stateless, on-demand local set of
2097   // AA techniques.
2098   AA.registerFunctionAnalysis<BasicAA>();
2099 
2100   // Next we query fast, specialized alias analyses that wrap IR-embedded
2101   // information about aliasing.
2102   AA.registerFunctionAnalysis<ScopedNoAliasAA>();
2103   AA.registerFunctionAnalysis<TypeBasedAA>();
2104 
2105   // Add support for querying global aliasing information when available.
2106   // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
2107   // analysis, all that the `AAManager` can do is query for any *cached*
2108   // results from `GlobalsAA` through a readonly proxy.
2109   if (EnableGlobalAnalyses)
2110     AA.registerModuleAnalysis<GlobalsAA>();
2111 
2112   // Add target-specific alias analyses.
2113   if (TM)
2114     TM->registerDefaultAliasAnalyses(AA);
2115 
2116   return AA;
2117 }
2118