xref: /freebsd/contrib/llvm-project/llvm/lib/Passes/PassBuilderPipelines.cpp (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 //===- Construction of pass pipelines -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides the implementation of the PassBuilder based on our
11 /// static pass registry as well as related functionality. It also provides
12 /// helpers to aid in analyzing, debugging, and testing passes and pass
13 /// pipelines.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/BasicAliasAnalysis.h"
20 #include "llvm/Analysis/CGSCCPassManager.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineAdvisor.h"
23 #include "llvm/Analysis/ProfileSummaryInfo.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Passes/OptimizationLevel.h"
28 #include "llvm/Passes/PassBuilder.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/PGOOptions.h"
32 #include "llvm/Support/VirtualFileSystem.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
35 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
36 #include "llvm/Transforms/Coroutines/CoroConditionalWrapper.h"
37 #include "llvm/Transforms/Coroutines/CoroEarly.h"
38 #include "llvm/Transforms/Coroutines/CoroElide.h"
39 #include "llvm/Transforms/Coroutines/CoroSplit.h"
40 #include "llvm/Transforms/IPO/AlwaysInliner.h"
41 #include "llvm/Transforms/IPO/Annotation2Metadata.h"
42 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
43 #include "llvm/Transforms/IPO/Attributor.h"
44 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
45 #include "llvm/Transforms/IPO/ConstantMerge.h"
46 #include "llvm/Transforms/IPO/CrossDSOCFI.h"
47 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
48 #include "llvm/Transforms/IPO/ElimAvailExtern.h"
49 #include "llvm/Transforms/IPO/EmbedBitcodePass.h"
50 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
51 #include "llvm/Transforms/IPO/FunctionAttrs.h"
52 #include "llvm/Transforms/IPO/GlobalDCE.h"
53 #include "llvm/Transforms/IPO/GlobalOpt.h"
54 #include "llvm/Transforms/IPO/GlobalSplit.h"
55 #include "llvm/Transforms/IPO/HotColdSplitting.h"
56 #include "llvm/Transforms/IPO/IROutliner.h"
57 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
58 #include "llvm/Transforms/IPO/Inliner.h"
59 #include "llvm/Transforms/IPO/LowerTypeTests.h"
60 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
61 #include "llvm/Transforms/IPO/MergeFunctions.h"
62 #include "llvm/Transforms/IPO/ModuleInliner.h"
63 #include "llvm/Transforms/IPO/OpenMPOpt.h"
64 #include "llvm/Transforms/IPO/PartialInlining.h"
65 #include "llvm/Transforms/IPO/SCCP.h"
66 #include "llvm/Transforms/IPO/SampleProfile.h"
67 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
68 #include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
69 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
70 #include "llvm/Transforms/InstCombine/InstCombine.h"
71 #include "llvm/Transforms/Instrumentation/CGProfile.h"
72 #include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
73 #include "llvm/Transforms/Instrumentation/InstrOrderFile.h"
74 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
75 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
76 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
77 #include "llvm/Transforms/Scalar/ADCE.h"
78 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
79 #include "llvm/Transforms/Scalar/AnnotationRemarks.h"
80 #include "llvm/Transforms/Scalar/BDCE.h"
81 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
82 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
83 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
84 #include "llvm/Transforms/Scalar/DFAJumpThreading.h"
85 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
86 #include "llvm/Transforms/Scalar/DivRemPairs.h"
87 #include "llvm/Transforms/Scalar/EarlyCSE.h"
88 #include "llvm/Transforms/Scalar/Float2Int.h"
89 #include "llvm/Transforms/Scalar/GVN.h"
90 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
91 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
92 #include "llvm/Transforms/Scalar/JumpThreading.h"
93 #include "llvm/Transforms/Scalar/LICM.h"
94 #include "llvm/Transforms/Scalar/LoopDeletion.h"
95 #include "llvm/Transforms/Scalar/LoopDistribute.h"
96 #include "llvm/Transforms/Scalar/LoopFlatten.h"
97 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
98 #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
99 #include "llvm/Transforms/Scalar/LoopInterchange.h"
100 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Scalar/LoopRotation.h"
103 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
104 #include "llvm/Transforms/Scalar/LoopSink.h"
105 #include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
106 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
107 #include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
108 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
109 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
110 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
111 #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
112 #include "llvm/Transforms/Scalar/NewGVN.h"
113 #include "llvm/Transforms/Scalar/Reassociate.h"
114 #include "llvm/Transforms/Scalar/SCCP.h"
115 #include "llvm/Transforms/Scalar/SROA.h"
116 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
117 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
118 #include "llvm/Transforms/Scalar/SpeculativeExecution.h"
119 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
120 #include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
121 #include "llvm/Transforms/Utils/AddDiscriminators.h"
122 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
123 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
124 #include "llvm/Transforms/Utils/CountVisits.h"
125 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
126 #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
127 #include "llvm/Transforms/Utils/Mem2Reg.h"
128 #include "llvm/Transforms/Utils/MoveAutoInit.h"
129 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
130 #include "llvm/Transforms/Utils/RelLookupTableConverter.h"
131 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
132 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
133 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
134 #include "llvm/Transforms/Vectorize/VectorCombine.h"
135 
136 using namespace llvm;
137 
138 static cl::opt<InliningAdvisorMode> UseInlineAdvisor(
139     "enable-ml-inliner", cl::init(InliningAdvisorMode::Default), cl::Hidden,
140     cl::desc("Enable ML policy for inliner. Currently trained for -Oz only"),
141     cl::values(clEnumValN(InliningAdvisorMode::Default, "default",
142                           "Heuristics-based inliner version"),
143                clEnumValN(InliningAdvisorMode::Development, "development",
144                           "Use development mode (runtime-loadable model)"),
145                clEnumValN(InliningAdvisorMode::Release, "release",
146                           "Use release mode (AOT-compiled model)")));
147 
148 static cl::opt<bool> EnableSyntheticCounts(
149     "enable-npm-synthetic-counts", cl::Hidden,
150     cl::desc("Run synthetic function entry count generation "
151              "pass"));
152 
153 /// Flag to enable inline deferral during PGO.
154 static cl::opt<bool>
155     EnablePGOInlineDeferral("enable-npm-pgo-inline-deferral", cl::init(true),
156                             cl::Hidden,
157                             cl::desc("Enable inline deferral during PGO"));
158 
159 static cl::opt<bool> EnableModuleInliner("enable-module-inliner",
160                                          cl::init(false), cl::Hidden,
161                                          cl::desc("Enable module inliner"));
162 
163 static cl::opt<bool> PerformMandatoryInliningsFirst(
164     "mandatory-inlining-first", cl::init(true), cl::Hidden,
165     cl::desc("Perform mandatory inlinings module-wide, before performing "
166              "inlining"));
167 
168 static cl::opt<bool> EnableEagerlyInvalidateAnalyses(
169     "eagerly-invalidate-analyses", cl::init(true), cl::Hidden,
170     cl::desc("Eagerly invalidate more analyses in default pipelines"));
171 
172 static cl::opt<bool> EnableMergeFunctions(
173     "enable-merge-functions", cl::init(false), cl::Hidden,
174     cl::desc("Enable function merging as part of the optimization pipeline"));
175 
176 static cl::opt<bool> EnablePostPGOLoopRotation(
177     "enable-post-pgo-loop-rotation", cl::init(true), cl::Hidden,
178     cl::desc("Run the loop rotation transformation after PGO instrumentation"));
179 
180 static cl::opt<bool> EnableGlobalAnalyses(
181     "enable-global-analyses", cl::init(true), cl::Hidden,
182     cl::desc("Enable inter-procedural analyses"));
183 
184 static cl::opt<bool>
185     RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
186                        cl::desc("Run Partial inlinining pass"));
187 
188 static cl::opt<bool> ExtraVectorizerPasses(
189     "extra-vectorizer-passes", cl::init(false), cl::Hidden,
190     cl::desc("Run cleanup optimization passes after vectorization"));
191 
192 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
193                                cl::desc("Run the NewGVN pass"));
194 
195 static cl::opt<bool> EnableLoopInterchange(
196     "enable-loopinterchange", cl::init(false), cl::Hidden,
197     cl::desc("Enable the experimental LoopInterchange Pass"));
198 
199 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
200                                         cl::init(false), cl::Hidden,
201                                         cl::desc("Enable Unroll And Jam Pass"));
202 
203 static cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
204                                        cl::Hidden,
205                                        cl::desc("Enable the LoopFlatten Pass"));
206 
207 static cl::opt<bool>
208     EnableDFAJumpThreading("enable-dfa-jump-thread",
209                            cl::desc("Enable DFA jump threading"),
210                            cl::init(false), cl::Hidden);
211 
212 static cl::opt<bool>
213     EnableHotColdSplit("hot-cold-split",
214                        cl::desc("Enable hot-cold splitting pass"));
215 
216 static cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false),
217                                       cl::Hidden,
218                                       cl::desc("Enable ir outliner pass"));
219 
220 static cl::opt<bool>
221     DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
222                       cl::desc("Disable pre-instrumentation inliner"));
223 
224 static cl::opt<int> PreInlineThreshold(
225     "preinline-threshold", cl::Hidden, cl::init(75),
226     cl::desc("Control the amount of inlining in pre-instrumentation inliner "
227              "(default = 75)"));
228 
229 static cl::opt<bool>
230     EnableGVNHoist("enable-gvn-hoist",
231                    cl::desc("Enable the GVN hoisting pass (default = off)"));
232 
233 static cl::opt<bool>
234     EnableGVNSink("enable-gvn-sink",
235                   cl::desc("Enable the GVN sinking pass (default = off)"));
236 
237 // This option is used in simplifying testing SampleFDO optimizations for
238 // profile loading.
239 static cl::opt<bool>
240     EnableCHR("enable-chr", cl::init(true), cl::Hidden,
241               cl::desc("Enable control height reduction optimization (CHR)"));
242 
243 static cl::opt<bool> FlattenedProfileUsed(
244     "flattened-profile-used", cl::init(false), cl::Hidden,
245     cl::desc("Indicate the sample profile being used is flattened, i.e., "
246              "no inline hierachy exists in the profile"));
247 
248 static cl::opt<bool> EnableOrderFileInstrumentation(
249     "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
250     cl::desc("Enable order file instrumentation (default = off)"));
251 
252 static cl::opt<bool>
253     EnableMatrix("enable-matrix", cl::init(false), cl::Hidden,
254                  cl::desc("Enable lowering of the matrix intrinsics"));
255 
256 static cl::opt<bool> EnableConstraintElimination(
257     "enable-constraint-elimination", cl::init(true), cl::Hidden,
258     cl::desc(
259         "Enable pass to eliminate conditions based on linear constraints"));
260 
261 static cl::opt<AttributorRunOption> AttributorRun(
262     "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
263     cl::desc("Enable the attributor inter-procedural deduction pass"),
264     cl::values(clEnumValN(AttributorRunOption::ALL, "all",
265                           "enable all attributor runs"),
266                clEnumValN(AttributorRunOption::MODULE, "module",
267                           "enable module-wide attributor runs"),
268                clEnumValN(AttributorRunOption::CGSCC, "cgscc",
269                           "enable call graph SCC attributor runs"),
270                clEnumValN(AttributorRunOption::NONE, "none",
271                           "disable attributor runs")));
272 
273 cl::opt<bool> EnableMemProfContextDisambiguation(
274     "enable-memprof-context-disambiguation", cl::init(false), cl::Hidden,
275     cl::ZeroOrMore, cl::desc("Enable MemProf context disambiguation"));
276 
277 PipelineTuningOptions::PipelineTuningOptions() {
278   LoopInterleaving = true;
279   LoopVectorization = true;
280   SLPVectorization = false;
281   LoopUnrolling = true;
282   ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
283   LicmMssaOptCap = SetLicmMssaOptCap;
284   LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
285   CallGraphProfile = true;
286   UnifiedLTO = false;
287   MergeFunctions = EnableMergeFunctions;
288   InlinerThreshold = -1;
289   EagerlyInvalidateAnalyses = EnableEagerlyInvalidateAnalyses;
290 }
291 
292 namespace llvm {
293 extern cl::opt<unsigned> MaxDevirtIterations;
294 extern cl::opt<bool> EnableKnowledgeRetention;
295 } // namespace llvm
296 
297 void PassBuilder::invokePeepholeEPCallbacks(FunctionPassManager &FPM,
298                                             OptimizationLevel Level) {
299   for (auto &C : PeepholeEPCallbacks)
300     C(FPM, Level);
301 }
302 void PassBuilder::invokeLateLoopOptimizationsEPCallbacks(
303     LoopPassManager &LPM, OptimizationLevel Level) {
304   for (auto &C : LateLoopOptimizationsEPCallbacks)
305     C(LPM, Level);
306 }
307 void PassBuilder::invokeLoopOptimizerEndEPCallbacks(LoopPassManager &LPM,
308                                                     OptimizationLevel Level) {
309   for (auto &C : LoopOptimizerEndEPCallbacks)
310     C(LPM, Level);
311 }
312 void PassBuilder::invokeScalarOptimizerLateEPCallbacks(
313     FunctionPassManager &FPM, OptimizationLevel Level) {
314   for (auto &C : ScalarOptimizerLateEPCallbacks)
315     C(FPM, Level);
316 }
317 void PassBuilder::invokeCGSCCOptimizerLateEPCallbacks(CGSCCPassManager &CGPM,
318                                                       OptimizationLevel Level) {
319   for (auto &C : CGSCCOptimizerLateEPCallbacks)
320     C(CGPM, Level);
321 }
322 void PassBuilder::invokeVectorizerStartEPCallbacks(FunctionPassManager &FPM,
323                                                    OptimizationLevel Level) {
324   for (auto &C : VectorizerStartEPCallbacks)
325     C(FPM, Level);
326 }
327 void PassBuilder::invokeOptimizerEarlyEPCallbacks(ModulePassManager &MPM,
328                                                   OptimizationLevel Level) {
329   for (auto &C : OptimizerEarlyEPCallbacks)
330     C(MPM, Level);
331 }
332 void PassBuilder::invokeOptimizerLastEPCallbacks(ModulePassManager &MPM,
333                                                  OptimizationLevel Level) {
334   for (auto &C : OptimizerLastEPCallbacks)
335     C(MPM, Level);
336 }
337 void PassBuilder::invokeFullLinkTimeOptimizationEarlyEPCallbacks(
338     ModulePassManager &MPM, OptimizationLevel Level) {
339   for (auto &C : FullLinkTimeOptimizationEarlyEPCallbacks)
340     C(MPM, Level);
341 }
342 void PassBuilder::invokeFullLinkTimeOptimizationLastEPCallbacks(
343     ModulePassManager &MPM, OptimizationLevel Level) {
344   for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
345     C(MPM, Level);
346 }
347 void PassBuilder::invokePipelineStartEPCallbacks(ModulePassManager &MPM,
348                                                  OptimizationLevel Level) {
349   for (auto &C : PipelineStartEPCallbacks)
350     C(MPM, Level);
351 }
352 void PassBuilder::invokePipelineEarlySimplificationEPCallbacks(
353     ModulePassManager &MPM, OptimizationLevel Level) {
354   for (auto &C : PipelineEarlySimplificationEPCallbacks)
355     C(MPM, Level);
356 }
357 
358 // Helper to add AnnotationRemarksPass.
359 static void addAnnotationRemarksPass(ModulePassManager &MPM) {
360   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
361 }
362 
363 // Helper to check if the current compilation phase is preparing for LTO
364 static bool isLTOPreLink(ThinOrFullLTOPhase Phase) {
365   return Phase == ThinOrFullLTOPhase::ThinLTOPreLink ||
366          Phase == ThinOrFullLTOPhase::FullLTOPreLink;
367 }
368 
369 // TODO: Investigate the cost/benefit of tail call elimination on debugging.
370 FunctionPassManager
371 PassBuilder::buildO1FunctionSimplificationPipeline(OptimizationLevel Level,
372                                                    ThinOrFullLTOPhase Phase) {
373 
374   FunctionPassManager FPM;
375 
376   if (AreStatisticsEnabled())
377     FPM.addPass(CountVisitsPass());
378 
379   // Form SSA out of local memory accesses after breaking apart aggregates into
380   // scalars.
381   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
382 
383   // Catch trivial redundancies
384   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
385 
386   // Hoisting of scalars and load expressions.
387   FPM.addPass(
388       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
389   FPM.addPass(InstCombinePass());
390 
391   FPM.addPass(LibCallsShrinkWrapPass());
392 
393   invokePeepholeEPCallbacks(FPM, Level);
394 
395   FPM.addPass(
396       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
397 
398   // Form canonically associated expression trees, and simplify the trees using
399   // basic mathematical properties. For example, this will form (nearly)
400   // minimal multiplication trees.
401   FPM.addPass(ReassociatePass());
402 
403   // Add the primary loop simplification pipeline.
404   // FIXME: Currently this is split into two loop pass pipelines because we run
405   // some function passes in between them. These can and should be removed
406   // and/or replaced by scheduling the loop pass equivalents in the correct
407   // positions. But those equivalent passes aren't powerful enough yet.
408   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
409   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
410   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
411   // `LoopInstSimplify`.
412   LoopPassManager LPM1, LPM2;
413 
414   // Simplify the loop body. We do this initially to clean up after other loop
415   // passes run, either when iterating on a loop or on inner loops with
416   // implications on the outer loop.
417   LPM1.addPass(LoopInstSimplifyPass());
418   LPM1.addPass(LoopSimplifyCFGPass());
419 
420   // Try to remove as much code from the loop header as possible,
421   // to reduce amount of IR that will have to be duplicated. However,
422   // do not perform speculative hoisting the first time as LICM
423   // will destroy metadata that may not need to be destroyed if run
424   // after loop rotation.
425   // TODO: Investigate promotion cap for O1.
426   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
427                         /*AllowSpeculation=*/false));
428 
429   LPM1.addPass(LoopRotatePass(/* Disable header duplication */ true,
430                               isLTOPreLink(Phase)));
431   // TODO: Investigate promotion cap for O1.
432   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
433                         /*AllowSpeculation=*/true));
434   LPM1.addPass(SimpleLoopUnswitchPass());
435   if (EnableLoopFlatten)
436     LPM1.addPass(LoopFlattenPass());
437 
438   LPM2.addPass(LoopIdiomRecognizePass());
439   LPM2.addPass(IndVarSimplifyPass());
440 
441   invokeLateLoopOptimizationsEPCallbacks(LPM2, Level);
442 
443   LPM2.addPass(LoopDeletionPass());
444 
445   if (EnableLoopInterchange)
446     LPM2.addPass(LoopInterchangePass());
447 
448   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
449   // because it changes IR to makes profile annotation in back compile
450   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
451   // attributes so we need to make sure and allow the full unroll pass to pay
452   // attention to it.
453   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
454       PGOOpt->Action != PGOOptions::SampleUse)
455     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
456                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
457                                     PTO.ForgetAllSCEVInLoopUnroll));
458 
459   invokeLoopOptimizerEndEPCallbacks(LPM2, Level);
460 
461   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
462                                               /*UseMemorySSA=*/true,
463                                               /*UseBlockFrequencyInfo=*/true));
464   FPM.addPass(
465       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
466   FPM.addPass(InstCombinePass());
467   // The loop passes in LPM2 (LoopFullUnrollPass) do not preserve MemorySSA.
468   // *All* loop passes must preserve it, in order to be able to use it.
469   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
470                                               /*UseMemorySSA=*/false,
471                                               /*UseBlockFrequencyInfo=*/false));
472 
473   // Delete small array after loop unroll.
474   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
475 
476   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
477   FPM.addPass(MemCpyOptPass());
478 
479   // Sparse conditional constant propagation.
480   // FIXME: It isn't clear why we do this *after* loop passes rather than
481   // before...
482   FPM.addPass(SCCPPass());
483 
484   // Delete dead bit computations (instcombine runs after to fold away the dead
485   // computations, and then ADCE will run later to exploit any new DCE
486   // opportunities that creates).
487   FPM.addPass(BDCEPass());
488 
489   // Run instcombine after redundancy and dead bit elimination to exploit
490   // opportunities opened up by them.
491   FPM.addPass(InstCombinePass());
492   invokePeepholeEPCallbacks(FPM, Level);
493 
494   FPM.addPass(CoroElidePass());
495 
496   invokeScalarOptimizerLateEPCallbacks(FPM, Level);
497 
498   // Finally, do an expensive DCE pass to catch all the dead code exposed by
499   // the simplifications and basic cleanup after all the simplifications.
500   // TODO: Investigate if this is too expensive.
501   FPM.addPass(ADCEPass());
502   FPM.addPass(
503       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
504   FPM.addPass(InstCombinePass());
505   invokePeepholeEPCallbacks(FPM, Level);
506 
507   return FPM;
508 }
509 
510 FunctionPassManager
511 PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
512                                                  ThinOrFullLTOPhase Phase) {
513   assert(Level != OptimizationLevel::O0 && "Must request optimizations!");
514 
515   // The O1 pipeline has a separate pipeline creation function to simplify
516   // construction readability.
517   if (Level.getSpeedupLevel() == 1)
518     return buildO1FunctionSimplificationPipeline(Level, Phase);
519 
520   FunctionPassManager FPM;
521 
522   if (AreStatisticsEnabled())
523     FPM.addPass(CountVisitsPass());
524 
525   // Form SSA out of local memory accesses after breaking apart aggregates into
526   // scalars.
527   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
528 
529   // Catch trivial redundancies
530   FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
531   if (EnableKnowledgeRetention)
532     FPM.addPass(AssumeSimplifyPass());
533 
534   // Hoisting of scalars and load expressions.
535   if (EnableGVNHoist)
536     FPM.addPass(GVNHoistPass());
537 
538   // Global value numbering based sinking.
539   if (EnableGVNSink) {
540     FPM.addPass(GVNSinkPass());
541     FPM.addPass(
542         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
543   }
544 
545   // Speculative execution if the target has divergent branches; otherwise nop.
546   FPM.addPass(SpeculativeExecutionPass(/* OnlyIfDivergentTarget =*/true));
547 
548   // Optimize based on known information about branches, and cleanup afterward.
549   FPM.addPass(JumpThreadingPass());
550   FPM.addPass(CorrelatedValuePropagationPass());
551 
552   FPM.addPass(
553       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
554   FPM.addPass(InstCombinePass());
555   FPM.addPass(AggressiveInstCombinePass());
556 
557   if (EnableConstraintElimination)
558     FPM.addPass(ConstraintEliminationPass());
559 
560   if (!Level.isOptimizingForSize())
561     FPM.addPass(LibCallsShrinkWrapPass());
562 
563   invokePeepholeEPCallbacks(FPM, Level);
564 
565   // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
566   // using the size value profile. Don't perform this when optimizing for size.
567   if (PGOOpt && PGOOpt->Action == PGOOptions::IRUse &&
568       !Level.isOptimizingForSize())
569     FPM.addPass(PGOMemOPSizeOpt());
570 
571   FPM.addPass(TailCallElimPass());
572   FPM.addPass(
573       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
574 
575   // Form canonically associated expression trees, and simplify the trees using
576   // basic mathematical properties. For example, this will form (nearly)
577   // minimal multiplication trees.
578   FPM.addPass(ReassociatePass());
579 
580   // Add the primary loop simplification pipeline.
581   // FIXME: Currently this is split into two loop pass pipelines because we run
582   // some function passes in between them. These can and should be removed
583   // and/or replaced by scheduling the loop pass equivalents in the correct
584   // positions. But those equivalent passes aren't powerful enough yet.
585   // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
586   // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
587   // fully replace `SimplifyCFGPass`, and the closest to the other we have is
588   // `LoopInstSimplify`.
589   LoopPassManager LPM1, LPM2;
590 
591   // Simplify the loop body. We do this initially to clean up after other loop
592   // passes run, either when iterating on a loop or on inner loops with
593   // implications on the outer loop.
594   LPM1.addPass(LoopInstSimplifyPass());
595   LPM1.addPass(LoopSimplifyCFGPass());
596 
597   // Try to remove as much code from the loop header as possible,
598   // to reduce amount of IR that will have to be duplicated. However,
599   // do not perform speculative hoisting the first time as LICM
600   // will destroy metadata that may not need to be destroyed if run
601   // after loop rotation.
602   // TODO: Investigate promotion cap for O1.
603   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
604                         /*AllowSpeculation=*/false));
605 
606   // Disable header duplication in loop rotation at -Oz.
607   LPM1.addPass(
608       LoopRotatePass(Level != OptimizationLevel::Oz, isLTOPreLink(Phase)));
609   // TODO: Investigate promotion cap for O1.
610   LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
611                         /*AllowSpeculation=*/true));
612   LPM1.addPass(
613       SimpleLoopUnswitchPass(/* NonTrivial */ Level == OptimizationLevel::O3));
614   if (EnableLoopFlatten)
615     LPM1.addPass(LoopFlattenPass());
616 
617   LPM2.addPass(LoopIdiomRecognizePass());
618   LPM2.addPass(IndVarSimplifyPass());
619 
620   invokeLateLoopOptimizationsEPCallbacks(LPM2, Level);
621 
622   LPM2.addPass(LoopDeletionPass());
623 
624   if (EnableLoopInterchange)
625     LPM2.addPass(LoopInterchangePass());
626 
627   // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
628   // because it changes IR to makes profile annotation in back compile
629   // inaccurate. The normal unroller doesn't pay attention to forced full unroll
630   // attributes so we need to make sure and allow the full unroll pass to pay
631   // attention to it.
632   if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
633       PGOOpt->Action != PGOOptions::SampleUse)
634     LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
635                                     /* OnlyWhenForced= */ !PTO.LoopUnrolling,
636                                     PTO.ForgetAllSCEVInLoopUnroll));
637 
638   invokeLoopOptimizerEndEPCallbacks(LPM2, Level);
639 
640   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
641                                               /*UseMemorySSA=*/true,
642                                               /*UseBlockFrequencyInfo=*/true));
643   FPM.addPass(
644       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
645   FPM.addPass(InstCombinePass());
646   // The loop passes in LPM2 (LoopIdiomRecognizePass, IndVarSimplifyPass,
647   // LoopDeletionPass and LoopFullUnrollPass) do not preserve MemorySSA.
648   // *All* loop passes must preserve it, in order to be able to use it.
649   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
650                                               /*UseMemorySSA=*/false,
651                                               /*UseBlockFrequencyInfo=*/false));
652 
653   // Delete small array after loop unroll.
654   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
655 
656   // Try vectorization/scalarization transforms that are both improvements
657   // themselves and can allow further folds with GVN and InstCombine.
658   FPM.addPass(VectorCombinePass(/*TryEarlyFoldsOnly=*/true));
659 
660   // Eliminate redundancies.
661   FPM.addPass(MergedLoadStoreMotionPass());
662   if (RunNewGVN)
663     FPM.addPass(NewGVNPass());
664   else
665     FPM.addPass(GVNPass());
666 
667   // Sparse conditional constant propagation.
668   // FIXME: It isn't clear why we do this *after* loop passes rather than
669   // before...
670   FPM.addPass(SCCPPass());
671 
672   // Delete dead bit computations (instcombine runs after to fold away the dead
673   // computations, and then ADCE will run later to exploit any new DCE
674   // opportunities that creates).
675   FPM.addPass(BDCEPass());
676 
677   // Run instcombine after redundancy and dead bit elimination to exploit
678   // opportunities opened up by them.
679   FPM.addPass(InstCombinePass());
680   invokePeepholeEPCallbacks(FPM, Level);
681 
682   // Re-consider control flow based optimizations after redundancy elimination,
683   // redo DCE, etc.
684   if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
685     FPM.addPass(DFAJumpThreadingPass());
686 
687   FPM.addPass(JumpThreadingPass());
688   FPM.addPass(CorrelatedValuePropagationPass());
689 
690   // Finally, do an expensive DCE pass to catch all the dead code exposed by
691   // the simplifications and basic cleanup after all the simplifications.
692   // TODO: Investigate if this is too expensive.
693   FPM.addPass(ADCEPass());
694 
695   // Specially optimize memory movement as it doesn't look like dataflow in SSA.
696   FPM.addPass(MemCpyOptPass());
697 
698   FPM.addPass(DSEPass());
699   FPM.addPass(MoveAutoInitPass());
700 
701   FPM.addPass(createFunctionToLoopPassAdaptor(
702       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
703                /*AllowSpeculation=*/true),
704       /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
705 
706   FPM.addPass(CoroElidePass());
707 
708   invokeScalarOptimizerLateEPCallbacks(FPM, Level);
709 
710   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
711                                   .convertSwitchRangeToICmp(true)
712                                   .hoistCommonInsts(true)
713                                   .sinkCommonInsts(true)));
714   FPM.addPass(InstCombinePass());
715   invokePeepholeEPCallbacks(FPM, Level);
716 
717   return FPM;
718 }
719 
720 void PassBuilder::addRequiredLTOPreLinkPasses(ModulePassManager &MPM) {
721   MPM.addPass(CanonicalizeAliasesPass());
722   MPM.addPass(NameAnonGlobalPass());
723 }
724 
725 void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM,
726                                     OptimizationLevel Level, bool RunProfileGen,
727                                     bool IsCS, std::string ProfileFile,
728                                     std::string ProfileRemappingFile,
729                                     ThinOrFullLTOPhase LTOPhase,
730                                     IntrusiveRefCntPtr<vfs::FileSystem> FS) {
731   assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
732   if (!IsCS && !DisablePreInliner) {
733     InlineParams IP;
734 
735     IP.DefaultThreshold = PreInlineThreshold;
736 
737     // FIXME: The hint threshold has the same value used by the regular inliner
738     // when not optimzing for size. This should probably be lowered after
739     // performance testing.
740     // FIXME: this comment is cargo culted from the old pass manager, revisit).
741     IP.HintThreshold = Level.isOptimizingForSize() ? PreInlineThreshold : 325;
742     ModuleInlinerWrapperPass MIWP(
743         IP, /* MandatoryFirst */ true,
744         InlineContext{LTOPhase, InlinePass::EarlyInliner});
745     CGSCCPassManager &CGPipeline = MIWP.getPM();
746 
747     FunctionPassManager FPM;
748     FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
749     FPM.addPass(EarlyCSEPass()); // Catch trivial redundancies.
750     FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
751         true)));                    // Merge & remove basic blocks.
752     FPM.addPass(InstCombinePass()); // Combine silly sequences.
753     invokePeepholeEPCallbacks(FPM, Level);
754 
755     CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
756         std::move(FPM), PTO.EagerlyInvalidateAnalyses));
757 
758     MPM.addPass(std::move(MIWP));
759 
760     // Delete anything that is now dead to make sure that we don't instrument
761     // dead code. Instrumentation can end up keeping dead code around and
762     // dramatically increase code size.
763     MPM.addPass(GlobalDCEPass());
764   }
765 
766   if (!RunProfileGen) {
767     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
768     MPM.addPass(
769         PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS, FS));
770     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
771     // RequireAnalysisPass for PSI before subsequent non-module passes.
772     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
773     return;
774   }
775 
776   // Perform PGO instrumentation.
777   MPM.addPass(PGOInstrumentationGen(IsCS));
778 
779   if (EnablePostPGOLoopRotation) {
780     // Disable header duplication in loop rotation at -Oz.
781     MPM.addPass(createModuleToFunctionPassAdaptor(
782         createFunctionToLoopPassAdaptor(
783             LoopRotatePass(Level != OptimizationLevel::Oz),
784             /*UseMemorySSA=*/false,
785             /*UseBlockFrequencyInfo=*/false),
786         PTO.EagerlyInvalidateAnalyses));
787   }
788 
789   // Add the profile lowering pass.
790   InstrProfOptions Options;
791   if (!ProfileFile.empty())
792     Options.InstrProfileOutput = ProfileFile;
793   // Do counter promotion at Level greater than O0.
794   Options.DoCounterPromotion = true;
795   Options.UseBFIInPromotion = IsCS;
796   MPM.addPass(InstrProfiling(Options, IsCS));
797 }
798 
799 void PassBuilder::addPGOInstrPassesForO0(
800     ModulePassManager &MPM, bool RunProfileGen, bool IsCS,
801     std::string ProfileFile, std::string ProfileRemappingFile,
802     IntrusiveRefCntPtr<vfs::FileSystem> FS) {
803   if (!RunProfileGen) {
804     assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
805     MPM.addPass(
806         PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS, FS));
807     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
808     // RequireAnalysisPass for PSI before subsequent non-module passes.
809     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
810     return;
811   }
812 
813   // Perform PGO instrumentation.
814   MPM.addPass(PGOInstrumentationGen(IsCS));
815   // Add the profile lowering pass.
816   InstrProfOptions Options;
817   if (!ProfileFile.empty())
818     Options.InstrProfileOutput = ProfileFile;
819   // Do not do counter promotion at O0.
820   Options.DoCounterPromotion = false;
821   Options.UseBFIInPromotion = IsCS;
822   MPM.addPass(InstrProfiling(Options, IsCS));
823 }
824 
825 static InlineParams getInlineParamsFromOptLevel(OptimizationLevel Level) {
826   return getInlineParams(Level.getSpeedupLevel(), Level.getSizeLevel());
827 }
828 
829 ModuleInlinerWrapperPass
830 PassBuilder::buildInlinerPipeline(OptimizationLevel Level,
831                                   ThinOrFullLTOPhase Phase) {
832   InlineParams IP;
833   if (PTO.InlinerThreshold == -1)
834     IP = getInlineParamsFromOptLevel(Level);
835   else
836     IP = getInlineParams(PTO.InlinerThreshold);
837   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
838   // disable hot callsite inline (as much as possible [1]) because it makes
839   // profile annotation in the backend inaccurate.
840   //
841   // [1] Note the cost of a function could be below zero due to erased
842   // prologue / epilogue.
843   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
844       PGOOpt->Action == PGOOptions::SampleUse)
845     IP.HotCallSiteThreshold = 0;
846 
847   if (PGOOpt)
848     IP.EnableDeferral = EnablePGOInlineDeferral;
849 
850   ModuleInlinerWrapperPass MIWP(IP, PerformMandatoryInliningsFirst,
851                                 InlineContext{Phase, InlinePass::CGSCCInliner},
852                                 UseInlineAdvisor, MaxDevirtIterations);
853 
854   // Require the GlobalsAA analysis for the module so we can query it within
855   // the CGSCC pipeline.
856   MIWP.addModulePass(RequireAnalysisPass<GlobalsAA, Module>());
857   // Invalidate AAManager so it can be recreated and pick up the newly available
858   // GlobalsAA.
859   MIWP.addModulePass(
860       createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
861 
862   // Require the ProfileSummaryAnalysis for the module so we can query it within
863   // the inliner pass.
864   MIWP.addModulePass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
865 
866   // Now begin the main postorder CGSCC pipeline.
867   // FIXME: The current CGSCC pipeline has its origins in the legacy pass
868   // manager and trying to emulate its precise behavior. Much of this doesn't
869   // make a lot of sense and we should revisit the core CGSCC structure.
870   CGSCCPassManager &MainCGPipeline = MIWP.getPM();
871 
872   // Note: historically, the PruneEH pass was run first to deduce nounwind and
873   // generally clean up exception handling overhead. It isn't clear this is
874   // valuable as the inliner doesn't currently care whether it is inlining an
875   // invoke or a call.
876 
877   if (AttributorRun & AttributorRunOption::CGSCC)
878     MainCGPipeline.addPass(AttributorCGSCCPass());
879 
880   // Deduce function attributes. We do another run of this after the function
881   // simplification pipeline, so this only needs to run when it could affect the
882   // function simplification pipeline, which is only the case with recursive
883   // functions.
884   MainCGPipeline.addPass(PostOrderFunctionAttrsPass(/*SkipNonRecursive*/ true));
885 
886   // When at O3 add argument promotion to the pass pipeline.
887   // FIXME: It isn't at all clear why this should be limited to O3.
888   if (Level == OptimizationLevel::O3)
889     MainCGPipeline.addPass(ArgumentPromotionPass());
890 
891   // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
892   // there are no OpenMP runtime calls present in the module.
893   if (Level == OptimizationLevel::O2 || Level == OptimizationLevel::O3)
894     MainCGPipeline.addPass(OpenMPOptCGSCCPass());
895 
896   invokeCGSCCOptimizerLateEPCallbacks(MainCGPipeline, Level);
897 
898   // Add the core function simplification pipeline nested inside the
899   // CGSCC walk.
900   MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
901       buildFunctionSimplificationPipeline(Level, Phase),
902       PTO.EagerlyInvalidateAnalyses, /*NoRerun=*/true));
903 
904   // Finally, deduce any function attributes based on the fully simplified
905   // function.
906   MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
907 
908   // Mark that the function is fully simplified and that it shouldn't be
909   // simplified again if we somehow revisit it due to CGSCC mutations unless
910   // it's been modified since.
911   MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
912       RequireAnalysisPass<ShouldNotRunFunctionPassesAnalysis, Function>()));
913 
914   MainCGPipeline.addPass(CoroSplitPass(Level != OptimizationLevel::O0));
915 
916   // Make sure we don't affect potential future NoRerun CGSCC adaptors.
917   MIWP.addLateModulePass(createModuleToFunctionPassAdaptor(
918       InvalidateAnalysisPass<ShouldNotRunFunctionPassesAnalysis>()));
919 
920   return MIWP;
921 }
922 
923 ModulePassManager
924 PassBuilder::buildModuleInlinerPipeline(OptimizationLevel Level,
925                                         ThinOrFullLTOPhase Phase) {
926   ModulePassManager MPM;
927 
928   InlineParams IP = getInlineParamsFromOptLevel(Level);
929   // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
930   // disable hot callsite inline (as much as possible [1]) because it makes
931   // profile annotation in the backend inaccurate.
932   //
933   // [1] Note the cost of a function could be below zero due to erased
934   // prologue / epilogue.
935   if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
936       PGOOpt->Action == PGOOptions::SampleUse)
937     IP.HotCallSiteThreshold = 0;
938 
939   if (PGOOpt)
940     IP.EnableDeferral = EnablePGOInlineDeferral;
941 
942   // The inline deferral logic is used to avoid losing some
943   // inlining chance in future. It is helpful in SCC inliner, in which
944   // inlining is processed in bottom-up order.
945   // While in module inliner, the inlining order is a priority-based order
946   // by default. The inline deferral is unnecessary there. So we disable the
947   // inline deferral logic in module inliner.
948   IP.EnableDeferral = false;
949 
950   MPM.addPass(ModuleInlinerPass(IP, UseInlineAdvisor, Phase));
951 
952   MPM.addPass(createModuleToFunctionPassAdaptor(
953       buildFunctionSimplificationPipeline(Level, Phase),
954       PTO.EagerlyInvalidateAnalyses));
955 
956   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
957       CoroSplitPass(Level != OptimizationLevel::O0)));
958 
959   return MPM;
960 }
961 
962 ModulePassManager
963 PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
964                                                ThinOrFullLTOPhase Phase) {
965   assert(Level != OptimizationLevel::O0 &&
966          "Should not be used for O0 pipeline");
967 
968   assert(Phase != ThinOrFullLTOPhase::FullLTOPostLink &&
969          "FullLTOPostLink shouldn't call buildModuleSimplificationPipeline!");
970 
971   ModulePassManager MPM;
972 
973   // Place pseudo probe instrumentation as the first pass of the pipeline to
974   // minimize the impact of optimization changes.
975   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
976       Phase != ThinOrFullLTOPhase::ThinLTOPostLink)
977     MPM.addPass(SampleProfileProbePass(TM));
978 
979   bool HasSampleProfile = PGOOpt && (PGOOpt->Action == PGOOptions::SampleUse);
980 
981   // In ThinLTO mode, when flattened profile is used, all the available
982   // profile information will be annotated in PreLink phase so there is
983   // no need to load the profile again in PostLink.
984   bool LoadSampleProfile =
985       HasSampleProfile &&
986       !(FlattenedProfileUsed && Phase == ThinOrFullLTOPhase::ThinLTOPostLink);
987 
988   // During the ThinLTO backend phase we perform early indirect call promotion
989   // here, before globalopt. Otherwise imported available_externally functions
990   // look unreferenced and are removed. If we are going to load the sample
991   // profile then defer until later.
992   // TODO: See if we can move later and consolidate with the location where
993   // we perform ICP when we are loading a sample profile.
994   // TODO: We pass HasSampleProfile (whether there was a sample profile file
995   // passed to the compile) to the SamplePGO flag of ICP. This is used to
996   // determine whether the new direct calls are annotated with prof metadata.
997   // Ideally this should be determined from whether the IR is annotated with
998   // sample profile, and not whether the a sample profile was provided on the
999   // command line. E.g. for flattened profiles where we will not be reloading
1000   // the sample profile in the ThinLTO backend, we ideally shouldn't have to
1001   // provide the sample profile file.
1002   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink && !LoadSampleProfile)
1003     MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, HasSampleProfile));
1004 
1005   // Create an early function pass manager to cleanup the output of the
1006   // frontend. Not necessary with LTO post link pipelines since the pre link
1007   // pipeline already cleaned up the frontend output.
1008   if (Phase != ThinOrFullLTOPhase::ThinLTOPostLink) {
1009     // Do basic inference of function attributes from known properties of system
1010     // libraries and other oracles.
1011     MPM.addPass(InferFunctionAttrsPass());
1012     MPM.addPass(CoroEarlyPass());
1013 
1014     FunctionPassManager EarlyFPM;
1015     // Lower llvm.expect to metadata before attempting transforms.
1016     // Compare/branch metadata may alter the behavior of passes like
1017     // SimplifyCFG.
1018     EarlyFPM.addPass(LowerExpectIntrinsicPass());
1019     EarlyFPM.addPass(SimplifyCFGPass());
1020     EarlyFPM.addPass(SROAPass(SROAOptions::ModifyCFG));
1021     EarlyFPM.addPass(EarlyCSEPass());
1022     if (Level == OptimizationLevel::O3)
1023       EarlyFPM.addPass(CallSiteSplittingPass());
1024     MPM.addPass(createModuleToFunctionPassAdaptor(
1025         std::move(EarlyFPM), PTO.EagerlyInvalidateAnalyses));
1026   }
1027 
1028   if (LoadSampleProfile) {
1029     // Annotate sample profile right after early FPM to ensure freshness of
1030     // the debug info.
1031     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1032                                         PGOOpt->ProfileRemappingFile, Phase));
1033     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1034     // RequireAnalysisPass for PSI before subsequent non-module passes.
1035     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1036     // Do not invoke ICP in the LTOPrelink phase as it makes it hard
1037     // for the profile annotation to be accurate in the LTO backend.
1038     if (!isLTOPreLink(Phase))
1039       // We perform early indirect call promotion here, before globalopt.
1040       // This is important for the ThinLTO backend phase because otherwise
1041       // imported available_externally functions look unreferenced and are
1042       // removed.
1043       MPM.addPass(
1044           PGOIndirectCallPromotion(true /* IsInLTO */, true /* SamplePGO */));
1045   }
1046 
1047   // Try to perform OpenMP specific optimizations on the module. This is a
1048   // (quick!) no-op if there are no OpenMP runtime calls present in the module.
1049   MPM.addPass(OpenMPOptPass());
1050 
1051   if (AttributorRun & AttributorRunOption::MODULE)
1052     MPM.addPass(AttributorPass());
1053 
1054   // Lower type metadata and the type.test intrinsic in the ThinLTO
1055   // post link pipeline after ICP. This is to enable usage of the type
1056   // tests in ICP sequences.
1057   if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink)
1058     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1059 
1060   invokePipelineEarlySimplificationEPCallbacks(MPM, Level);
1061 
1062   // Interprocedural constant propagation now that basic cleanup has occurred
1063   // and prior to optimizing globals.
1064   // FIXME: This position in the pipeline hasn't been carefully considered in
1065   // years, it should be re-analyzed.
1066   MPM.addPass(IPSCCPPass(
1067               IPSCCPOptions(/*AllowFuncSpec=*/
1068                             Level != OptimizationLevel::Os &&
1069                             Level != OptimizationLevel::Oz &&
1070                             !isLTOPreLink(Phase))));
1071 
1072   // Attach metadata to indirect call sites indicating the set of functions
1073   // they may target at run-time. This should follow IPSCCP.
1074   MPM.addPass(CalledValuePropagationPass());
1075 
1076   // Optimize globals to try and fold them into constants.
1077   MPM.addPass(GlobalOptPass());
1078 
1079   // Create a small function pass pipeline to cleanup after all the global
1080   // optimizations.
1081   FunctionPassManager GlobalCleanupPM;
1082   // FIXME: Should this instead by a run of SROA?
1083   GlobalCleanupPM.addPass(PromotePass());
1084   GlobalCleanupPM.addPass(InstCombinePass());
1085   invokePeepholeEPCallbacks(GlobalCleanupPM, Level);
1086   GlobalCleanupPM.addPass(
1087       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1088   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM),
1089                                                 PTO.EagerlyInvalidateAnalyses));
1090 
1091   // Add all the requested passes for instrumentation PGO, if requested.
1092   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1093       (PGOOpt->Action == PGOOptions::IRInstr ||
1094        PGOOpt->Action == PGOOptions::IRUse)) {
1095     addPGOInstrPasses(MPM, Level,
1096                       /* RunProfileGen */ PGOOpt->Action == PGOOptions::IRInstr,
1097                       /* IsCS */ false, PGOOpt->ProfileFile,
1098                       PGOOpt->ProfileRemappingFile, Phase, PGOOpt->FS);
1099     MPM.addPass(PGOIndirectCallPromotion(false, false));
1100   }
1101   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1102       PGOOpt->CSAction == PGOOptions::CSIRInstr)
1103     MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->CSProfileGenFile));
1104 
1105   if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1106       !PGOOpt->MemoryProfile.empty())
1107     MPM.addPass(MemProfUsePass(PGOOpt->MemoryProfile, PGOOpt->FS));
1108 
1109   // Synthesize function entry counts for non-PGO compilation.
1110   if (EnableSyntheticCounts && !PGOOpt)
1111     MPM.addPass(SyntheticCountsPropagation());
1112 
1113   if (EnableModuleInliner)
1114     MPM.addPass(buildModuleInlinerPipeline(Level, Phase));
1115   else
1116     MPM.addPass(buildInlinerPipeline(Level, Phase));
1117 
1118   // Remove any dead arguments exposed by cleanups, constant folding globals,
1119   // and argument promotion.
1120   MPM.addPass(DeadArgumentEliminationPass());
1121 
1122   MPM.addPass(CoroCleanupPass());
1123 
1124   // Optimize globals now that functions are fully simplified.
1125   MPM.addPass(GlobalOptPass());
1126   MPM.addPass(GlobalDCEPass());
1127 
1128   return MPM;
1129 }
1130 
1131 /// TODO: Should LTO cause any differences to this set of passes?
1132 void PassBuilder::addVectorPasses(OptimizationLevel Level,
1133                                   FunctionPassManager &FPM, bool IsFullLTO) {
1134   FPM.addPass(LoopVectorizePass(
1135       LoopVectorizeOptions(!PTO.LoopInterleaving, !PTO.LoopVectorization)));
1136 
1137   if (IsFullLTO) {
1138     // The vectorizer may have significantly shortened a loop body; unroll
1139     // again. Unroll small loops to hide loop backedge latency and saturate any
1140     // parallel execution resources of an out-of-order processor. We also then
1141     // need to clean up redundancies and loop invariant code.
1142     // FIXME: It would be really good to use a loop-integrated instruction
1143     // combiner for cleanup here so that the unrolling and LICM can be pipelined
1144     // across the loop nests.
1145     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1146     if (EnableUnrollAndJam && PTO.LoopUnrolling)
1147       FPM.addPass(createFunctionToLoopPassAdaptor(
1148           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1149     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1150         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1151         PTO.ForgetAllSCEVInLoopUnroll)));
1152     FPM.addPass(WarnMissedTransformationsPass());
1153     // Now that we are done with loop unrolling, be it either by LoopVectorizer,
1154     // or LoopUnroll passes, some variable-offset GEP's into alloca's could have
1155     // become constant-offset, thus enabling SROA and alloca promotion. Do so.
1156     // NOTE: we are very late in the pipeline, and we don't have any LICM
1157     // or SimplifyCFG passes scheduled after us, that would cleanup
1158     // the CFG mess this may created if allowed to modify CFG, so forbid that.
1159     FPM.addPass(SROAPass(SROAOptions::PreserveCFG));
1160   }
1161 
1162   if (!IsFullLTO) {
1163     // Eliminate loads by forwarding stores from the previous iteration to loads
1164     // of the current iteration.
1165     FPM.addPass(LoopLoadEliminationPass());
1166   }
1167   // Cleanup after the loop optimization passes.
1168   FPM.addPass(InstCombinePass());
1169 
1170   if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1171     ExtraVectorPassManager ExtraPasses;
1172     // At higher optimization levels, try to clean up any runtime overlap and
1173     // alignment checks inserted by the vectorizer. We want to track correlated
1174     // runtime checks for two inner loops in the same outer loop, fold any
1175     // common computations, hoist loop-invariant aspects out of any outer loop,
1176     // and unswitch the runtime checks if possible. Once hoisted, we may have
1177     // dead (or speculatable) control flows or more combining opportunities.
1178     ExtraPasses.addPass(EarlyCSEPass());
1179     ExtraPasses.addPass(CorrelatedValuePropagationPass());
1180     ExtraPasses.addPass(InstCombinePass());
1181     LoopPassManager LPM;
1182     LPM.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1183                          /*AllowSpeculation=*/true));
1184     LPM.addPass(SimpleLoopUnswitchPass(/* NonTrivial */ Level ==
1185                                        OptimizationLevel::O3));
1186     ExtraPasses.addPass(
1187         createFunctionToLoopPassAdaptor(std::move(LPM), /*UseMemorySSA=*/true,
1188                                         /*UseBlockFrequencyInfo=*/true));
1189     ExtraPasses.addPass(
1190         SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1191     ExtraPasses.addPass(InstCombinePass());
1192     FPM.addPass(std::move(ExtraPasses));
1193   }
1194 
1195   // Now that we've formed fast to execute loop structures, we do further
1196   // optimizations. These are run afterward as they might block doing complex
1197   // analyses and transforms such as what are needed for loop vectorization.
1198 
1199   // Cleanup after loop vectorization, etc. Simplification passes like CVP and
1200   // GVN, loop transforms, and others have already run, so it's now better to
1201   // convert to more optimized IR using more aggressive simplify CFG options.
1202   // The extra sinking transform can create larger basic blocks, so do this
1203   // before SLP vectorization.
1204   FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
1205                                   .forwardSwitchCondToPhi(true)
1206                                   .convertSwitchRangeToICmp(true)
1207                                   .convertSwitchToLookupTable(true)
1208                                   .needCanonicalLoops(false)
1209                                   .hoistCommonInsts(true)
1210                                   .sinkCommonInsts(true)));
1211 
1212   if (IsFullLTO) {
1213     FPM.addPass(SCCPPass());
1214     FPM.addPass(InstCombinePass());
1215     FPM.addPass(BDCEPass());
1216   }
1217 
1218   // Optimize parallel scalar instruction chains into SIMD instructions.
1219   if (PTO.SLPVectorization) {
1220     FPM.addPass(SLPVectorizerPass());
1221     if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1222       FPM.addPass(EarlyCSEPass());
1223     }
1224   }
1225   // Enhance/cleanup vector code.
1226   FPM.addPass(VectorCombinePass());
1227 
1228   if (!IsFullLTO) {
1229     FPM.addPass(InstCombinePass());
1230     // Unroll small loops to hide loop backedge latency and saturate any
1231     // parallel execution resources of an out-of-order processor. We also then
1232     // need to clean up redundancies and loop invariant code.
1233     // FIXME: It would be really good to use a loop-integrated instruction
1234     // combiner for cleanup here so that the unrolling and LICM can be pipelined
1235     // across the loop nests.
1236     // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1237     if (EnableUnrollAndJam && PTO.LoopUnrolling) {
1238       FPM.addPass(createFunctionToLoopPassAdaptor(
1239           LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1240     }
1241     FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1242         Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1243         PTO.ForgetAllSCEVInLoopUnroll)));
1244     FPM.addPass(WarnMissedTransformationsPass());
1245     // Now that we are done with loop unrolling, be it either by LoopVectorizer,
1246     // or LoopUnroll passes, some variable-offset GEP's into alloca's could have
1247     // become constant-offset, thus enabling SROA and alloca promotion. Do so.
1248     // NOTE: we are very late in the pipeline, and we don't have any LICM
1249     // or SimplifyCFG passes scheduled after us, that would cleanup
1250     // the CFG mess this may created if allowed to modify CFG, so forbid that.
1251     FPM.addPass(SROAPass(SROAOptions::PreserveCFG));
1252   }
1253 
1254   FPM.addPass(InstCombinePass());
1255 
1256   // This is needed for two reasons:
1257   //   1. It works around problems that instcombine introduces, such as sinking
1258   //      expensive FP divides into loops containing multiplications using the
1259   //      divide result.
1260   //   2. It helps to clean up some loop-invariant code created by the loop
1261   //      unroll pass when IsFullLTO=false.
1262   FPM.addPass(createFunctionToLoopPassAdaptor(
1263       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1264                /*AllowSpeculation=*/true),
1265       /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1266 
1267   // Now that we've vectorized and unrolled loops, we may have more refined
1268   // alignment information, try to re-derive it here.
1269   FPM.addPass(AlignmentFromAssumptionsPass());
1270 }
1271 
1272 ModulePassManager
1273 PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
1274                                              ThinOrFullLTOPhase LTOPhase) {
1275   const bool LTOPreLink = isLTOPreLink(LTOPhase);
1276   ModulePassManager MPM;
1277 
1278   // Run partial inlining pass to partially inline functions that have
1279   // large bodies.
1280   if (RunPartialInlining)
1281     MPM.addPass(PartialInlinerPass());
1282 
1283   // Remove avail extern fns and globals definitions since we aren't compiling
1284   // an object file for later LTO. For LTO we want to preserve these so they
1285   // are eligible for inlining at link-time. Note if they are unreferenced they
1286   // will be removed by GlobalDCE later, so this only impacts referenced
1287   // available externally globals. Eventually they will be suppressed during
1288   // codegen, but eliminating here enables more opportunity for GlobalDCE as it
1289   // may make globals referenced by available external functions dead and saves
1290   // running remaining passes on the eliminated functions. These should be
1291   // preserved during prelinking for link-time inlining decisions.
1292   if (!LTOPreLink)
1293     MPM.addPass(EliminateAvailableExternallyPass());
1294 
1295   if (EnableOrderFileInstrumentation)
1296     MPM.addPass(InstrOrderFilePass());
1297 
1298   // Do RPO function attribute inference across the module to forward-propagate
1299   // attributes where applicable.
1300   // FIXME: Is this really an optimization rather than a canonicalization?
1301   MPM.addPass(ReversePostOrderFunctionAttrsPass());
1302 
1303   // Do a post inline PGO instrumentation and use pass. This is a context
1304   // sensitive PGO pass. We don't want to do this in LTOPreLink phrase as
1305   // cross-module inline has not been done yet. The context sensitive
1306   // instrumentation is after all the inlines are done.
1307   if (!LTOPreLink && PGOOpt) {
1308     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1309       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
1310                         /* IsCS */ true, PGOOpt->CSProfileGenFile,
1311                         PGOOpt->ProfileRemappingFile, LTOPhase, PGOOpt->FS);
1312     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1313       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
1314                         /* IsCS */ true, PGOOpt->ProfileFile,
1315                         PGOOpt->ProfileRemappingFile, LTOPhase, PGOOpt->FS);
1316   }
1317 
1318   // Re-compute GlobalsAA here prior to function passes. This is particularly
1319   // useful as the above will have inlined, DCE'ed, and function-attr
1320   // propagated everything. We should at this point have a reasonably minimal
1321   // and richly annotated call graph. By computing aliasing and mod/ref
1322   // information for all local globals here, the late loop passes and notably
1323   // the vectorizer will be able to use them to help recognize vectorizable
1324   // memory operations.
1325   MPM.addPass(RecomputeGlobalsAAPass());
1326 
1327   invokeOptimizerEarlyEPCallbacks(MPM, Level);
1328 
1329   FunctionPassManager OptimizePM;
1330   OptimizePM.addPass(Float2IntPass());
1331   OptimizePM.addPass(LowerConstantIntrinsicsPass());
1332 
1333   if (EnableMatrix) {
1334     OptimizePM.addPass(LowerMatrixIntrinsicsPass());
1335     OptimizePM.addPass(EarlyCSEPass());
1336   }
1337 
1338   // CHR pass should only be applied with the profile information.
1339   // The check is to check the profile summary information in CHR.
1340   if (EnableCHR && Level == OptimizationLevel::O3)
1341     OptimizePM.addPass(ControlHeightReductionPass());
1342 
1343   // FIXME: We need to run some loop optimizations to re-rotate loops after
1344   // simplifycfg and others undo their rotation.
1345 
1346   // Optimize the loop execution. These passes operate on entire loop nests
1347   // rather than on each loop in an inside-out manner, and so they are actually
1348   // function passes.
1349 
1350   invokeVectorizerStartEPCallbacks(OptimizePM, Level);
1351 
1352   LoopPassManager LPM;
1353   // First rotate loops that may have been un-rotated by prior passes.
1354   // Disable header duplication at -Oz.
1355   LPM.addPass(LoopRotatePass(Level != OptimizationLevel::Oz, LTOPreLink));
1356   // Some loops may have become dead by now. Try to delete them.
1357   // FIXME: see discussion in https://reviews.llvm.org/D112851,
1358   //        this may need to be revisited once we run GVN before loop deletion
1359   //        in the simplification pipeline.
1360   LPM.addPass(LoopDeletionPass());
1361   OptimizePM.addPass(createFunctionToLoopPassAdaptor(
1362       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/false));
1363 
1364   // Distribute loops to allow partial vectorization.  I.e. isolate dependences
1365   // into separate loop that would otherwise inhibit vectorization.  This is
1366   // currently only performed for loops marked with the metadata
1367   // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
1368   OptimizePM.addPass(LoopDistributePass());
1369 
1370   // Populates the VFABI attribute with the scalar-to-vector mappings
1371   // from the TargetLibraryInfo.
1372   OptimizePM.addPass(InjectTLIMappings());
1373 
1374   addVectorPasses(Level, OptimizePM, /* IsFullLTO */ false);
1375 
1376   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1377   // canonicalization pass that enables other optimizations. As a result,
1378   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1379   // result too early.
1380   OptimizePM.addPass(LoopSinkPass());
1381 
1382   // And finally clean up LCSSA form before generating code.
1383   OptimizePM.addPass(InstSimplifyPass());
1384 
1385   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1386   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1387   // flattening of blocks.
1388   OptimizePM.addPass(DivRemPairsPass());
1389 
1390   // Try to annotate calls that were created during optimization.
1391   OptimizePM.addPass(TailCallElimPass());
1392 
1393   // LoopSink (and other loop passes since the last simplifyCFG) might have
1394   // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
1395   OptimizePM.addPass(
1396       SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1397 
1398   // Add the core optimizing pipeline.
1399   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM),
1400                                                 PTO.EagerlyInvalidateAnalyses));
1401 
1402   invokeOptimizerLastEPCallbacks(MPM, Level);
1403 
1404   // Split out cold code. Splitting is done late to avoid hiding context from
1405   // other optimizations and inadvertently regressing performance. The tradeoff
1406   // is that this has a higher code size cost than splitting early.
1407   if (EnableHotColdSplit && !LTOPreLink)
1408     MPM.addPass(HotColdSplittingPass());
1409 
1410   // Search the code for similar regions of code. If enough similar regions can
1411   // be found where extracting the regions into their own function will decrease
1412   // the size of the program, we extract the regions, a deduplicate the
1413   // structurally similar regions.
1414   if (EnableIROutliner)
1415     MPM.addPass(IROutlinerPass());
1416 
1417   // Merge functions if requested.
1418   if (PTO.MergeFunctions)
1419     MPM.addPass(MergeFunctionsPass());
1420 
1421   // Now we need to do some global optimization transforms.
1422   // FIXME: It would seem like these should come first in the optimization
1423   // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
1424   // ordering here.
1425   MPM.addPass(GlobalDCEPass());
1426   MPM.addPass(ConstantMergePass());
1427 
1428   if (PTO.CallGraphProfile && !LTOPreLink)
1429     MPM.addPass(CGProfilePass());
1430 
1431   // TODO: Relative look table converter pass caused an issue when full lto is
1432   // enabled. See https://reviews.llvm.org/D94355 for more details.
1433   // Until the issue fixed, disable this pass during pre-linking phase.
1434   if (!LTOPreLink)
1435     MPM.addPass(RelLookupTableConverterPass());
1436 
1437   return MPM;
1438 }
1439 
1440 ModulePassManager
1441 PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
1442                                            bool LTOPreLink) {
1443   if (Level == OptimizationLevel::O0)
1444     return buildO0DefaultPipeline(Level, LTOPreLink);
1445 
1446   ModulePassManager MPM;
1447 
1448   // Convert @llvm.global.annotations to !annotation metadata.
1449   MPM.addPass(Annotation2MetadataPass());
1450 
1451   // Force any function attributes we want the rest of the pipeline to observe.
1452   MPM.addPass(ForceFunctionAttrsPass());
1453 
1454   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1455     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1456 
1457   // Apply module pipeline start EP callback.
1458   invokePipelineStartEPCallbacks(MPM, Level);
1459 
1460   const ThinOrFullLTOPhase LTOPhase = LTOPreLink
1461                                           ? ThinOrFullLTOPhase::FullLTOPreLink
1462                                           : ThinOrFullLTOPhase::None;
1463   // Add the core simplification pipeline.
1464   MPM.addPass(buildModuleSimplificationPipeline(Level, LTOPhase));
1465 
1466   // Now add the optimization pipeline.
1467   MPM.addPass(buildModuleOptimizationPipeline(Level, LTOPhase));
1468 
1469   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1470       PGOOpt->Action == PGOOptions::SampleUse)
1471     MPM.addPass(PseudoProbeUpdatePass());
1472 
1473   // Emit annotation remarks.
1474   addAnnotationRemarksPass(MPM);
1475 
1476   if (LTOPreLink)
1477     addRequiredLTOPreLinkPasses(MPM);
1478   return MPM;
1479 }
1480 
1481 ModulePassManager
1482 PassBuilder::buildFatLTODefaultPipeline(OptimizationLevel Level, bool ThinLTO,
1483                                         bool EmitSummary) {
1484   ModulePassManager MPM;
1485   MPM.addPass(EmbedBitcodePass(ThinLTO, EmitSummary,
1486                                ThinLTO
1487                                    ? buildThinLTOPreLinkDefaultPipeline(Level)
1488                                    : buildLTOPreLinkDefaultPipeline(Level)));
1489   MPM.addPass(buildPerModuleDefaultPipeline(Level));
1490   return MPM;
1491 }
1492 
1493 ModulePassManager
1494 PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1495   if (Level == OptimizationLevel::O0)
1496     return buildO0DefaultPipeline(Level, /*LTOPreLink*/true);
1497 
1498   ModulePassManager MPM;
1499 
1500   // Convert @llvm.global.annotations to !annotation metadata.
1501   MPM.addPass(Annotation2MetadataPass());
1502 
1503   // Force any function attributes we want the rest of the pipeline to observe.
1504   MPM.addPass(ForceFunctionAttrsPass());
1505 
1506   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1507     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1508 
1509   // Apply module pipeline start EP callback.
1510   invokePipelineStartEPCallbacks(MPM, Level);
1511 
1512   // If we are planning to perform ThinLTO later, we don't bloat the code with
1513   // unrolling/vectorization/... now. Just simplify the module as much as we
1514   // can.
1515   MPM.addPass(buildModuleSimplificationPipeline(
1516       Level, ThinOrFullLTOPhase::ThinLTOPreLink));
1517 
1518   // Run partial inlining pass to partially inline functions that have
1519   // large bodies.
1520   // FIXME: It isn't clear whether this is really the right place to run this
1521   // in ThinLTO. Because there is another canonicalization and simplification
1522   // phase that will run after the thin link, running this here ends up with
1523   // less information than will be available later and it may grow functions in
1524   // ways that aren't beneficial.
1525   if (RunPartialInlining)
1526     MPM.addPass(PartialInlinerPass());
1527 
1528   if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1529       PGOOpt->Action == PGOOptions::SampleUse)
1530     MPM.addPass(PseudoProbeUpdatePass());
1531 
1532   // Handle Optimizer{Early,Last}EPCallbacks added by clang on PreLink. Actual
1533   // optimization is going to be done in PostLink stage, but clang can't add
1534   // callbacks there in case of in-process ThinLTO called by linker.
1535   invokeOptimizerEarlyEPCallbacks(MPM, Level);
1536   invokeOptimizerLastEPCallbacks(MPM, Level);
1537 
1538   // Emit annotation remarks.
1539   addAnnotationRemarksPass(MPM);
1540 
1541   addRequiredLTOPreLinkPasses(MPM);
1542 
1543   return MPM;
1544 }
1545 
1546 ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
1547     OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary) {
1548   ModulePassManager MPM;
1549 
1550   if (ImportSummary) {
1551     // For ThinLTO we must apply the context disambiguation decisions early, to
1552     // ensure we can correctly match the callsites to summary data.
1553     if (EnableMemProfContextDisambiguation)
1554       MPM.addPass(MemProfContextDisambiguation(ImportSummary));
1555 
1556     // These passes import type identifier resolutions for whole-program
1557     // devirtualization and CFI. They must run early because other passes may
1558     // disturb the specific instruction patterns that these passes look for,
1559     // creating dependencies on resolutions that may not appear in the summary.
1560     //
1561     // For example, GVN may transform the pattern assume(type.test) appearing in
1562     // two basic blocks into assume(phi(type.test, type.test)), which would
1563     // transform a dependency on a WPD resolution into a dependency on a type
1564     // identifier resolution for CFI.
1565     //
1566     // Also, WPD has access to more precise information than ICP and can
1567     // devirtualize more effectively, so it should operate on the IR first.
1568     //
1569     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1570     // metadata and intrinsics.
1571     MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
1572     MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
1573   }
1574 
1575   if (Level == OptimizationLevel::O0) {
1576     // Run a second time to clean up any type tests left behind by WPD for use
1577     // in ICP.
1578     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1579     // Drop available_externally and unreferenced globals. This is necessary
1580     // with ThinLTO in order to avoid leaving undefined references to dead
1581     // globals in the object file.
1582     MPM.addPass(EliminateAvailableExternallyPass());
1583     MPM.addPass(GlobalDCEPass());
1584     return MPM;
1585   }
1586 
1587   // Add the core simplification pipeline.
1588   MPM.addPass(buildModuleSimplificationPipeline(
1589       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1590 
1591   // Now add the optimization pipeline.
1592   MPM.addPass(buildModuleOptimizationPipeline(
1593       Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1594 
1595   // Emit annotation remarks.
1596   addAnnotationRemarksPass(MPM);
1597 
1598   return MPM;
1599 }
1600 
1601 ModulePassManager
1602 PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1603   // FIXME: We should use a customized pre-link pipeline!
1604   return buildPerModuleDefaultPipeline(Level,
1605                                        /* LTOPreLink */ true);
1606 }
1607 
1608 ModulePassManager
1609 PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
1610                                      ModuleSummaryIndex *ExportSummary) {
1611   ModulePassManager MPM;
1612 
1613   invokeFullLinkTimeOptimizationEarlyEPCallbacks(MPM, Level);
1614 
1615   // Create a function that performs CFI checks for cross-DSO calls with targets
1616   // in the current module.
1617   MPM.addPass(CrossDSOCFIPass());
1618 
1619   if (Level == OptimizationLevel::O0) {
1620     // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1621     // metadata and intrinsics.
1622     MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1623     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1624     // Run a second time to clean up any type tests left behind by WPD for use
1625     // in ICP.
1626     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1627 
1628     invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1629 
1630     // Emit annotation remarks.
1631     addAnnotationRemarksPass(MPM);
1632 
1633     return MPM;
1634   }
1635 
1636   if (PGOOpt && PGOOpt->Action == PGOOptions::SampleUse) {
1637     // Load sample profile before running the LTO optimization pipeline.
1638     MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1639                                         PGOOpt->ProfileRemappingFile,
1640                                         ThinOrFullLTOPhase::FullLTOPostLink));
1641     // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1642     // RequireAnalysisPass for PSI before subsequent non-module passes.
1643     MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1644   }
1645 
1646   // Try to run OpenMP optimizations, quick no-op if no OpenMP metadata present.
1647   MPM.addPass(OpenMPOptPass(ThinOrFullLTOPhase::FullLTOPostLink));
1648 
1649   // Remove unused virtual tables to improve the quality of code generated by
1650   // whole-program devirtualization and bitset lowering.
1651   MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1652 
1653   // Do basic inference of function attributes from known properties of system
1654   // libraries and other oracles.
1655   MPM.addPass(InferFunctionAttrsPass());
1656 
1657   if (Level.getSpeedupLevel() > 1) {
1658     MPM.addPass(createModuleToFunctionPassAdaptor(
1659         CallSiteSplittingPass(), PTO.EagerlyInvalidateAnalyses));
1660 
1661     // Indirect call promotion. This should promote all the targets that are
1662     // left by the earlier promotion pass that promotes intra-module targets.
1663     // This two-step promotion is to save the compile time. For LTO, it should
1664     // produce the same result as if we only do promotion here.
1665     MPM.addPass(PGOIndirectCallPromotion(
1666         true /* InLTO */, PGOOpt && PGOOpt->Action == PGOOptions::SampleUse));
1667 
1668     // Propagate constants at call sites into the functions they call.  This
1669     // opens opportunities for globalopt (and inlining) by substituting function
1670     // pointers passed as arguments to direct uses of functions.
1671     MPM.addPass(IPSCCPPass(IPSCCPOptions(/*AllowFuncSpec=*/
1672                                          Level != OptimizationLevel::Os &&
1673                                          Level != OptimizationLevel::Oz)));
1674 
1675     // Attach metadata to indirect call sites indicating the set of functions
1676     // they may target at run-time. This should follow IPSCCP.
1677     MPM.addPass(CalledValuePropagationPass());
1678   }
1679 
1680   // Now deduce any function attributes based in the current code.
1681   MPM.addPass(
1682       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1683 
1684   // Do RPO function attribute inference across the module to forward-propagate
1685   // attributes where applicable.
1686   // FIXME: Is this really an optimization rather than a canonicalization?
1687   MPM.addPass(ReversePostOrderFunctionAttrsPass());
1688 
1689   // Use in-range annotations on GEP indices to split globals where beneficial.
1690   MPM.addPass(GlobalSplitPass());
1691 
1692   // Run whole program optimization of virtual call when the list of callees
1693   // is fixed.
1694   MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1695 
1696   // Stop here at -O1.
1697   if (Level == OptimizationLevel::O1) {
1698     // The LowerTypeTestsPass needs to run to lower type metadata and the
1699     // type.test intrinsics. The pass does nothing if CFI is disabled.
1700     MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1701     // Run a second time to clean up any type tests left behind by WPD for use
1702     // in ICP (which is performed earlier than this in the regular LTO
1703     // pipeline).
1704     MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1705 
1706     invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1707 
1708     // Emit annotation remarks.
1709     addAnnotationRemarksPass(MPM);
1710 
1711     return MPM;
1712   }
1713 
1714   // Optimize globals to try and fold them into constants.
1715   MPM.addPass(GlobalOptPass());
1716 
1717   // Promote any localized globals to SSA registers.
1718   MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
1719 
1720   // Linking modules together can lead to duplicate global constant, only
1721   // keep one copy of each constant.
1722   MPM.addPass(ConstantMergePass());
1723 
1724   // Remove unused arguments from functions.
1725   MPM.addPass(DeadArgumentEliminationPass());
1726 
1727   // Reduce the code after globalopt and ipsccp.  Both can open up significant
1728   // simplification opportunities, and both can propagate functions through
1729   // function pointers.  When this happens, we often have to resolve varargs
1730   // calls, etc, so let instcombine do this.
1731   FunctionPassManager PeepholeFPM;
1732   PeepholeFPM.addPass(InstCombinePass());
1733   if (Level.getSpeedupLevel() > 1)
1734     PeepholeFPM.addPass(AggressiveInstCombinePass());
1735   invokePeepholeEPCallbacks(PeepholeFPM, Level);
1736 
1737   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM),
1738                                                 PTO.EagerlyInvalidateAnalyses));
1739 
1740   // Note: historically, the PruneEH pass was run first to deduce nounwind and
1741   // generally clean up exception handling overhead. It isn't clear this is
1742   // valuable as the inliner doesn't currently care whether it is inlining an
1743   // invoke or a call.
1744   // Run the inliner now.
1745   if (EnableModuleInliner) {
1746     MPM.addPass(ModuleInlinerPass(getInlineParamsFromOptLevel(Level),
1747                                   UseInlineAdvisor,
1748                                   ThinOrFullLTOPhase::FullLTOPostLink));
1749   } else {
1750     MPM.addPass(ModuleInlinerWrapperPass(
1751         getInlineParamsFromOptLevel(Level),
1752         /* MandatoryFirst */ true,
1753         InlineContext{ThinOrFullLTOPhase::FullLTOPostLink,
1754                       InlinePass::CGSCCInliner}));
1755   }
1756 
1757   // Perform context disambiguation after inlining, since that would reduce the
1758   // amount of additional cloning required to distinguish the allocation
1759   // contexts.
1760   if (EnableMemProfContextDisambiguation)
1761     MPM.addPass(MemProfContextDisambiguation());
1762 
1763   // Optimize globals again after we ran the inliner.
1764   MPM.addPass(GlobalOptPass());
1765 
1766   // Run the OpenMPOpt pass again after global optimizations.
1767   MPM.addPass(OpenMPOptPass(ThinOrFullLTOPhase::FullLTOPostLink));
1768 
1769   // Garbage collect dead functions.
1770   MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1771 
1772   // If we didn't decide to inline a function, check to see if we can
1773   // transform it to pass arguments by value instead of by reference.
1774   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(ArgumentPromotionPass()));
1775 
1776   FunctionPassManager FPM;
1777   // The IPO Passes may leave cruft around. Clean up after them.
1778   FPM.addPass(InstCombinePass());
1779   invokePeepholeEPCallbacks(FPM, Level);
1780 
1781   if (EnableConstraintElimination)
1782     FPM.addPass(ConstraintEliminationPass());
1783 
1784   FPM.addPass(JumpThreadingPass());
1785 
1786   // Do a post inline PGO instrumentation and use pass. This is a context
1787   // sensitive PGO pass.
1788   if (PGOOpt) {
1789     if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1790       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ true,
1791                         /* IsCS */ true, PGOOpt->CSProfileGenFile,
1792                         PGOOpt->ProfileRemappingFile,
1793                         ThinOrFullLTOPhase::FullLTOPostLink, PGOOpt->FS);
1794     else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1795       addPGOInstrPasses(MPM, Level, /* RunProfileGen */ false,
1796                         /* IsCS */ true, PGOOpt->ProfileFile,
1797                         PGOOpt->ProfileRemappingFile,
1798                         ThinOrFullLTOPhase::FullLTOPostLink, PGOOpt->FS);
1799   }
1800 
1801   // Break up allocas
1802   FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
1803 
1804   // LTO provides additional opportunities for tailcall elimination due to
1805   // link-time inlining, and visibility of nocapture attribute.
1806   FPM.addPass(TailCallElimPass());
1807 
1808   // Run a few AA driver optimizations here and now to cleanup the code.
1809   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM),
1810                                                 PTO.EagerlyInvalidateAnalyses));
1811 
1812   MPM.addPass(
1813       createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1814 
1815   // Require the GlobalsAA analysis for the module so we can query it within
1816   // MainFPM.
1817   MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
1818   // Invalidate AAManager so it can be recreated and pick up the newly available
1819   // GlobalsAA.
1820   MPM.addPass(
1821       createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
1822 
1823   FunctionPassManager MainFPM;
1824   MainFPM.addPass(createFunctionToLoopPassAdaptor(
1825       LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1826                /*AllowSpeculation=*/true),
1827       /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1828 
1829   if (RunNewGVN)
1830     MainFPM.addPass(NewGVNPass());
1831   else
1832     MainFPM.addPass(GVNPass());
1833 
1834   // Remove dead memcpy()'s.
1835   MainFPM.addPass(MemCpyOptPass());
1836 
1837   // Nuke dead stores.
1838   MainFPM.addPass(DSEPass());
1839   MainFPM.addPass(MoveAutoInitPass());
1840   MainFPM.addPass(MergedLoadStoreMotionPass());
1841 
1842   LoopPassManager LPM;
1843   if (EnableLoopFlatten && Level.getSpeedupLevel() > 1)
1844     LPM.addPass(LoopFlattenPass());
1845   LPM.addPass(IndVarSimplifyPass());
1846   LPM.addPass(LoopDeletionPass());
1847   // FIXME: Add loop interchange.
1848 
1849   // Unroll small loops and perform peeling.
1850   LPM.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
1851                                  /* OnlyWhenForced= */ !PTO.LoopUnrolling,
1852                                  PTO.ForgetAllSCEVInLoopUnroll));
1853   // The loop passes in LPM (LoopFullUnrollPass) do not preserve MemorySSA.
1854   // *All* loop passes must preserve it, in order to be able to use it.
1855   MainFPM.addPass(createFunctionToLoopPassAdaptor(
1856       std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/true));
1857 
1858   MainFPM.addPass(LoopDistributePass());
1859 
1860   addVectorPasses(Level, MainFPM, /* IsFullLTO */ true);
1861 
1862   // Run the OpenMPOpt CGSCC pass again late.
1863   MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1864       OpenMPOptCGSCCPass(ThinOrFullLTOPhase::FullLTOPostLink)));
1865 
1866   invokePeepholeEPCallbacks(MainFPM, Level);
1867   MainFPM.addPass(JumpThreadingPass());
1868   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM),
1869                                                 PTO.EagerlyInvalidateAnalyses));
1870 
1871   // Lower type metadata and the type.test intrinsic. This pass supports
1872   // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
1873   // to be run at link time if CFI is enabled. This pass does nothing if
1874   // CFI is disabled.
1875   MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1876   // Run a second time to clean up any type tests left behind by WPD for use
1877   // in ICP (which is performed earlier than this in the regular LTO pipeline).
1878   MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1879 
1880   // Enable splitting late in the FullLTO post-link pipeline.
1881   if (EnableHotColdSplit)
1882     MPM.addPass(HotColdSplittingPass());
1883 
1884   // Add late LTO optimization passes.
1885   FunctionPassManager LateFPM;
1886 
1887   // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1888   // canonicalization pass that enables other optimizations. As a result,
1889   // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1890   // result too early.
1891   LateFPM.addPass(LoopSinkPass());
1892 
1893   // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1894   // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1895   // flattening of blocks.
1896   LateFPM.addPass(DivRemPairsPass());
1897 
1898   // Delete basic blocks, which optimization passes may have killed.
1899   LateFPM.addPass(SimplifyCFGPass(
1900       SimplifyCFGOptions().convertSwitchRangeToICmp(true).hoistCommonInsts(
1901           true)));
1902   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(LateFPM)));
1903 
1904   // Drop bodies of available eternally objects to improve GlobalDCE.
1905   MPM.addPass(EliminateAvailableExternallyPass());
1906 
1907   // Now that we have optimized the program, discard unreachable functions.
1908   MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1909 
1910   if (PTO.MergeFunctions)
1911     MPM.addPass(MergeFunctionsPass());
1912 
1913   if (PTO.CallGraphProfile)
1914     MPM.addPass(CGProfilePass());
1915 
1916   invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1917 
1918   // Emit annotation remarks.
1919   addAnnotationRemarksPass(MPM);
1920 
1921   return MPM;
1922 }
1923 
1924 ModulePassManager PassBuilder::buildO0DefaultPipeline(OptimizationLevel Level,
1925                                                       bool LTOPreLink) {
1926   assert(Level == OptimizationLevel::O0 &&
1927          "buildO0DefaultPipeline should only be used with O0");
1928 
1929   ModulePassManager MPM;
1930 
1931   // Perform pseudo probe instrumentation in O0 mode. This is for the
1932   // consistency between different build modes. For example, a LTO build can be
1933   // mixed with an O0 prelink and an O2 postlink. Loading a sample profile in
1934   // the postlink will require pseudo probe instrumentation in the prelink.
1935   if (PGOOpt && PGOOpt->PseudoProbeForProfiling)
1936     MPM.addPass(SampleProfileProbePass(TM));
1937 
1938   if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
1939                  PGOOpt->Action == PGOOptions::IRUse))
1940     addPGOInstrPassesForO0(
1941         MPM,
1942         /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr),
1943         /* IsCS */ false, PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1944         PGOOpt->FS);
1945 
1946   invokePipelineStartEPCallbacks(MPM, Level);
1947 
1948   if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1949     MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1950 
1951   invokePipelineEarlySimplificationEPCallbacks(MPM, Level);
1952 
1953   // Build a minimal pipeline based on the semantics required by LLVM,
1954   // which is just that always inlining occurs. Further, disable generating
1955   // lifetime intrinsics to avoid enabling further optimizations during
1956   // code generation.
1957   MPM.addPass(AlwaysInlinerPass(
1958       /*InsertLifetimeIntrinsics=*/false));
1959 
1960   if (PTO.MergeFunctions)
1961     MPM.addPass(MergeFunctionsPass());
1962 
1963   if (EnableMatrix)
1964     MPM.addPass(
1965         createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass(true)));
1966 
1967   if (!CGSCCOptimizerLateEPCallbacks.empty()) {
1968     CGSCCPassManager CGPM;
1969     invokeCGSCCOptimizerLateEPCallbacks(CGPM, Level);
1970     if (!CGPM.isEmpty())
1971       MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
1972   }
1973   if (!LateLoopOptimizationsEPCallbacks.empty()) {
1974     LoopPassManager LPM;
1975     invokeLateLoopOptimizationsEPCallbacks(LPM, Level);
1976     if (!LPM.isEmpty()) {
1977       MPM.addPass(createModuleToFunctionPassAdaptor(
1978           createFunctionToLoopPassAdaptor(std::move(LPM))));
1979     }
1980   }
1981   if (!LoopOptimizerEndEPCallbacks.empty()) {
1982     LoopPassManager LPM;
1983     invokeLoopOptimizerEndEPCallbacks(LPM, Level);
1984     if (!LPM.isEmpty()) {
1985       MPM.addPass(createModuleToFunctionPassAdaptor(
1986           createFunctionToLoopPassAdaptor(std::move(LPM))));
1987     }
1988   }
1989   if (!ScalarOptimizerLateEPCallbacks.empty()) {
1990     FunctionPassManager FPM;
1991     invokeScalarOptimizerLateEPCallbacks(FPM, Level);
1992     if (!FPM.isEmpty())
1993       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1994   }
1995 
1996   invokeOptimizerEarlyEPCallbacks(MPM, Level);
1997 
1998   if (!VectorizerStartEPCallbacks.empty()) {
1999     FunctionPassManager FPM;
2000     invokeVectorizerStartEPCallbacks(FPM, Level);
2001     if (!FPM.isEmpty())
2002       MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
2003   }
2004 
2005   ModulePassManager CoroPM;
2006   CoroPM.addPass(CoroEarlyPass());
2007   CGSCCPassManager CGPM;
2008   CGPM.addPass(CoroSplitPass());
2009   CoroPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
2010   CoroPM.addPass(CoroCleanupPass());
2011   CoroPM.addPass(GlobalDCEPass());
2012   MPM.addPass(CoroConditionalWrapper(std::move(CoroPM)));
2013 
2014   invokeOptimizerLastEPCallbacks(MPM, Level);
2015 
2016   if (LTOPreLink)
2017     addRequiredLTOPreLinkPasses(MPM);
2018 
2019   MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
2020 
2021   return MPM;
2022 }
2023 
2024 AAManager PassBuilder::buildDefaultAAPipeline() {
2025   AAManager AA;
2026 
2027   // The order in which these are registered determines their priority when
2028   // being queried.
2029 
2030   // First we register the basic alias analysis that provides the majority of
2031   // per-function local AA logic. This is a stateless, on-demand local set of
2032   // AA techniques.
2033   AA.registerFunctionAnalysis<BasicAA>();
2034 
2035   // Next we query fast, specialized alias analyses that wrap IR-embedded
2036   // information about aliasing.
2037   AA.registerFunctionAnalysis<ScopedNoAliasAA>();
2038   AA.registerFunctionAnalysis<TypeBasedAA>();
2039 
2040   // Add support for querying global aliasing information when available.
2041   // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
2042   // analysis, all that the `AAManager` can do is query for any *cached*
2043   // results from `GlobalsAA` through a readonly proxy.
2044   if (EnableGlobalAnalyses)
2045     AA.registerModuleAnalysis<GlobalsAA>();
2046 
2047   // Add target-specific alias analyses.
2048   if (TM)
2049     TM->registerDefaultAliasAnalyses(AA);
2050 
2051   return AA;
2052 }
2053