xref: /freebsd/contrib/llvm-project/llvm/lib/ObjectYAML/MinidumpYAML.cpp (revision 53071ed1c96db7f89defc99c95b0ad1031d48f45)
1 //===- MinidumpYAML.cpp - Minidump YAMLIO implementation ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ObjectYAML/MinidumpYAML.h"
10 #include "llvm/Support/Allocator.h"
11 #include "llvm/Support/ConvertUTF.h"
12 
13 using namespace llvm;
14 using namespace llvm::MinidumpYAML;
15 using namespace llvm::minidump;
16 
17 namespace {
18 /// A helper class to manage the placement of various structures into the final
19 /// minidump binary. Space for objects can be allocated via various allocate***
20 /// methods, while the final minidump file is written by calling the writeTo
21 /// method. The plain versions of allocation functions take a reference to the
22 /// data which is to be written (and hence the data must be available until
23 /// writeTo is called), while the "New" versions allocate the data in an
24 /// allocator-managed buffer, which is available until the allocator object is
25 /// destroyed. For both kinds of functions, it is possible to modify the
26 /// data for which the space has been "allocated" until the final writeTo call.
27 /// This is useful for "linking" the allocated structures via their offsets.
28 class BlobAllocator {
29 public:
30   size_t tell() const { return NextOffset; }
31 
32   size_t allocateCallback(size_t Size,
33                           std::function<void(raw_ostream &)> Callback) {
34     size_t Offset = NextOffset;
35     NextOffset += Size;
36     Callbacks.push_back(std::move(Callback));
37     return Offset;
38   }
39 
40   size_t allocateBytes(ArrayRef<uint8_t> Data) {
41     return allocateCallback(
42         Data.size(), [Data](raw_ostream &OS) { OS << toStringRef(Data); });
43   }
44 
45   size_t allocateBytes(yaml::BinaryRef Data) {
46     return allocateCallback(Data.binary_size(), [Data](raw_ostream &OS) {
47       Data.writeAsBinary(OS);
48     });
49   }
50 
51   template <typename T> size_t allocateArray(ArrayRef<T> Data) {
52     return allocateBytes({reinterpret_cast<const uint8_t *>(Data.data()),
53                           sizeof(T) * Data.size()});
54   }
55 
56   template <typename T, typename RangeType>
57   std::pair<size_t, MutableArrayRef<T>>
58   allocateNewArray(const iterator_range<RangeType> &Range);
59 
60   template <typename T> size_t allocateObject(const T &Data) {
61     return allocateArray(makeArrayRef(Data));
62   }
63 
64   template <typename T, typename... Types>
65   std::pair<size_t, T *> allocateNewObject(Types &&... Args) {
66     T *Object = new (Temporaries.Allocate<T>()) T(std::forward<Types>(Args)...);
67     return {allocateObject(*Object), Object};
68   }
69 
70   size_t allocateString(StringRef Str);
71 
72   void writeTo(raw_ostream &OS) const;
73 
74 private:
75   size_t NextOffset = 0;
76 
77   BumpPtrAllocator Temporaries;
78   std::vector<std::function<void(raw_ostream &)>> Callbacks;
79 };
80 } // namespace
81 
82 template <typename T, typename RangeType>
83 std::pair<size_t, MutableArrayRef<T>>
84 BlobAllocator::allocateNewArray(const iterator_range<RangeType> &Range) {
85   size_t Num = std::distance(Range.begin(), Range.end());
86   MutableArrayRef<T> Array(Temporaries.Allocate<T>(Num), Num);
87   std::uninitialized_copy(Range.begin(), Range.end(), Array.begin());
88   return {allocateArray(Array), Array};
89 }
90 
91 size_t BlobAllocator::allocateString(StringRef Str) {
92   SmallVector<UTF16, 32> WStr;
93   bool OK = convertUTF8ToUTF16String(Str, WStr);
94   assert(OK && "Invalid UTF8 in Str?");
95   (void)OK;
96 
97   // The utf16 string is null-terminated, but the terminator is not counted in
98   // the string size.
99   WStr.push_back(0);
100   size_t Result =
101       allocateNewObject<support::ulittle32_t>(2 * (WStr.size() - 1)).first;
102   allocateNewArray<support::ulittle16_t>(make_range(WStr.begin(), WStr.end()));
103   return Result;
104 }
105 
106 void BlobAllocator::writeTo(raw_ostream &OS) const {
107   size_t BeginOffset = OS.tell();
108   for (const auto &Callback : Callbacks)
109     Callback(OS);
110   assert(OS.tell() == BeginOffset + NextOffset &&
111          "Callbacks wrote an unexpected number of bytes.");
112   (void)BeginOffset;
113 }
114 
115 /// Perform an optional yaml-mapping of an endian-aware type EndianType. The
116 /// only purpose of this function is to avoid casting the Default value to the
117 /// endian type;
118 template <typename EndianType>
119 static inline void mapOptional(yaml::IO &IO, const char *Key, EndianType &Val,
120                                typename EndianType::value_type Default) {
121   IO.mapOptional(Key, Val, EndianType(Default));
122 }
123 
124 /// Yaml-map an endian-aware type EndianType as some other type MapType.
125 template <typename MapType, typename EndianType>
126 static inline void mapRequiredAs(yaml::IO &IO, const char *Key,
127                                  EndianType &Val) {
128   MapType Mapped = static_cast<typename EndianType::value_type>(Val);
129   IO.mapRequired(Key, Mapped);
130   Val = static_cast<typename EndianType::value_type>(Mapped);
131 }
132 
133 /// Perform an optional yaml-mapping of an endian-aware type EndianType as some
134 /// other type MapType.
135 template <typename MapType, typename EndianType>
136 static inline void mapOptionalAs(yaml::IO &IO, const char *Key, EndianType &Val,
137                                  MapType Default) {
138   MapType Mapped = static_cast<typename EndianType::value_type>(Val);
139   IO.mapOptional(Key, Mapped, Default);
140   Val = static_cast<typename EndianType::value_type>(Mapped);
141 }
142 
143 namespace {
144 /// Return the appropriate yaml Hex type for a given endian-aware type.
145 template <typename EndianType> struct HexType;
146 template <> struct HexType<support::ulittle16_t> { using type = yaml::Hex16; };
147 template <> struct HexType<support::ulittle32_t> { using type = yaml::Hex32; };
148 template <> struct HexType<support::ulittle64_t> { using type = yaml::Hex64; };
149 } // namespace
150 
151 /// Yaml-map an endian-aware type as an appropriately-sized hex value.
152 template <typename EndianType>
153 static inline void mapRequiredHex(yaml::IO &IO, const char *Key,
154                                   EndianType &Val) {
155   mapRequiredAs<typename HexType<EndianType>::type>(IO, Key, Val);
156 }
157 
158 /// Perform an optional yaml-mapping of an endian-aware type as an
159 /// appropriately-sized hex value.
160 template <typename EndianType>
161 static inline void mapOptionalHex(yaml::IO &IO, const char *Key,
162                                   EndianType &Val,
163                                   typename EndianType::value_type Default) {
164   mapOptionalAs<typename HexType<EndianType>::type>(IO, Key, Val, Default);
165 }
166 
167 Stream::~Stream() = default;
168 
169 Stream::StreamKind Stream::getKind(StreamType Type) {
170   switch (Type) {
171   case StreamType::MemoryList:
172     return StreamKind::MemoryList;
173   case StreamType::ModuleList:
174     return StreamKind::ModuleList;
175   case StreamType::SystemInfo:
176     return StreamKind::SystemInfo;
177   case StreamType::LinuxCPUInfo:
178   case StreamType::LinuxProcStatus:
179   case StreamType::LinuxLSBRelease:
180   case StreamType::LinuxCMDLine:
181   case StreamType::LinuxMaps:
182   case StreamType::LinuxProcStat:
183   case StreamType::LinuxProcUptime:
184     return StreamKind::TextContent;
185   case StreamType::ThreadList:
186     return StreamKind::ThreadList;
187   default:
188     return StreamKind::RawContent;
189   }
190 }
191 
192 std::unique_ptr<Stream> Stream::create(StreamType Type) {
193   StreamKind Kind = getKind(Type);
194   switch (Kind) {
195   case StreamKind::MemoryList:
196     return llvm::make_unique<MemoryListStream>();
197   case StreamKind::ModuleList:
198     return llvm::make_unique<ModuleListStream>();
199   case StreamKind::RawContent:
200     return llvm::make_unique<RawContentStream>(Type);
201   case StreamKind::SystemInfo:
202     return llvm::make_unique<SystemInfoStream>();
203   case StreamKind::TextContent:
204     return llvm::make_unique<TextContentStream>(Type);
205   case StreamKind::ThreadList:
206     return llvm::make_unique<ThreadListStream>();
207   }
208   llvm_unreachable("Unhandled stream kind!");
209 }
210 
211 void yaml::ScalarEnumerationTraits<ProcessorArchitecture>::enumeration(
212     IO &IO, ProcessorArchitecture &Arch) {
213 #define HANDLE_MDMP_ARCH(CODE, NAME)                                           \
214   IO.enumCase(Arch, #NAME, ProcessorArchitecture::NAME);
215 #include "llvm/BinaryFormat/MinidumpConstants.def"
216   IO.enumFallback<Hex16>(Arch);
217 }
218 
219 void yaml::ScalarEnumerationTraits<OSPlatform>::enumeration(IO &IO,
220                                                             OSPlatform &Plat) {
221 #define HANDLE_MDMP_PLATFORM(CODE, NAME)                                       \
222   IO.enumCase(Plat, #NAME, OSPlatform::NAME);
223 #include "llvm/BinaryFormat/MinidumpConstants.def"
224   IO.enumFallback<Hex32>(Plat);
225 }
226 
227 void yaml::ScalarEnumerationTraits<StreamType>::enumeration(IO &IO,
228                                                             StreamType &Type) {
229 #define HANDLE_MDMP_STREAM_TYPE(CODE, NAME)                                    \
230   IO.enumCase(Type, #NAME, StreamType::NAME);
231 #include "llvm/BinaryFormat/MinidumpConstants.def"
232   IO.enumFallback<Hex32>(Type);
233 }
234 
235 void yaml::MappingTraits<CPUInfo::ArmInfo>::mapping(IO &IO,
236                                                     CPUInfo::ArmInfo &Info) {
237   mapRequiredHex(IO, "CPUID", Info.CPUID);
238   mapOptionalHex(IO, "ELF hwcaps", Info.ElfHWCaps, 0);
239 }
240 
241 namespace {
242 template <std::size_t N> struct FixedSizeHex {
243   FixedSizeHex(uint8_t (&Storage)[N]) : Storage(Storage) {}
244 
245   uint8_t (&Storage)[N];
246 };
247 } // namespace
248 
249 namespace llvm {
250 namespace yaml {
251 template <std::size_t N> struct ScalarTraits<FixedSizeHex<N>> {
252   static void output(const FixedSizeHex<N> &Fixed, void *, raw_ostream &OS) {
253     OS << toHex(makeArrayRef(Fixed.Storage));
254   }
255 
256   static StringRef input(StringRef Scalar, void *, FixedSizeHex<N> &Fixed) {
257     if (!all_of(Scalar, isHexDigit))
258       return "Invalid hex digit in input";
259     if (Scalar.size() < 2 * N)
260       return "String too short";
261     if (Scalar.size() > 2 * N)
262       return "String too long";
263     copy(fromHex(Scalar), Fixed.Storage);
264     return "";
265   }
266 
267   static QuotingType mustQuote(StringRef S) { return QuotingType::None; }
268 };
269 } // namespace yaml
270 } // namespace llvm
271 void yaml::MappingTraits<CPUInfo::OtherInfo>::mapping(
272     IO &IO, CPUInfo::OtherInfo &Info) {
273   FixedSizeHex<sizeof(Info.ProcessorFeatures)> Features(Info.ProcessorFeatures);
274   IO.mapRequired("Features", Features);
275 }
276 
277 namespace {
278 /// A type which only accepts strings of a fixed size for yaml conversion.
279 template <std::size_t N> struct FixedSizeString {
280   FixedSizeString(char (&Storage)[N]) : Storage(Storage) {}
281 
282   char (&Storage)[N];
283 };
284 } // namespace
285 
286 namespace llvm {
287 namespace yaml {
288 template <std::size_t N> struct ScalarTraits<FixedSizeString<N>> {
289   static void output(const FixedSizeString<N> &Fixed, void *, raw_ostream &OS) {
290     OS << StringRef(Fixed.Storage, N);
291   }
292 
293   static StringRef input(StringRef Scalar, void *, FixedSizeString<N> &Fixed) {
294     if (Scalar.size() < N)
295       return "String too short";
296     if (Scalar.size() > N)
297       return "String too long";
298     copy(Scalar, Fixed.Storage);
299     return "";
300   }
301 
302   static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
303 };
304 } // namespace yaml
305 } // namespace llvm
306 
307 void yaml::MappingTraits<CPUInfo::X86Info>::mapping(IO &IO,
308                                                     CPUInfo::X86Info &Info) {
309   FixedSizeString<sizeof(Info.VendorID)> VendorID(Info.VendorID);
310   IO.mapRequired("Vendor ID", VendorID);
311 
312   mapRequiredHex(IO, "Version Info", Info.VersionInfo);
313   mapRequiredHex(IO, "Feature Info", Info.FeatureInfo);
314   mapOptionalHex(IO, "AMD Extended Features", Info.AMDExtendedFeatures, 0);
315 }
316 
317 void yaml::MappingTraits<VSFixedFileInfo>::mapping(IO &IO,
318                                                    VSFixedFileInfo &Info) {
319   mapOptionalHex(IO, "Signature", Info.Signature, 0);
320   mapOptionalHex(IO, "Struct Version", Info.StructVersion, 0);
321   mapOptionalHex(IO, "File Version High", Info.FileVersionHigh, 0);
322   mapOptionalHex(IO, "File Version Low", Info.FileVersionLow, 0);
323   mapOptionalHex(IO, "Product Version High", Info.ProductVersionHigh, 0);
324   mapOptionalHex(IO, "Product Version Low", Info.ProductVersionLow, 0);
325   mapOptionalHex(IO, "File Flags Mask", Info.FileFlagsMask, 0);
326   mapOptionalHex(IO, "File Flags", Info.FileFlags, 0);
327   mapOptionalHex(IO, "File OS", Info.FileOS, 0);
328   mapOptionalHex(IO, "File Type", Info.FileType, 0);
329   mapOptionalHex(IO, "File Subtype", Info.FileSubtype, 0);
330   mapOptionalHex(IO, "File Date High", Info.FileDateHigh, 0);
331   mapOptionalHex(IO, "File Date Low", Info.FileDateLow, 0);
332 }
333 
334 void yaml::MappingTraits<ModuleListStream::entry_type>::mapping(
335     IO &IO, ModuleListStream::entry_type &M) {
336   mapRequiredHex(IO, "Base of Image", M.Entry.BaseOfImage);
337   mapRequiredHex(IO, "Size of Image", M.Entry.SizeOfImage);
338   mapOptionalHex(IO, "Checksum", M.Entry.Checksum, 0);
339   IO.mapOptional("Time Date Stamp", M.Entry.TimeDateStamp,
340                  support::ulittle32_t(0));
341   IO.mapRequired("Module Name", M.Name);
342   IO.mapOptional("Version Info", M.Entry.VersionInfo, VSFixedFileInfo());
343   IO.mapRequired("CodeView Record", M.CvRecord);
344   IO.mapOptional("Misc Record", M.MiscRecord, yaml::BinaryRef());
345   mapOptionalHex(IO, "Reserved0", M.Entry.Reserved0, 0);
346   mapOptionalHex(IO, "Reserved1", M.Entry.Reserved1, 0);
347 }
348 
349 static void streamMapping(yaml::IO &IO, RawContentStream &Stream) {
350   IO.mapOptional("Content", Stream.Content);
351   IO.mapOptional("Size", Stream.Size, Stream.Content.binary_size());
352 }
353 
354 static StringRef streamValidate(RawContentStream &Stream) {
355   if (Stream.Size.value < Stream.Content.binary_size())
356     return "Stream size must be greater or equal to the content size";
357   return "";
358 }
359 
360 void yaml::MappingTraits<MemoryListStream::entry_type>::mapping(
361     IO &IO, MemoryListStream::entry_type &Range) {
362   MappingContextTraits<MemoryDescriptor, yaml::BinaryRef>::mapping(
363       IO, Range.Entry, Range.Content);
364 }
365 
366 static void streamMapping(yaml::IO &IO, MemoryListStream &Stream) {
367   IO.mapRequired("Memory Ranges", Stream.Entries);
368 }
369 
370 static void streamMapping(yaml::IO &IO, ModuleListStream &Stream) {
371   IO.mapRequired("Modules", Stream.Entries);
372 }
373 
374 static void streamMapping(yaml::IO &IO, SystemInfoStream &Stream) {
375   SystemInfo &Info = Stream.Info;
376   IO.mapRequired("Processor Arch", Info.ProcessorArch);
377   mapOptional(IO, "Processor Level", Info.ProcessorLevel, 0);
378   mapOptional(IO, "Processor Revision", Info.ProcessorRevision, 0);
379   IO.mapOptional("Number of Processors", Info.NumberOfProcessors, 0);
380   IO.mapOptional("Product type", Info.ProductType, 0);
381   mapOptional(IO, "Major Version", Info.MajorVersion, 0);
382   mapOptional(IO, "Minor Version", Info.MinorVersion, 0);
383   mapOptional(IO, "Build Number", Info.BuildNumber, 0);
384   IO.mapRequired("Platform ID", Info.PlatformId);
385   IO.mapOptional("CSD Version", Stream.CSDVersion, "");
386   mapOptionalHex(IO, "Suite Mask", Info.SuiteMask, 0);
387   mapOptionalHex(IO, "Reserved", Info.Reserved, 0);
388   switch (static_cast<ProcessorArchitecture>(Info.ProcessorArch)) {
389   case ProcessorArchitecture::X86:
390   case ProcessorArchitecture::AMD64:
391     IO.mapOptional("CPU", Info.CPU.X86);
392     break;
393   case ProcessorArchitecture::ARM:
394   case ProcessorArchitecture::ARM64:
395     IO.mapOptional("CPU", Info.CPU.Arm);
396     break;
397   default:
398     IO.mapOptional("CPU", Info.CPU.Other);
399     break;
400   }
401 }
402 
403 static void streamMapping(yaml::IO &IO, TextContentStream &Stream) {
404   IO.mapOptional("Text", Stream.Text);
405 }
406 
407 void yaml::MappingContextTraits<MemoryDescriptor, yaml::BinaryRef>::mapping(
408     IO &IO, MemoryDescriptor &Memory, BinaryRef &Content) {
409   mapRequiredHex(IO, "Start of Memory Range", Memory.StartOfMemoryRange);
410   IO.mapRequired("Content", Content);
411 }
412 
413 void yaml::MappingTraits<ThreadListStream::entry_type>::mapping(
414     IO &IO, ThreadListStream::entry_type &T) {
415   mapRequiredHex(IO, "Thread Id", T.Entry.ThreadId);
416   mapOptionalHex(IO, "Suspend Count", T.Entry.SuspendCount, 0);
417   mapOptionalHex(IO, "Priority Class", T.Entry.PriorityClass, 0);
418   mapOptionalHex(IO, "Priority", T.Entry.Priority, 0);
419   mapOptionalHex(IO, "Environment Block", T.Entry.EnvironmentBlock, 0);
420   IO.mapRequired("Context", T.Context);
421   IO.mapRequired("Stack", T.Entry.Stack, T.Stack);
422 }
423 
424 static void streamMapping(yaml::IO &IO, ThreadListStream &Stream) {
425   IO.mapRequired("Threads", Stream.Entries);
426 }
427 
428 void yaml::MappingTraits<std::unique_ptr<Stream>>::mapping(
429     yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
430   StreamType Type;
431   if (IO.outputting())
432     Type = S->Type;
433   IO.mapRequired("Type", Type);
434 
435   if (!IO.outputting())
436     S = MinidumpYAML::Stream::create(Type);
437   switch (S->Kind) {
438   case MinidumpYAML::Stream::StreamKind::MemoryList:
439     streamMapping(IO, llvm::cast<MemoryListStream>(*S));
440     break;
441   case MinidumpYAML::Stream::StreamKind::ModuleList:
442     streamMapping(IO, llvm::cast<ModuleListStream>(*S));
443     break;
444   case MinidumpYAML::Stream::StreamKind::RawContent:
445     streamMapping(IO, llvm::cast<RawContentStream>(*S));
446     break;
447   case MinidumpYAML::Stream::StreamKind::SystemInfo:
448     streamMapping(IO, llvm::cast<SystemInfoStream>(*S));
449     break;
450   case MinidumpYAML::Stream::StreamKind::TextContent:
451     streamMapping(IO, llvm::cast<TextContentStream>(*S));
452     break;
453   case MinidumpYAML::Stream::StreamKind::ThreadList:
454     streamMapping(IO, llvm::cast<ThreadListStream>(*S));
455     break;
456   }
457 }
458 
459 StringRef yaml::MappingTraits<std::unique_ptr<Stream>>::validate(
460     yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
461   switch (S->Kind) {
462   case MinidumpYAML::Stream::StreamKind::RawContent:
463     return streamValidate(cast<RawContentStream>(*S));
464   case MinidumpYAML::Stream::StreamKind::MemoryList:
465   case MinidumpYAML::Stream::StreamKind::ModuleList:
466   case MinidumpYAML::Stream::StreamKind::SystemInfo:
467   case MinidumpYAML::Stream::StreamKind::TextContent:
468   case MinidumpYAML::Stream::StreamKind::ThreadList:
469     return "";
470   }
471   llvm_unreachable("Fully covered switch above!");
472 }
473 
474 void yaml::MappingTraits<Object>::mapping(IO &IO, Object &O) {
475   IO.mapTag("!minidump", true);
476   mapOptionalHex(IO, "Signature", O.Header.Signature, Header::MagicSignature);
477   mapOptionalHex(IO, "Version", O.Header.Version, Header::MagicVersion);
478   mapOptionalHex(IO, "Flags", O.Header.Flags, 0);
479   IO.mapRequired("Streams", O.Streams);
480 }
481 
482 static LocationDescriptor layout(BlobAllocator &File, yaml::BinaryRef Data) {
483   return {support::ulittle32_t(Data.binary_size()),
484           support::ulittle32_t(File.allocateBytes(Data))};
485 }
486 
487 static void layout(BlobAllocator &File, MemoryListStream::entry_type &Range) {
488   Range.Entry.Memory = layout(File, Range.Content);
489 }
490 
491 static void layout(BlobAllocator &File, ModuleListStream::entry_type &M) {
492   M.Entry.ModuleNameRVA = File.allocateString(M.Name);
493 
494   M.Entry.CvRecord = layout(File, M.CvRecord);
495   M.Entry.MiscRecord = layout(File, M.MiscRecord);
496 }
497 
498 static void layout(BlobAllocator &File, ThreadListStream::entry_type &T) {
499   T.Entry.Stack.Memory = layout(File, T.Stack);
500   T.Entry.Context = layout(File, T.Context);
501 }
502 
503 template <typename EntryT>
504 static size_t layout(BlobAllocator &File,
505                      MinidumpYAML::detail::ListStream<EntryT> &S) {
506 
507   File.allocateNewObject<support::ulittle32_t>(S.Entries.size());
508   for (auto &E : S.Entries)
509     File.allocateObject(E.Entry);
510 
511   size_t DataEnd = File.tell();
512 
513   // Lay out the auxiliary data, (which is not a part of the stream).
514   DataEnd = File.tell();
515   for (auto &E : S.Entries)
516     layout(File, E);
517 
518   return DataEnd;
519 }
520 
521 static Directory layout(BlobAllocator &File, Stream &S) {
522   Directory Result;
523   Result.Type = S.Type;
524   Result.Location.RVA = File.tell();
525   Optional<size_t> DataEnd;
526   switch (S.Kind) {
527   case Stream::StreamKind::MemoryList:
528     DataEnd = layout(File, cast<MemoryListStream>(S));
529     break;
530   case Stream::StreamKind::ModuleList:
531     DataEnd = layout(File, cast<ModuleListStream>(S));
532     break;
533   case Stream::StreamKind::RawContent: {
534     RawContentStream &Raw = cast<RawContentStream>(S);
535     File.allocateCallback(Raw.Size, [&Raw](raw_ostream &OS) {
536       Raw.Content.writeAsBinary(OS);
537       assert(Raw.Content.binary_size() <= Raw.Size);
538       OS << std::string(Raw.Size - Raw.Content.binary_size(), '\0');
539     });
540     break;
541   }
542   case Stream::StreamKind::SystemInfo: {
543     SystemInfoStream &SystemInfo = cast<SystemInfoStream>(S);
544     File.allocateObject(SystemInfo.Info);
545     // The CSD string is not a part of the stream.
546     DataEnd = File.tell();
547     SystemInfo.Info.CSDVersionRVA = File.allocateString(SystemInfo.CSDVersion);
548     break;
549   }
550   case Stream::StreamKind::TextContent:
551     File.allocateArray(arrayRefFromStringRef(cast<TextContentStream>(S).Text));
552     break;
553   case Stream::StreamKind::ThreadList:
554     DataEnd = layout(File, cast<ThreadListStream>(S));
555     break;
556   }
557   // If DataEnd is not set, we assume everything we generated is a part of the
558   // stream.
559   Result.Location.DataSize =
560       DataEnd.getValueOr(File.tell()) - Result.Location.RVA;
561   return Result;
562 }
563 
564 void MinidumpYAML::writeAsBinary(Object &Obj, raw_ostream &OS) {
565   BlobAllocator File;
566   File.allocateObject(Obj.Header);
567 
568   std::vector<Directory> StreamDirectory(Obj.Streams.size());
569   Obj.Header.StreamDirectoryRVA =
570       File.allocateArray(makeArrayRef(StreamDirectory));
571   Obj.Header.NumberOfStreams = StreamDirectory.size();
572 
573   for (auto &Stream : enumerate(Obj.Streams))
574     StreamDirectory[Stream.index()] = layout(File, *Stream.value());
575 
576   File.writeTo(OS);
577 }
578 
579 Error MinidumpYAML::writeAsBinary(StringRef Yaml, raw_ostream &OS) {
580   yaml::Input Input(Yaml);
581   Object Obj;
582   Input >> Obj;
583   if (std::error_code EC = Input.error())
584     return errorCodeToError(EC);
585 
586   writeAsBinary(Obj, OS);
587   return Error::success();
588 }
589 
590 Expected<std::unique_ptr<Stream>>
591 Stream::create(const Directory &StreamDesc, const object::MinidumpFile &File) {
592   StreamKind Kind = getKind(StreamDesc.Type);
593   switch (Kind) {
594   case StreamKind::MemoryList: {
595     auto ExpectedList = File.getMemoryList();
596     if (!ExpectedList)
597       return ExpectedList.takeError();
598     std::vector<MemoryListStream::entry_type> Ranges;
599     for (const MemoryDescriptor &MD : *ExpectedList) {
600       auto ExpectedContent = File.getRawData(MD.Memory);
601       if (!ExpectedContent)
602         return ExpectedContent.takeError();
603       Ranges.push_back({MD, *ExpectedContent});
604     }
605     return llvm::make_unique<MemoryListStream>(std::move(Ranges));
606   }
607   case StreamKind::ModuleList: {
608     auto ExpectedList = File.getModuleList();
609     if (!ExpectedList)
610       return ExpectedList.takeError();
611     std::vector<ModuleListStream::entry_type> Modules;
612     for (const Module &M : *ExpectedList) {
613       auto ExpectedName = File.getString(M.ModuleNameRVA);
614       if (!ExpectedName)
615         return ExpectedName.takeError();
616       auto ExpectedCv = File.getRawData(M.CvRecord);
617       if (!ExpectedCv)
618         return ExpectedCv.takeError();
619       auto ExpectedMisc = File.getRawData(M.MiscRecord);
620       if (!ExpectedMisc)
621         return ExpectedMisc.takeError();
622       Modules.push_back(
623           {M, std::move(*ExpectedName), *ExpectedCv, *ExpectedMisc});
624     }
625     return llvm::make_unique<ModuleListStream>(std::move(Modules));
626   }
627   case StreamKind::RawContent:
628     return llvm::make_unique<RawContentStream>(StreamDesc.Type,
629                                                File.getRawStream(StreamDesc));
630   case StreamKind::SystemInfo: {
631     auto ExpectedInfo = File.getSystemInfo();
632     if (!ExpectedInfo)
633       return ExpectedInfo.takeError();
634     auto ExpectedCSDVersion = File.getString(ExpectedInfo->CSDVersionRVA);
635     if (!ExpectedCSDVersion)
636       return ExpectedInfo.takeError();
637     return llvm::make_unique<SystemInfoStream>(*ExpectedInfo,
638                                                std::move(*ExpectedCSDVersion));
639   }
640   case StreamKind::TextContent:
641     return llvm::make_unique<TextContentStream>(
642         StreamDesc.Type, toStringRef(File.getRawStream(StreamDesc)));
643   case StreamKind::ThreadList: {
644     auto ExpectedList = File.getThreadList();
645     if (!ExpectedList)
646       return ExpectedList.takeError();
647     std::vector<ThreadListStream::entry_type> Threads;
648     for (const Thread &T : *ExpectedList) {
649       auto ExpectedStack = File.getRawData(T.Stack.Memory);
650       if (!ExpectedStack)
651         return ExpectedStack.takeError();
652       auto ExpectedContext = File.getRawData(T.Context);
653       if (!ExpectedContext)
654         return ExpectedContext.takeError();
655       Threads.push_back({T, *ExpectedStack, *ExpectedContext});
656     }
657     return llvm::make_unique<ThreadListStream>(std::move(Threads));
658   }
659   }
660   llvm_unreachable("Unhandled stream kind!");
661 }
662 
663 Expected<Object> Object::create(const object::MinidumpFile &File) {
664   std::vector<std::unique_ptr<Stream>> Streams;
665   Streams.reserve(File.streams().size());
666   for (const Directory &StreamDesc : File.streams()) {
667     auto ExpectedStream = Stream::create(StreamDesc, File);
668     if (!ExpectedStream)
669       return ExpectedStream.takeError();
670     Streams.push_back(std::move(*ExpectedStream));
671   }
672   return Object(File.header(), std::move(Streams));
673 }
674