xref: /freebsd/contrib/llvm-project/llvm/lib/ObjectYAML/ELFEmitter.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The ELF component of yaml2obj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/StringSet.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/MC/StringTableBuilder.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ELFTypes.h"
22 #include "llvm/ObjectYAML/DWARFEmitter.h"
23 #include "llvm/ObjectYAML/DWARFYAML.h"
24 #include "llvm/ObjectYAML/ELFYAML.h"
25 #include "llvm/ObjectYAML/yaml2obj.h"
26 #include "llvm/Support/EndianStream.h"
27 #include "llvm/Support/Errc.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Support/MemoryBuffer.h"
31 #include "llvm/Support/WithColor.h"
32 #include "llvm/Support/YAMLTraits.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace llvm;
36 
37 // This class is used to build up a contiguous binary blob while keeping
38 // track of an offset in the output (which notionally begins at
39 // `InitialOffset`).
40 // The blob might be limited to an arbitrary size. All attempts to write data
41 // are ignored and the error condition is remembered once the limit is reached.
42 // Such an approach allows us to simplify the code by delaying error reporting
43 // and doing it at a convenient time.
44 namespace {
45 class ContiguousBlobAccumulator {
46   const uint64_t InitialOffset;
47   const uint64_t MaxSize;
48 
49   SmallVector<char, 128> Buf;
50   raw_svector_ostream OS;
51   Error ReachedLimitErr = Error::success();
52 
53   bool checkLimit(uint64_t Size) {
54     if (!ReachedLimitErr && getOffset() + Size <= MaxSize)
55       return true;
56     if (!ReachedLimitErr)
57       ReachedLimitErr = createStringError(errc::invalid_argument,
58                                           "reached the output size limit");
59     return false;
60   }
61 
62 public:
63   ContiguousBlobAccumulator(uint64_t BaseOffset, uint64_t SizeLimit)
64       : InitialOffset(BaseOffset), MaxSize(SizeLimit), OS(Buf) {}
65 
66   uint64_t tell() const { return OS.tell(); }
67   uint64_t getOffset() const { return InitialOffset + OS.tell(); }
68   void writeBlobToStream(raw_ostream &Out) const { Out << OS.str(); }
69 
70   Error takeLimitError() {
71     // Request to write 0 bytes to check we did not reach the limit.
72     checkLimit(0);
73     return std::move(ReachedLimitErr);
74   }
75 
76   /// \returns The new offset.
77   uint64_t padToAlignment(unsigned Align) {
78     uint64_t CurrentOffset = getOffset();
79     if (ReachedLimitErr)
80       return CurrentOffset;
81 
82     uint64_t AlignedOffset = alignTo(CurrentOffset, Align == 0 ? 1 : Align);
83     uint64_t PaddingSize = AlignedOffset - CurrentOffset;
84     if (!checkLimit(PaddingSize))
85       return CurrentOffset;
86 
87     writeZeros(PaddingSize);
88     return AlignedOffset;
89   }
90 
91   raw_ostream *getRawOS(uint64_t Size) {
92     if (checkLimit(Size))
93       return &OS;
94     return nullptr;
95   }
96 
97   void writeAsBinary(const yaml::BinaryRef &Bin, uint64_t N = UINT64_MAX) {
98     if (!checkLimit(Bin.binary_size()))
99       return;
100     Bin.writeAsBinary(OS, N);
101   }
102 
103   void writeZeros(uint64_t Num) {
104     if (checkLimit(Num))
105       OS.write_zeros(Num);
106   }
107 
108   void write(const char *Ptr, size_t Size) {
109     if (checkLimit(Size))
110       OS.write(Ptr, Size);
111   }
112 
113   void write(unsigned char C) {
114     if (checkLimit(1))
115       OS.write(C);
116   }
117 
118   unsigned writeULEB128(uint64_t Val) {
119     if (!checkLimit(sizeof(uint64_t)))
120       return 0;
121     return encodeULEB128(Val, OS);
122   }
123 
124   template <typename T> void write(T Val, support::endianness E) {
125     if (checkLimit(sizeof(T)))
126       support::endian::write<T>(OS, Val, E);
127   }
128 
129   void updateDataAt(uint64_t Pos, void *Data, size_t Size) {
130     assert(Pos >= InitialOffset && Pos + Size <= getOffset());
131     memcpy(&Buf[Pos - InitialOffset], Data, Size);
132   }
133 };
134 
135 // Used to keep track of section and symbol names, so that in the YAML file
136 // sections and symbols can be referenced by name instead of by index.
137 class NameToIdxMap {
138   StringMap<unsigned> Map;
139 
140 public:
141   /// \Returns false if name is already present in the map.
142   bool addName(StringRef Name, unsigned Ndx) {
143     return Map.insert({Name, Ndx}).second;
144   }
145   /// \Returns false if name is not present in the map.
146   bool lookup(StringRef Name, unsigned &Idx) const {
147     auto I = Map.find(Name);
148     if (I == Map.end())
149       return false;
150     Idx = I->getValue();
151     return true;
152   }
153   /// Asserts if name is not present in the map.
154   unsigned get(StringRef Name) const {
155     unsigned Idx;
156     if (lookup(Name, Idx))
157       return Idx;
158     assert(false && "Expected section not found in index");
159     return 0;
160   }
161   unsigned size() const { return Map.size(); }
162 };
163 
164 namespace {
165 struct Fragment {
166   uint64_t Offset;
167   uint64_t Size;
168   uint32_t Type;
169   uint64_t AddrAlign;
170 };
171 } // namespace
172 
173 /// "Single point of truth" for the ELF file construction.
174 /// TODO: This class still has a ways to go before it is truly a "single
175 /// point of truth".
176 template <class ELFT> class ELFState {
177   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
178 
179   enum class SymtabType { Static, Dynamic };
180 
181   /// The future symbol table string section.
182   StringTableBuilder DotStrtab{StringTableBuilder::ELF};
183 
184   /// The future section header string table section, if a unique string table
185   /// is needed. Don't reference this variable direectly: use the
186   /// ShStrtabStrings member instead.
187   StringTableBuilder DotShStrtab{StringTableBuilder::ELF};
188 
189   /// The future dynamic symbol string section.
190   StringTableBuilder DotDynstr{StringTableBuilder::ELF};
191 
192   /// The name of the section header string table section. If it is .strtab or
193   /// .dynstr, the section header strings will be written to the same string
194   /// table as the static/dynamic symbols respectively. Otherwise a dedicated
195   /// section will be created with that name.
196   StringRef SectionHeaderStringTableName = ".shstrtab";
197   StringTableBuilder *ShStrtabStrings = &DotShStrtab;
198 
199   NameToIdxMap SN2I;
200   NameToIdxMap SymN2I;
201   NameToIdxMap DynSymN2I;
202   ELFYAML::Object &Doc;
203 
204   StringSet<> ExcludedSectionHeaders;
205 
206   uint64_t LocationCounter = 0;
207   bool HasError = false;
208   yaml::ErrorHandler ErrHandler;
209   void reportError(const Twine &Msg);
210   void reportError(Error Err);
211 
212   std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
213                                     const StringTableBuilder &Strtab);
214   unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = "");
215   unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic);
216 
217   void buildSectionIndex();
218   void buildSymbolIndexes();
219   void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
220   bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header,
221                           StringRef SecName, ELFYAML::Section *YAMLSec);
222   void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
223                           ContiguousBlobAccumulator &CBA);
224   void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
225                                ContiguousBlobAccumulator &CBA,
226                                ELFYAML::Section *YAMLSec);
227   void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
228                                StringTableBuilder &STB,
229                                ContiguousBlobAccumulator &CBA,
230                                ELFYAML::Section *YAMLSec);
231   void initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
232                               ContiguousBlobAccumulator &CBA,
233                               ELFYAML::Section *YAMLSec);
234   void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
235                               std::vector<Elf_Shdr> &SHeaders);
236 
237   std::vector<Fragment>
238   getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
239                    ArrayRef<typename ELFT::Shdr> SHeaders);
240 
241   void finalizeStrings();
242   void writeELFHeader(raw_ostream &OS);
243   void writeSectionContent(Elf_Shdr &SHeader,
244                            const ELFYAML::NoBitsSection &Section,
245                            ContiguousBlobAccumulator &CBA);
246   void writeSectionContent(Elf_Shdr &SHeader,
247                            const ELFYAML::RawContentSection &Section,
248                            ContiguousBlobAccumulator &CBA);
249   void writeSectionContent(Elf_Shdr &SHeader,
250                            const ELFYAML::RelocationSection &Section,
251                            ContiguousBlobAccumulator &CBA);
252   void writeSectionContent(Elf_Shdr &SHeader,
253                            const ELFYAML::RelrSection &Section,
254                            ContiguousBlobAccumulator &CBA);
255   void writeSectionContent(Elf_Shdr &SHeader,
256                            const ELFYAML::GroupSection &Group,
257                            ContiguousBlobAccumulator &CBA);
258   void writeSectionContent(Elf_Shdr &SHeader,
259                            const ELFYAML::SymtabShndxSection &Shndx,
260                            ContiguousBlobAccumulator &CBA);
261   void writeSectionContent(Elf_Shdr &SHeader,
262                            const ELFYAML::SymverSection &Section,
263                            ContiguousBlobAccumulator &CBA);
264   void writeSectionContent(Elf_Shdr &SHeader,
265                            const ELFYAML::VerneedSection &Section,
266                            ContiguousBlobAccumulator &CBA);
267   void writeSectionContent(Elf_Shdr &SHeader,
268                            const ELFYAML::VerdefSection &Section,
269                            ContiguousBlobAccumulator &CBA);
270   void writeSectionContent(Elf_Shdr &SHeader,
271                            const ELFYAML::ARMIndexTableSection &Section,
272                            ContiguousBlobAccumulator &CBA);
273   void writeSectionContent(Elf_Shdr &SHeader,
274                            const ELFYAML::MipsABIFlags &Section,
275                            ContiguousBlobAccumulator &CBA);
276   void writeSectionContent(Elf_Shdr &SHeader,
277                            const ELFYAML::DynamicSection &Section,
278                            ContiguousBlobAccumulator &CBA);
279   void writeSectionContent(Elf_Shdr &SHeader,
280                            const ELFYAML::StackSizesSection &Section,
281                            ContiguousBlobAccumulator &CBA);
282   void writeSectionContent(Elf_Shdr &SHeader,
283                            const ELFYAML::BBAddrMapSection &Section,
284                            ContiguousBlobAccumulator &CBA);
285   void writeSectionContent(Elf_Shdr &SHeader,
286                            const ELFYAML::HashSection &Section,
287                            ContiguousBlobAccumulator &CBA);
288   void writeSectionContent(Elf_Shdr &SHeader,
289                            const ELFYAML::AddrsigSection &Section,
290                            ContiguousBlobAccumulator &CBA);
291   void writeSectionContent(Elf_Shdr &SHeader,
292                            const ELFYAML::NoteSection &Section,
293                            ContiguousBlobAccumulator &CBA);
294   void writeSectionContent(Elf_Shdr &SHeader,
295                            const ELFYAML::GnuHashSection &Section,
296                            ContiguousBlobAccumulator &CBA);
297   void writeSectionContent(Elf_Shdr &SHeader,
298                            const ELFYAML::LinkerOptionsSection &Section,
299                            ContiguousBlobAccumulator &CBA);
300   void writeSectionContent(Elf_Shdr &SHeader,
301                            const ELFYAML::DependentLibrariesSection &Section,
302                            ContiguousBlobAccumulator &CBA);
303   void writeSectionContent(Elf_Shdr &SHeader,
304                            const ELFYAML::CallGraphProfileSection &Section,
305                            ContiguousBlobAccumulator &CBA);
306 
307   void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA);
308 
309   ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH);
310 
311   void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec);
312 
313   DenseMap<StringRef, size_t> buildSectionHeaderReorderMap();
314 
315   BumpPtrAllocator StringAlloc;
316   uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
317                          llvm::Optional<llvm::yaml::Hex64> Offset);
318 
319   uint64_t getSectionNameOffset(StringRef Name);
320 
321 public:
322   static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
323                        yaml::ErrorHandler EH, uint64_t MaxSize);
324 };
325 } // end anonymous namespace
326 
327 template <class T> static size_t arrayDataSize(ArrayRef<T> A) {
328   return A.size() * sizeof(T);
329 }
330 
331 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
332   OS.write((const char *)A.data(), arrayDataSize(A));
333 }
334 
335 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); }
336 
337 template <class ELFT>
338 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH)
339     : Doc(D), ErrHandler(EH) {
340   // The input may explicitly request to store the section header table strings
341   // in the same string table as dynamic or static symbol names. Set the
342   // ShStrtabStrings member accordingly.
343   if (Doc.Header.SectionHeaderStringTable) {
344     SectionHeaderStringTableName = *Doc.Header.SectionHeaderStringTable;
345     if (*Doc.Header.SectionHeaderStringTable == ".strtab")
346       ShStrtabStrings = &DotStrtab;
347     else if (*Doc.Header.SectionHeaderStringTable == ".dynstr")
348       ShStrtabStrings = &DotDynstr;
349     // Otherwise, the unique table will be used.
350   }
351 
352   std::vector<ELFYAML::Section *> Sections = Doc.getSections();
353   // Insert SHT_NULL section implicitly when it is not defined in YAML.
354   if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL)
355     Doc.Chunks.insert(
356         Doc.Chunks.begin(),
357         std::make_unique<ELFYAML::Section>(
358             ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true));
359 
360   StringSet<> DocSections;
361   ELFYAML::SectionHeaderTable *SecHdrTable = nullptr;
362   for (size_t I = 0; I < Doc.Chunks.size(); ++I) {
363     const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I];
364 
365     // We might have an explicit section header table declaration.
366     if (auto S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) {
367       if (SecHdrTable)
368         reportError("multiple section header tables are not allowed");
369       SecHdrTable = S;
370       continue;
371     }
372 
373     // We add a technical suffix for each unnamed section/fill. It does not
374     // affect the output, but allows us to map them by name in the code and
375     // report better error messages.
376     if (C->Name.empty()) {
377       std::string NewName = ELFYAML::appendUniqueSuffix(
378           /*Name=*/"", "index " + Twine(I));
379       C->Name = StringRef(NewName).copy(StringAlloc);
380       assert(ELFYAML::dropUniqueSuffix(C->Name).empty());
381     }
382 
383     if (!DocSections.insert(C->Name).second)
384       reportError("repeated section/fill name: '" + C->Name +
385                   "' at YAML section/fill number " + Twine(I));
386   }
387 
388   SmallSetVector<StringRef, 8> ImplicitSections;
389   if (Doc.DynamicSymbols) {
390     if (SectionHeaderStringTableName == ".dynsym")
391       reportError("cannot use '.dynsym' as the section header name table when "
392                   "there are dynamic symbols");
393     ImplicitSections.insert(".dynsym");
394     ImplicitSections.insert(".dynstr");
395   }
396   if (Doc.Symbols) {
397     if (SectionHeaderStringTableName == ".symtab")
398       reportError("cannot use '.symtab' as the section header name table when "
399                   "there are symbols");
400     ImplicitSections.insert(".symtab");
401   }
402   if (Doc.DWARF)
403     for (StringRef DebugSecName : Doc.DWARF->getNonEmptySectionNames()) {
404       std::string SecName = ("." + DebugSecName).str();
405       // TODO: For .debug_str it should be possible to share the string table,
406       // in the same manner as the symbol string tables.
407       if (SectionHeaderStringTableName == SecName)
408         reportError("cannot use '" + SecName +
409                     "' as the section header name table when it is needed for "
410                     "DWARF output");
411       ImplicitSections.insert(StringRef(SecName).copy(StringAlloc));
412     }
413   // TODO: Only create the .strtab here if any symbols have been requested.
414   ImplicitSections.insert(".strtab");
415   if (!SecHdrTable || !SecHdrTable->NoHeaders.value_or(false))
416     ImplicitSections.insert(SectionHeaderStringTableName);
417 
418   // Insert placeholders for implicit sections that are not
419   // defined explicitly in YAML.
420   for (StringRef SecName : ImplicitSections) {
421     if (DocSections.count(SecName))
422       continue;
423 
424     std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>(
425         ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/);
426     Sec->Name = SecName;
427 
428     if (SecName == SectionHeaderStringTableName)
429       Sec->Type = ELF::SHT_STRTAB;
430     else if (SecName == ".dynsym")
431       Sec->Type = ELF::SHT_DYNSYM;
432     else if (SecName == ".symtab")
433       Sec->Type = ELF::SHT_SYMTAB;
434     else
435       Sec->Type = ELF::SHT_STRTAB;
436 
437     // When the section header table is explicitly defined at the end of the
438     // sections list, it is reasonable to assume that the user wants to reorder
439     // section headers, but still wants to place the section header table after
440     // all sections, like it normally happens. In this case we want to insert
441     // other implicit sections right before the section header table.
442     if (Doc.Chunks.back().get() == SecHdrTable)
443       Doc.Chunks.insert(Doc.Chunks.end() - 1, std::move(Sec));
444     else
445       Doc.Chunks.push_back(std::move(Sec));
446   }
447 
448   // Insert the section header table implicitly at the end, when it is not
449   // explicitly defined.
450   if (!SecHdrTable)
451     Doc.Chunks.push_back(
452         std::make_unique<ELFYAML::SectionHeaderTable>(/*IsImplicit=*/true));
453 }
454 
455 template <class ELFT>
456 void ELFState<ELFT>::writeELFHeader(raw_ostream &OS) {
457   using namespace llvm::ELF;
458 
459   Elf_Ehdr Header;
460   zero(Header);
461   Header.e_ident[EI_MAG0] = 0x7f;
462   Header.e_ident[EI_MAG1] = 'E';
463   Header.e_ident[EI_MAG2] = 'L';
464   Header.e_ident[EI_MAG3] = 'F';
465   Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
466   Header.e_ident[EI_DATA] = Doc.Header.Data;
467   Header.e_ident[EI_VERSION] = EV_CURRENT;
468   Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
469   Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
470   Header.e_type = Doc.Header.Type;
471 
472   if (Doc.Header.Machine)
473     Header.e_machine = *Doc.Header.Machine;
474   else
475     Header.e_machine = EM_NONE;
476 
477   Header.e_version = EV_CURRENT;
478   Header.e_entry = Doc.Header.Entry;
479   Header.e_flags = Doc.Header.Flags;
480   Header.e_ehsize = sizeof(Elf_Ehdr);
481 
482   if (Doc.Header.EPhOff)
483     Header.e_phoff = *Doc.Header.EPhOff;
484   else if (!Doc.ProgramHeaders.empty())
485     Header.e_phoff = sizeof(Header);
486   else
487     Header.e_phoff = 0;
488 
489   if (Doc.Header.EPhEntSize)
490     Header.e_phentsize = *Doc.Header.EPhEntSize;
491   else if (!Doc.ProgramHeaders.empty())
492     Header.e_phentsize = sizeof(Elf_Phdr);
493   else
494     Header.e_phentsize = 0;
495 
496   if (Doc.Header.EPhNum)
497     Header.e_phnum = *Doc.Header.EPhNum;
498   else if (!Doc.ProgramHeaders.empty())
499     Header.e_phnum = Doc.ProgramHeaders.size();
500   else
501     Header.e_phnum = 0;
502 
503   Header.e_shentsize = Doc.Header.EShEntSize ? (uint16_t)*Doc.Header.EShEntSize
504                                              : sizeof(Elf_Shdr);
505 
506   const ELFYAML::SectionHeaderTable &SectionHeaders =
507       Doc.getSectionHeaderTable();
508 
509   if (Doc.Header.EShOff)
510     Header.e_shoff = *Doc.Header.EShOff;
511   else if (SectionHeaders.Offset)
512     Header.e_shoff = *SectionHeaders.Offset;
513   else
514     Header.e_shoff = 0;
515 
516   if (Doc.Header.EShNum)
517     Header.e_shnum = *Doc.Header.EShNum;
518   else
519     Header.e_shnum = SectionHeaders.getNumHeaders(Doc.getSections().size());
520 
521   if (Doc.Header.EShStrNdx)
522     Header.e_shstrndx = *Doc.Header.EShStrNdx;
523   else if (SectionHeaders.Offset &&
524            !ExcludedSectionHeaders.count(SectionHeaderStringTableName))
525     Header.e_shstrndx = SN2I.get(SectionHeaderStringTableName);
526   else
527     Header.e_shstrndx = 0;
528 
529   OS.write((const char *)&Header, sizeof(Header));
530 }
531 
532 template <class ELFT>
533 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
534   DenseMap<StringRef, ELFYAML::Fill *> NameToFill;
535   DenseMap<StringRef, size_t> NameToIndex;
536   for (size_t I = 0, E = Doc.Chunks.size(); I != E; ++I) {
537     if (auto S = dyn_cast<ELFYAML::Fill>(Doc.Chunks[I].get()))
538       NameToFill[S->Name] = S;
539     NameToIndex[Doc.Chunks[I]->Name] = I + 1;
540   }
541 
542   std::vector<ELFYAML::Section *> Sections = Doc.getSections();
543   for (size_t I = 0, E = Doc.ProgramHeaders.size(); I != E; ++I) {
544     ELFYAML::ProgramHeader &YamlPhdr = Doc.ProgramHeaders[I];
545     Elf_Phdr Phdr;
546     zero(Phdr);
547     Phdr.p_type = YamlPhdr.Type;
548     Phdr.p_flags = YamlPhdr.Flags;
549     Phdr.p_vaddr = YamlPhdr.VAddr;
550     Phdr.p_paddr = YamlPhdr.PAddr;
551     PHeaders.push_back(Phdr);
552 
553     if (!YamlPhdr.FirstSec && !YamlPhdr.LastSec)
554       continue;
555 
556     // Get the index of the section, or 0 in the case when the section doesn't exist.
557     size_t First = NameToIndex[*YamlPhdr.FirstSec];
558     if (!First)
559       reportError("unknown section or fill referenced: '" + *YamlPhdr.FirstSec +
560                   "' by the 'FirstSec' key of the program header with index " +
561                   Twine(I));
562     size_t Last = NameToIndex[*YamlPhdr.LastSec];
563     if (!Last)
564       reportError("unknown section or fill referenced: '" + *YamlPhdr.LastSec +
565                   "' by the 'LastSec' key of the program header with index " +
566                   Twine(I));
567     if (!First || !Last)
568       continue;
569 
570     if (First > Last)
571       reportError("program header with index " + Twine(I) +
572                   ": the section index of " + *YamlPhdr.FirstSec +
573                   " is greater than the index of " + *YamlPhdr.LastSec);
574 
575     for (size_t I = First; I <= Last; ++I)
576       YamlPhdr.Chunks.push_back(Doc.Chunks[I - 1].get());
577   }
578 }
579 
580 template <class ELFT>
581 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec,
582                                         StringRef LocSym) {
583   assert(LocSec.empty() || LocSym.empty());
584 
585   unsigned Index;
586   if (!SN2I.lookup(S, Index) && !to_integer(S, Index)) {
587     if (!LocSym.empty())
588       reportError("unknown section referenced: '" + S + "' by YAML symbol '" +
589                   LocSym + "'");
590     else
591       reportError("unknown section referenced: '" + S + "' by YAML section '" +
592                   LocSec + "'");
593     return 0;
594   }
595 
596   const ELFYAML::SectionHeaderTable &SectionHeaders =
597       Doc.getSectionHeaderTable();
598   if (SectionHeaders.IsImplicit ||
599       (SectionHeaders.NoHeaders && !*SectionHeaders.NoHeaders) ||
600       SectionHeaders.isDefault())
601     return Index;
602 
603   assert(!SectionHeaders.NoHeaders.value_or(false) || !SectionHeaders.Sections);
604   size_t FirstExcluded =
605       SectionHeaders.Sections ? SectionHeaders.Sections->size() : 0;
606   if (Index > FirstExcluded) {
607     if (LocSym.empty())
608       reportError("unable to link '" + LocSec + "' to excluded section '" + S +
609                   "'");
610     else
611       reportError("excluded section referenced: '" + S + "'  by symbol '" +
612                   LocSym + "'");
613   }
614   return Index;
615 }
616 
617 template <class ELFT>
618 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec,
619                                        bool IsDynamic) {
620   const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I;
621   unsigned Index;
622   // Here we try to look up S in the symbol table. If it is not there,
623   // treat its value as a symbol index.
624   if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) {
625     reportError("unknown symbol referenced: '" + S + "' by YAML section '" +
626                 LocSec + "'");
627     return 0;
628   }
629   return Index;
630 }
631 
632 template <class ELFT>
633 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) {
634   if (!From)
635     return;
636   if (From->ShAddrAlign)
637     To.sh_addralign = *From->ShAddrAlign;
638   if (From->ShFlags)
639     To.sh_flags = *From->ShFlags;
640   if (From->ShName)
641     To.sh_name = *From->ShName;
642   if (From->ShOffset)
643     To.sh_offset = *From->ShOffset;
644   if (From->ShSize)
645     To.sh_size = *From->ShSize;
646   if (From->ShType)
647     To.sh_type = *From->ShType;
648 }
649 
650 template <class ELFT>
651 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA,
652                                         Elf_Shdr &Header, StringRef SecName,
653                                         ELFYAML::Section *YAMLSec) {
654   // Check if the header was already initialized.
655   if (Header.sh_offset)
656     return false;
657 
658   if (SecName == ".strtab")
659     initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec);
660   else if (SecName == ".dynstr")
661     initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec);
662   else if (SecName == SectionHeaderStringTableName)
663     initStrtabSectionHeader(Header, SecName, *ShStrtabStrings, CBA, YAMLSec);
664   else if (SecName == ".symtab")
665     initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
666   else if (SecName == ".dynsym")
667     initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
668   else if (SecName.startswith(".debug_")) {
669     // If a ".debug_*" section's type is a preserved one, e.g., SHT_DYNAMIC, we
670     // will not treat it as a debug section.
671     if (YAMLSec && !isa<ELFYAML::RawContentSection>(YAMLSec))
672       return false;
673     initDWARFSectionHeader(Header, SecName, CBA, YAMLSec);
674   } else
675     return false;
676 
677   LocationCounter += Header.sh_size;
678 
679   // Override section fields if requested.
680   overrideFields<ELFT>(YAMLSec, Header);
681   return true;
682 }
683 
684 constexpr char SuffixStart = '(';
685 constexpr char SuffixEnd = ')';
686 
687 std::string llvm::ELFYAML::appendUniqueSuffix(StringRef Name,
688                                               const Twine &Msg) {
689   // Do not add a space when a Name is empty.
690   std::string Ret = Name.empty() ? "" : Name.str() + ' ';
691   return Ret + (Twine(SuffixStart) + Msg + Twine(SuffixEnd)).str();
692 }
693 
694 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) {
695   if (S.empty() || S.back() != SuffixEnd)
696     return S;
697 
698   // A special case for empty names. See appendUniqueSuffix() above.
699   size_t SuffixPos = S.rfind(SuffixStart);
700   if (SuffixPos == 0)
701     return "";
702 
703   if (SuffixPos == StringRef::npos || S[SuffixPos - 1] != ' ')
704     return S;
705   return S.substr(0, SuffixPos - 1);
706 }
707 
708 template <class ELFT>
709 uint64_t ELFState<ELFT>::getSectionNameOffset(StringRef Name) {
710   // If a section is excluded from section headers, we do not save its name in
711   // the string table.
712   if (ExcludedSectionHeaders.count(Name))
713     return 0;
714   return ShStrtabStrings->getOffset(Name);
715 }
716 
717 static uint64_t writeContent(ContiguousBlobAccumulator &CBA,
718                              const Optional<yaml::BinaryRef> &Content,
719                              const Optional<llvm::yaml::Hex64> &Size) {
720   size_t ContentSize = 0;
721   if (Content) {
722     CBA.writeAsBinary(*Content);
723     ContentSize = Content->binary_size();
724   }
725 
726   if (!Size)
727     return ContentSize;
728 
729   CBA.writeZeros(*Size - ContentSize);
730   return *Size;
731 }
732 
733 static StringRef getDefaultLinkSec(unsigned SecType) {
734   switch (SecType) {
735   case ELF::SHT_REL:
736   case ELF::SHT_RELA:
737   case ELF::SHT_GROUP:
738   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
739   case ELF::SHT_LLVM_ADDRSIG:
740     return ".symtab";
741   case ELF::SHT_GNU_versym:
742   case ELF::SHT_HASH:
743   case ELF::SHT_GNU_HASH:
744     return ".dynsym";
745   case ELF::SHT_DYNSYM:
746   case ELF::SHT_GNU_verdef:
747   case ELF::SHT_GNU_verneed:
748     return ".dynstr";
749   case ELF::SHT_SYMTAB:
750     return ".strtab";
751   default:
752     return "";
753   }
754 }
755 
756 template <class ELFT>
757 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
758                                         ContiguousBlobAccumulator &CBA) {
759   // Ensure SHN_UNDEF entry is present. An all-zero section header is a
760   // valid SHN_UNDEF entry since SHT_NULL == 0.
761   SHeaders.resize(Doc.getSections().size());
762 
763   for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) {
764     if (ELFYAML::Fill *S = dyn_cast<ELFYAML::Fill>(D.get())) {
765       S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
766       writeFill(*S, CBA);
767       LocationCounter += S->Size;
768       continue;
769     }
770 
771     if (ELFYAML::SectionHeaderTable *S =
772             dyn_cast<ELFYAML::SectionHeaderTable>(D.get())) {
773       if (S->NoHeaders.value_or(false))
774         continue;
775 
776       if (!S->Offset)
777         S->Offset = alignToOffset(CBA, sizeof(typename ELFT::uint),
778                                   /*Offset=*/None);
779       else
780         S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset);
781 
782       uint64_t Size = S->getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr);
783       // The full section header information might be not available here, so
784       // fill the space with zeroes as a placeholder.
785       CBA.writeZeros(Size);
786       LocationCounter += Size;
787       continue;
788     }
789 
790     ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get());
791     bool IsFirstUndefSection = Sec == Doc.getSections().front();
792     if (IsFirstUndefSection && Sec->IsImplicit)
793       continue;
794 
795     Elf_Shdr &SHeader = SHeaders[SN2I.get(Sec->Name)];
796     if (Sec->Link) {
797       SHeader.sh_link = toSectionIndex(*Sec->Link, Sec->Name);
798     } else {
799       StringRef LinkSec = getDefaultLinkSec(Sec->Type);
800       unsigned Link = 0;
801       if (!LinkSec.empty() && !ExcludedSectionHeaders.count(LinkSec) &&
802           SN2I.lookup(LinkSec, Link))
803         SHeader.sh_link = Link;
804     }
805 
806     if (Sec->EntSize)
807       SHeader.sh_entsize = *Sec->EntSize;
808     else
809       SHeader.sh_entsize = ELFYAML::getDefaultShEntSize<ELFT>(
810           Doc.Header.Machine.value_or(ELF::EM_NONE), Sec->Type, Sec->Name);
811 
812     // We have a few sections like string or symbol tables that are usually
813     // added implicitly to the end. However, if they are explicitly specified
814     // in the YAML, we need to write them here. This ensures the file offset
815     // remains correct.
816     if (initImplicitHeader(CBA, SHeader, Sec->Name,
817                            Sec->IsImplicit ? nullptr : Sec))
818       continue;
819 
820     assert(Sec && "It can't be null unless it is an implicit section. But all "
821                   "implicit sections should already have been handled above.");
822 
823     SHeader.sh_name =
824         getSectionNameOffset(ELFYAML::dropUniqueSuffix(Sec->Name));
825     SHeader.sh_type = Sec->Type;
826     if (Sec->Flags)
827       SHeader.sh_flags = *Sec->Flags;
828     SHeader.sh_addralign = Sec->AddressAlign;
829 
830     // Set the offset for all sections, except the SHN_UNDEF section with index
831     // 0 when not explicitly requested.
832     if (!IsFirstUndefSection || Sec->Offset)
833       SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset);
834 
835     assignSectionAddress(SHeader, Sec);
836 
837     if (IsFirstUndefSection) {
838       if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
839         // We do not write any content for special SHN_UNDEF section.
840         if (RawSec->Size)
841           SHeader.sh_size = *RawSec->Size;
842         if (RawSec->Info)
843           SHeader.sh_info = *RawSec->Info;
844       }
845 
846       LocationCounter += SHeader.sh_size;
847       overrideFields<ELFT>(Sec, SHeader);
848       continue;
849     }
850 
851     if (!isa<ELFYAML::NoBitsSection>(Sec) && (Sec->Content || Sec->Size))
852       SHeader.sh_size = writeContent(CBA, Sec->Content, Sec->Size);
853 
854     if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
855       writeSectionContent(SHeader, *S, CBA);
856     } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) {
857       writeSectionContent(SHeader, *S, CBA);
858     } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
859       writeSectionContent(SHeader, *S, CBA);
860     } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) {
861       writeSectionContent(SHeader, *S, CBA);
862     } else if (auto S = dyn_cast<ELFYAML::GroupSection>(Sec)) {
863       writeSectionContent(SHeader, *S, CBA);
864     } else if (auto S = dyn_cast<ELFYAML::ARMIndexTableSection>(Sec)) {
865       writeSectionContent(SHeader, *S, CBA);
866     } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
867       writeSectionContent(SHeader, *S, CBA);
868     } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
869       writeSectionContent(SHeader, *S, CBA);
870     } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
871       writeSectionContent(SHeader, *S, CBA);
872     } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
873       writeSectionContent(SHeader, *S, CBA);
874     } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
875       writeSectionContent(SHeader, *S, CBA);
876     } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
877       writeSectionContent(SHeader, *S, CBA);
878     } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) {
879       writeSectionContent(SHeader, *S, CBA);
880     } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) {
881       writeSectionContent(SHeader, *S, CBA);
882     } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) {
883       writeSectionContent(SHeader, *S, CBA);
884     } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) {
885       writeSectionContent(SHeader, *S, CBA);
886     } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) {
887       writeSectionContent(SHeader, *S, CBA);
888     } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) {
889       writeSectionContent(SHeader, *S, CBA);
890     } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) {
891       writeSectionContent(SHeader, *S, CBA);
892     } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) {
893       writeSectionContent(SHeader, *S, CBA);
894     } else if (auto S = dyn_cast<ELFYAML::BBAddrMapSection>(Sec)) {
895       writeSectionContent(SHeader, *S, CBA);
896     } else {
897       llvm_unreachable("Unknown section type");
898     }
899 
900     LocationCounter += SHeader.sh_size;
901 
902     // Override section fields if requested.
903     overrideFields<ELFT>(Sec, SHeader);
904   }
905 }
906 
907 template <class ELFT>
908 void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader,
909                                           ELFYAML::Section *YAMLSec) {
910   if (YAMLSec && YAMLSec->Address) {
911     SHeader.sh_addr = *YAMLSec->Address;
912     LocationCounter = *YAMLSec->Address;
913     return;
914   }
915 
916   // sh_addr represents the address in the memory image of a process. Sections
917   // in a relocatable object file or non-allocatable sections do not need
918   // sh_addr assignment.
919   if (Doc.Header.Type.value == ELF::ET_REL ||
920       !(SHeader.sh_flags & ELF::SHF_ALLOC))
921     return;
922 
923   LocationCounter =
924       alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1);
925   SHeader.sh_addr = LocationCounter;
926 }
927 
928 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) {
929   for (size_t I = 0; I < Symbols.size(); ++I)
930     if (Symbols[I].Binding.value != ELF::STB_LOCAL)
931       return I;
932   return Symbols.size();
933 }
934 
935 template <class ELFT>
936 std::vector<typename ELFT::Sym>
937 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols,
938                              const StringTableBuilder &Strtab) {
939   std::vector<Elf_Sym> Ret;
940   Ret.resize(Symbols.size() + 1);
941 
942   size_t I = 0;
943   for (const ELFYAML::Symbol &Sym : Symbols) {
944     Elf_Sym &Symbol = Ret[++I];
945 
946     // If NameIndex, which contains the name offset, is explicitly specified, we
947     // use it. This is useful for preparing broken objects. Otherwise, we add
948     // the specified Name to the string table builder to get its offset.
949     if (Sym.StName)
950       Symbol.st_name = *Sym.StName;
951     else if (!Sym.Name.empty())
952       Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name));
953 
954     Symbol.setBindingAndType(Sym.Binding, Sym.Type);
955     if (Sym.Section)
956       Symbol.st_shndx = toSectionIndex(*Sym.Section, "", Sym.Name);
957     else if (Sym.Index)
958       Symbol.st_shndx = *Sym.Index;
959 
960     Symbol.st_value = Sym.Value.value_or(yaml::Hex64(0));
961     Symbol.st_other = Sym.Other ? *Sym.Other : 0;
962     Symbol.st_size = Sym.Size.value_or(yaml::Hex64(0));
963   }
964 
965   return Ret;
966 }
967 
968 template <class ELFT>
969 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
970                                              SymtabType STType,
971                                              ContiguousBlobAccumulator &CBA,
972                                              ELFYAML::Section *YAMLSec) {
973 
974   bool IsStatic = STType == SymtabType::Static;
975   ArrayRef<ELFYAML::Symbol> Symbols;
976   if (IsStatic && Doc.Symbols)
977     Symbols = *Doc.Symbols;
978   else if (!IsStatic && Doc.DynamicSymbols)
979     Symbols = *Doc.DynamicSymbols;
980 
981   ELFYAML::RawContentSection *RawSec =
982       dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
983   if (RawSec && (RawSec->Content || RawSec->Size)) {
984     bool HasSymbolsDescription =
985         (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols);
986     if (HasSymbolsDescription) {
987       StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`");
988       if (RawSec->Content)
989         reportError("cannot specify both `Content` and " + Property +
990                     " for symbol table section '" + RawSec->Name + "'");
991       if (RawSec->Size)
992         reportError("cannot specify both `Size` and " + Property +
993                     " for symbol table section '" + RawSec->Name + "'");
994       return;
995     }
996   }
997 
998   SHeader.sh_name = getSectionNameOffset(IsStatic ? ".symtab" : ".dynsym");
999 
1000   if (YAMLSec)
1001     SHeader.sh_type = YAMLSec->Type;
1002   else
1003     SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
1004 
1005   if (YAMLSec && YAMLSec->Flags)
1006     SHeader.sh_flags = *YAMLSec->Flags;
1007   else if (!IsStatic)
1008     SHeader.sh_flags = ELF::SHF_ALLOC;
1009 
1010   // If the symbol table section is explicitly described in the YAML
1011   // then we should set the fields requested.
1012   SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
1013                                              : findFirstNonGlobal(Symbols) + 1;
1014   SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
1015 
1016   assignSectionAddress(SHeader, YAMLSec);
1017 
1018   SHeader.sh_offset =
1019       alignToOffset(CBA, SHeader.sh_addralign, RawSec ? RawSec->Offset : None);
1020 
1021   if (RawSec && (RawSec->Content || RawSec->Size)) {
1022     assert(Symbols.empty());
1023     SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1024     return;
1025   }
1026 
1027   std::vector<Elf_Sym> Syms =
1028       toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr);
1029   SHeader.sh_size = Syms.size() * sizeof(Elf_Sym);
1030   CBA.write((const char *)Syms.data(), SHeader.sh_size);
1031 }
1032 
1033 template <class ELFT>
1034 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
1035                                              StringTableBuilder &STB,
1036                                              ContiguousBlobAccumulator &CBA,
1037                                              ELFYAML::Section *YAMLSec) {
1038   SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
1039   SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
1040   SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
1041 
1042   ELFYAML::RawContentSection *RawSec =
1043       dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
1044 
1045   SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1046                                     YAMLSec ? YAMLSec->Offset : None);
1047 
1048   if (RawSec && (RawSec->Content || RawSec->Size)) {
1049     SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1050   } else {
1051     if (raw_ostream *OS = CBA.getRawOS(STB.getSize()))
1052       STB.write(*OS);
1053     SHeader.sh_size = STB.getSize();
1054   }
1055 
1056   if (RawSec && RawSec->Info)
1057     SHeader.sh_info = *RawSec->Info;
1058 
1059   if (YAMLSec && YAMLSec->Flags)
1060     SHeader.sh_flags = *YAMLSec->Flags;
1061   else if (Name == ".dynstr")
1062     SHeader.sh_flags = ELF::SHF_ALLOC;
1063 
1064   assignSectionAddress(SHeader, YAMLSec);
1065 }
1066 
1067 static bool shouldEmitDWARF(DWARFYAML::Data &DWARF, StringRef Name) {
1068   SetVector<StringRef> DebugSecNames = DWARF.getNonEmptySectionNames();
1069   return Name.consume_front(".") && DebugSecNames.count(Name);
1070 }
1071 
1072 template <class ELFT>
1073 Expected<uint64_t> emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name,
1074                              const DWARFYAML::Data &DWARF,
1075                              ContiguousBlobAccumulator &CBA) {
1076   // We are unable to predict the size of debug data, so we request to write 0
1077   // bytes. This should always return us an output stream unless CBA is already
1078   // in an error state.
1079   raw_ostream *OS = CBA.getRawOS(0);
1080   if (!OS)
1081     return 0;
1082 
1083   uint64_t BeginOffset = CBA.tell();
1084 
1085   auto EmitFunc = DWARFYAML::getDWARFEmitterByName(Name.substr(1));
1086   if (Error Err = EmitFunc(*OS, DWARF))
1087     return std::move(Err);
1088 
1089   return CBA.tell() - BeginOffset;
1090 }
1091 
1092 template <class ELFT>
1093 void ELFState<ELFT>::initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name,
1094                                             ContiguousBlobAccumulator &CBA,
1095                                             ELFYAML::Section *YAMLSec) {
1096   SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name));
1097   SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_PROGBITS;
1098   SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
1099   SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign,
1100                                     YAMLSec ? YAMLSec->Offset : None);
1101 
1102   ELFYAML::RawContentSection *RawSec =
1103       dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
1104   if (Doc.DWARF && shouldEmitDWARF(*Doc.DWARF, Name)) {
1105     if (RawSec && (RawSec->Content || RawSec->Size))
1106       reportError("cannot specify section '" + Name +
1107                   "' contents in the 'DWARF' entry and the 'Content' "
1108                   "or 'Size' in the 'Sections' entry at the same time");
1109     else {
1110       if (Expected<uint64_t> ShSizeOrErr =
1111               emitDWARF<ELFT>(SHeader, Name, *Doc.DWARF, CBA))
1112         SHeader.sh_size = *ShSizeOrErr;
1113       else
1114         reportError(ShSizeOrErr.takeError());
1115     }
1116   } else if (RawSec)
1117     SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size);
1118   else
1119     llvm_unreachable("debug sections can only be initialized via the 'DWARF' "
1120                      "entry or a RawContentSection");
1121 
1122   if (RawSec && RawSec->Info)
1123     SHeader.sh_info = *RawSec->Info;
1124 
1125   if (YAMLSec && YAMLSec->Flags)
1126     SHeader.sh_flags = *YAMLSec->Flags;
1127   else if (Name == ".debug_str")
1128     SHeader.sh_flags = ELF::SHF_MERGE | ELF::SHF_STRINGS;
1129 
1130   assignSectionAddress(SHeader, YAMLSec);
1131 }
1132 
1133 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) {
1134   ErrHandler(Msg);
1135   HasError = true;
1136 }
1137 
1138 template <class ELFT> void ELFState<ELFT>::reportError(Error Err) {
1139   handleAllErrors(std::move(Err), [&](const ErrorInfoBase &Err) {
1140     reportError(Err.message());
1141   });
1142 }
1143 
1144 template <class ELFT>
1145 std::vector<Fragment>
1146 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr,
1147                                  ArrayRef<Elf_Shdr> SHeaders) {
1148   std::vector<Fragment> Ret;
1149   for (const ELFYAML::Chunk *C : Phdr.Chunks) {
1150     if (const ELFYAML::Fill *F = dyn_cast<ELFYAML::Fill>(C)) {
1151       Ret.push_back({*F->Offset, F->Size, llvm::ELF::SHT_PROGBITS,
1152                      /*ShAddrAlign=*/1});
1153       continue;
1154     }
1155 
1156     const ELFYAML::Section *S = cast<ELFYAML::Section>(C);
1157     const Elf_Shdr &H = SHeaders[SN2I.get(S->Name)];
1158     Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign});
1159   }
1160   return Ret;
1161 }
1162 
1163 template <class ELFT>
1164 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
1165                                             std::vector<Elf_Shdr> &SHeaders) {
1166   uint32_t PhdrIdx = 0;
1167   for (auto &YamlPhdr : Doc.ProgramHeaders) {
1168     Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
1169     std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders);
1170     if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) {
1171           return A.Offset < B.Offset;
1172         }))
1173       reportError("sections in the program header with index " +
1174                   Twine(PhdrIdx) + " are not sorted by their file offset");
1175 
1176     if (YamlPhdr.Offset) {
1177       if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset)
1178         reportError("'Offset' for segment with index " + Twine(PhdrIdx) +
1179                     " must be less than or equal to the minimum file offset of "
1180                     "all included sections (0x" +
1181                     Twine::utohexstr(Fragments.front().Offset) + ")");
1182       PHeader.p_offset = *YamlPhdr.Offset;
1183     } else if (!Fragments.empty()) {
1184       PHeader.p_offset = Fragments.front().Offset;
1185     }
1186 
1187     // Set the file size if not set explicitly.
1188     if (YamlPhdr.FileSize) {
1189       PHeader.p_filesz = *YamlPhdr.FileSize;
1190     } else if (!Fragments.empty()) {
1191       uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset;
1192       // SHT_NOBITS sections occupy no physical space in a file, we should not
1193       // take their sizes into account when calculating the file size of a
1194       // segment.
1195       if (Fragments.back().Type != llvm::ELF::SHT_NOBITS)
1196         FileSize += Fragments.back().Size;
1197       PHeader.p_filesz = FileSize;
1198     }
1199 
1200     // Find the maximum offset of the end of a section in order to set p_memsz.
1201     uint64_t MemOffset = PHeader.p_offset;
1202     for (const Fragment &F : Fragments)
1203       MemOffset = std::max(MemOffset, F.Offset + F.Size);
1204     // Set the memory size if not set explicitly.
1205     PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize)
1206                                        : MemOffset - PHeader.p_offset;
1207 
1208     if (YamlPhdr.Align) {
1209       PHeader.p_align = *YamlPhdr.Align;
1210     } else {
1211       // Set the alignment of the segment to be the maximum alignment of the
1212       // sections so that by default the segment has a valid and sensible
1213       // alignment.
1214       PHeader.p_align = 1;
1215       for (const Fragment &F : Fragments)
1216         PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign);
1217     }
1218   }
1219 }
1220 
1221 bool llvm::ELFYAML::shouldAllocateFileSpace(
1222     ArrayRef<ELFYAML::ProgramHeader> Phdrs, const ELFYAML::NoBitsSection &S) {
1223   for (const ELFYAML::ProgramHeader &PH : Phdrs) {
1224     auto It = llvm::find_if(
1225         PH.Chunks, [&](ELFYAML::Chunk *C) { return C->Name == S.Name; });
1226     if (std::any_of(It, PH.Chunks.end(), [](ELFYAML::Chunk *C) {
1227           return (isa<ELFYAML::Fill>(C) ||
1228                   cast<ELFYAML::Section>(C)->Type != ELF::SHT_NOBITS);
1229         }))
1230       return true;
1231   }
1232   return false;
1233 }
1234 
1235 template <class ELFT>
1236 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1237                                          const ELFYAML::NoBitsSection &S,
1238                                          ContiguousBlobAccumulator &CBA) {
1239   if (!S.Size)
1240     return;
1241 
1242   SHeader.sh_size = *S.Size;
1243 
1244   // When a nobits section is followed by a non-nobits section or fill
1245   // in the same segment, we allocate the file space for it. This behavior
1246   // matches linkers.
1247   if (shouldAllocateFileSpace(Doc.ProgramHeaders, S))
1248     CBA.writeZeros(*S.Size);
1249 }
1250 
1251 template <class ELFT>
1252 void ELFState<ELFT>::writeSectionContent(
1253     Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
1254     ContiguousBlobAccumulator &CBA) {
1255   if (Section.Info)
1256     SHeader.sh_info = *Section.Info;
1257 }
1258 
1259 static bool isMips64EL(const ELFYAML::Object &Obj) {
1260   return Obj.getMachine() == llvm::ELF::EM_MIPS &&
1261          Obj.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
1262          Obj.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
1263 }
1264 
1265 template <class ELFT>
1266 void ELFState<ELFT>::writeSectionContent(
1267     Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section,
1268     ContiguousBlobAccumulator &CBA) {
1269   assert((Section.Type == llvm::ELF::SHT_REL ||
1270           Section.Type == llvm::ELF::SHT_RELA) &&
1271          "Section type is not SHT_REL nor SHT_RELA");
1272 
1273   if (!Section.RelocatableSec.empty())
1274     SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name);
1275 
1276   if (!Section.Relocations)
1277     return;
1278 
1279   const bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
1280   for (const ELFYAML::Relocation &Rel : *Section.Relocations) {
1281     const bool IsDynamic = Section.Link && (*Section.Link == ".dynsym");
1282     unsigned SymIdx =
1283         Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, IsDynamic) : 0;
1284     if (IsRela) {
1285       Elf_Rela REntry;
1286       zero(REntry);
1287       REntry.r_offset = Rel.Offset;
1288       REntry.r_addend = Rel.Addend;
1289       REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
1290       CBA.write((const char *)&REntry, sizeof(REntry));
1291     } else {
1292       Elf_Rel REntry;
1293       zero(REntry);
1294       REntry.r_offset = Rel.Offset;
1295       REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
1296       CBA.write((const char *)&REntry, sizeof(REntry));
1297     }
1298   }
1299 
1300   SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) *
1301                     Section.Relocations->size();
1302 }
1303 
1304 template <class ELFT>
1305 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1306                                          const ELFYAML::RelrSection &Section,
1307                                          ContiguousBlobAccumulator &CBA) {
1308   if (!Section.Entries)
1309     return;
1310 
1311   for (llvm::yaml::Hex64 E : *Section.Entries) {
1312     if (!ELFT::Is64Bits && E > UINT32_MAX)
1313       reportError(Section.Name + ": the value is too large for 32-bits: 0x" +
1314                   Twine::utohexstr(E));
1315     CBA.write<uintX_t>(E, ELFT::TargetEndianness);
1316   }
1317 
1318   SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size();
1319 }
1320 
1321 template <class ELFT>
1322 void ELFState<ELFT>::writeSectionContent(
1323     Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx,
1324     ContiguousBlobAccumulator &CBA) {
1325   if (Shndx.Content || Shndx.Size) {
1326     SHeader.sh_size = writeContent(CBA, Shndx.Content, Shndx.Size);
1327     return;
1328   }
1329 
1330   if (!Shndx.Entries)
1331     return;
1332 
1333   for (uint32_t E : *Shndx.Entries)
1334     CBA.write<uint32_t>(E, ELFT::TargetEndianness);
1335   SHeader.sh_size = Shndx.Entries->size() * SHeader.sh_entsize;
1336 }
1337 
1338 template <class ELFT>
1339 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1340                                          const ELFYAML::GroupSection &Section,
1341                                          ContiguousBlobAccumulator &CBA) {
1342   assert(Section.Type == llvm::ELF::SHT_GROUP &&
1343          "Section type is not SHT_GROUP");
1344 
1345   if (Section.Signature)
1346     SHeader.sh_info =
1347         toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false);
1348 
1349   if (!Section.Members)
1350     return;
1351 
1352   for (const ELFYAML::SectionOrType &Member : *Section.Members) {
1353     unsigned int SectionIndex = 0;
1354     if (Member.sectionNameOrType == "GRP_COMDAT")
1355       SectionIndex = llvm::ELF::GRP_COMDAT;
1356     else
1357       SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name);
1358     CBA.write<uint32_t>(SectionIndex, ELFT::TargetEndianness);
1359   }
1360   SHeader.sh_size = SHeader.sh_entsize * Section.Members->size();
1361 }
1362 
1363 template <class ELFT>
1364 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1365                                          const ELFYAML::SymverSection &Section,
1366                                          ContiguousBlobAccumulator &CBA) {
1367   if (!Section.Entries)
1368     return;
1369 
1370   for (uint16_t Version : *Section.Entries)
1371     CBA.write<uint16_t>(Version, ELFT::TargetEndianness);
1372   SHeader.sh_size = Section.Entries->size() * SHeader.sh_entsize;
1373 }
1374 
1375 template <class ELFT>
1376 void ELFState<ELFT>::writeSectionContent(
1377     Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section,
1378     ContiguousBlobAccumulator &CBA) {
1379   if (!Section.Entries)
1380     return;
1381 
1382   for (const ELFYAML::StackSizeEntry &E : *Section.Entries) {
1383     CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness);
1384     SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(E.Size);
1385   }
1386 }
1387 
1388 template <class ELFT>
1389 void ELFState<ELFT>::writeSectionContent(
1390     Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section,
1391     ContiguousBlobAccumulator &CBA) {
1392   if (!Section.Entries)
1393     return;
1394 
1395   for (const ELFYAML::BBAddrMapEntry &E : *Section.Entries) {
1396     // Write version and feature values.
1397     if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP) {
1398       if (E.Version > 1)
1399         WithColor::warning() << "unsupported SHT_LLVM_BB_ADDR_MAP version: "
1400                              << static_cast<int>(E.Version)
1401                              << "; encoding using the most recent version";
1402       CBA.write(E.Version);
1403       CBA.write(E.Feature);
1404       SHeader.sh_size += 2;
1405     }
1406     // Write the address of the function.
1407     CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness);
1408     // Write number of BBEntries (number of basic blocks in the function). This
1409     // is overridden by the 'NumBlocks' YAML field when specified.
1410     uint64_t NumBlocks =
1411         E.NumBlocks.value_or(E.BBEntries ? E.BBEntries->size() : 0);
1412     SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(NumBlocks);
1413     // Write all BBEntries.
1414     if (!E.BBEntries)
1415       continue;
1416     for (const ELFYAML::BBAddrMapEntry::BBEntry &BBE : *E.BBEntries)
1417       SHeader.sh_size += CBA.writeULEB128(BBE.AddressOffset) +
1418                          CBA.writeULEB128(BBE.Size) +
1419                          CBA.writeULEB128(BBE.Metadata);
1420   }
1421 }
1422 
1423 template <class ELFT>
1424 void ELFState<ELFT>::writeSectionContent(
1425     Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section,
1426     ContiguousBlobAccumulator &CBA) {
1427   if (!Section.Options)
1428     return;
1429 
1430   for (const ELFYAML::LinkerOption &LO : *Section.Options) {
1431     CBA.write(LO.Key.data(), LO.Key.size());
1432     CBA.write('\0');
1433     CBA.write(LO.Value.data(), LO.Value.size());
1434     CBA.write('\0');
1435     SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2);
1436   }
1437 }
1438 
1439 template <class ELFT>
1440 void ELFState<ELFT>::writeSectionContent(
1441     Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section,
1442     ContiguousBlobAccumulator &CBA) {
1443   if (!Section.Libs)
1444     return;
1445 
1446   for (StringRef Lib : *Section.Libs) {
1447     CBA.write(Lib.data(), Lib.size());
1448     CBA.write('\0');
1449     SHeader.sh_size += Lib.size() + 1;
1450   }
1451 }
1452 
1453 template <class ELFT>
1454 uint64_t
1455 ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align,
1456                               llvm::Optional<llvm::yaml::Hex64> Offset) {
1457   uint64_t CurrentOffset = CBA.getOffset();
1458   uint64_t AlignedOffset;
1459 
1460   if (Offset) {
1461     if ((uint64_t)*Offset < CurrentOffset) {
1462       reportError("the 'Offset' value (0x" +
1463                   Twine::utohexstr((uint64_t)*Offset) + ") goes backward");
1464       return CurrentOffset;
1465     }
1466 
1467     // We ignore an alignment when an explicit offset has been requested.
1468     AlignedOffset = *Offset;
1469   } else {
1470     AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1));
1471   }
1472 
1473   CBA.writeZeros(AlignedOffset - CurrentOffset);
1474   return AlignedOffset;
1475 }
1476 
1477 template <class ELFT>
1478 void ELFState<ELFT>::writeSectionContent(
1479     Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section,
1480     ContiguousBlobAccumulator &CBA) {
1481   if (!Section.Entries)
1482     return;
1483 
1484   for (const ELFYAML::CallGraphEntryWeight &E : *Section.Entries) {
1485     CBA.write<uint64_t>(E.Weight, ELFT::TargetEndianness);
1486     SHeader.sh_size += sizeof(object::Elf_CGProfile_Impl<ELFT>);
1487   }
1488 }
1489 
1490 template <class ELFT>
1491 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1492                                          const ELFYAML::HashSection &Section,
1493                                          ContiguousBlobAccumulator &CBA) {
1494   if (!Section.Bucket)
1495     return;
1496 
1497   CBA.write<uint32_t>(
1498       Section.NBucket.value_or(llvm::yaml::Hex64(Section.Bucket->size())),
1499       ELFT::TargetEndianness);
1500   CBA.write<uint32_t>(
1501       Section.NChain.value_or(llvm::yaml::Hex64(Section.Chain->size())),
1502       ELFT::TargetEndianness);
1503 
1504   for (uint32_t Val : *Section.Bucket)
1505     CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1506   for (uint32_t Val : *Section.Chain)
1507     CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1508 
1509   SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4;
1510 }
1511 
1512 template <class ELFT>
1513 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1514                                          const ELFYAML::VerdefSection &Section,
1515                                          ContiguousBlobAccumulator &CBA) {
1516 
1517   if (Section.Info)
1518     SHeader.sh_info = *Section.Info;
1519   else if (Section.Entries)
1520     SHeader.sh_info = Section.Entries->size();
1521 
1522   if (!Section.Entries)
1523     return;
1524 
1525   uint64_t AuxCnt = 0;
1526   for (size_t I = 0; I < Section.Entries->size(); ++I) {
1527     const ELFYAML::VerdefEntry &E = (*Section.Entries)[I];
1528 
1529     Elf_Verdef VerDef;
1530     VerDef.vd_version = E.Version.value_or(1);
1531     VerDef.vd_flags = E.Flags.value_or(0);
1532     VerDef.vd_ndx = E.VersionNdx.value_or(0);
1533     VerDef.vd_hash = E.Hash.value_or(0);
1534     VerDef.vd_aux = sizeof(Elf_Verdef);
1535     VerDef.vd_cnt = E.VerNames.size();
1536     if (I == Section.Entries->size() - 1)
1537       VerDef.vd_next = 0;
1538     else
1539       VerDef.vd_next =
1540           sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
1541     CBA.write((const char *)&VerDef, sizeof(Elf_Verdef));
1542 
1543     for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
1544       Elf_Verdaux VernAux;
1545       VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
1546       if (J == E.VerNames.size() - 1)
1547         VernAux.vda_next = 0;
1548       else
1549         VernAux.vda_next = sizeof(Elf_Verdaux);
1550       CBA.write((const char *)&VernAux, sizeof(Elf_Verdaux));
1551     }
1552   }
1553 
1554   SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) +
1555                     AuxCnt * sizeof(Elf_Verdaux);
1556 }
1557 
1558 template <class ELFT>
1559 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1560                                          const ELFYAML::VerneedSection &Section,
1561                                          ContiguousBlobAccumulator &CBA) {
1562   if (Section.Info)
1563     SHeader.sh_info = *Section.Info;
1564   else if (Section.VerneedV)
1565     SHeader.sh_info = Section.VerneedV->size();
1566 
1567   if (!Section.VerneedV)
1568     return;
1569 
1570   uint64_t AuxCnt = 0;
1571   for (size_t I = 0; I < Section.VerneedV->size(); ++I) {
1572     const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I];
1573 
1574     Elf_Verneed VerNeed;
1575     VerNeed.vn_version = VE.Version;
1576     VerNeed.vn_file = DotDynstr.getOffset(VE.File);
1577     if (I == Section.VerneedV->size() - 1)
1578       VerNeed.vn_next = 0;
1579     else
1580       VerNeed.vn_next =
1581           sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
1582     VerNeed.vn_cnt = VE.AuxV.size();
1583     VerNeed.vn_aux = sizeof(Elf_Verneed);
1584     CBA.write((const char *)&VerNeed, sizeof(Elf_Verneed));
1585 
1586     for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
1587       const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
1588 
1589       Elf_Vernaux VernAux;
1590       VernAux.vna_hash = VAuxE.Hash;
1591       VernAux.vna_flags = VAuxE.Flags;
1592       VernAux.vna_other = VAuxE.Other;
1593       VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
1594       if (J == VE.AuxV.size() - 1)
1595         VernAux.vna_next = 0;
1596       else
1597         VernAux.vna_next = sizeof(Elf_Vernaux);
1598       CBA.write((const char *)&VernAux, sizeof(Elf_Vernaux));
1599     }
1600   }
1601 
1602   SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) +
1603                     AuxCnt * sizeof(Elf_Vernaux);
1604 }
1605 
1606 template <class ELFT>
1607 void ELFState<ELFT>::writeSectionContent(
1608     Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section,
1609     ContiguousBlobAccumulator &CBA) {
1610   if (!Section.Entries)
1611     return;
1612 
1613   for (const ELFYAML::ARMIndexTableEntry &E : *Section.Entries) {
1614     CBA.write<uint32_t>(E.Offset, ELFT::TargetEndianness);
1615     CBA.write<uint32_t>(E.Value, ELFT::TargetEndianness);
1616   }
1617   SHeader.sh_size = Section.Entries->size() * 8;
1618 }
1619 
1620 template <class ELFT>
1621 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1622                                          const ELFYAML::MipsABIFlags &Section,
1623                                          ContiguousBlobAccumulator &CBA) {
1624   assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS &&
1625          "Section type is not SHT_MIPS_ABIFLAGS");
1626 
1627   object::Elf_Mips_ABIFlags<ELFT> Flags;
1628   zero(Flags);
1629   SHeader.sh_size = SHeader.sh_entsize;
1630 
1631   Flags.version = Section.Version;
1632   Flags.isa_level = Section.ISALevel;
1633   Flags.isa_rev = Section.ISARevision;
1634   Flags.gpr_size = Section.GPRSize;
1635   Flags.cpr1_size = Section.CPR1Size;
1636   Flags.cpr2_size = Section.CPR2Size;
1637   Flags.fp_abi = Section.FpABI;
1638   Flags.isa_ext = Section.ISAExtension;
1639   Flags.ases = Section.ASEs;
1640   Flags.flags1 = Section.Flags1;
1641   Flags.flags2 = Section.Flags2;
1642   CBA.write((const char *)&Flags, sizeof(Flags));
1643 }
1644 
1645 template <class ELFT>
1646 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1647                                          const ELFYAML::DynamicSection &Section,
1648                                          ContiguousBlobAccumulator &CBA) {
1649   assert(Section.Type == llvm::ELF::SHT_DYNAMIC &&
1650          "Section type is not SHT_DYNAMIC");
1651 
1652   if (!Section.Entries)
1653     return;
1654 
1655   for (const ELFYAML::DynamicEntry &DE : *Section.Entries) {
1656     CBA.write<uintX_t>(DE.Tag, ELFT::TargetEndianness);
1657     CBA.write<uintX_t>(DE.Val, ELFT::TargetEndianness);
1658   }
1659   SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries->size();
1660 }
1661 
1662 template <class ELFT>
1663 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1664                                          const ELFYAML::AddrsigSection &Section,
1665                                          ContiguousBlobAccumulator &CBA) {
1666   if (!Section.Symbols)
1667     return;
1668 
1669   for (StringRef Sym : *Section.Symbols)
1670     SHeader.sh_size +=
1671         CBA.writeULEB128(toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false));
1672 }
1673 
1674 template <class ELFT>
1675 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1676                                          const ELFYAML::NoteSection &Section,
1677                                          ContiguousBlobAccumulator &CBA) {
1678   if (!Section.Notes)
1679     return;
1680 
1681   uint64_t Offset = CBA.tell();
1682   for (const ELFYAML::NoteEntry &NE : *Section.Notes) {
1683     // Write name size.
1684     if (NE.Name.empty())
1685       CBA.write<uint32_t>(0, ELFT::TargetEndianness);
1686     else
1687       CBA.write<uint32_t>(NE.Name.size() + 1, ELFT::TargetEndianness);
1688 
1689     // Write description size.
1690     if (NE.Desc.binary_size() == 0)
1691       CBA.write<uint32_t>(0, ELFT::TargetEndianness);
1692     else
1693       CBA.write<uint32_t>(NE.Desc.binary_size(), ELFT::TargetEndianness);
1694 
1695     // Write type.
1696     CBA.write<uint32_t>(NE.Type, ELFT::TargetEndianness);
1697 
1698     // Write name, null terminator and padding.
1699     if (!NE.Name.empty()) {
1700       CBA.write(NE.Name.data(), NE.Name.size());
1701       CBA.write('\0');
1702       CBA.padToAlignment(4);
1703     }
1704 
1705     // Write description and padding.
1706     if (NE.Desc.binary_size() != 0) {
1707       CBA.writeAsBinary(NE.Desc);
1708       CBA.padToAlignment(4);
1709     }
1710   }
1711 
1712   SHeader.sh_size = CBA.tell() - Offset;
1713 }
1714 
1715 template <class ELFT>
1716 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
1717                                          const ELFYAML::GnuHashSection &Section,
1718                                          ContiguousBlobAccumulator &CBA) {
1719   if (!Section.HashBuckets)
1720     return;
1721 
1722   if (!Section.Header)
1723     return;
1724 
1725   // We write the header first, starting with the hash buckets count. Normally
1726   // it is the number of entries in HashBuckets, but the "NBuckets" property can
1727   // be used to override this field, which is useful for producing broken
1728   // objects.
1729   if (Section.Header->NBuckets)
1730     CBA.write<uint32_t>(*Section.Header->NBuckets, ELFT::TargetEndianness);
1731   else
1732     CBA.write<uint32_t>(Section.HashBuckets->size(), ELFT::TargetEndianness);
1733 
1734   // Write the index of the first symbol in the dynamic symbol table accessible
1735   // via the hash table.
1736   CBA.write<uint32_t>(Section.Header->SymNdx, ELFT::TargetEndianness);
1737 
1738   // Write the number of words in the Bloom filter. As above, the "MaskWords"
1739   // property can be used to set this field to any value.
1740   if (Section.Header->MaskWords)
1741     CBA.write<uint32_t>(*Section.Header->MaskWords, ELFT::TargetEndianness);
1742   else
1743     CBA.write<uint32_t>(Section.BloomFilter->size(), ELFT::TargetEndianness);
1744 
1745   // Write the shift constant used by the Bloom filter.
1746   CBA.write<uint32_t>(Section.Header->Shift2, ELFT::TargetEndianness);
1747 
1748   // We've finished writing the header. Now write the Bloom filter.
1749   for (llvm::yaml::Hex64 Val : *Section.BloomFilter)
1750     CBA.write<uintX_t>(Val, ELFT::TargetEndianness);
1751 
1752   // Write an array of hash buckets.
1753   for (llvm::yaml::Hex32 Val : *Section.HashBuckets)
1754     CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1755 
1756   // Write an array of hash values.
1757   for (llvm::yaml::Hex32 Val : *Section.HashValues)
1758     CBA.write<uint32_t>(Val, ELFT::TargetEndianness);
1759 
1760   SHeader.sh_size = 16 /*Header size*/ +
1761                     Section.BloomFilter->size() * sizeof(typename ELFT::uint) +
1762                     Section.HashBuckets->size() * 4 +
1763                     Section.HashValues->size() * 4;
1764 }
1765 
1766 template <class ELFT>
1767 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill,
1768                                ContiguousBlobAccumulator &CBA) {
1769   size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0;
1770   if (!PatternSize) {
1771     CBA.writeZeros(Fill.Size);
1772     return;
1773   }
1774 
1775   // Fill the content with the specified pattern.
1776   uint64_t Written = 0;
1777   for (; Written + PatternSize <= Fill.Size; Written += PatternSize)
1778     CBA.writeAsBinary(*Fill.Pattern);
1779   CBA.writeAsBinary(*Fill.Pattern, Fill.Size - Written);
1780 }
1781 
1782 template <class ELFT>
1783 DenseMap<StringRef, size_t> ELFState<ELFT>::buildSectionHeaderReorderMap() {
1784   const ELFYAML::SectionHeaderTable &SectionHeaders =
1785       Doc.getSectionHeaderTable();
1786   if (SectionHeaders.IsImplicit || SectionHeaders.NoHeaders ||
1787       SectionHeaders.isDefault())
1788     return DenseMap<StringRef, size_t>();
1789 
1790   DenseMap<StringRef, size_t> Ret;
1791   size_t SecNdx = 0;
1792   StringSet<> Seen;
1793 
1794   auto AddSection = [&](const ELFYAML::SectionHeader &Hdr) {
1795     if (!Ret.try_emplace(Hdr.Name, ++SecNdx).second)
1796       reportError("repeated section name: '" + Hdr.Name +
1797                   "' in the section header description");
1798     Seen.insert(Hdr.Name);
1799   };
1800 
1801   if (SectionHeaders.Sections)
1802     for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Sections)
1803       AddSection(Hdr);
1804 
1805   if (SectionHeaders.Excluded)
1806     for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
1807       AddSection(Hdr);
1808 
1809   for (const ELFYAML::Section *S : Doc.getSections()) {
1810     // Ignore special first SHT_NULL section.
1811     if (S == Doc.getSections().front())
1812       continue;
1813     if (!Seen.count(S->Name))
1814       reportError("section '" + S->Name +
1815                   "' should be present in the 'Sections' or 'Excluded' lists");
1816     Seen.erase(S->Name);
1817   }
1818 
1819   for (const auto &It : Seen)
1820     reportError("section header contains undefined section '" + It.getKey() +
1821                 "'");
1822   return Ret;
1823 }
1824 
1825 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() {
1826   // A YAML description can have an explicit section header declaration that
1827   // allows to change the order of section headers.
1828   DenseMap<StringRef, size_t> ReorderMap = buildSectionHeaderReorderMap();
1829 
1830   if (HasError)
1831     return;
1832 
1833   // Build excluded section headers map.
1834   std::vector<ELFYAML::Section *> Sections = Doc.getSections();
1835   const ELFYAML::SectionHeaderTable &SectionHeaders =
1836       Doc.getSectionHeaderTable();
1837   if (SectionHeaders.Excluded)
1838     for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded)
1839       if (!ExcludedSectionHeaders.insert(Hdr.Name).second)
1840         llvm_unreachable("buildSectionIndex() failed");
1841 
1842   if (SectionHeaders.NoHeaders.value_or(false))
1843     for (const ELFYAML::Section *S : Sections)
1844       if (!ExcludedSectionHeaders.insert(S->Name).second)
1845         llvm_unreachable("buildSectionIndex() failed");
1846 
1847   size_t SecNdx = -1;
1848   for (const ELFYAML::Section *S : Sections) {
1849     ++SecNdx;
1850 
1851     size_t Index = ReorderMap.empty() ? SecNdx : ReorderMap.lookup(S->Name);
1852     if (!SN2I.addName(S->Name, Index))
1853       llvm_unreachable("buildSectionIndex() failed");
1854 
1855     if (!ExcludedSectionHeaders.count(S->Name))
1856       ShStrtabStrings->add(ELFYAML::dropUniqueSuffix(S->Name));
1857   }
1858 }
1859 
1860 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() {
1861   auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) {
1862     for (size_t I = 0, S = V.size(); I < S; ++I) {
1863       const ELFYAML::Symbol &Sym = V[I];
1864       if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1))
1865         reportError("repeated symbol name: '" + Sym.Name + "'");
1866     }
1867   };
1868 
1869   if (Doc.Symbols)
1870     Build(*Doc.Symbols, SymN2I);
1871   if (Doc.DynamicSymbols)
1872     Build(*Doc.DynamicSymbols, DynSymN2I);
1873 }
1874 
1875 template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
1876   // Add the regular symbol names to .strtab section.
1877   if (Doc.Symbols)
1878     for (const ELFYAML::Symbol &Sym : *Doc.Symbols)
1879       DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name));
1880   DotStrtab.finalize();
1881 
1882   // Add the dynamic symbol names to .dynstr section.
1883   if (Doc.DynamicSymbols)
1884     for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols)
1885       DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name));
1886 
1887   // SHT_GNU_verdef and SHT_GNU_verneed sections might also
1888   // add strings to .dynstr section.
1889   for (const ELFYAML::Chunk *Sec : Doc.getSections()) {
1890     if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
1891       if (VerNeed->VerneedV) {
1892         for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) {
1893           DotDynstr.add(VE.File);
1894           for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
1895             DotDynstr.add(Aux.Name);
1896         }
1897       }
1898     } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
1899       if (VerDef->Entries)
1900         for (const ELFYAML::VerdefEntry &E : *VerDef->Entries)
1901           for (StringRef Name : E.VerNames)
1902             DotDynstr.add(Name);
1903     }
1904   }
1905 
1906   DotDynstr.finalize();
1907 
1908   // Don't finalize the section header string table a second time if it has
1909   // already been finalized due to being one of the symbol string tables.
1910   if (ShStrtabStrings != &DotStrtab && ShStrtabStrings != &DotDynstr)
1911     ShStrtabStrings->finalize();
1912 }
1913 
1914 template <class ELFT>
1915 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc,
1916                               yaml::ErrorHandler EH, uint64_t MaxSize) {
1917   ELFState<ELFT> State(Doc, EH);
1918   if (State.HasError)
1919     return false;
1920 
1921   // Build the section index, which adds sections to the section header string
1922   // table first, so that we can finalize the section header string table.
1923   State.buildSectionIndex();
1924   State.buildSymbolIndexes();
1925 
1926   // Finalize section header string table and the .strtab and .dynstr sections.
1927   // We do this early because we want to finalize the string table builders
1928   // before writing the content of the sections that might want to use them.
1929   State.finalizeStrings();
1930 
1931   if (State.HasError)
1932     return false;
1933 
1934   std::vector<Elf_Phdr> PHeaders;
1935   State.initProgramHeaders(PHeaders);
1936 
1937   // XXX: This offset is tightly coupled with the order that we write
1938   // things to `OS`.
1939   const size_t SectionContentBeginOffset =
1940       sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
1941   // It is quite easy to accidentally create output with yaml2obj that is larger
1942   // than intended, for example, due to an issue in the YAML description.
1943   // We limit the maximum allowed output size, but also provide a command line
1944   // option to change this limitation.
1945   ContiguousBlobAccumulator CBA(SectionContentBeginOffset, MaxSize);
1946 
1947   std::vector<Elf_Shdr> SHeaders;
1948   State.initSectionHeaders(SHeaders, CBA);
1949 
1950   // Now we can decide segment offsets.
1951   State.setProgramHeaderLayout(PHeaders, SHeaders);
1952 
1953   bool ReachedLimit = CBA.getOffset() > MaxSize;
1954   if (Error E = CBA.takeLimitError()) {
1955     // We report a custom error message instead below.
1956     consumeError(std::move(E));
1957     ReachedLimit = true;
1958   }
1959 
1960   if (ReachedLimit)
1961     State.reportError(
1962         "the desired output size is greater than permitted. Use the "
1963         "--max-size option to change the limit");
1964 
1965   if (State.HasError)
1966     return false;
1967 
1968   State.writeELFHeader(OS);
1969   writeArrayData(OS, makeArrayRef(PHeaders));
1970 
1971   const ELFYAML::SectionHeaderTable &SHT = Doc.getSectionHeaderTable();
1972   if (!SHT.NoHeaders.value_or(false))
1973     CBA.updateDataAt(*SHT.Offset, SHeaders.data(),
1974                      SHT.getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr));
1975 
1976   CBA.writeBlobToStream(OS);
1977   return true;
1978 }
1979 
1980 namespace llvm {
1981 namespace yaml {
1982 
1983 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH,
1984               uint64_t MaxSize) {
1985   bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
1986   bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
1987   if (Is64Bit) {
1988     if (IsLE)
1989       return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH, MaxSize);
1990     return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH, MaxSize);
1991   }
1992   if (IsLE)
1993     return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH, MaxSize);
1994   return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH, MaxSize);
1995 }
1996 
1997 } // namespace yaml
1998 } // namespace llvm
1999