1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/MC/StringTableBuilder.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/ObjectYAML/ELFYAML.h" 21 #include "llvm/ObjectYAML/yaml2obj.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/WithColor.h" 26 #include "llvm/Support/YAMLTraits.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 // This class is used to build up a contiguous binary blob while keeping 32 // track of an offset in the output (which notionally begins at 33 // `InitialOffset`). 34 namespace { 35 class ContiguousBlobAccumulator { 36 const uint64_t InitialOffset; 37 SmallVector<char, 128> Buf; 38 raw_svector_ostream OS; 39 40 public: 41 ContiguousBlobAccumulator(uint64_t InitialOffset_) 42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 43 44 template <class Integer> 45 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { 46 Offset = padToAlignment(Align); 47 return OS; 48 } 49 50 /// \returns The new offset. 51 uint64_t padToAlignment(unsigned Align) { 52 if (Align == 0) 53 Align = 1; 54 uint64_t CurrentOffset = InitialOffset + OS.tell(); 55 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 56 OS.write_zeros(AlignedOffset - CurrentOffset); 57 return AlignedOffset; // == CurrentOffset; 58 } 59 60 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 61 }; 62 63 // Used to keep track of section and symbol names, so that in the YAML file 64 // sections and symbols can be referenced by name instead of by index. 65 class NameToIdxMap { 66 StringMap<unsigned> Map; 67 68 public: 69 /// \Returns false if name is already present in the map. 70 bool addName(StringRef Name, unsigned Ndx) { 71 return Map.insert({Name, Ndx}).second; 72 } 73 /// \Returns false if name is not present in the map. 74 bool lookup(StringRef Name, unsigned &Idx) const { 75 auto I = Map.find(Name); 76 if (I == Map.end()) 77 return false; 78 Idx = I->getValue(); 79 return true; 80 } 81 /// Asserts if name is not present in the map. 82 unsigned get(StringRef Name) const { 83 unsigned Idx; 84 if (lookup(Name, Idx)) 85 return Idx; 86 assert(false && "Expected section not found in index"); 87 return 0; 88 } 89 unsigned size() const { return Map.size(); } 90 }; 91 92 namespace { 93 struct Fragment { 94 uint64_t Offset; 95 uint64_t Size; 96 uint32_t Type; 97 uint64_t AddrAlign; 98 }; 99 } // namespace 100 101 /// "Single point of truth" for the ELF file construction. 102 /// TODO: This class still has a ways to go before it is truly a "single 103 /// point of truth". 104 template <class ELFT> class ELFState { 105 typedef typename ELFT::Ehdr Elf_Ehdr; 106 typedef typename ELFT::Phdr Elf_Phdr; 107 typedef typename ELFT::Shdr Elf_Shdr; 108 typedef typename ELFT::Sym Elf_Sym; 109 typedef typename ELFT::Rel Elf_Rel; 110 typedef typename ELFT::Rela Elf_Rela; 111 typedef typename ELFT::Relr Elf_Relr; 112 typedef typename ELFT::Dyn Elf_Dyn; 113 typedef typename ELFT::uint uintX_t; 114 115 enum class SymtabType { Static, Dynamic }; 116 117 /// The future ".strtab" section. 118 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 119 120 /// The future ".shstrtab" section. 121 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 122 123 /// The future ".dynstr" section. 124 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 125 126 NameToIdxMap SN2I; 127 NameToIdxMap SymN2I; 128 NameToIdxMap DynSymN2I; 129 ELFYAML::Object &Doc; 130 131 bool HasError = false; 132 yaml::ErrorHandler ErrHandler; 133 void reportError(const Twine &Msg); 134 135 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 136 const StringTableBuilder &Strtab); 137 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 138 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 139 140 void buildSectionIndex(); 141 void buildSymbolIndexes(); 142 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 143 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 144 StringRef SecName, ELFYAML::Section *YAMLSec); 145 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 146 ContiguousBlobAccumulator &CBA); 147 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 148 ContiguousBlobAccumulator &CBA, 149 ELFYAML::Section *YAMLSec); 150 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 151 StringTableBuilder &STB, 152 ContiguousBlobAccumulator &CBA, 153 ELFYAML::Section *YAMLSec); 154 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 155 std::vector<Elf_Shdr> &SHeaders); 156 157 std::vector<Fragment> 158 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 159 ArrayRef<typename ELFT::Shdr> SHeaders); 160 161 void finalizeStrings(); 162 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 163 void writeSectionContent(Elf_Shdr &SHeader, 164 const ELFYAML::RawContentSection &Section, 165 ContiguousBlobAccumulator &CBA); 166 void writeSectionContent(Elf_Shdr &SHeader, 167 const ELFYAML::RelocationSection &Section, 168 ContiguousBlobAccumulator &CBA); 169 void writeSectionContent(Elf_Shdr &SHeader, 170 const ELFYAML::RelrSection &Section, 171 ContiguousBlobAccumulator &CBA); 172 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 173 ContiguousBlobAccumulator &CBA); 174 void writeSectionContent(Elf_Shdr &SHeader, 175 const ELFYAML::SymtabShndxSection &Shndx, 176 ContiguousBlobAccumulator &CBA); 177 void writeSectionContent(Elf_Shdr &SHeader, 178 const ELFYAML::SymverSection &Section, 179 ContiguousBlobAccumulator &CBA); 180 void writeSectionContent(Elf_Shdr &SHeader, 181 const ELFYAML::VerneedSection &Section, 182 ContiguousBlobAccumulator &CBA); 183 void writeSectionContent(Elf_Shdr &SHeader, 184 const ELFYAML::VerdefSection &Section, 185 ContiguousBlobAccumulator &CBA); 186 void writeSectionContent(Elf_Shdr &SHeader, 187 const ELFYAML::MipsABIFlags &Section, 188 ContiguousBlobAccumulator &CBA); 189 void writeSectionContent(Elf_Shdr &SHeader, 190 const ELFYAML::DynamicSection &Section, 191 ContiguousBlobAccumulator &CBA); 192 void writeSectionContent(Elf_Shdr &SHeader, 193 const ELFYAML::StackSizesSection &Section, 194 ContiguousBlobAccumulator &CBA); 195 void writeSectionContent(Elf_Shdr &SHeader, 196 const ELFYAML::HashSection &Section, 197 ContiguousBlobAccumulator &CBA); 198 void writeSectionContent(Elf_Shdr &SHeader, 199 const ELFYAML::AddrsigSection &Section, 200 ContiguousBlobAccumulator &CBA); 201 void writeSectionContent(Elf_Shdr &SHeader, 202 const ELFYAML::NoteSection &Section, 203 ContiguousBlobAccumulator &CBA); 204 void writeSectionContent(Elf_Shdr &SHeader, 205 const ELFYAML::GnuHashSection &Section, 206 ContiguousBlobAccumulator &CBA); 207 void writeSectionContent(Elf_Shdr &SHeader, 208 const ELFYAML::LinkerOptionsSection &Section, 209 ContiguousBlobAccumulator &CBA); 210 void writeSectionContent(Elf_Shdr &SHeader, 211 const ELFYAML::DependentLibrariesSection &Section, 212 ContiguousBlobAccumulator &CBA); 213 214 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 215 216 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 217 218 public: 219 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 220 yaml::ErrorHandler EH); 221 }; 222 } // end anonymous namespace 223 224 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 225 return A.size() * sizeof(T); 226 } 227 228 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 229 OS.write((const char *)A.data(), arrayDataSize(A)); 230 } 231 232 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 233 234 template <class ELFT> 235 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 236 : Doc(D), ErrHandler(EH) { 237 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 238 StringSet<> DocSections; 239 for (const ELFYAML::Section *Sec : Sections) 240 if (!Sec->Name.empty()) 241 DocSections.insert(Sec->Name); 242 243 // Insert SHT_NULL section implicitly when it is not defined in YAML. 244 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 245 Doc.Chunks.insert( 246 Doc.Chunks.begin(), 247 std::make_unique<ELFYAML::Section>( 248 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 249 250 std::vector<StringRef> ImplicitSections; 251 if (Doc.Symbols) 252 ImplicitSections.push_back(".symtab"); 253 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 254 255 if (Doc.DynamicSymbols) 256 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 257 258 // Insert placeholders for implicit sections that are not 259 // defined explicitly in YAML. 260 for (StringRef SecName : ImplicitSections) { 261 if (DocSections.count(SecName)) 262 continue; 263 264 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>( 265 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 266 Sec->Name = SecName; 267 Doc.Chunks.push_back(std::move(Sec)); 268 } 269 } 270 271 template <class ELFT> 272 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 273 using namespace llvm::ELF; 274 275 Elf_Ehdr Header; 276 zero(Header); 277 Header.e_ident[EI_MAG0] = 0x7f; 278 Header.e_ident[EI_MAG1] = 'E'; 279 Header.e_ident[EI_MAG2] = 'L'; 280 Header.e_ident[EI_MAG3] = 'F'; 281 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 282 Header.e_ident[EI_DATA] = Doc.Header.Data; 283 Header.e_ident[EI_VERSION] = EV_CURRENT; 284 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 285 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 286 Header.e_type = Doc.Header.Type; 287 Header.e_machine = Doc.Header.Machine; 288 Header.e_version = EV_CURRENT; 289 Header.e_entry = Doc.Header.Entry; 290 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 291 Header.e_flags = Doc.Header.Flags; 292 Header.e_ehsize = sizeof(Elf_Ehdr); 293 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 294 Header.e_phnum = Doc.ProgramHeaders.size(); 295 296 Header.e_shentsize = 297 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 298 // Immediately following the ELF header and program headers. 299 // Align the start of the section header and write the ELF header. 300 uint64_t SHOff; 301 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); 302 Header.e_shoff = 303 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 304 Header.e_shnum = 305 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); 306 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 307 : SN2I.get(".shstrtab"); 308 309 OS.write((const char *)&Header, sizeof(Header)); 310 } 311 312 template <class ELFT> 313 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 314 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 315 Elf_Phdr Phdr; 316 Phdr.p_type = YamlPhdr.Type; 317 Phdr.p_flags = YamlPhdr.Flags; 318 Phdr.p_vaddr = YamlPhdr.VAddr; 319 Phdr.p_paddr = YamlPhdr.PAddr; 320 PHeaders.push_back(Phdr); 321 } 322 } 323 324 template <class ELFT> 325 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 326 StringRef LocSym) { 327 unsigned Index; 328 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 329 return Index; 330 331 assert(LocSec.empty() || LocSym.empty()); 332 if (!LocSym.empty()) 333 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 334 LocSym + "'"); 335 else 336 reportError("unknown section referenced: '" + S + "' by YAML section '" + 337 LocSec + "'"); 338 return 0; 339 } 340 341 template <class ELFT> 342 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 343 bool IsDynamic) { 344 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 345 unsigned Index; 346 // Here we try to look up S in the symbol table. If it is not there, 347 // treat its value as a symbol index. 348 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 349 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 350 LocSec + "'"); 351 return 0; 352 } 353 return Index; 354 } 355 356 template <class ELFT> 357 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 358 if (!From) 359 return; 360 if (From->ShFlags) 361 To.sh_flags = *From->ShFlags; 362 if (From->ShName) 363 To.sh_name = *From->ShName; 364 if (From->ShOffset) 365 To.sh_offset = *From->ShOffset; 366 if (From->ShSize) 367 To.sh_size = *From->ShSize; 368 } 369 370 template <class ELFT> 371 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 372 Elf_Shdr &Header, StringRef SecName, 373 ELFYAML::Section *YAMLSec) { 374 // Check if the header was already initialized. 375 if (Header.sh_offset) 376 return false; 377 378 if (SecName == ".symtab") 379 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 380 else if (SecName == ".strtab") 381 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 382 else if (SecName == ".shstrtab") 383 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 384 else if (SecName == ".dynsym") 385 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 386 else if (SecName == ".dynstr") 387 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 388 else 389 return false; 390 391 // Override section fields if requested. 392 overrideFields<ELFT>(YAMLSec, Header); 393 return true; 394 } 395 396 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 397 size_t SuffixPos = S.rfind(" ["); 398 if (SuffixPos == StringRef::npos) 399 return S; 400 return S.substr(0, SuffixPos); 401 } 402 403 template <class ELFT> 404 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 405 ContiguousBlobAccumulator &CBA) { 406 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 407 // valid SHN_UNDEF entry since SHT_NULL == 0. 408 SHeaders.resize(Doc.getSections().size()); 409 410 size_t SecNdx = -1; 411 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 412 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) { 413 writeFill(*S, CBA); 414 continue; 415 } 416 417 ++SecNdx; 418 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 419 if (SecNdx == 0 && Sec->IsImplicit) 420 continue; 421 422 // We have a few sections like string or symbol tables that are usually 423 // added implicitly to the end. However, if they are explicitly specified 424 // in the YAML, we need to write them here. This ensures the file offset 425 // remains correct. 426 Elf_Shdr &SHeader = SHeaders[SecNdx]; 427 if (initImplicitHeader(CBA, SHeader, Sec->Name, 428 Sec->IsImplicit ? nullptr : Sec)) 429 continue; 430 431 assert(Sec && "It can't be null unless it is an implicit section. But all " 432 "implicit sections should already have been handled above."); 433 434 SHeader.sh_name = 435 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 436 SHeader.sh_type = Sec->Type; 437 if (Sec->Flags) 438 SHeader.sh_flags = *Sec->Flags; 439 SHeader.sh_addr = Sec->Address; 440 SHeader.sh_addralign = Sec->AddressAlign; 441 442 if (!Sec->Link.empty()) 443 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 444 445 if (SecNdx == 0) { 446 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 447 // We do not write any content for special SHN_UNDEF section. 448 if (RawSec->Size) 449 SHeader.sh_size = *RawSec->Size; 450 if (RawSec->Info) 451 SHeader.sh_info = *RawSec->Info; 452 } 453 if (Sec->EntSize) 454 SHeader.sh_entsize = *Sec->EntSize; 455 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 456 writeSectionContent(SHeader, *S, CBA); 457 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 458 writeSectionContent(SHeader, *S, CBA); 459 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 460 writeSectionContent(SHeader, *S, CBA); 461 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) { 462 writeSectionContent(SHeader, *S, CBA); 463 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 464 writeSectionContent(SHeader, *S, CBA); 465 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 466 writeSectionContent(SHeader, *S, CBA); 467 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 468 SHeader.sh_entsize = 0; 469 SHeader.sh_size = S->Size; 470 // SHT_NOBITS section does not have content 471 // so just to setup the section offset. 472 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 473 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 474 writeSectionContent(SHeader, *S, CBA); 475 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 476 writeSectionContent(SHeader, *S, CBA); 477 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 478 writeSectionContent(SHeader, *S, CBA); 479 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 480 writeSectionContent(SHeader, *S, CBA); 481 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 482 writeSectionContent(SHeader, *S, CBA); 483 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 484 writeSectionContent(SHeader, *S, CBA); 485 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 486 writeSectionContent(SHeader, *S, CBA); 487 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 488 writeSectionContent(SHeader, *S, CBA); 489 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 490 writeSectionContent(SHeader, *S, CBA); 491 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 492 writeSectionContent(SHeader, *S, CBA); 493 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 494 writeSectionContent(SHeader, *S, CBA); 495 } else { 496 llvm_unreachable("Unknown section type"); 497 } 498 499 // Override section fields if requested. 500 overrideFields<ELFT>(Sec, SHeader); 501 } 502 } 503 504 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 505 for (size_t I = 0; I < Symbols.size(); ++I) 506 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 507 return I; 508 return Symbols.size(); 509 } 510 511 static uint64_t writeContent(raw_ostream &OS, 512 const Optional<yaml::BinaryRef> &Content, 513 const Optional<llvm::yaml::Hex64> &Size) { 514 size_t ContentSize = 0; 515 if (Content) { 516 Content->writeAsBinary(OS); 517 ContentSize = Content->binary_size(); 518 } 519 520 if (!Size) 521 return ContentSize; 522 523 OS.write_zeros(*Size - ContentSize); 524 return *Size; 525 } 526 527 template <class ELFT> 528 std::vector<typename ELFT::Sym> 529 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 530 const StringTableBuilder &Strtab) { 531 std::vector<Elf_Sym> Ret; 532 Ret.resize(Symbols.size() + 1); 533 534 size_t I = 0; 535 for (const ELFYAML::Symbol &Sym : Symbols) { 536 Elf_Sym &Symbol = Ret[++I]; 537 538 // If NameIndex, which contains the name offset, is explicitly specified, we 539 // use it. This is useful for preparing broken objects. Otherwise, we add 540 // the specified Name to the string table builder to get its offset. 541 if (Sym.NameIndex) 542 Symbol.st_name = *Sym.NameIndex; 543 else if (!Sym.Name.empty()) 544 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 545 546 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 547 if (!Sym.Section.empty()) 548 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 549 else if (Sym.Index) 550 Symbol.st_shndx = *Sym.Index; 551 552 Symbol.st_value = Sym.Value; 553 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 554 Symbol.st_size = Sym.Size; 555 } 556 557 return Ret; 558 } 559 560 template <class ELFT> 561 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 562 SymtabType STType, 563 ContiguousBlobAccumulator &CBA, 564 ELFYAML::Section *YAMLSec) { 565 566 bool IsStatic = STType == SymtabType::Static; 567 ArrayRef<ELFYAML::Symbol> Symbols; 568 if (IsStatic && Doc.Symbols) 569 Symbols = *Doc.Symbols; 570 else if (!IsStatic && Doc.DynamicSymbols) 571 Symbols = *Doc.DynamicSymbols; 572 573 ELFYAML::RawContentSection *RawSec = 574 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 575 if (RawSec && (RawSec->Content || RawSec->Size)) { 576 bool HasSymbolsDescription = 577 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 578 if (HasSymbolsDescription) { 579 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 580 if (RawSec->Content) 581 reportError("cannot specify both `Content` and " + Property + 582 " for symbol table section '" + RawSec->Name + "'"); 583 if (RawSec->Size) 584 reportError("cannot specify both `Size` and " + Property + 585 " for symbol table section '" + RawSec->Name + "'"); 586 return; 587 } 588 } 589 590 zero(SHeader); 591 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 592 593 if (YAMLSec) 594 SHeader.sh_type = YAMLSec->Type; 595 else 596 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 597 598 if (RawSec && !RawSec->Link.empty()) { 599 // If the Link field is explicitly defined in the document, 600 // we should use it. 601 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 602 } else { 603 // When we describe the .dynsym section in the document explicitly, it is 604 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 605 // added implicitly and we should be able to leave the Link zeroed if 606 // .dynstr is not defined. 607 unsigned Link = 0; 608 if (IsStatic) 609 Link = SN2I.get(".strtab"); 610 else 611 SN2I.lookup(".dynstr", Link); 612 SHeader.sh_link = Link; 613 } 614 615 if (YAMLSec && YAMLSec->Flags) 616 SHeader.sh_flags = *YAMLSec->Flags; 617 else if (!IsStatic) 618 SHeader.sh_flags = ELF::SHF_ALLOC; 619 620 // If the symbol table section is explicitly described in the YAML 621 // then we should set the fields requested. 622 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 623 : findFirstNonGlobal(Symbols) + 1; 624 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 625 ? (uint64_t)(*YAMLSec->EntSize) 626 : sizeof(Elf_Sym); 627 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 628 SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; 629 630 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 631 if (RawSec && (RawSec->Content || RawSec->Size)) { 632 assert(Symbols.empty()); 633 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 634 return; 635 } 636 637 std::vector<Elf_Sym> Syms = 638 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 639 writeArrayData(OS, makeArrayRef(Syms)); 640 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 641 } 642 643 template <class ELFT> 644 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 645 StringTableBuilder &STB, 646 ContiguousBlobAccumulator &CBA, 647 ELFYAML::Section *YAMLSec) { 648 zero(SHeader); 649 SHeader.sh_name = DotShStrtab.getOffset(Name); 650 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 651 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 652 653 ELFYAML::RawContentSection *RawSec = 654 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 655 656 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 657 if (RawSec && (RawSec->Content || RawSec->Size)) { 658 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 659 } else { 660 STB.write(OS); 661 SHeader.sh_size = STB.getSize(); 662 } 663 664 if (YAMLSec && YAMLSec->EntSize) 665 SHeader.sh_entsize = *YAMLSec->EntSize; 666 667 if (RawSec && RawSec->Info) 668 SHeader.sh_info = *RawSec->Info; 669 670 if (YAMLSec && YAMLSec->Flags) 671 SHeader.sh_flags = *YAMLSec->Flags; 672 else if (Name == ".dynstr") 673 SHeader.sh_flags = ELF::SHF_ALLOC; 674 675 // If the section is explicitly described in the YAML 676 // then we want to use its section address. 677 if (YAMLSec) 678 SHeader.sh_addr = YAMLSec->Address; 679 } 680 681 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 682 ErrHandler(Msg); 683 HasError = true; 684 } 685 686 template <class ELFT> 687 std::vector<Fragment> 688 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 689 ArrayRef<typename ELFT::Shdr> SHeaders) { 690 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 691 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) 692 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) 693 NameToFill[S->Name] = S; 694 695 std::vector<Fragment> Ret; 696 for (const ELFYAML::SectionName &SecName : Phdr.Sections) { 697 unsigned Index; 698 if (SN2I.lookup(SecName.Section, Index)) { 699 const typename ELFT::Shdr &H = SHeaders[Index]; 700 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 701 continue; 702 } 703 704 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { 705 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, 706 /*ShAddrAlign=*/1}); 707 continue; 708 } 709 710 reportError("unknown section or fill referenced: '" + SecName.Section + 711 "' by program header"); 712 } 713 714 return Ret; 715 } 716 717 template <class ELFT> 718 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 719 std::vector<Elf_Shdr> &SHeaders) { 720 uint32_t PhdrIdx = 0; 721 for (auto &YamlPhdr : Doc.ProgramHeaders) { 722 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 723 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 724 725 if (YamlPhdr.Offset) { 726 PHeader.p_offset = *YamlPhdr.Offset; 727 } else { 728 if (YamlPhdr.Sections.size()) 729 PHeader.p_offset = UINT32_MAX; 730 else 731 PHeader.p_offset = 0; 732 733 // Find the minimum offset for the program header. 734 for (const Fragment &F : Fragments) 735 PHeader.p_offset = std::min((uint64_t)PHeader.p_offset, F.Offset); 736 } 737 738 // Find the maximum offset of the end of a section in order to set p_filesz 739 // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not 740 // counted. 741 uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset; 742 for (const Fragment &F : Fragments) { 743 uint64_t End = F.Offset + F.Size; 744 MemOffset = std::max(MemOffset, End); 745 746 if (F.Type != llvm::ELF::SHT_NOBITS) 747 FileOffset = std::max(FileOffset, End); 748 } 749 750 // Set the file size and the memory size if not set explicitly. 751 PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize) 752 : FileOffset - PHeader.p_offset; 753 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 754 : MemOffset - PHeader.p_offset; 755 756 if (YamlPhdr.Align) { 757 PHeader.p_align = *YamlPhdr.Align; 758 } else { 759 // Set the alignment of the segment to be the maximum alignment of the 760 // sections so that by default the segment has a valid and sensible 761 // alignment. 762 PHeader.p_align = 1; 763 for (const Fragment &F : Fragments) 764 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 765 } 766 } 767 } 768 769 template <class ELFT> 770 void ELFState<ELFT>::writeSectionContent( 771 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 772 ContiguousBlobAccumulator &CBA) { 773 raw_ostream &OS = 774 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 775 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 776 777 if (Section.EntSize) 778 SHeader.sh_entsize = *Section.EntSize; 779 780 if (Section.Info) 781 SHeader.sh_info = *Section.Info; 782 } 783 784 static bool isMips64EL(const ELFYAML::Object &Doc) { 785 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 786 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 787 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 788 } 789 790 template <class ELFT> 791 void ELFState<ELFT>::writeSectionContent( 792 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 793 ContiguousBlobAccumulator &CBA) { 794 assert((Section.Type == llvm::ELF::SHT_REL || 795 Section.Type == llvm::ELF::SHT_RELA) && 796 "Section type is not SHT_REL nor SHT_RELA"); 797 798 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 799 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 800 SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); 801 802 // For relocation section set link to .symtab by default. 803 unsigned Link = 0; 804 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 805 SHeader.sh_link = Link; 806 807 if (!Section.RelocatableSec.empty()) 808 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 809 810 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 811 for (const auto &Rel : Section.Relocations) { 812 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 813 Section.Link == ".dynsym") 814 : 0; 815 if (IsRela) { 816 Elf_Rela REntry; 817 zero(REntry); 818 REntry.r_offset = Rel.Offset; 819 REntry.r_addend = Rel.Addend; 820 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 821 OS.write((const char *)&REntry, sizeof(REntry)); 822 } else { 823 Elf_Rel REntry; 824 zero(REntry); 825 REntry.r_offset = Rel.Offset; 826 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 827 OS.write((const char *)&REntry, sizeof(REntry)); 828 } 829 } 830 } 831 832 template <class ELFT> 833 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 834 const ELFYAML::RelrSection &Section, 835 ContiguousBlobAccumulator &CBA) { 836 raw_ostream &OS = 837 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 838 SHeader.sh_entsize = 839 Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr); 840 841 if (Section.Content) { 842 SHeader.sh_size = writeContent(OS, Section.Content, None); 843 return; 844 } 845 846 if (!Section.Entries) 847 return; 848 849 for (llvm::yaml::Hex64 E : *Section.Entries) { 850 if (!ELFT::Is64Bits && E > UINT32_MAX) 851 reportError(Section.Name + ": the value is too large for 32-bits: 0x" + 852 Twine::utohexstr(E)); 853 support::endian::write<uintX_t>(OS, E, ELFT::TargetEndianness); 854 } 855 856 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); 857 } 858 859 template <class ELFT> 860 void ELFState<ELFT>::writeSectionContent( 861 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 862 ContiguousBlobAccumulator &CBA) { 863 raw_ostream &OS = 864 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 865 866 for (uint32_t E : Shndx.Entries) 867 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness); 868 869 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 870 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 871 } 872 873 template <class ELFT> 874 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 875 const ELFYAML::Group &Section, 876 ContiguousBlobAccumulator &CBA) { 877 assert(Section.Type == llvm::ELF::SHT_GROUP && 878 "Section type is not SHT_GROUP"); 879 880 unsigned Link = 0; 881 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 882 SHeader.sh_link = Link; 883 884 SHeader.sh_entsize = 4; 885 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 886 887 if (Section.Signature) 888 SHeader.sh_info = 889 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 890 891 raw_ostream &OS = 892 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 893 894 for (const ELFYAML::SectionOrType &Member : Section.Members) { 895 unsigned int SectionIndex = 0; 896 if (Member.sectionNameOrType == "GRP_COMDAT") 897 SectionIndex = llvm::ELF::GRP_COMDAT; 898 else 899 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 900 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 901 } 902 } 903 904 template <class ELFT> 905 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 906 const ELFYAML::SymverSection &Section, 907 ContiguousBlobAccumulator &CBA) { 908 raw_ostream &OS = 909 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 910 for (uint16_t Version : Section.Entries) 911 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 912 913 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 914 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 915 } 916 917 template <class ELFT> 918 void ELFState<ELFT>::writeSectionContent( 919 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 920 ContiguousBlobAccumulator &CBA) { 921 raw_ostream &OS = 922 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 923 924 if (Section.Content || Section.Size) { 925 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 926 return; 927 } 928 929 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 930 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 931 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 932 } 933 } 934 935 template <class ELFT> 936 void ELFState<ELFT>::writeSectionContent( 937 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 938 ContiguousBlobAccumulator &CBA) { 939 raw_ostream &OS = 940 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 941 942 if (Section.Content) { 943 SHeader.sh_size = writeContent(OS, Section.Content, None); 944 return; 945 } 946 947 if (!Section.Options) 948 return; 949 950 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 951 OS.write(LO.Key.data(), LO.Key.size()); 952 OS.write('\0'); 953 OS.write(LO.Value.data(), LO.Value.size()); 954 OS.write('\0'); 955 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 956 } 957 } 958 959 template <class ELFT> 960 void ELFState<ELFT>::writeSectionContent( 961 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 962 ContiguousBlobAccumulator &CBA) { 963 raw_ostream &OS = 964 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 965 966 if (Section.Content) { 967 SHeader.sh_size = writeContent(OS, Section.Content, None); 968 return; 969 } 970 971 if (!Section.Libs) 972 return; 973 974 for (StringRef Lib : *Section.Libs) { 975 OS.write(Lib.data(), Lib.size()); 976 OS.write('\0'); 977 SHeader.sh_size += Lib.size() + 1; 978 } 979 } 980 981 template <class ELFT> 982 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 983 const ELFYAML::HashSection &Section, 984 ContiguousBlobAccumulator &CBA) { 985 raw_ostream &OS = 986 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 987 988 unsigned Link = 0; 989 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 990 SHeader.sh_link = Link; 991 992 if (Section.Content || Section.Size) { 993 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 994 return; 995 } 996 997 support::endian::write<uint32_t>(OS, Section.Bucket->size(), 998 ELFT::TargetEndianness); 999 support::endian::write<uint32_t>(OS, Section.Chain->size(), 1000 ELFT::TargetEndianness); 1001 for (uint32_t Val : *Section.Bucket) 1002 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1003 for (uint32_t Val : *Section.Chain) 1004 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1005 1006 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 1007 } 1008 1009 template <class ELFT> 1010 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1011 const ELFYAML::VerdefSection &Section, 1012 ContiguousBlobAccumulator &CBA) { 1013 typedef typename ELFT::Verdef Elf_Verdef; 1014 typedef typename ELFT::Verdaux Elf_Verdaux; 1015 raw_ostream &OS = 1016 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1017 1018 SHeader.sh_info = Section.Info; 1019 1020 if (Section.Content) { 1021 SHeader.sh_size = writeContent(OS, Section.Content, None); 1022 return; 1023 } 1024 1025 if (!Section.Entries) 1026 return; 1027 1028 uint64_t AuxCnt = 0; 1029 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1030 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1031 1032 Elf_Verdef VerDef; 1033 VerDef.vd_version = E.Version; 1034 VerDef.vd_flags = E.Flags; 1035 VerDef.vd_ndx = E.VersionNdx; 1036 VerDef.vd_hash = E.Hash; 1037 VerDef.vd_aux = sizeof(Elf_Verdef); 1038 VerDef.vd_cnt = E.VerNames.size(); 1039 if (I == Section.Entries->size() - 1) 1040 VerDef.vd_next = 0; 1041 else 1042 VerDef.vd_next = 1043 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1044 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1045 1046 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1047 Elf_Verdaux VernAux; 1048 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1049 if (J == E.VerNames.size() - 1) 1050 VernAux.vda_next = 0; 1051 else 1052 VernAux.vda_next = sizeof(Elf_Verdaux); 1053 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1054 } 1055 } 1056 1057 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1058 AuxCnt * sizeof(Elf_Verdaux); 1059 } 1060 1061 template <class ELFT> 1062 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1063 const ELFYAML::VerneedSection &Section, 1064 ContiguousBlobAccumulator &CBA) { 1065 typedef typename ELFT::Verneed Elf_Verneed; 1066 typedef typename ELFT::Vernaux Elf_Vernaux; 1067 1068 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1069 SHeader.sh_info = Section.Info; 1070 1071 if (Section.Content) { 1072 SHeader.sh_size = writeContent(OS, Section.Content, None); 1073 return; 1074 } 1075 1076 if (!Section.VerneedV) 1077 return; 1078 1079 uint64_t AuxCnt = 0; 1080 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1081 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1082 1083 Elf_Verneed VerNeed; 1084 VerNeed.vn_version = VE.Version; 1085 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1086 if (I == Section.VerneedV->size() - 1) 1087 VerNeed.vn_next = 0; 1088 else 1089 VerNeed.vn_next = 1090 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1091 VerNeed.vn_cnt = VE.AuxV.size(); 1092 VerNeed.vn_aux = sizeof(Elf_Verneed); 1093 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1094 1095 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1096 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1097 1098 Elf_Vernaux VernAux; 1099 VernAux.vna_hash = VAuxE.Hash; 1100 VernAux.vna_flags = VAuxE.Flags; 1101 VernAux.vna_other = VAuxE.Other; 1102 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1103 if (J == VE.AuxV.size() - 1) 1104 VernAux.vna_next = 0; 1105 else 1106 VernAux.vna_next = sizeof(Elf_Vernaux); 1107 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1108 } 1109 } 1110 1111 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1112 AuxCnt * sizeof(Elf_Vernaux); 1113 } 1114 1115 template <class ELFT> 1116 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1117 const ELFYAML::MipsABIFlags &Section, 1118 ContiguousBlobAccumulator &CBA) { 1119 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1120 "Section type is not SHT_MIPS_ABIFLAGS"); 1121 1122 object::Elf_Mips_ABIFlags<ELFT> Flags; 1123 zero(Flags); 1124 SHeader.sh_entsize = sizeof(Flags); 1125 SHeader.sh_size = SHeader.sh_entsize; 1126 1127 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1128 Flags.version = Section.Version; 1129 Flags.isa_level = Section.ISALevel; 1130 Flags.isa_rev = Section.ISARevision; 1131 Flags.gpr_size = Section.GPRSize; 1132 Flags.cpr1_size = Section.CPR1Size; 1133 Flags.cpr2_size = Section.CPR2Size; 1134 Flags.fp_abi = Section.FpABI; 1135 Flags.isa_ext = Section.ISAExtension; 1136 Flags.ases = Section.ASEs; 1137 Flags.flags1 = Section.Flags1; 1138 Flags.flags2 = Section.Flags2; 1139 OS.write((const char *)&Flags, sizeof(Flags)); 1140 } 1141 1142 template <class ELFT> 1143 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1144 const ELFYAML::DynamicSection &Section, 1145 ContiguousBlobAccumulator &CBA) { 1146 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1147 "Section type is not SHT_DYNAMIC"); 1148 1149 if (!Section.Entries.empty() && Section.Content) 1150 reportError("cannot specify both raw content and explicit entries " 1151 "for dynamic section '" + 1152 Section.Name + "'"); 1153 1154 if (Section.Content) 1155 SHeader.sh_size = Section.Content->binary_size(); 1156 else 1157 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1158 if (Section.EntSize) 1159 SHeader.sh_entsize = *Section.EntSize; 1160 else 1161 SHeader.sh_entsize = sizeof(Elf_Dyn); 1162 1163 raw_ostream &OS = 1164 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1165 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1166 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1167 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1168 } 1169 if (Section.Content) 1170 Section.Content->writeAsBinary(OS); 1171 } 1172 1173 template <class ELFT> 1174 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1175 const ELFYAML::AddrsigSection &Section, 1176 ContiguousBlobAccumulator &CBA) { 1177 raw_ostream &OS = 1178 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1179 1180 unsigned Link = 0; 1181 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1182 SHeader.sh_link = Link; 1183 1184 if (Section.Content || Section.Size) { 1185 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1186 return; 1187 } 1188 1189 for (const ELFYAML::AddrsigSymbol &Sym : *Section.Symbols) { 1190 uint64_t Val = 1191 Sym.Name ? toSymbolIndex(*Sym.Name, Section.Name, /*IsDynamic=*/false) 1192 : (uint32_t)*Sym.Index; 1193 SHeader.sh_size += encodeULEB128(Val, OS); 1194 } 1195 } 1196 1197 template <class ELFT> 1198 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1199 const ELFYAML::NoteSection &Section, 1200 ContiguousBlobAccumulator &CBA) { 1201 raw_ostream &OS = 1202 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1203 uint64_t Offset = OS.tell(); 1204 1205 if (Section.Content || Section.Size) { 1206 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1207 return; 1208 } 1209 1210 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1211 // Write name size. 1212 if (NE.Name.empty()) 1213 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1214 else 1215 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1216 ELFT::TargetEndianness); 1217 1218 // Write description size. 1219 if (NE.Desc.binary_size() == 0) 1220 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1221 else 1222 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1223 ELFT::TargetEndianness); 1224 1225 // Write type. 1226 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1227 1228 // Write name, null terminator and padding. 1229 if (!NE.Name.empty()) { 1230 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1231 ELFT::TargetEndianness); 1232 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1233 CBA.padToAlignment(4); 1234 } 1235 1236 // Write description and padding. 1237 if (NE.Desc.binary_size() != 0) { 1238 NE.Desc.writeAsBinary(OS); 1239 CBA.padToAlignment(4); 1240 } 1241 } 1242 1243 SHeader.sh_size = OS.tell() - Offset; 1244 } 1245 1246 template <class ELFT> 1247 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1248 const ELFYAML::GnuHashSection &Section, 1249 ContiguousBlobAccumulator &CBA) { 1250 raw_ostream &OS = 1251 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1252 1253 unsigned Link = 0; 1254 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1255 SHeader.sh_link = Link; 1256 1257 if (Section.Content) { 1258 SHeader.sh_size = writeContent(OS, Section.Content, None); 1259 return; 1260 } 1261 1262 // We write the header first, starting with the hash buckets count. Normally 1263 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1264 // be used to override this field, which is useful for producing broken 1265 // objects. 1266 if (Section.Header->NBuckets) 1267 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1268 ELFT::TargetEndianness); 1269 else 1270 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1271 ELFT::TargetEndianness); 1272 1273 // Write the index of the first symbol in the dynamic symbol table accessible 1274 // via the hash table. 1275 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1276 ELFT::TargetEndianness); 1277 1278 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1279 // property can be used to set this field to any value. 1280 if (Section.Header->MaskWords) 1281 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1282 ELFT::TargetEndianness); 1283 else 1284 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1285 ELFT::TargetEndianness); 1286 1287 // Write the shift constant used by the Bloom filter. 1288 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1289 ELFT::TargetEndianness); 1290 1291 // We've finished writing the header. Now write the Bloom filter. 1292 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1293 support::endian::write<typename ELFT::uint>(OS, Val, 1294 ELFT::TargetEndianness); 1295 1296 // Write an array of hash buckets. 1297 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1298 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1299 1300 // Write an array of hash values. 1301 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1302 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1303 1304 SHeader.sh_size = 16 /*Header size*/ + 1305 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1306 Section.HashBuckets->size() * 4 + 1307 Section.HashValues->size() * 4; 1308 } 1309 1310 template <class ELFT> 1311 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1312 ContiguousBlobAccumulator &CBA) { 1313 raw_ostream &OS = CBA.getOSAndAlignedOffset(Fill.ShOffset, /*Align=*/1); 1314 1315 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1316 if (!PatternSize) { 1317 OS.write_zeros(Fill.Size); 1318 return; 1319 } 1320 1321 // Fill the content with the specified pattern. 1322 uint64_t Written = 0; 1323 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1324 Fill.Pattern->writeAsBinary(OS); 1325 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); 1326 } 1327 1328 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1329 size_t SecNdx = -1; 1330 StringSet<> Seen; 1331 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 1332 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 1333 bool IsSection = isa<ELFYAML::Section>(C.get()); 1334 if (IsSection) 1335 ++SecNdx; 1336 1337 if (C->Name.empty()) 1338 continue; 1339 1340 if (!Seen.insert(C->Name).second) 1341 reportError("repeated section/fill name: '" + C->Name + 1342 "' at YAML section/fill number " + Twine(I)); 1343 if (!IsSection || HasError) 1344 continue; 1345 1346 if (!SN2I.addName(C->Name, SecNdx)) 1347 llvm_unreachable("buildSectionIndex() failed"); 1348 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); 1349 } 1350 1351 DotShStrtab.finalize(); 1352 } 1353 1354 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1355 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1356 for (size_t I = 0, S = V.size(); I < S; ++I) { 1357 const ELFYAML::Symbol &Sym = V[I]; 1358 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1359 reportError("repeated symbol name: '" + Sym.Name + "'"); 1360 } 1361 }; 1362 1363 if (Doc.Symbols) 1364 Build(*Doc.Symbols, SymN2I); 1365 if (Doc.DynamicSymbols) 1366 Build(*Doc.DynamicSymbols, DynSymN2I); 1367 } 1368 1369 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1370 // Add the regular symbol names to .strtab section. 1371 if (Doc.Symbols) 1372 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1373 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1374 DotStrtab.finalize(); 1375 1376 // Add the dynamic symbol names to .dynstr section. 1377 if (Doc.DynamicSymbols) 1378 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1379 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1380 1381 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1382 // add strings to .dynstr section. 1383 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1384 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1385 if (VerNeed->VerneedV) { 1386 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1387 DotDynstr.add(VE.File); 1388 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1389 DotDynstr.add(Aux.Name); 1390 } 1391 } 1392 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1393 if (VerDef->Entries) 1394 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1395 for (StringRef Name : E.VerNames) 1396 DotDynstr.add(Name); 1397 } 1398 } 1399 1400 DotDynstr.finalize(); 1401 } 1402 1403 template <class ELFT> 1404 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1405 yaml::ErrorHandler EH) { 1406 ELFState<ELFT> State(Doc, EH); 1407 1408 // Finalize .strtab and .dynstr sections. We do that early because want to 1409 // finalize the string table builders before writing the content of the 1410 // sections that might want to use them. 1411 State.finalizeStrings(); 1412 1413 State.buildSectionIndex(); 1414 if (State.HasError) 1415 return false; 1416 1417 State.buildSymbolIndexes(); 1418 1419 std::vector<Elf_Phdr> PHeaders; 1420 State.initProgramHeaders(PHeaders); 1421 1422 // XXX: This offset is tightly coupled with the order that we write 1423 // things to `OS`. 1424 const size_t SectionContentBeginOffset = 1425 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1426 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1427 1428 std::vector<Elf_Shdr> SHeaders; 1429 State.initSectionHeaders(SHeaders, CBA); 1430 1431 // Now we can decide segment offsets. 1432 State.setProgramHeaderLayout(PHeaders, SHeaders); 1433 1434 if (State.HasError) 1435 return false; 1436 1437 State.writeELFHeader(CBA, OS); 1438 writeArrayData(OS, makeArrayRef(PHeaders)); 1439 CBA.writeBlobToStream(OS); 1440 writeArrayData(OS, makeArrayRef(SHeaders)); 1441 return true; 1442 } 1443 1444 namespace llvm { 1445 namespace yaml { 1446 1447 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1448 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1449 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1450 if (Is64Bit) { 1451 if (IsLE) 1452 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1453 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1454 } 1455 if (IsLE) 1456 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1457 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1458 } 1459 1460 } // namespace yaml 1461 } // namespace llvm 1462