1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/StringSet.h" 18 #include "llvm/BinaryFormat/ELF.h" 19 #include "llvm/MC/StringTableBuilder.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/ELFTypes.h" 22 #include "llvm/ObjectYAML/DWARFEmitter.h" 23 #include "llvm/ObjectYAML/DWARFYAML.h" 24 #include "llvm/ObjectYAML/ELFYAML.h" 25 #include "llvm/ObjectYAML/yaml2obj.h" 26 #include "llvm/Support/EndianStream.h" 27 #include "llvm/Support/Errc.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/LEB128.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/WithColor.h" 32 #include "llvm/Support/YAMLTraits.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <optional> 35 #include <variant> 36 37 using namespace llvm; 38 39 // This class is used to build up a contiguous binary blob while keeping 40 // track of an offset in the output (which notionally begins at 41 // `InitialOffset`). 42 // The blob might be limited to an arbitrary size. All attempts to write data 43 // are ignored and the error condition is remembered once the limit is reached. 44 // Such an approach allows us to simplify the code by delaying error reporting 45 // and doing it at a convenient time. 46 namespace { 47 class ContiguousBlobAccumulator { 48 const uint64_t InitialOffset; 49 const uint64_t MaxSize; 50 51 SmallVector<char, 128> Buf; 52 raw_svector_ostream OS; 53 Error ReachedLimitErr = Error::success(); 54 55 bool checkLimit(uint64_t Size) { 56 if (!ReachedLimitErr && getOffset() + Size <= MaxSize) 57 return true; 58 if (!ReachedLimitErr) 59 ReachedLimitErr = createStringError(errc::invalid_argument, 60 "reached the output size limit"); 61 return false; 62 } 63 64 public: 65 ContiguousBlobAccumulator(uint64_t BaseOffset, uint64_t SizeLimit) 66 : InitialOffset(BaseOffset), MaxSize(SizeLimit), OS(Buf) {} 67 68 uint64_t tell() const { return OS.tell(); } 69 uint64_t getOffset() const { return InitialOffset + OS.tell(); } 70 void writeBlobToStream(raw_ostream &Out) const { Out << OS.str(); } 71 72 Error takeLimitError() { 73 // Request to write 0 bytes to check we did not reach the limit. 74 checkLimit(0); 75 return std::move(ReachedLimitErr); 76 } 77 78 /// \returns The new offset. 79 uint64_t padToAlignment(unsigned Align) { 80 uint64_t CurrentOffset = getOffset(); 81 if (ReachedLimitErr) 82 return CurrentOffset; 83 84 uint64_t AlignedOffset = alignTo(CurrentOffset, Align == 0 ? 1 : Align); 85 uint64_t PaddingSize = AlignedOffset - CurrentOffset; 86 if (!checkLimit(PaddingSize)) 87 return CurrentOffset; 88 89 writeZeros(PaddingSize); 90 return AlignedOffset; 91 } 92 93 raw_ostream *getRawOS(uint64_t Size) { 94 if (checkLimit(Size)) 95 return &OS; 96 return nullptr; 97 } 98 99 void writeAsBinary(const yaml::BinaryRef &Bin, uint64_t N = UINT64_MAX) { 100 if (!checkLimit(Bin.binary_size())) 101 return; 102 Bin.writeAsBinary(OS, N); 103 } 104 105 void writeZeros(uint64_t Num) { 106 if (checkLimit(Num)) 107 OS.write_zeros(Num); 108 } 109 110 void write(const char *Ptr, size_t Size) { 111 if (checkLimit(Size)) 112 OS.write(Ptr, Size); 113 } 114 115 void write(unsigned char C) { 116 if (checkLimit(1)) 117 OS.write(C); 118 } 119 120 unsigned writeULEB128(uint64_t Val) { 121 if (!checkLimit(sizeof(uint64_t))) 122 return 0; 123 return encodeULEB128(Val, OS); 124 } 125 126 template <typename T> void write(T Val, llvm::endianness E) { 127 if (checkLimit(sizeof(T))) 128 support::endian::write<T>(OS, Val, E); 129 } 130 131 void updateDataAt(uint64_t Pos, void *Data, size_t Size) { 132 assert(Pos >= InitialOffset && Pos + Size <= getOffset()); 133 memcpy(&Buf[Pos - InitialOffset], Data, Size); 134 } 135 }; 136 137 // Used to keep track of section and symbol names, so that in the YAML file 138 // sections and symbols can be referenced by name instead of by index. 139 class NameToIdxMap { 140 StringMap<unsigned> Map; 141 142 public: 143 /// \Returns false if name is already present in the map. 144 bool addName(StringRef Name, unsigned Ndx) { 145 return Map.insert({Name, Ndx}).second; 146 } 147 /// \Returns false if name is not present in the map. 148 bool lookup(StringRef Name, unsigned &Idx) const { 149 auto I = Map.find(Name); 150 if (I == Map.end()) 151 return false; 152 Idx = I->getValue(); 153 return true; 154 } 155 /// Asserts if name is not present in the map. 156 unsigned get(StringRef Name) const { 157 unsigned Idx; 158 if (lookup(Name, Idx)) 159 return Idx; 160 assert(false && "Expected section not found in index"); 161 return 0; 162 } 163 unsigned size() const { return Map.size(); } 164 }; 165 166 namespace { 167 struct Fragment { 168 uint64_t Offset; 169 uint64_t Size; 170 uint32_t Type; 171 uint64_t AddrAlign; 172 }; 173 } // namespace 174 175 /// "Single point of truth" for the ELF file construction. 176 /// TODO: This class still has a ways to go before it is truly a "single 177 /// point of truth". 178 template <class ELFT> class ELFState { 179 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 180 181 enum class SymtabType { Static, Dynamic }; 182 183 /// The future symbol table string section. 184 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 185 186 /// The future section header string table section, if a unique string table 187 /// is needed. Don't reference this variable direectly: use the 188 /// ShStrtabStrings member instead. 189 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 190 191 /// The future dynamic symbol string section. 192 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 193 194 /// The name of the section header string table section. If it is .strtab or 195 /// .dynstr, the section header strings will be written to the same string 196 /// table as the static/dynamic symbols respectively. Otherwise a dedicated 197 /// section will be created with that name. 198 StringRef SectionHeaderStringTableName = ".shstrtab"; 199 StringTableBuilder *ShStrtabStrings = &DotShStrtab; 200 201 NameToIdxMap SN2I; 202 NameToIdxMap SymN2I; 203 NameToIdxMap DynSymN2I; 204 ELFYAML::Object &Doc; 205 206 StringSet<> ExcludedSectionHeaders; 207 208 uint64_t LocationCounter = 0; 209 bool HasError = false; 210 yaml::ErrorHandler ErrHandler; 211 void reportError(const Twine &Msg); 212 void reportError(Error Err); 213 214 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 215 const StringTableBuilder &Strtab); 216 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 217 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 218 219 void buildSectionIndex(); 220 void buildSymbolIndexes(); 221 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 222 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 223 StringRef SecName, ELFYAML::Section *YAMLSec); 224 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 225 ContiguousBlobAccumulator &CBA); 226 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 227 ContiguousBlobAccumulator &CBA, 228 ELFYAML::Section *YAMLSec); 229 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 230 StringTableBuilder &STB, 231 ContiguousBlobAccumulator &CBA, 232 ELFYAML::Section *YAMLSec); 233 void initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name, 234 ContiguousBlobAccumulator &CBA, 235 ELFYAML::Section *YAMLSec); 236 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 237 std::vector<Elf_Shdr> &SHeaders); 238 239 std::vector<Fragment> 240 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 241 ArrayRef<typename ELFT::Shdr> SHeaders); 242 243 void finalizeStrings(); 244 void writeELFHeader(raw_ostream &OS); 245 void writeSectionContent(Elf_Shdr &SHeader, 246 const ELFYAML::NoBitsSection &Section, 247 ContiguousBlobAccumulator &CBA); 248 void writeSectionContent(Elf_Shdr &SHeader, 249 const ELFYAML::RawContentSection &Section, 250 ContiguousBlobAccumulator &CBA); 251 void writeSectionContent(Elf_Shdr &SHeader, 252 const ELFYAML::RelocationSection &Section, 253 ContiguousBlobAccumulator &CBA); 254 void writeSectionContent(Elf_Shdr &SHeader, 255 const ELFYAML::RelrSection &Section, 256 ContiguousBlobAccumulator &CBA); 257 void writeSectionContent(Elf_Shdr &SHeader, 258 const ELFYAML::GroupSection &Group, 259 ContiguousBlobAccumulator &CBA); 260 void writeSectionContent(Elf_Shdr &SHeader, 261 const ELFYAML::SymtabShndxSection &Shndx, 262 ContiguousBlobAccumulator &CBA); 263 void writeSectionContent(Elf_Shdr &SHeader, 264 const ELFYAML::SymverSection &Section, 265 ContiguousBlobAccumulator &CBA); 266 void writeSectionContent(Elf_Shdr &SHeader, 267 const ELFYAML::VerneedSection &Section, 268 ContiguousBlobAccumulator &CBA); 269 void writeSectionContent(Elf_Shdr &SHeader, 270 const ELFYAML::VerdefSection &Section, 271 ContiguousBlobAccumulator &CBA); 272 void writeSectionContent(Elf_Shdr &SHeader, 273 const ELFYAML::ARMIndexTableSection &Section, 274 ContiguousBlobAccumulator &CBA); 275 void writeSectionContent(Elf_Shdr &SHeader, 276 const ELFYAML::MipsABIFlags &Section, 277 ContiguousBlobAccumulator &CBA); 278 void writeSectionContent(Elf_Shdr &SHeader, 279 const ELFYAML::DynamicSection &Section, 280 ContiguousBlobAccumulator &CBA); 281 void writeSectionContent(Elf_Shdr &SHeader, 282 const ELFYAML::StackSizesSection &Section, 283 ContiguousBlobAccumulator &CBA); 284 void writeSectionContent(Elf_Shdr &SHeader, 285 const ELFYAML::BBAddrMapSection &Section, 286 ContiguousBlobAccumulator &CBA); 287 void writeSectionContent(Elf_Shdr &SHeader, 288 const ELFYAML::HashSection &Section, 289 ContiguousBlobAccumulator &CBA); 290 void writeSectionContent(Elf_Shdr &SHeader, 291 const ELFYAML::AddrsigSection &Section, 292 ContiguousBlobAccumulator &CBA); 293 void writeSectionContent(Elf_Shdr &SHeader, 294 const ELFYAML::NoteSection &Section, 295 ContiguousBlobAccumulator &CBA); 296 void writeSectionContent(Elf_Shdr &SHeader, 297 const ELFYAML::GnuHashSection &Section, 298 ContiguousBlobAccumulator &CBA); 299 void writeSectionContent(Elf_Shdr &SHeader, 300 const ELFYAML::LinkerOptionsSection &Section, 301 ContiguousBlobAccumulator &CBA); 302 void writeSectionContent(Elf_Shdr &SHeader, 303 const ELFYAML::DependentLibrariesSection &Section, 304 ContiguousBlobAccumulator &CBA); 305 void writeSectionContent(Elf_Shdr &SHeader, 306 const ELFYAML::CallGraphProfileSection &Section, 307 ContiguousBlobAccumulator &CBA); 308 309 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 310 311 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 312 313 void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec); 314 315 DenseMap<StringRef, size_t> buildSectionHeaderReorderMap(); 316 317 BumpPtrAllocator StringAlloc; 318 uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, 319 std::optional<llvm::yaml::Hex64> Offset); 320 321 uint64_t getSectionNameOffset(StringRef Name); 322 323 public: 324 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 325 yaml::ErrorHandler EH, uint64_t MaxSize); 326 }; 327 } // end anonymous namespace 328 329 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 330 return A.size() * sizeof(T); 331 } 332 333 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 334 OS.write((const char *)A.data(), arrayDataSize(A)); 335 } 336 337 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 338 339 template <class ELFT> 340 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 341 : Doc(D), ErrHandler(EH) { 342 // The input may explicitly request to store the section header table strings 343 // in the same string table as dynamic or static symbol names. Set the 344 // ShStrtabStrings member accordingly. 345 if (Doc.Header.SectionHeaderStringTable) { 346 SectionHeaderStringTableName = *Doc.Header.SectionHeaderStringTable; 347 if (*Doc.Header.SectionHeaderStringTable == ".strtab") 348 ShStrtabStrings = &DotStrtab; 349 else if (*Doc.Header.SectionHeaderStringTable == ".dynstr") 350 ShStrtabStrings = &DotDynstr; 351 // Otherwise, the unique table will be used. 352 } 353 354 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 355 // Insert SHT_NULL section implicitly when it is not defined in YAML. 356 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 357 Doc.Chunks.insert( 358 Doc.Chunks.begin(), 359 std::make_unique<ELFYAML::Section>( 360 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 361 362 StringSet<> DocSections; 363 ELFYAML::SectionHeaderTable *SecHdrTable = nullptr; 364 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 365 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 366 367 // We might have an explicit section header table declaration. 368 if (auto S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) { 369 if (SecHdrTable) 370 reportError("multiple section header tables are not allowed"); 371 SecHdrTable = S; 372 continue; 373 } 374 375 // We add a technical suffix for each unnamed section/fill. It does not 376 // affect the output, but allows us to map them by name in the code and 377 // report better error messages. 378 if (C->Name.empty()) { 379 std::string NewName = ELFYAML::appendUniqueSuffix( 380 /*Name=*/"", "index " + Twine(I)); 381 C->Name = StringRef(NewName).copy(StringAlloc); 382 assert(ELFYAML::dropUniqueSuffix(C->Name).empty()); 383 } 384 385 if (!DocSections.insert(C->Name).second) 386 reportError("repeated section/fill name: '" + C->Name + 387 "' at YAML section/fill number " + Twine(I)); 388 } 389 390 SmallSetVector<StringRef, 8> ImplicitSections; 391 if (Doc.DynamicSymbols) { 392 if (SectionHeaderStringTableName == ".dynsym") 393 reportError("cannot use '.dynsym' as the section header name table when " 394 "there are dynamic symbols"); 395 ImplicitSections.insert(".dynsym"); 396 ImplicitSections.insert(".dynstr"); 397 } 398 if (Doc.Symbols) { 399 if (SectionHeaderStringTableName == ".symtab") 400 reportError("cannot use '.symtab' as the section header name table when " 401 "there are symbols"); 402 ImplicitSections.insert(".symtab"); 403 } 404 if (Doc.DWARF) 405 for (StringRef DebugSecName : Doc.DWARF->getNonEmptySectionNames()) { 406 std::string SecName = ("." + DebugSecName).str(); 407 // TODO: For .debug_str it should be possible to share the string table, 408 // in the same manner as the symbol string tables. 409 if (SectionHeaderStringTableName == SecName) 410 reportError("cannot use '" + SecName + 411 "' as the section header name table when it is needed for " 412 "DWARF output"); 413 ImplicitSections.insert(StringRef(SecName).copy(StringAlloc)); 414 } 415 // TODO: Only create the .strtab here if any symbols have been requested. 416 ImplicitSections.insert(".strtab"); 417 if (!SecHdrTable || !SecHdrTable->NoHeaders.value_or(false)) 418 ImplicitSections.insert(SectionHeaderStringTableName); 419 420 // Insert placeholders for implicit sections that are not 421 // defined explicitly in YAML. 422 for (StringRef SecName : ImplicitSections) { 423 if (DocSections.count(SecName)) 424 continue; 425 426 std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>( 427 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 428 Sec->Name = SecName; 429 430 if (SecName == SectionHeaderStringTableName) 431 Sec->Type = ELF::SHT_STRTAB; 432 else if (SecName == ".dynsym") 433 Sec->Type = ELF::SHT_DYNSYM; 434 else if (SecName == ".symtab") 435 Sec->Type = ELF::SHT_SYMTAB; 436 else 437 Sec->Type = ELF::SHT_STRTAB; 438 439 // When the section header table is explicitly defined at the end of the 440 // sections list, it is reasonable to assume that the user wants to reorder 441 // section headers, but still wants to place the section header table after 442 // all sections, like it normally happens. In this case we want to insert 443 // other implicit sections right before the section header table. 444 if (Doc.Chunks.back().get() == SecHdrTable) 445 Doc.Chunks.insert(Doc.Chunks.end() - 1, std::move(Sec)); 446 else 447 Doc.Chunks.push_back(std::move(Sec)); 448 } 449 450 // Insert the section header table implicitly at the end, when it is not 451 // explicitly defined. 452 if (!SecHdrTable) 453 Doc.Chunks.push_back( 454 std::make_unique<ELFYAML::SectionHeaderTable>(/*IsImplicit=*/true)); 455 } 456 457 template <class ELFT> 458 void ELFState<ELFT>::writeELFHeader(raw_ostream &OS) { 459 using namespace llvm::ELF; 460 461 Elf_Ehdr Header; 462 zero(Header); 463 Header.e_ident[EI_MAG0] = 0x7f; 464 Header.e_ident[EI_MAG1] = 'E'; 465 Header.e_ident[EI_MAG2] = 'L'; 466 Header.e_ident[EI_MAG3] = 'F'; 467 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 468 Header.e_ident[EI_DATA] = Doc.Header.Data; 469 Header.e_ident[EI_VERSION] = EV_CURRENT; 470 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 471 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 472 Header.e_type = Doc.Header.Type; 473 474 if (Doc.Header.Machine) 475 Header.e_machine = *Doc.Header.Machine; 476 else 477 Header.e_machine = EM_NONE; 478 479 Header.e_version = EV_CURRENT; 480 Header.e_entry = Doc.Header.Entry; 481 Header.e_flags = Doc.Header.Flags; 482 Header.e_ehsize = sizeof(Elf_Ehdr); 483 484 if (Doc.Header.EPhOff) 485 Header.e_phoff = *Doc.Header.EPhOff; 486 else if (!Doc.ProgramHeaders.empty()) 487 Header.e_phoff = sizeof(Header); 488 else 489 Header.e_phoff = 0; 490 491 if (Doc.Header.EPhEntSize) 492 Header.e_phentsize = *Doc.Header.EPhEntSize; 493 else if (!Doc.ProgramHeaders.empty()) 494 Header.e_phentsize = sizeof(Elf_Phdr); 495 else 496 Header.e_phentsize = 0; 497 498 if (Doc.Header.EPhNum) 499 Header.e_phnum = *Doc.Header.EPhNum; 500 else if (!Doc.ProgramHeaders.empty()) 501 Header.e_phnum = Doc.ProgramHeaders.size(); 502 else 503 Header.e_phnum = 0; 504 505 Header.e_shentsize = Doc.Header.EShEntSize ? (uint16_t)*Doc.Header.EShEntSize 506 : sizeof(Elf_Shdr); 507 508 const ELFYAML::SectionHeaderTable &SectionHeaders = 509 Doc.getSectionHeaderTable(); 510 511 if (Doc.Header.EShOff) 512 Header.e_shoff = *Doc.Header.EShOff; 513 else if (SectionHeaders.Offset) 514 Header.e_shoff = *SectionHeaders.Offset; 515 else 516 Header.e_shoff = 0; 517 518 if (Doc.Header.EShNum) 519 Header.e_shnum = *Doc.Header.EShNum; 520 else 521 Header.e_shnum = SectionHeaders.getNumHeaders(Doc.getSections().size()); 522 523 if (Doc.Header.EShStrNdx) 524 Header.e_shstrndx = *Doc.Header.EShStrNdx; 525 else if (SectionHeaders.Offset && 526 !ExcludedSectionHeaders.count(SectionHeaderStringTableName)) 527 Header.e_shstrndx = SN2I.get(SectionHeaderStringTableName); 528 else 529 Header.e_shstrndx = 0; 530 531 OS.write((const char *)&Header, sizeof(Header)); 532 } 533 534 template <class ELFT> 535 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 536 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 537 DenseMap<StringRef, size_t> NameToIndex; 538 for (size_t I = 0, E = Doc.Chunks.size(); I != E; ++I) { 539 if (auto S = dyn_cast<ELFYAML::Fill>(Doc.Chunks[I].get())) 540 NameToFill[S->Name] = S; 541 NameToIndex[Doc.Chunks[I]->Name] = I + 1; 542 } 543 544 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 545 for (size_t I = 0, E = Doc.ProgramHeaders.size(); I != E; ++I) { 546 ELFYAML::ProgramHeader &YamlPhdr = Doc.ProgramHeaders[I]; 547 Elf_Phdr Phdr; 548 zero(Phdr); 549 Phdr.p_type = YamlPhdr.Type; 550 Phdr.p_flags = YamlPhdr.Flags; 551 Phdr.p_vaddr = YamlPhdr.VAddr; 552 Phdr.p_paddr = YamlPhdr.PAddr; 553 PHeaders.push_back(Phdr); 554 555 if (!YamlPhdr.FirstSec && !YamlPhdr.LastSec) 556 continue; 557 558 // Get the index of the section, or 0 in the case when the section doesn't exist. 559 size_t First = NameToIndex[*YamlPhdr.FirstSec]; 560 if (!First) 561 reportError("unknown section or fill referenced: '" + *YamlPhdr.FirstSec + 562 "' by the 'FirstSec' key of the program header with index " + 563 Twine(I)); 564 size_t Last = NameToIndex[*YamlPhdr.LastSec]; 565 if (!Last) 566 reportError("unknown section or fill referenced: '" + *YamlPhdr.LastSec + 567 "' by the 'LastSec' key of the program header with index " + 568 Twine(I)); 569 if (!First || !Last) 570 continue; 571 572 if (First > Last) 573 reportError("program header with index " + Twine(I) + 574 ": the section index of " + *YamlPhdr.FirstSec + 575 " is greater than the index of " + *YamlPhdr.LastSec); 576 577 for (size_t I = First; I <= Last; ++I) 578 YamlPhdr.Chunks.push_back(Doc.Chunks[I - 1].get()); 579 } 580 } 581 582 template <class ELFT> 583 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 584 StringRef LocSym) { 585 assert(LocSec.empty() || LocSym.empty()); 586 587 unsigned Index; 588 if (!SN2I.lookup(S, Index) && !to_integer(S, Index)) { 589 if (!LocSym.empty()) 590 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 591 LocSym + "'"); 592 else 593 reportError("unknown section referenced: '" + S + "' by YAML section '" + 594 LocSec + "'"); 595 return 0; 596 } 597 598 const ELFYAML::SectionHeaderTable &SectionHeaders = 599 Doc.getSectionHeaderTable(); 600 if (SectionHeaders.IsImplicit || 601 (SectionHeaders.NoHeaders && !*SectionHeaders.NoHeaders) || 602 SectionHeaders.isDefault()) 603 return Index; 604 605 assert(!SectionHeaders.NoHeaders.value_or(false) || !SectionHeaders.Sections); 606 size_t FirstExcluded = 607 SectionHeaders.Sections ? SectionHeaders.Sections->size() : 0; 608 if (Index > FirstExcluded) { 609 if (LocSym.empty()) 610 reportError("unable to link '" + LocSec + "' to excluded section '" + S + 611 "'"); 612 else 613 reportError("excluded section referenced: '" + S + "' by symbol '" + 614 LocSym + "'"); 615 } 616 return Index; 617 } 618 619 template <class ELFT> 620 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 621 bool IsDynamic) { 622 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 623 unsigned Index; 624 // Here we try to look up S in the symbol table. If it is not there, 625 // treat its value as a symbol index. 626 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 627 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 628 LocSec + "'"); 629 return 0; 630 } 631 return Index; 632 } 633 634 template <class ELFT> 635 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 636 if (!From) 637 return; 638 if (From->ShAddrAlign) 639 To.sh_addralign = *From->ShAddrAlign; 640 if (From->ShFlags) 641 To.sh_flags = *From->ShFlags; 642 if (From->ShName) 643 To.sh_name = *From->ShName; 644 if (From->ShOffset) 645 To.sh_offset = *From->ShOffset; 646 if (From->ShSize) 647 To.sh_size = *From->ShSize; 648 if (From->ShType) 649 To.sh_type = *From->ShType; 650 } 651 652 template <class ELFT> 653 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 654 Elf_Shdr &Header, StringRef SecName, 655 ELFYAML::Section *YAMLSec) { 656 // Check if the header was already initialized. 657 if (Header.sh_offset) 658 return false; 659 660 if (SecName == ".strtab") 661 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 662 else if (SecName == ".dynstr") 663 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 664 else if (SecName == SectionHeaderStringTableName) 665 initStrtabSectionHeader(Header, SecName, *ShStrtabStrings, CBA, YAMLSec); 666 else if (SecName == ".symtab") 667 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 668 else if (SecName == ".dynsym") 669 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 670 else if (SecName.starts_with(".debug_")) { 671 // If a ".debug_*" section's type is a preserved one, e.g., SHT_DYNAMIC, we 672 // will not treat it as a debug section. 673 if (YAMLSec && !isa<ELFYAML::RawContentSection>(YAMLSec)) 674 return false; 675 initDWARFSectionHeader(Header, SecName, CBA, YAMLSec); 676 } else 677 return false; 678 679 LocationCounter += Header.sh_size; 680 681 // Override section fields if requested. 682 overrideFields<ELFT>(YAMLSec, Header); 683 return true; 684 } 685 686 constexpr char SuffixStart = '('; 687 constexpr char SuffixEnd = ')'; 688 689 std::string llvm::ELFYAML::appendUniqueSuffix(StringRef Name, 690 const Twine &Msg) { 691 // Do not add a space when a Name is empty. 692 std::string Ret = Name.empty() ? "" : Name.str() + ' '; 693 return Ret + (Twine(SuffixStart) + Msg + Twine(SuffixEnd)).str(); 694 } 695 696 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 697 if (S.empty() || S.back() != SuffixEnd) 698 return S; 699 700 // A special case for empty names. See appendUniqueSuffix() above. 701 size_t SuffixPos = S.rfind(SuffixStart); 702 if (SuffixPos == 0) 703 return ""; 704 705 if (SuffixPos == StringRef::npos || S[SuffixPos - 1] != ' ') 706 return S; 707 return S.substr(0, SuffixPos - 1); 708 } 709 710 template <class ELFT> 711 uint64_t ELFState<ELFT>::getSectionNameOffset(StringRef Name) { 712 // If a section is excluded from section headers, we do not save its name in 713 // the string table. 714 if (ExcludedSectionHeaders.count(Name)) 715 return 0; 716 return ShStrtabStrings->getOffset(Name); 717 } 718 719 static uint64_t writeContent(ContiguousBlobAccumulator &CBA, 720 const std::optional<yaml::BinaryRef> &Content, 721 const std::optional<llvm::yaml::Hex64> &Size) { 722 size_t ContentSize = 0; 723 if (Content) { 724 CBA.writeAsBinary(*Content); 725 ContentSize = Content->binary_size(); 726 } 727 728 if (!Size) 729 return ContentSize; 730 731 CBA.writeZeros(*Size - ContentSize); 732 return *Size; 733 } 734 735 static StringRef getDefaultLinkSec(unsigned SecType) { 736 switch (SecType) { 737 case ELF::SHT_REL: 738 case ELF::SHT_RELA: 739 case ELF::SHT_GROUP: 740 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 741 case ELF::SHT_LLVM_ADDRSIG: 742 return ".symtab"; 743 case ELF::SHT_GNU_versym: 744 case ELF::SHT_HASH: 745 case ELF::SHT_GNU_HASH: 746 return ".dynsym"; 747 case ELF::SHT_DYNSYM: 748 case ELF::SHT_GNU_verdef: 749 case ELF::SHT_GNU_verneed: 750 return ".dynstr"; 751 case ELF::SHT_SYMTAB: 752 return ".strtab"; 753 default: 754 return ""; 755 } 756 } 757 758 template <class ELFT> 759 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 760 ContiguousBlobAccumulator &CBA) { 761 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 762 // valid SHN_UNDEF entry since SHT_NULL == 0. 763 SHeaders.resize(Doc.getSections().size()); 764 765 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 766 if (ELFYAML::Fill *S = dyn_cast<ELFYAML::Fill>(D.get())) { 767 S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset); 768 writeFill(*S, CBA); 769 LocationCounter += S->Size; 770 continue; 771 } 772 773 if (ELFYAML::SectionHeaderTable *S = 774 dyn_cast<ELFYAML::SectionHeaderTable>(D.get())) { 775 if (S->NoHeaders.value_or(false)) 776 continue; 777 778 if (!S->Offset) 779 S->Offset = alignToOffset(CBA, sizeof(typename ELFT::uint), 780 /*Offset=*/std::nullopt); 781 else 782 S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset); 783 784 uint64_t Size = S->getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr); 785 // The full section header information might be not available here, so 786 // fill the space with zeroes as a placeholder. 787 CBA.writeZeros(Size); 788 LocationCounter += Size; 789 continue; 790 } 791 792 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 793 bool IsFirstUndefSection = Sec == Doc.getSections().front(); 794 if (IsFirstUndefSection && Sec->IsImplicit) 795 continue; 796 797 Elf_Shdr &SHeader = SHeaders[SN2I.get(Sec->Name)]; 798 if (Sec->Link) { 799 SHeader.sh_link = toSectionIndex(*Sec->Link, Sec->Name); 800 } else { 801 StringRef LinkSec = getDefaultLinkSec(Sec->Type); 802 unsigned Link = 0; 803 if (!LinkSec.empty() && !ExcludedSectionHeaders.count(LinkSec) && 804 SN2I.lookup(LinkSec, Link)) 805 SHeader.sh_link = Link; 806 } 807 808 if (Sec->EntSize) 809 SHeader.sh_entsize = *Sec->EntSize; 810 else 811 SHeader.sh_entsize = ELFYAML::getDefaultShEntSize<ELFT>( 812 Doc.Header.Machine.value_or(ELF::EM_NONE), Sec->Type, Sec->Name); 813 814 // We have a few sections like string or symbol tables that are usually 815 // added implicitly to the end. However, if they are explicitly specified 816 // in the YAML, we need to write them here. This ensures the file offset 817 // remains correct. 818 if (initImplicitHeader(CBA, SHeader, Sec->Name, 819 Sec->IsImplicit ? nullptr : Sec)) 820 continue; 821 822 assert(Sec && "It can't be null unless it is an implicit section. But all " 823 "implicit sections should already have been handled above."); 824 825 SHeader.sh_name = 826 getSectionNameOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 827 SHeader.sh_type = Sec->Type; 828 if (Sec->Flags) 829 SHeader.sh_flags = *Sec->Flags; 830 SHeader.sh_addralign = Sec->AddressAlign; 831 832 // Set the offset for all sections, except the SHN_UNDEF section with index 833 // 0 when not explicitly requested. 834 if (!IsFirstUndefSection || Sec->Offset) 835 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset); 836 837 assignSectionAddress(SHeader, Sec); 838 839 if (IsFirstUndefSection) { 840 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 841 // We do not write any content for special SHN_UNDEF section. 842 if (RawSec->Size) 843 SHeader.sh_size = *RawSec->Size; 844 if (RawSec->Info) 845 SHeader.sh_info = *RawSec->Info; 846 } 847 848 LocationCounter += SHeader.sh_size; 849 overrideFields<ELFT>(Sec, SHeader); 850 continue; 851 } 852 853 if (!isa<ELFYAML::NoBitsSection>(Sec) && (Sec->Content || Sec->Size)) 854 SHeader.sh_size = writeContent(CBA, Sec->Content, Sec->Size); 855 856 if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 857 writeSectionContent(SHeader, *S, CBA); 858 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 859 writeSectionContent(SHeader, *S, CBA); 860 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 861 writeSectionContent(SHeader, *S, CBA); 862 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) { 863 writeSectionContent(SHeader, *S, CBA); 864 } else if (auto S = dyn_cast<ELFYAML::GroupSection>(Sec)) { 865 writeSectionContent(SHeader, *S, CBA); 866 } else if (auto S = dyn_cast<ELFYAML::ARMIndexTableSection>(Sec)) { 867 writeSectionContent(SHeader, *S, CBA); 868 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 869 writeSectionContent(SHeader, *S, CBA); 870 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 871 writeSectionContent(SHeader, *S, CBA); 872 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 873 writeSectionContent(SHeader, *S, CBA); 874 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 875 writeSectionContent(SHeader, *S, CBA); 876 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 877 writeSectionContent(SHeader, *S, CBA); 878 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 879 writeSectionContent(SHeader, *S, CBA); 880 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 881 writeSectionContent(SHeader, *S, CBA); 882 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 883 writeSectionContent(SHeader, *S, CBA); 884 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 885 writeSectionContent(SHeader, *S, CBA); 886 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 887 writeSectionContent(SHeader, *S, CBA); 888 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 889 writeSectionContent(SHeader, *S, CBA); 890 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 891 writeSectionContent(SHeader, *S, CBA); 892 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 893 writeSectionContent(SHeader, *S, CBA); 894 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) { 895 writeSectionContent(SHeader, *S, CBA); 896 } else if (auto S = dyn_cast<ELFYAML::BBAddrMapSection>(Sec)) { 897 writeSectionContent(SHeader, *S, CBA); 898 } else { 899 llvm_unreachable("Unknown section type"); 900 } 901 902 LocationCounter += SHeader.sh_size; 903 904 // Override section fields if requested. 905 overrideFields<ELFT>(Sec, SHeader); 906 } 907 } 908 909 template <class ELFT> 910 void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader, 911 ELFYAML::Section *YAMLSec) { 912 if (YAMLSec && YAMLSec->Address) { 913 SHeader.sh_addr = *YAMLSec->Address; 914 LocationCounter = *YAMLSec->Address; 915 return; 916 } 917 918 // sh_addr represents the address in the memory image of a process. Sections 919 // in a relocatable object file or non-allocatable sections do not need 920 // sh_addr assignment. 921 if (Doc.Header.Type.value == ELF::ET_REL || 922 !(SHeader.sh_flags & ELF::SHF_ALLOC)) 923 return; 924 925 LocationCounter = 926 alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1); 927 SHeader.sh_addr = LocationCounter; 928 } 929 930 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 931 for (size_t I = 0; I < Symbols.size(); ++I) 932 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 933 return I; 934 return Symbols.size(); 935 } 936 937 template <class ELFT> 938 std::vector<typename ELFT::Sym> 939 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 940 const StringTableBuilder &Strtab) { 941 std::vector<Elf_Sym> Ret; 942 Ret.resize(Symbols.size() + 1); 943 944 size_t I = 0; 945 for (const ELFYAML::Symbol &Sym : Symbols) { 946 Elf_Sym &Symbol = Ret[++I]; 947 948 // If NameIndex, which contains the name offset, is explicitly specified, we 949 // use it. This is useful for preparing broken objects. Otherwise, we add 950 // the specified Name to the string table builder to get its offset. 951 if (Sym.StName) 952 Symbol.st_name = *Sym.StName; 953 else if (!Sym.Name.empty()) 954 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 955 956 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 957 if (Sym.Section) 958 Symbol.st_shndx = toSectionIndex(*Sym.Section, "", Sym.Name); 959 else if (Sym.Index) 960 Symbol.st_shndx = *Sym.Index; 961 962 Symbol.st_value = Sym.Value.value_or(yaml::Hex64(0)); 963 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 964 Symbol.st_size = Sym.Size.value_or(yaml::Hex64(0)); 965 } 966 967 return Ret; 968 } 969 970 template <class ELFT> 971 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 972 SymtabType STType, 973 ContiguousBlobAccumulator &CBA, 974 ELFYAML::Section *YAMLSec) { 975 976 bool IsStatic = STType == SymtabType::Static; 977 ArrayRef<ELFYAML::Symbol> Symbols; 978 if (IsStatic && Doc.Symbols) 979 Symbols = *Doc.Symbols; 980 else if (!IsStatic && Doc.DynamicSymbols) 981 Symbols = *Doc.DynamicSymbols; 982 983 ELFYAML::RawContentSection *RawSec = 984 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 985 if (RawSec && (RawSec->Content || RawSec->Size)) { 986 bool HasSymbolsDescription = 987 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 988 if (HasSymbolsDescription) { 989 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 990 if (RawSec->Content) 991 reportError("cannot specify both `Content` and " + Property + 992 " for symbol table section '" + RawSec->Name + "'"); 993 if (RawSec->Size) 994 reportError("cannot specify both `Size` and " + Property + 995 " for symbol table section '" + RawSec->Name + "'"); 996 return; 997 } 998 } 999 1000 SHeader.sh_name = getSectionNameOffset(IsStatic ? ".symtab" : ".dynsym"); 1001 1002 if (YAMLSec) 1003 SHeader.sh_type = YAMLSec->Type; 1004 else 1005 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 1006 1007 if (YAMLSec && YAMLSec->Flags) 1008 SHeader.sh_flags = *YAMLSec->Flags; 1009 else if (!IsStatic) 1010 SHeader.sh_flags = ELF::SHF_ALLOC; 1011 1012 // If the symbol table section is explicitly described in the YAML 1013 // then we should set the fields requested. 1014 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 1015 : findFirstNonGlobal(Symbols) + 1; 1016 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 1017 1018 assignSectionAddress(SHeader, YAMLSec); 1019 1020 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, 1021 RawSec ? RawSec->Offset : std::nullopt); 1022 1023 if (RawSec && (RawSec->Content || RawSec->Size)) { 1024 assert(Symbols.empty()); 1025 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size); 1026 return; 1027 } 1028 1029 std::vector<Elf_Sym> Syms = 1030 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 1031 SHeader.sh_size = Syms.size() * sizeof(Elf_Sym); 1032 CBA.write((const char *)Syms.data(), SHeader.sh_size); 1033 } 1034 1035 template <class ELFT> 1036 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 1037 StringTableBuilder &STB, 1038 ContiguousBlobAccumulator &CBA, 1039 ELFYAML::Section *YAMLSec) { 1040 SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name)); 1041 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 1042 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 1043 1044 ELFYAML::RawContentSection *RawSec = 1045 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 1046 1047 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, 1048 YAMLSec ? YAMLSec->Offset : std::nullopt); 1049 1050 if (RawSec && (RawSec->Content || RawSec->Size)) { 1051 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size); 1052 } else { 1053 if (raw_ostream *OS = CBA.getRawOS(STB.getSize())) 1054 STB.write(*OS); 1055 SHeader.sh_size = STB.getSize(); 1056 } 1057 1058 if (RawSec && RawSec->Info) 1059 SHeader.sh_info = *RawSec->Info; 1060 1061 if (YAMLSec && YAMLSec->Flags) 1062 SHeader.sh_flags = *YAMLSec->Flags; 1063 else if (Name == ".dynstr") 1064 SHeader.sh_flags = ELF::SHF_ALLOC; 1065 1066 assignSectionAddress(SHeader, YAMLSec); 1067 } 1068 1069 static bool shouldEmitDWARF(DWARFYAML::Data &DWARF, StringRef Name) { 1070 SetVector<StringRef> DebugSecNames = DWARF.getNonEmptySectionNames(); 1071 return Name.consume_front(".") && DebugSecNames.count(Name); 1072 } 1073 1074 template <class ELFT> 1075 Expected<uint64_t> emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name, 1076 const DWARFYAML::Data &DWARF, 1077 ContiguousBlobAccumulator &CBA) { 1078 // We are unable to predict the size of debug data, so we request to write 0 1079 // bytes. This should always return us an output stream unless CBA is already 1080 // in an error state. 1081 raw_ostream *OS = CBA.getRawOS(0); 1082 if (!OS) 1083 return 0; 1084 1085 uint64_t BeginOffset = CBA.tell(); 1086 1087 auto EmitFunc = DWARFYAML::getDWARFEmitterByName(Name.substr(1)); 1088 if (Error Err = EmitFunc(*OS, DWARF)) 1089 return std::move(Err); 1090 1091 return CBA.tell() - BeginOffset; 1092 } 1093 1094 template <class ELFT> 1095 void ELFState<ELFT>::initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name, 1096 ContiguousBlobAccumulator &CBA, 1097 ELFYAML::Section *YAMLSec) { 1098 SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name)); 1099 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_PROGBITS; 1100 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 1101 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, 1102 YAMLSec ? YAMLSec->Offset : std::nullopt); 1103 1104 ELFYAML::RawContentSection *RawSec = 1105 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 1106 if (Doc.DWARF && shouldEmitDWARF(*Doc.DWARF, Name)) { 1107 if (RawSec && (RawSec->Content || RawSec->Size)) 1108 reportError("cannot specify section '" + Name + 1109 "' contents in the 'DWARF' entry and the 'Content' " 1110 "or 'Size' in the 'Sections' entry at the same time"); 1111 else { 1112 if (Expected<uint64_t> ShSizeOrErr = 1113 emitDWARF<ELFT>(SHeader, Name, *Doc.DWARF, CBA)) 1114 SHeader.sh_size = *ShSizeOrErr; 1115 else 1116 reportError(ShSizeOrErr.takeError()); 1117 } 1118 } else if (RawSec) 1119 SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size); 1120 else 1121 llvm_unreachable("debug sections can only be initialized via the 'DWARF' " 1122 "entry or a RawContentSection"); 1123 1124 if (RawSec && RawSec->Info) 1125 SHeader.sh_info = *RawSec->Info; 1126 1127 if (YAMLSec && YAMLSec->Flags) 1128 SHeader.sh_flags = *YAMLSec->Flags; 1129 else if (Name == ".debug_str") 1130 SHeader.sh_flags = ELF::SHF_MERGE | ELF::SHF_STRINGS; 1131 1132 assignSectionAddress(SHeader, YAMLSec); 1133 } 1134 1135 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 1136 ErrHandler(Msg); 1137 HasError = true; 1138 } 1139 1140 template <class ELFT> void ELFState<ELFT>::reportError(Error Err) { 1141 handleAllErrors(std::move(Err), [&](const ErrorInfoBase &Err) { 1142 reportError(Err.message()); 1143 }); 1144 } 1145 1146 template <class ELFT> 1147 std::vector<Fragment> 1148 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 1149 ArrayRef<Elf_Shdr> SHeaders) { 1150 std::vector<Fragment> Ret; 1151 for (const ELFYAML::Chunk *C : Phdr.Chunks) { 1152 if (const ELFYAML::Fill *F = dyn_cast<ELFYAML::Fill>(C)) { 1153 Ret.push_back({*F->Offset, F->Size, llvm::ELF::SHT_PROGBITS, 1154 /*ShAddrAlign=*/1}); 1155 continue; 1156 } 1157 1158 const ELFYAML::Section *S = cast<ELFYAML::Section>(C); 1159 const Elf_Shdr &H = SHeaders[SN2I.get(S->Name)]; 1160 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 1161 } 1162 return Ret; 1163 } 1164 1165 template <class ELFT> 1166 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 1167 std::vector<Elf_Shdr> &SHeaders) { 1168 uint32_t PhdrIdx = 0; 1169 for (auto &YamlPhdr : Doc.ProgramHeaders) { 1170 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 1171 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 1172 if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) { 1173 return A.Offset < B.Offset; 1174 })) 1175 reportError("sections in the program header with index " + 1176 Twine(PhdrIdx) + " are not sorted by their file offset"); 1177 1178 if (YamlPhdr.Offset) { 1179 if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset) 1180 reportError("'Offset' for segment with index " + Twine(PhdrIdx) + 1181 " must be less than or equal to the minimum file offset of " 1182 "all included sections (0x" + 1183 Twine::utohexstr(Fragments.front().Offset) + ")"); 1184 PHeader.p_offset = *YamlPhdr.Offset; 1185 } else if (!Fragments.empty()) { 1186 PHeader.p_offset = Fragments.front().Offset; 1187 } 1188 1189 // Set the file size if not set explicitly. 1190 if (YamlPhdr.FileSize) { 1191 PHeader.p_filesz = *YamlPhdr.FileSize; 1192 } else if (!Fragments.empty()) { 1193 uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset; 1194 // SHT_NOBITS sections occupy no physical space in a file, we should not 1195 // take their sizes into account when calculating the file size of a 1196 // segment. 1197 if (Fragments.back().Type != llvm::ELF::SHT_NOBITS) 1198 FileSize += Fragments.back().Size; 1199 PHeader.p_filesz = FileSize; 1200 } 1201 1202 // Find the maximum offset of the end of a section in order to set p_memsz. 1203 uint64_t MemOffset = PHeader.p_offset; 1204 for (const Fragment &F : Fragments) 1205 MemOffset = std::max(MemOffset, F.Offset + F.Size); 1206 // Set the memory size if not set explicitly. 1207 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 1208 : MemOffset - PHeader.p_offset; 1209 1210 if (YamlPhdr.Align) { 1211 PHeader.p_align = *YamlPhdr.Align; 1212 } else { 1213 // Set the alignment of the segment to be the maximum alignment of the 1214 // sections so that by default the segment has a valid and sensible 1215 // alignment. 1216 PHeader.p_align = 1; 1217 for (const Fragment &F : Fragments) 1218 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 1219 } 1220 } 1221 } 1222 1223 bool llvm::ELFYAML::shouldAllocateFileSpace( 1224 ArrayRef<ELFYAML::ProgramHeader> Phdrs, const ELFYAML::NoBitsSection &S) { 1225 for (const ELFYAML::ProgramHeader &PH : Phdrs) { 1226 auto It = llvm::find_if( 1227 PH.Chunks, [&](ELFYAML::Chunk *C) { return C->Name == S.Name; }); 1228 if (std::any_of(It, PH.Chunks.end(), [](ELFYAML::Chunk *C) { 1229 return (isa<ELFYAML::Fill>(C) || 1230 cast<ELFYAML::Section>(C)->Type != ELF::SHT_NOBITS); 1231 })) 1232 return true; 1233 } 1234 return false; 1235 } 1236 1237 template <class ELFT> 1238 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1239 const ELFYAML::NoBitsSection &S, 1240 ContiguousBlobAccumulator &CBA) { 1241 if (!S.Size) 1242 return; 1243 1244 SHeader.sh_size = *S.Size; 1245 1246 // When a nobits section is followed by a non-nobits section or fill 1247 // in the same segment, we allocate the file space for it. This behavior 1248 // matches linkers. 1249 if (shouldAllocateFileSpace(Doc.ProgramHeaders, S)) 1250 CBA.writeZeros(*S.Size); 1251 } 1252 1253 template <class ELFT> 1254 void ELFState<ELFT>::writeSectionContent( 1255 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 1256 ContiguousBlobAccumulator &CBA) { 1257 if (Section.Info) 1258 SHeader.sh_info = *Section.Info; 1259 } 1260 1261 static bool isMips64EL(const ELFYAML::Object &Obj) { 1262 return Obj.getMachine() == llvm::ELF::EM_MIPS && 1263 Obj.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 1264 Obj.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1265 } 1266 1267 template <class ELFT> 1268 void ELFState<ELFT>::writeSectionContent( 1269 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 1270 ContiguousBlobAccumulator &CBA) { 1271 assert((Section.Type == llvm::ELF::SHT_REL || 1272 Section.Type == llvm::ELF::SHT_RELA) && 1273 "Section type is not SHT_REL nor SHT_RELA"); 1274 1275 if (!Section.RelocatableSec.empty()) 1276 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 1277 1278 if (!Section.Relocations) 1279 return; 1280 1281 const bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 1282 for (const ELFYAML::Relocation &Rel : *Section.Relocations) { 1283 const bool IsDynamic = Section.Link && (*Section.Link == ".dynsym"); 1284 unsigned SymIdx = 1285 Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, IsDynamic) : 0; 1286 if (IsRela) { 1287 Elf_Rela REntry; 1288 zero(REntry); 1289 REntry.r_offset = Rel.Offset; 1290 REntry.r_addend = Rel.Addend; 1291 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 1292 CBA.write((const char *)&REntry, sizeof(REntry)); 1293 } else { 1294 Elf_Rel REntry; 1295 zero(REntry); 1296 REntry.r_offset = Rel.Offset; 1297 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 1298 CBA.write((const char *)&REntry, sizeof(REntry)); 1299 } 1300 } 1301 1302 SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) * 1303 Section.Relocations->size(); 1304 } 1305 1306 template <class ELFT> 1307 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1308 const ELFYAML::RelrSection &Section, 1309 ContiguousBlobAccumulator &CBA) { 1310 if (!Section.Entries) 1311 return; 1312 1313 for (llvm::yaml::Hex64 E : *Section.Entries) { 1314 if (!ELFT::Is64Bits && E > UINT32_MAX) 1315 reportError(Section.Name + ": the value is too large for 32-bits: 0x" + 1316 Twine::utohexstr(E)); 1317 CBA.write<uintX_t>(E, ELFT::TargetEndianness); 1318 } 1319 1320 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); 1321 } 1322 1323 template <class ELFT> 1324 void ELFState<ELFT>::writeSectionContent( 1325 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 1326 ContiguousBlobAccumulator &CBA) { 1327 if (Shndx.Content || Shndx.Size) { 1328 SHeader.sh_size = writeContent(CBA, Shndx.Content, Shndx.Size); 1329 return; 1330 } 1331 1332 if (!Shndx.Entries) 1333 return; 1334 1335 for (uint32_t E : *Shndx.Entries) 1336 CBA.write<uint32_t>(E, ELFT::TargetEndianness); 1337 SHeader.sh_size = Shndx.Entries->size() * SHeader.sh_entsize; 1338 } 1339 1340 template <class ELFT> 1341 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1342 const ELFYAML::GroupSection &Section, 1343 ContiguousBlobAccumulator &CBA) { 1344 assert(Section.Type == llvm::ELF::SHT_GROUP && 1345 "Section type is not SHT_GROUP"); 1346 1347 if (Section.Signature) 1348 SHeader.sh_info = 1349 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 1350 1351 if (!Section.Members) 1352 return; 1353 1354 for (const ELFYAML::SectionOrType &Member : *Section.Members) { 1355 unsigned int SectionIndex = 0; 1356 if (Member.sectionNameOrType == "GRP_COMDAT") 1357 SectionIndex = llvm::ELF::GRP_COMDAT; 1358 else 1359 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 1360 CBA.write<uint32_t>(SectionIndex, ELFT::TargetEndianness); 1361 } 1362 SHeader.sh_size = SHeader.sh_entsize * Section.Members->size(); 1363 } 1364 1365 template <class ELFT> 1366 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1367 const ELFYAML::SymverSection &Section, 1368 ContiguousBlobAccumulator &CBA) { 1369 if (!Section.Entries) 1370 return; 1371 1372 for (uint16_t Version : *Section.Entries) 1373 CBA.write<uint16_t>(Version, ELFT::TargetEndianness); 1374 SHeader.sh_size = Section.Entries->size() * SHeader.sh_entsize; 1375 } 1376 1377 template <class ELFT> 1378 void ELFState<ELFT>::writeSectionContent( 1379 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 1380 ContiguousBlobAccumulator &CBA) { 1381 if (!Section.Entries) 1382 return; 1383 1384 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 1385 CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness); 1386 SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(E.Size); 1387 } 1388 } 1389 1390 template <class ELFT> 1391 void ELFState<ELFT>::writeSectionContent( 1392 Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section, 1393 ContiguousBlobAccumulator &CBA) { 1394 if (!Section.Entries) { 1395 if (Section.PGOAnalyses) 1396 WithColor::warning() 1397 << "PGOAnalyses should not exist in SHT_LLVM_BB_ADDR_MAP when " 1398 "Entries does not exist"; 1399 return; 1400 } 1401 1402 const std::vector<ELFYAML::PGOAnalysisMapEntry> *PGOAnalyses = nullptr; 1403 if (Section.PGOAnalyses) { 1404 if (Section.Entries->size() != Section.PGOAnalyses->size()) 1405 WithColor::warning() << "PGOAnalyses must be the same length as Entries " 1406 "in SHT_LLVM_BB_ADDR_MAP"; 1407 else 1408 PGOAnalyses = &Section.PGOAnalyses.value(); 1409 } 1410 1411 for (const auto &[Idx, E] : llvm::enumerate(*Section.Entries)) { 1412 // Write version and feature values. 1413 if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP) { 1414 if (E.Version > 2) 1415 WithColor::warning() << "unsupported SHT_LLVM_BB_ADDR_MAP version: " 1416 << static_cast<int>(E.Version) 1417 << "; encoding using the most recent version"; 1418 CBA.write(E.Version); 1419 CBA.write(E.Feature); 1420 SHeader.sh_size += 2; 1421 } 1422 1423 if (Section.PGOAnalyses) { 1424 if (E.Version < 2) 1425 WithColor::warning() 1426 << "unsupported SHT_LLVM_BB_ADDR_MAP version when using PGO: " 1427 << static_cast<int>(E.Version) << "; must use version >= 2"; 1428 } 1429 1430 // Write the address of the function. 1431 CBA.write<uintX_t>(E.Address, ELFT::TargetEndianness); 1432 // Write number of BBEntries (number of basic blocks in the function). This 1433 // is overridden by the 'NumBlocks' YAML field when specified. 1434 uint64_t NumBlocks = 1435 E.NumBlocks.value_or(E.BBEntries ? E.BBEntries->size() : 0); 1436 SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(NumBlocks); 1437 // Write all BBEntries. 1438 if (E.BBEntries) { 1439 for (const ELFYAML::BBAddrMapEntry::BBEntry &BBE : *E.BBEntries) { 1440 if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP && E.Version > 1) 1441 SHeader.sh_size += CBA.writeULEB128(BBE.ID); 1442 SHeader.sh_size += CBA.writeULEB128(BBE.AddressOffset) + 1443 CBA.writeULEB128(BBE.Size) + 1444 CBA.writeULEB128(BBE.Metadata); 1445 } 1446 } 1447 1448 if (!PGOAnalyses) 1449 continue; 1450 const ELFYAML::PGOAnalysisMapEntry &PGOEntry = PGOAnalyses->at(Idx); 1451 1452 if (PGOEntry.FuncEntryCount) 1453 SHeader.sh_size += CBA.writeULEB128(*PGOEntry.FuncEntryCount); 1454 1455 if (!PGOEntry.PGOBBEntries) 1456 continue; 1457 1458 const auto &PGOBBEntries = PGOEntry.PGOBBEntries.value(); 1459 if (!E.BBEntries || E.BBEntries->size() != PGOBBEntries.size()) { 1460 WithColor::warning() << "PBOBBEntries must be the same length as " 1461 "BBEntries in SHT_LLVM_BB_ADDR_MAP.\n" 1462 << "Mismatch on function with address: " 1463 << E.Address; 1464 continue; 1465 } 1466 1467 for (const auto &PGOBBE : PGOBBEntries) { 1468 if (PGOBBE.BBFreq) 1469 SHeader.sh_size += CBA.writeULEB128(*PGOBBE.BBFreq); 1470 if (PGOBBE.Successors) { 1471 SHeader.sh_size += CBA.writeULEB128(PGOBBE.Successors->size()); 1472 for (const auto &[ID, BrProb] : *PGOBBE.Successors) 1473 SHeader.sh_size += CBA.writeULEB128(ID) + CBA.writeULEB128(BrProb); 1474 } 1475 } 1476 } 1477 } 1478 1479 template <class ELFT> 1480 void ELFState<ELFT>::writeSectionContent( 1481 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 1482 ContiguousBlobAccumulator &CBA) { 1483 if (!Section.Options) 1484 return; 1485 1486 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 1487 CBA.write(LO.Key.data(), LO.Key.size()); 1488 CBA.write('\0'); 1489 CBA.write(LO.Value.data(), LO.Value.size()); 1490 CBA.write('\0'); 1491 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 1492 } 1493 } 1494 1495 template <class ELFT> 1496 void ELFState<ELFT>::writeSectionContent( 1497 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 1498 ContiguousBlobAccumulator &CBA) { 1499 if (!Section.Libs) 1500 return; 1501 1502 for (StringRef Lib : *Section.Libs) { 1503 CBA.write(Lib.data(), Lib.size()); 1504 CBA.write('\0'); 1505 SHeader.sh_size += Lib.size() + 1; 1506 } 1507 } 1508 1509 template <class ELFT> 1510 uint64_t 1511 ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, 1512 std::optional<llvm::yaml::Hex64> Offset) { 1513 uint64_t CurrentOffset = CBA.getOffset(); 1514 uint64_t AlignedOffset; 1515 1516 if (Offset) { 1517 if ((uint64_t)*Offset < CurrentOffset) { 1518 reportError("the 'Offset' value (0x" + 1519 Twine::utohexstr((uint64_t)*Offset) + ") goes backward"); 1520 return CurrentOffset; 1521 } 1522 1523 // We ignore an alignment when an explicit offset has been requested. 1524 AlignedOffset = *Offset; 1525 } else { 1526 AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1)); 1527 } 1528 1529 CBA.writeZeros(AlignedOffset - CurrentOffset); 1530 return AlignedOffset; 1531 } 1532 1533 template <class ELFT> 1534 void ELFState<ELFT>::writeSectionContent( 1535 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, 1536 ContiguousBlobAccumulator &CBA) { 1537 if (!Section.Entries) 1538 return; 1539 1540 for (const ELFYAML::CallGraphEntryWeight &E : *Section.Entries) { 1541 CBA.write<uint64_t>(E.Weight, ELFT::TargetEndianness); 1542 SHeader.sh_size += sizeof(object::Elf_CGProfile_Impl<ELFT>); 1543 } 1544 } 1545 1546 template <class ELFT> 1547 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1548 const ELFYAML::HashSection &Section, 1549 ContiguousBlobAccumulator &CBA) { 1550 if (!Section.Bucket) 1551 return; 1552 1553 CBA.write<uint32_t>( 1554 Section.NBucket.value_or(llvm::yaml::Hex64(Section.Bucket->size())), 1555 ELFT::TargetEndianness); 1556 CBA.write<uint32_t>( 1557 Section.NChain.value_or(llvm::yaml::Hex64(Section.Chain->size())), 1558 ELFT::TargetEndianness); 1559 1560 for (uint32_t Val : *Section.Bucket) 1561 CBA.write<uint32_t>(Val, ELFT::TargetEndianness); 1562 for (uint32_t Val : *Section.Chain) 1563 CBA.write<uint32_t>(Val, ELFT::TargetEndianness); 1564 1565 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 1566 } 1567 1568 template <class ELFT> 1569 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1570 const ELFYAML::VerdefSection &Section, 1571 ContiguousBlobAccumulator &CBA) { 1572 1573 if (Section.Info) 1574 SHeader.sh_info = *Section.Info; 1575 else if (Section.Entries) 1576 SHeader.sh_info = Section.Entries->size(); 1577 1578 if (!Section.Entries) 1579 return; 1580 1581 uint64_t AuxCnt = 0; 1582 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1583 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1584 1585 Elf_Verdef VerDef; 1586 VerDef.vd_version = E.Version.value_or(1); 1587 VerDef.vd_flags = E.Flags.value_or(0); 1588 VerDef.vd_ndx = E.VersionNdx.value_or(0); 1589 VerDef.vd_hash = E.Hash.value_or(0); 1590 VerDef.vd_aux = sizeof(Elf_Verdef); 1591 VerDef.vd_cnt = E.VerNames.size(); 1592 if (I == Section.Entries->size() - 1) 1593 VerDef.vd_next = 0; 1594 else 1595 VerDef.vd_next = 1596 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1597 CBA.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1598 1599 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1600 Elf_Verdaux VernAux; 1601 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1602 if (J == E.VerNames.size() - 1) 1603 VernAux.vda_next = 0; 1604 else 1605 VernAux.vda_next = sizeof(Elf_Verdaux); 1606 CBA.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1607 } 1608 } 1609 1610 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1611 AuxCnt * sizeof(Elf_Verdaux); 1612 } 1613 1614 template <class ELFT> 1615 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1616 const ELFYAML::VerneedSection &Section, 1617 ContiguousBlobAccumulator &CBA) { 1618 if (Section.Info) 1619 SHeader.sh_info = *Section.Info; 1620 else if (Section.VerneedV) 1621 SHeader.sh_info = Section.VerneedV->size(); 1622 1623 if (!Section.VerneedV) 1624 return; 1625 1626 uint64_t AuxCnt = 0; 1627 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1628 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1629 1630 Elf_Verneed VerNeed; 1631 VerNeed.vn_version = VE.Version; 1632 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1633 if (I == Section.VerneedV->size() - 1) 1634 VerNeed.vn_next = 0; 1635 else 1636 VerNeed.vn_next = 1637 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1638 VerNeed.vn_cnt = VE.AuxV.size(); 1639 VerNeed.vn_aux = sizeof(Elf_Verneed); 1640 CBA.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1641 1642 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1643 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1644 1645 Elf_Vernaux VernAux; 1646 VernAux.vna_hash = VAuxE.Hash; 1647 VernAux.vna_flags = VAuxE.Flags; 1648 VernAux.vna_other = VAuxE.Other; 1649 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1650 if (J == VE.AuxV.size() - 1) 1651 VernAux.vna_next = 0; 1652 else 1653 VernAux.vna_next = sizeof(Elf_Vernaux); 1654 CBA.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1655 } 1656 } 1657 1658 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1659 AuxCnt * sizeof(Elf_Vernaux); 1660 } 1661 1662 template <class ELFT> 1663 void ELFState<ELFT>::writeSectionContent( 1664 Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section, 1665 ContiguousBlobAccumulator &CBA) { 1666 if (!Section.Entries) 1667 return; 1668 1669 for (const ELFYAML::ARMIndexTableEntry &E : *Section.Entries) { 1670 CBA.write<uint32_t>(E.Offset, ELFT::TargetEndianness); 1671 CBA.write<uint32_t>(E.Value, ELFT::TargetEndianness); 1672 } 1673 SHeader.sh_size = Section.Entries->size() * 8; 1674 } 1675 1676 template <class ELFT> 1677 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1678 const ELFYAML::MipsABIFlags &Section, 1679 ContiguousBlobAccumulator &CBA) { 1680 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1681 "Section type is not SHT_MIPS_ABIFLAGS"); 1682 1683 object::Elf_Mips_ABIFlags<ELFT> Flags; 1684 zero(Flags); 1685 SHeader.sh_size = SHeader.sh_entsize; 1686 1687 Flags.version = Section.Version; 1688 Flags.isa_level = Section.ISALevel; 1689 Flags.isa_rev = Section.ISARevision; 1690 Flags.gpr_size = Section.GPRSize; 1691 Flags.cpr1_size = Section.CPR1Size; 1692 Flags.cpr2_size = Section.CPR2Size; 1693 Flags.fp_abi = Section.FpABI; 1694 Flags.isa_ext = Section.ISAExtension; 1695 Flags.ases = Section.ASEs; 1696 Flags.flags1 = Section.Flags1; 1697 Flags.flags2 = Section.Flags2; 1698 CBA.write((const char *)&Flags, sizeof(Flags)); 1699 } 1700 1701 template <class ELFT> 1702 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1703 const ELFYAML::DynamicSection &Section, 1704 ContiguousBlobAccumulator &CBA) { 1705 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1706 "Section type is not SHT_DYNAMIC"); 1707 1708 if (!Section.Entries) 1709 return; 1710 1711 for (const ELFYAML::DynamicEntry &DE : *Section.Entries) { 1712 CBA.write<uintX_t>(DE.Tag, ELFT::TargetEndianness); 1713 CBA.write<uintX_t>(DE.Val, ELFT::TargetEndianness); 1714 } 1715 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries->size(); 1716 } 1717 1718 template <class ELFT> 1719 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1720 const ELFYAML::AddrsigSection &Section, 1721 ContiguousBlobAccumulator &CBA) { 1722 if (!Section.Symbols) 1723 return; 1724 1725 for (StringRef Sym : *Section.Symbols) 1726 SHeader.sh_size += 1727 CBA.writeULEB128(toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false)); 1728 } 1729 1730 template <class ELFT> 1731 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1732 const ELFYAML::NoteSection &Section, 1733 ContiguousBlobAccumulator &CBA) { 1734 if (!Section.Notes) 1735 return; 1736 1737 uint64_t Offset = CBA.tell(); 1738 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1739 // Write name size. 1740 if (NE.Name.empty()) 1741 CBA.write<uint32_t>(0, ELFT::TargetEndianness); 1742 else 1743 CBA.write<uint32_t>(NE.Name.size() + 1, ELFT::TargetEndianness); 1744 1745 // Write description size. 1746 if (NE.Desc.binary_size() == 0) 1747 CBA.write<uint32_t>(0, ELFT::TargetEndianness); 1748 else 1749 CBA.write<uint32_t>(NE.Desc.binary_size(), ELFT::TargetEndianness); 1750 1751 // Write type. 1752 CBA.write<uint32_t>(NE.Type, ELFT::TargetEndianness); 1753 1754 // Write name, null terminator and padding. 1755 if (!NE.Name.empty()) { 1756 CBA.write(NE.Name.data(), NE.Name.size()); 1757 CBA.write('\0'); 1758 CBA.padToAlignment(4); 1759 } 1760 1761 // Write description and padding. 1762 if (NE.Desc.binary_size() != 0) { 1763 CBA.writeAsBinary(NE.Desc); 1764 CBA.padToAlignment(4); 1765 } 1766 } 1767 1768 SHeader.sh_size = CBA.tell() - Offset; 1769 } 1770 1771 template <class ELFT> 1772 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1773 const ELFYAML::GnuHashSection &Section, 1774 ContiguousBlobAccumulator &CBA) { 1775 if (!Section.HashBuckets) 1776 return; 1777 1778 if (!Section.Header) 1779 return; 1780 1781 // We write the header first, starting with the hash buckets count. Normally 1782 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1783 // be used to override this field, which is useful for producing broken 1784 // objects. 1785 if (Section.Header->NBuckets) 1786 CBA.write<uint32_t>(*Section.Header->NBuckets, ELFT::TargetEndianness); 1787 else 1788 CBA.write<uint32_t>(Section.HashBuckets->size(), ELFT::TargetEndianness); 1789 1790 // Write the index of the first symbol in the dynamic symbol table accessible 1791 // via the hash table. 1792 CBA.write<uint32_t>(Section.Header->SymNdx, ELFT::TargetEndianness); 1793 1794 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1795 // property can be used to set this field to any value. 1796 if (Section.Header->MaskWords) 1797 CBA.write<uint32_t>(*Section.Header->MaskWords, ELFT::TargetEndianness); 1798 else 1799 CBA.write<uint32_t>(Section.BloomFilter->size(), ELFT::TargetEndianness); 1800 1801 // Write the shift constant used by the Bloom filter. 1802 CBA.write<uint32_t>(Section.Header->Shift2, ELFT::TargetEndianness); 1803 1804 // We've finished writing the header. Now write the Bloom filter. 1805 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1806 CBA.write<uintX_t>(Val, ELFT::TargetEndianness); 1807 1808 // Write an array of hash buckets. 1809 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1810 CBA.write<uint32_t>(Val, ELFT::TargetEndianness); 1811 1812 // Write an array of hash values. 1813 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1814 CBA.write<uint32_t>(Val, ELFT::TargetEndianness); 1815 1816 SHeader.sh_size = 16 /*Header size*/ + 1817 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1818 Section.HashBuckets->size() * 4 + 1819 Section.HashValues->size() * 4; 1820 } 1821 1822 template <class ELFT> 1823 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1824 ContiguousBlobAccumulator &CBA) { 1825 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1826 if (!PatternSize) { 1827 CBA.writeZeros(Fill.Size); 1828 return; 1829 } 1830 1831 // Fill the content with the specified pattern. 1832 uint64_t Written = 0; 1833 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1834 CBA.writeAsBinary(*Fill.Pattern); 1835 CBA.writeAsBinary(*Fill.Pattern, Fill.Size - Written); 1836 } 1837 1838 template <class ELFT> 1839 DenseMap<StringRef, size_t> ELFState<ELFT>::buildSectionHeaderReorderMap() { 1840 const ELFYAML::SectionHeaderTable &SectionHeaders = 1841 Doc.getSectionHeaderTable(); 1842 if (SectionHeaders.IsImplicit || SectionHeaders.NoHeaders || 1843 SectionHeaders.isDefault()) 1844 return DenseMap<StringRef, size_t>(); 1845 1846 DenseMap<StringRef, size_t> Ret; 1847 size_t SecNdx = 0; 1848 StringSet<> Seen; 1849 1850 auto AddSection = [&](const ELFYAML::SectionHeader &Hdr) { 1851 if (!Ret.try_emplace(Hdr.Name, ++SecNdx).second) 1852 reportError("repeated section name: '" + Hdr.Name + 1853 "' in the section header description"); 1854 Seen.insert(Hdr.Name); 1855 }; 1856 1857 if (SectionHeaders.Sections) 1858 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Sections) 1859 AddSection(Hdr); 1860 1861 if (SectionHeaders.Excluded) 1862 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded) 1863 AddSection(Hdr); 1864 1865 for (const ELFYAML::Section *S : Doc.getSections()) { 1866 // Ignore special first SHT_NULL section. 1867 if (S == Doc.getSections().front()) 1868 continue; 1869 if (!Seen.count(S->Name)) 1870 reportError("section '" + S->Name + 1871 "' should be present in the 'Sections' or 'Excluded' lists"); 1872 Seen.erase(S->Name); 1873 } 1874 1875 for (const auto &It : Seen) 1876 reportError("section header contains undefined section '" + It.getKey() + 1877 "'"); 1878 return Ret; 1879 } 1880 1881 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1882 // A YAML description can have an explicit section header declaration that 1883 // allows to change the order of section headers. 1884 DenseMap<StringRef, size_t> ReorderMap = buildSectionHeaderReorderMap(); 1885 1886 if (HasError) 1887 return; 1888 1889 // Build excluded section headers map. 1890 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 1891 const ELFYAML::SectionHeaderTable &SectionHeaders = 1892 Doc.getSectionHeaderTable(); 1893 if (SectionHeaders.Excluded) 1894 for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded) 1895 if (!ExcludedSectionHeaders.insert(Hdr.Name).second) 1896 llvm_unreachable("buildSectionIndex() failed"); 1897 1898 if (SectionHeaders.NoHeaders.value_or(false)) 1899 for (const ELFYAML::Section *S : Sections) 1900 if (!ExcludedSectionHeaders.insert(S->Name).second) 1901 llvm_unreachable("buildSectionIndex() failed"); 1902 1903 size_t SecNdx = -1; 1904 for (const ELFYAML::Section *S : Sections) { 1905 ++SecNdx; 1906 1907 size_t Index = ReorderMap.empty() ? SecNdx : ReorderMap.lookup(S->Name); 1908 if (!SN2I.addName(S->Name, Index)) 1909 llvm_unreachable("buildSectionIndex() failed"); 1910 1911 if (!ExcludedSectionHeaders.count(S->Name)) 1912 ShStrtabStrings->add(ELFYAML::dropUniqueSuffix(S->Name)); 1913 } 1914 } 1915 1916 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1917 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1918 for (size_t I = 0, S = V.size(); I < S; ++I) { 1919 const ELFYAML::Symbol &Sym = V[I]; 1920 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1921 reportError("repeated symbol name: '" + Sym.Name + "'"); 1922 } 1923 }; 1924 1925 if (Doc.Symbols) 1926 Build(*Doc.Symbols, SymN2I); 1927 if (Doc.DynamicSymbols) 1928 Build(*Doc.DynamicSymbols, DynSymN2I); 1929 } 1930 1931 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1932 // Add the regular symbol names to .strtab section. 1933 if (Doc.Symbols) 1934 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1935 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1936 DotStrtab.finalize(); 1937 1938 // Add the dynamic symbol names to .dynstr section. 1939 if (Doc.DynamicSymbols) 1940 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1941 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1942 1943 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1944 // add strings to .dynstr section. 1945 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1946 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1947 if (VerNeed->VerneedV) { 1948 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1949 DotDynstr.add(VE.File); 1950 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1951 DotDynstr.add(Aux.Name); 1952 } 1953 } 1954 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1955 if (VerDef->Entries) 1956 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1957 for (StringRef Name : E.VerNames) 1958 DotDynstr.add(Name); 1959 } 1960 } 1961 1962 DotDynstr.finalize(); 1963 1964 // Don't finalize the section header string table a second time if it has 1965 // already been finalized due to being one of the symbol string tables. 1966 if (ShStrtabStrings != &DotStrtab && ShStrtabStrings != &DotDynstr) 1967 ShStrtabStrings->finalize(); 1968 } 1969 1970 template <class ELFT> 1971 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1972 yaml::ErrorHandler EH, uint64_t MaxSize) { 1973 ELFState<ELFT> State(Doc, EH); 1974 if (State.HasError) 1975 return false; 1976 1977 // Build the section index, which adds sections to the section header string 1978 // table first, so that we can finalize the section header string table. 1979 State.buildSectionIndex(); 1980 State.buildSymbolIndexes(); 1981 1982 // Finalize section header string table and the .strtab and .dynstr sections. 1983 // We do this early because we want to finalize the string table builders 1984 // before writing the content of the sections that might want to use them. 1985 State.finalizeStrings(); 1986 1987 if (State.HasError) 1988 return false; 1989 1990 std::vector<Elf_Phdr> PHeaders; 1991 State.initProgramHeaders(PHeaders); 1992 1993 // XXX: This offset is tightly coupled with the order that we write 1994 // things to `OS`. 1995 const size_t SectionContentBeginOffset = 1996 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1997 // It is quite easy to accidentally create output with yaml2obj that is larger 1998 // than intended, for example, due to an issue in the YAML description. 1999 // We limit the maximum allowed output size, but also provide a command line 2000 // option to change this limitation. 2001 ContiguousBlobAccumulator CBA(SectionContentBeginOffset, MaxSize); 2002 2003 std::vector<Elf_Shdr> SHeaders; 2004 State.initSectionHeaders(SHeaders, CBA); 2005 2006 // Now we can decide segment offsets. 2007 State.setProgramHeaderLayout(PHeaders, SHeaders); 2008 2009 bool ReachedLimit = CBA.getOffset() > MaxSize; 2010 if (Error E = CBA.takeLimitError()) { 2011 // We report a custom error message instead below. 2012 consumeError(std::move(E)); 2013 ReachedLimit = true; 2014 } 2015 2016 if (ReachedLimit) 2017 State.reportError( 2018 "the desired output size is greater than permitted. Use the " 2019 "--max-size option to change the limit"); 2020 2021 if (State.HasError) 2022 return false; 2023 2024 State.writeELFHeader(OS); 2025 writeArrayData(OS, ArrayRef(PHeaders)); 2026 2027 const ELFYAML::SectionHeaderTable &SHT = Doc.getSectionHeaderTable(); 2028 if (!SHT.NoHeaders.value_or(false)) 2029 CBA.updateDataAt(*SHT.Offset, SHeaders.data(), 2030 SHT.getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr)); 2031 2032 CBA.writeBlobToStream(OS); 2033 return true; 2034 } 2035 2036 namespace llvm { 2037 namespace yaml { 2038 2039 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH, 2040 uint64_t MaxSize) { 2041 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 2042 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 2043 if (Is64Bit) { 2044 if (IsLE) 2045 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH, MaxSize); 2046 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH, MaxSize); 2047 } 2048 if (IsLE) 2049 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH, MaxSize); 2050 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH, MaxSize); 2051 } 2052 2053 } // namespace yaml 2054 } // namespace llvm 2055