1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Object/IRSymtab.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/SmallPtrSet.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Bitcode/BitcodeReader.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/IR/Comdat.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalObject.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/RuntimeLibcalls.h" 26 #include "llvm/MC/StringTableBuilder.h" 27 #include "llvm/Object/ModuleSymbolTable.h" 28 #include "llvm/Object/SymbolicFile.h" 29 #include "llvm/Support/Allocator.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/StringSaver.h" 34 #include "llvm/Support/VCSRevision.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/TargetParser/Triple.h" 37 #include <cassert> 38 #include <string> 39 #include <utility> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace irsymtab; 44 45 static cl::opt<bool> DisableBitcodeVersionUpgrade( 46 "disable-bitcode-version-upgrade", cl::Hidden, 47 cl::desc("Disable automatic bitcode upgrade for version mismatch")); 48 49 static const char *PreservedSymbols[] = { 50 // There are global variables, so put it here instead of in 51 // RuntimeLibcalls.def. 52 // TODO: Are there similar such variables? 53 "__ssp_canary_word", 54 "__stack_chk_guard", 55 }; 56 57 namespace { 58 59 const char *getExpectedProducerName() { 60 static char DefaultName[] = LLVM_VERSION_STRING 61 #ifdef LLVM_REVISION 62 " " LLVM_REVISION 63 #endif 64 ; 65 // Allows for testing of the irsymtab writer and upgrade mechanism. This 66 // environment variable should not be set by users. 67 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) 68 return OverrideName; 69 return DefaultName; 70 } 71 72 const char *kExpectedProducerName = getExpectedProducerName(); 73 74 /// Stores the temporary state that is required to build an IR symbol table. 75 struct Builder { 76 SmallVector<char, 0> &Symtab; 77 StringTableBuilder &StrtabBuilder; 78 StringSaver Saver; 79 80 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. 81 // The StringTableBuilder does not create a copy of any strings added to it, 82 // so this provides somewhere to store any strings that we create. 83 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, 84 BumpPtrAllocator &Alloc) 85 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} 86 87 DenseMap<const Comdat *, int> ComdatMap; 88 Mangler Mang; 89 Triple TT; 90 91 std::vector<storage::Comdat> Comdats; 92 std::vector<storage::Module> Mods; 93 std::vector<storage::Symbol> Syms; 94 std::vector<storage::Uncommon> Uncommons; 95 96 std::string COFFLinkerOpts; 97 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; 98 99 std::vector<storage::Str> DependentLibraries; 100 101 void setStr(storage::Str &S, StringRef Value) { 102 S.Offset = StrtabBuilder.add(Value); 103 S.Size = Value.size(); 104 } 105 106 template <typename T> 107 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) { 108 R.Offset = Symtab.size(); 109 R.Size = Objs.size(); 110 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()), 111 reinterpret_cast<const char *>(Objs.data() + Objs.size())); 112 } 113 114 Expected<int> getComdatIndex(const Comdat *C, const Module *M); 115 116 Error addModule(Module *M); 117 Error addSymbol(const ModuleSymbolTable &Msymtab, 118 const SmallPtrSet<GlobalValue *, 4> &Used, 119 ModuleSymbolTable::Symbol Sym); 120 121 Error build(ArrayRef<Module *> Mods); 122 }; 123 124 Error Builder::addModule(Module *M) { 125 if (M->getDataLayoutStr().empty()) 126 return make_error<StringError>("input module has no datalayout", 127 inconvertibleErrorCode()); 128 129 // Symbols in the llvm.used list will get the FB_Used bit and will not be 130 // internalized. We do this for llvm.compiler.used as well: 131 // 132 // IR symbol table tracks module-level asm symbol references but not inline 133 // asm. A symbol only referenced by inline asm is not in the IR symbol table, 134 // so we may not know that the definition (in another translation unit) is 135 // referenced. That definition may have __attribute__((used)) (which lowers to 136 // llvm.compiler.used on ELF targets) to communicate to the compiler that it 137 // may be used by inline asm. The usage is perfectly fine, so we treat 138 // llvm.compiler.used conservatively as llvm.used to work around our own 139 // limitation. 140 SmallVector<GlobalValue *, 4> UsedV; 141 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false); 142 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true); 143 SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end()); 144 145 ModuleSymbolTable Msymtab; 146 Msymtab.addModule(M); 147 148 storage::Module Mod; 149 Mod.Begin = Syms.size(); 150 Mod.End = Syms.size() + Msymtab.symbols().size(); 151 Mod.UncBegin = Uncommons.size(); 152 Mods.push_back(Mod); 153 154 if (TT.isOSBinFormatCOFF()) { 155 if (auto E = M->materializeMetadata()) 156 return E; 157 if (NamedMDNode *LinkerOptions = 158 M->getNamedMetadata("llvm.linker.options")) { 159 for (MDNode *MDOptions : LinkerOptions->operands()) 160 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands()) 161 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString(); 162 } 163 } 164 165 if (TT.isOSBinFormatELF()) { 166 if (auto E = M->materializeMetadata()) 167 return E; 168 if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) { 169 for (MDNode *MDOptions : N->operands()) { 170 const auto OperandStr = 171 cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString(); 172 storage::Str Specifier; 173 setStr(Specifier, OperandStr); 174 DependentLibraries.emplace_back(Specifier); 175 } 176 } 177 } 178 179 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) 180 if (Error Err = addSymbol(Msymtab, Used, Msym)) 181 return Err; 182 183 return Error::success(); 184 } 185 186 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) { 187 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); 188 if (P.second) { 189 std::string Name; 190 if (TT.isOSBinFormatCOFF()) { 191 const GlobalValue *GV = M->getNamedValue(C->getName()); 192 if (!GV) 193 return make_error<StringError>("Could not find leader", 194 inconvertibleErrorCode()); 195 // Internal leaders do not affect symbol resolution, therefore they do not 196 // appear in the symbol table. 197 if (GV->hasLocalLinkage()) { 198 P.first->second = -1; 199 return -1; 200 } 201 llvm::raw_string_ostream OS(Name); 202 Mang.getNameWithPrefix(OS, GV, false); 203 } else { 204 Name = std::string(C->getName()); 205 } 206 207 storage::Comdat Comdat; 208 setStr(Comdat.Name, Saver.save(Name)); 209 Comdat.SelectionKind = C->getSelectionKind(); 210 Comdats.push_back(Comdat); 211 } 212 213 return P.first->second; 214 } 215 216 static DenseSet<StringRef> buildPreservedSymbolsSet(const Triple &TT) { 217 DenseSet<StringRef> PreservedSymbolSet(std::begin(PreservedSymbols), 218 std::end(PreservedSymbols)); 219 220 RTLIB::RuntimeLibcallsInfo Libcalls(TT); 221 for (const char *Name : Libcalls.getLibcallNames()) { 222 if (Name) 223 PreservedSymbolSet.insert(Name); 224 } 225 return PreservedSymbolSet; 226 } 227 228 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, 229 const SmallPtrSet<GlobalValue *, 4> &Used, 230 ModuleSymbolTable::Symbol Msym) { 231 Syms.emplace_back(); 232 storage::Symbol &Sym = Syms.back(); 233 Sym = {}; 234 235 storage::Uncommon *Unc = nullptr; 236 auto Uncommon = [&]() -> storage::Uncommon & { 237 if (Unc) 238 return *Unc; 239 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; 240 Uncommons.emplace_back(); 241 Unc = &Uncommons.back(); 242 *Unc = {}; 243 setStr(Unc->COFFWeakExternFallbackName, ""); 244 setStr(Unc->SectionName, ""); 245 return *Unc; 246 }; 247 248 SmallString<64> Name; 249 { 250 raw_svector_ostream OS(Name); 251 Msymtab.printSymbolName(OS, Msym); 252 } 253 setStr(Sym.Name, Saver.save(Name.str())); 254 255 auto Flags = Msymtab.getSymbolFlags(Msym); 256 if (Flags & object::BasicSymbolRef::SF_Undefined) 257 Sym.Flags |= 1 << storage::Symbol::FB_undefined; 258 if (Flags & object::BasicSymbolRef::SF_Weak) 259 Sym.Flags |= 1 << storage::Symbol::FB_weak; 260 if (Flags & object::BasicSymbolRef::SF_Common) 261 Sym.Flags |= 1 << storage::Symbol::FB_common; 262 if (Flags & object::BasicSymbolRef::SF_Indirect) 263 Sym.Flags |= 1 << storage::Symbol::FB_indirect; 264 if (Flags & object::BasicSymbolRef::SF_Global) 265 Sym.Flags |= 1 << storage::Symbol::FB_global; 266 if (Flags & object::BasicSymbolRef::SF_FormatSpecific) 267 Sym.Flags |= 1 << storage::Symbol::FB_format_specific; 268 if (Flags & object::BasicSymbolRef::SF_Executable) 269 Sym.Flags |= 1 << storage::Symbol::FB_executable; 270 271 Sym.ComdatIndex = -1; 272 auto *GV = dyn_cast_if_present<GlobalValue *>(Msym); 273 if (!GV) { 274 // Undefined module asm symbols act as GC roots and are implicitly used. 275 if (Flags & object::BasicSymbolRef::SF_Undefined) 276 Sym.Flags |= 1 << storage::Symbol::FB_used; 277 setStr(Sym.IRName, ""); 278 return Error::success(); 279 } 280 281 setStr(Sym.IRName, GV->getName()); 282 283 static const DenseSet<StringRef> PreservedSymbolsSet = 284 buildPreservedSymbolsSet( 285 llvm::Triple(GV->getParent()->getTargetTriple())); 286 bool IsPreservedSymbol = PreservedSymbolsSet.contains(GV->getName()); 287 288 if (Used.count(GV) || IsPreservedSymbol) 289 Sym.Flags |= 1 << storage::Symbol::FB_used; 290 if (GV->isThreadLocal()) 291 Sym.Flags |= 1 << storage::Symbol::FB_tls; 292 if (GV->hasGlobalUnnamedAddr()) 293 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; 294 if (GV->canBeOmittedFromSymbolTable()) 295 Sym.Flags |= 1 << storage::Symbol::FB_may_omit; 296 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; 297 298 if (Flags & object::BasicSymbolRef::SF_Common) { 299 auto *GVar = dyn_cast<GlobalVariable>(GV); 300 if (!GVar) 301 return make_error<StringError>("Only variables can have common linkage!", 302 inconvertibleErrorCode()); 303 Uncommon().CommonSize = 304 GV->getDataLayout().getTypeAllocSize(GV->getValueType()); 305 Uncommon().CommonAlign = GVar->getAlign() ? GVar->getAlign()->value() : 0; 306 } 307 308 const GlobalObject *GO = GV->getAliaseeObject(); 309 if (!GO) { 310 if (isa<GlobalIFunc>(GV)) 311 GO = cast<GlobalIFunc>(GV)->getResolverFunction(); 312 if (!GO) 313 return make_error<StringError>("Unable to determine comdat of alias!", 314 inconvertibleErrorCode()); 315 } 316 if (const Comdat *C = GO->getComdat()) { 317 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent()); 318 if (!ComdatIndexOrErr) 319 return ComdatIndexOrErr.takeError(); 320 Sym.ComdatIndex = *ComdatIndexOrErr; 321 } 322 323 if (TT.isOSBinFormatCOFF()) { 324 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); 325 326 if ((Flags & object::BasicSymbolRef::SF_Weak) && 327 (Flags & object::BasicSymbolRef::SF_Indirect)) { 328 auto *Fallback = dyn_cast<GlobalValue>( 329 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts()); 330 if (!Fallback) 331 return make_error<StringError>("Invalid weak external", 332 inconvertibleErrorCode()); 333 std::string FallbackName; 334 raw_string_ostream OS(FallbackName); 335 Msymtab.printSymbolName(OS, Fallback); 336 OS.flush(); 337 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); 338 } 339 } 340 341 if (!GO->getSection().empty()) 342 setStr(Uncommon().SectionName, Saver.save(GO->getSection())); 343 344 return Error::success(); 345 } 346 347 Error Builder::build(ArrayRef<Module *> IRMods) { 348 storage::Header Hdr; 349 350 assert(!IRMods.empty()); 351 Hdr.Version = storage::Header::kCurrentVersion; 352 setStr(Hdr.Producer, kExpectedProducerName); 353 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); 354 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); 355 TT = Triple(IRMods[0]->getTargetTriple()); 356 357 for (auto *M : IRMods) 358 if (Error Err = addModule(M)) 359 return Err; 360 361 COFFLinkerOptsOS.flush(); 362 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); 363 364 // We are about to fill in the header's range fields, so reserve space for it 365 // and copy it in afterwards. 366 Symtab.resize(sizeof(storage::Header)); 367 writeRange(Hdr.Modules, Mods); 368 writeRange(Hdr.Comdats, Comdats); 369 writeRange(Hdr.Symbols, Syms); 370 writeRange(Hdr.Uncommons, Uncommons); 371 writeRange(Hdr.DependentLibraries, DependentLibraries); 372 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr; 373 return Error::success(); 374 } 375 376 } // end anonymous namespace 377 378 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, 379 StringTableBuilder &StrtabBuilder, 380 BumpPtrAllocator &Alloc) { 381 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); 382 } 383 384 // Upgrade a vector of bitcode modules created by an old version of LLVM by 385 // creating an irsymtab for them in the current format. 386 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) { 387 FileContents FC; 388 389 LLVMContext Ctx; 390 std::vector<Module *> Mods; 391 std::vector<std::unique_ptr<Module>> OwnedMods; 392 for (auto BM : BMs) { 393 Expected<std::unique_ptr<Module>> MOrErr = 394 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, 395 /*IsImporting*/ false); 396 if (!MOrErr) 397 return MOrErr.takeError(); 398 399 Mods.push_back(MOrErr->get()); 400 OwnedMods.push_back(std::move(*MOrErr)); 401 } 402 403 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); 404 BumpPtrAllocator Alloc; 405 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) 406 return std::move(E); 407 408 StrtabBuilder.finalizeInOrder(); 409 FC.Strtab.resize(StrtabBuilder.getSize()); 410 StrtabBuilder.write((uint8_t *)FC.Strtab.data()); 411 412 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, 413 {FC.Strtab.data(), FC.Strtab.size()}}; 414 return std::move(FC); 415 } 416 417 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) { 418 if (BFC.Mods.empty()) 419 return make_error<StringError>("Bitcode file does not contain any modules", 420 inconvertibleErrorCode()); 421 422 if (!DisableBitcodeVersionUpgrade) { 423 if (BFC.StrtabForSymtab.empty() || 424 BFC.Symtab.size() < sizeof(storage::Header)) 425 return upgrade(BFC.Mods); 426 427 // We cannot use the regular reader to read the version and producer, 428 // because it will expect the header to be in the current format. The only 429 // thing we can rely on is that the version and producer will be present as 430 // the first struct elements. 431 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data()); 432 unsigned Version = Hdr->Version; 433 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); 434 if (Version != storage::Header::kCurrentVersion || 435 Producer != kExpectedProducerName) 436 return upgrade(BFC.Mods); 437 } 438 439 FileContents FC; 440 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, 441 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; 442 443 // Finally, make sure that the number of modules in the symbol table matches 444 // the number of modules in the bitcode file. If they differ, it may mean that 445 // the bitcode file was created by binary concatenation, so we need to create 446 // a new symbol table from scratch. 447 if (FC.TheReader.getNumModules() != BFC.Mods.size()) 448 return upgrade(std::move(BFC.Mods)); 449 450 return std::move(FC); 451 } 452