xref: /freebsd/contrib/llvm-project/llvm/lib/Object/IRSymtab.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/IRSymtab.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Bitcode/BitcodeReader.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Comdat.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalObject.h"
22 #include "llvm/IR/Mangler.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/RuntimeLibcalls.h"
26 #include "llvm/MC/StringTableBuilder.h"
27 #include "llvm/Object/ModuleSymbolTable.h"
28 #include "llvm/Object/SymbolicFile.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/StringSaver.h"
34 #include "llvm/Support/VCSRevision.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TargetParser/Triple.h"
37 #include <cassert>
38 #include <string>
39 #include <utility>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace irsymtab;
44 
45 static cl::opt<bool> DisableBitcodeVersionUpgrade(
46     "disable-bitcode-version-upgrade", cl::Hidden,
47     cl::desc("Disable automatic bitcode upgrade for version mismatch"));
48 
49 static const char *PreservedSymbols[] = {
50     // There are global variables, so put it here instead of in
51     // RuntimeLibcalls.def.
52     // TODO: Are there similar such variables?
53     "__ssp_canary_word",
54     "__stack_chk_guard",
55 };
56 
57 namespace {
58 
59 const char *getExpectedProducerName() {
60   static char DefaultName[] = LLVM_VERSION_STRING
61 #ifdef LLVM_REVISION
62       " " LLVM_REVISION
63 #endif
64       ;
65   // Allows for testing of the irsymtab writer and upgrade mechanism. This
66   // environment variable should not be set by users.
67   if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
68     return OverrideName;
69   return DefaultName;
70 }
71 
72 const char *kExpectedProducerName = getExpectedProducerName();
73 
74 /// Stores the temporary state that is required to build an IR symbol table.
75 struct Builder {
76   SmallVector<char, 0> &Symtab;
77   StringTableBuilder &StrtabBuilder;
78   StringSaver Saver;
79 
80   // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
81   // The StringTableBuilder does not create a copy of any strings added to it,
82   // so this provides somewhere to store any strings that we create.
83   Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
84           BumpPtrAllocator &Alloc)
85       : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
86 
87   DenseMap<const Comdat *, int> ComdatMap;
88   Mangler Mang;
89   Triple TT;
90 
91   std::vector<storage::Comdat> Comdats;
92   std::vector<storage::Module> Mods;
93   std::vector<storage::Symbol> Syms;
94   std::vector<storage::Uncommon> Uncommons;
95 
96   std::string COFFLinkerOpts;
97   raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
98 
99   std::vector<storage::Str> DependentLibraries;
100 
101   void setStr(storage::Str &S, StringRef Value) {
102     S.Offset = StrtabBuilder.add(Value);
103     S.Size = Value.size();
104   }
105 
106   template <typename T>
107   void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
108     R.Offset = Symtab.size();
109     R.Size = Objs.size();
110     Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
111                   reinterpret_cast<const char *>(Objs.data() + Objs.size()));
112   }
113 
114   Expected<int> getComdatIndex(const Comdat *C, const Module *M);
115 
116   Error addModule(Module *M);
117   Error addSymbol(const ModuleSymbolTable &Msymtab,
118                   const SmallPtrSet<GlobalValue *, 4> &Used,
119                   ModuleSymbolTable::Symbol Sym);
120 
121   Error build(ArrayRef<Module *> Mods);
122 };
123 
124 Error Builder::addModule(Module *M) {
125   if (M->getDataLayoutStr().empty())
126     return make_error<StringError>("input module has no datalayout",
127                                    inconvertibleErrorCode());
128 
129   // Symbols in the llvm.used list will get the FB_Used bit and will not be
130   // internalized. We do this for llvm.compiler.used as well:
131   //
132   // IR symbol table tracks module-level asm symbol references but not inline
133   // asm. A symbol only referenced by inline asm is not in the IR symbol table,
134   // so we may not know that the definition (in another translation unit) is
135   // referenced. That definition may have __attribute__((used)) (which lowers to
136   // llvm.compiler.used on ELF targets) to communicate to the compiler that it
137   // may be used by inline asm. The usage is perfectly fine, so we treat
138   // llvm.compiler.used conservatively as llvm.used to work around our own
139   // limitation.
140   SmallVector<GlobalValue *, 4> UsedV;
141   collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
142   collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
143   SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
144 
145   ModuleSymbolTable Msymtab;
146   Msymtab.addModule(M);
147 
148   storage::Module Mod;
149   Mod.Begin = Syms.size();
150   Mod.End = Syms.size() + Msymtab.symbols().size();
151   Mod.UncBegin = Uncommons.size();
152   Mods.push_back(Mod);
153 
154   if (TT.isOSBinFormatCOFF()) {
155     if (auto E = M->materializeMetadata())
156       return E;
157     if (NamedMDNode *LinkerOptions =
158             M->getNamedMetadata("llvm.linker.options")) {
159       for (MDNode *MDOptions : LinkerOptions->operands())
160         for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
161           COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
162     }
163   }
164 
165   if (TT.isOSBinFormatELF()) {
166     if (auto E = M->materializeMetadata())
167       return E;
168     if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
169       for (MDNode *MDOptions : N->operands()) {
170         const auto OperandStr =
171             cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
172         storage::Str Specifier;
173         setStr(Specifier, OperandStr);
174         DependentLibraries.emplace_back(Specifier);
175       }
176     }
177   }
178 
179   for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
180     if (Error Err = addSymbol(Msymtab, Used, Msym))
181       return Err;
182 
183   return Error::success();
184 }
185 
186 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
187   auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
188   if (P.second) {
189     std::string Name;
190     if (TT.isOSBinFormatCOFF()) {
191       const GlobalValue *GV = M->getNamedValue(C->getName());
192       if (!GV)
193         return make_error<StringError>("Could not find leader",
194                                        inconvertibleErrorCode());
195       // Internal leaders do not affect symbol resolution, therefore they do not
196       // appear in the symbol table.
197       if (GV->hasLocalLinkage()) {
198         P.first->second = -1;
199         return -1;
200       }
201       llvm::raw_string_ostream OS(Name);
202       Mang.getNameWithPrefix(OS, GV, false);
203     } else {
204       Name = std::string(C->getName());
205     }
206 
207     storage::Comdat Comdat;
208     setStr(Comdat.Name, Saver.save(Name));
209     Comdat.SelectionKind = C->getSelectionKind();
210     Comdats.push_back(Comdat);
211   }
212 
213   return P.first->second;
214 }
215 
216 static DenseSet<StringRef> buildPreservedSymbolsSet(const Triple &TT) {
217   DenseSet<StringRef> PreservedSymbolSet(std::begin(PreservedSymbols),
218                                          std::end(PreservedSymbols));
219 
220   RTLIB::RuntimeLibcallsInfo Libcalls(TT);
221   for (const char *Name : Libcalls.getLibcallNames()) {
222     if (Name)
223       PreservedSymbolSet.insert(Name);
224   }
225   return PreservedSymbolSet;
226 }
227 
228 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
229                          const SmallPtrSet<GlobalValue *, 4> &Used,
230                          ModuleSymbolTable::Symbol Msym) {
231   Syms.emplace_back();
232   storage::Symbol &Sym = Syms.back();
233   Sym = {};
234 
235   storage::Uncommon *Unc = nullptr;
236   auto Uncommon = [&]() -> storage::Uncommon & {
237     if (Unc)
238       return *Unc;
239     Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
240     Uncommons.emplace_back();
241     Unc = &Uncommons.back();
242     *Unc = {};
243     setStr(Unc->COFFWeakExternFallbackName, "");
244     setStr(Unc->SectionName, "");
245     return *Unc;
246   };
247 
248   SmallString<64> Name;
249   {
250     raw_svector_ostream OS(Name);
251     Msymtab.printSymbolName(OS, Msym);
252   }
253   setStr(Sym.Name, Saver.save(Name.str()));
254 
255   auto Flags = Msymtab.getSymbolFlags(Msym);
256   if (Flags & object::BasicSymbolRef::SF_Undefined)
257     Sym.Flags |= 1 << storage::Symbol::FB_undefined;
258   if (Flags & object::BasicSymbolRef::SF_Weak)
259     Sym.Flags |= 1 << storage::Symbol::FB_weak;
260   if (Flags & object::BasicSymbolRef::SF_Common)
261     Sym.Flags |= 1 << storage::Symbol::FB_common;
262   if (Flags & object::BasicSymbolRef::SF_Indirect)
263     Sym.Flags |= 1 << storage::Symbol::FB_indirect;
264   if (Flags & object::BasicSymbolRef::SF_Global)
265     Sym.Flags |= 1 << storage::Symbol::FB_global;
266   if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
267     Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
268   if (Flags & object::BasicSymbolRef::SF_Executable)
269     Sym.Flags |= 1 << storage::Symbol::FB_executable;
270 
271   Sym.ComdatIndex = -1;
272   auto *GV = dyn_cast_if_present<GlobalValue *>(Msym);
273   if (!GV) {
274     // Undefined module asm symbols act as GC roots and are implicitly used.
275     if (Flags & object::BasicSymbolRef::SF_Undefined)
276       Sym.Flags |= 1 << storage::Symbol::FB_used;
277     setStr(Sym.IRName, "");
278     return Error::success();
279   }
280 
281   setStr(Sym.IRName, GV->getName());
282 
283   static const DenseSet<StringRef> PreservedSymbolsSet =
284       buildPreservedSymbolsSet(
285           llvm::Triple(GV->getParent()->getTargetTriple()));
286   bool IsPreservedSymbol = PreservedSymbolsSet.contains(GV->getName());
287 
288   if (Used.count(GV) || IsPreservedSymbol)
289     Sym.Flags |= 1 << storage::Symbol::FB_used;
290   if (GV->isThreadLocal())
291     Sym.Flags |= 1 << storage::Symbol::FB_tls;
292   if (GV->hasGlobalUnnamedAddr())
293     Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
294   if (GV->canBeOmittedFromSymbolTable())
295     Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
296   Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
297 
298   if (Flags & object::BasicSymbolRef::SF_Common) {
299     auto *GVar = dyn_cast<GlobalVariable>(GV);
300     if (!GVar)
301       return make_error<StringError>("Only variables can have common linkage!",
302                                      inconvertibleErrorCode());
303     Uncommon().CommonSize =
304         GV->getDataLayout().getTypeAllocSize(GV->getValueType());
305     Uncommon().CommonAlign = GVar->getAlign() ? GVar->getAlign()->value() : 0;
306   }
307 
308   const GlobalObject *GO = GV->getAliaseeObject();
309   if (!GO) {
310     if (isa<GlobalIFunc>(GV))
311       GO = cast<GlobalIFunc>(GV)->getResolverFunction();
312     if (!GO)
313       return make_error<StringError>("Unable to determine comdat of alias!",
314                                      inconvertibleErrorCode());
315   }
316   if (const Comdat *C = GO->getComdat()) {
317     Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
318     if (!ComdatIndexOrErr)
319       return ComdatIndexOrErr.takeError();
320     Sym.ComdatIndex = *ComdatIndexOrErr;
321   }
322 
323   if (TT.isOSBinFormatCOFF()) {
324     emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
325 
326     if ((Flags & object::BasicSymbolRef::SF_Weak) &&
327         (Flags & object::BasicSymbolRef::SF_Indirect)) {
328       auto *Fallback = dyn_cast<GlobalValue>(
329           cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
330       if (!Fallback)
331         return make_error<StringError>("Invalid weak external",
332                                        inconvertibleErrorCode());
333       std::string FallbackName;
334       raw_string_ostream OS(FallbackName);
335       Msymtab.printSymbolName(OS, Fallback);
336       OS.flush();
337       setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
338     }
339   }
340 
341   if (!GO->getSection().empty())
342     setStr(Uncommon().SectionName, Saver.save(GO->getSection()));
343 
344   return Error::success();
345 }
346 
347 Error Builder::build(ArrayRef<Module *> IRMods) {
348   storage::Header Hdr;
349 
350   assert(!IRMods.empty());
351   Hdr.Version = storage::Header::kCurrentVersion;
352   setStr(Hdr.Producer, kExpectedProducerName);
353   setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
354   setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
355   TT = Triple(IRMods[0]->getTargetTriple());
356 
357   for (auto *M : IRMods)
358     if (Error Err = addModule(M))
359       return Err;
360 
361   COFFLinkerOptsOS.flush();
362   setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
363 
364   // We are about to fill in the header's range fields, so reserve space for it
365   // and copy it in afterwards.
366   Symtab.resize(sizeof(storage::Header));
367   writeRange(Hdr.Modules, Mods);
368   writeRange(Hdr.Comdats, Comdats);
369   writeRange(Hdr.Symbols, Syms);
370   writeRange(Hdr.Uncommons, Uncommons);
371   writeRange(Hdr.DependentLibraries, DependentLibraries);
372   *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
373   return Error::success();
374 }
375 
376 } // end anonymous namespace
377 
378 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
379                       StringTableBuilder &StrtabBuilder,
380                       BumpPtrAllocator &Alloc) {
381   return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
382 }
383 
384 // Upgrade a vector of bitcode modules created by an old version of LLVM by
385 // creating an irsymtab for them in the current format.
386 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
387   FileContents FC;
388 
389   LLVMContext Ctx;
390   std::vector<Module *> Mods;
391   std::vector<std::unique_ptr<Module>> OwnedMods;
392   for (auto BM : BMs) {
393     Expected<std::unique_ptr<Module>> MOrErr =
394         BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
395                          /*IsImporting*/ false);
396     if (!MOrErr)
397       return MOrErr.takeError();
398 
399     Mods.push_back(MOrErr->get());
400     OwnedMods.push_back(std::move(*MOrErr));
401   }
402 
403   StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
404   BumpPtrAllocator Alloc;
405   if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
406     return std::move(E);
407 
408   StrtabBuilder.finalizeInOrder();
409   FC.Strtab.resize(StrtabBuilder.getSize());
410   StrtabBuilder.write((uint8_t *)FC.Strtab.data());
411 
412   FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
413                   {FC.Strtab.data(), FC.Strtab.size()}};
414   return std::move(FC);
415 }
416 
417 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
418   if (BFC.Mods.empty())
419     return make_error<StringError>("Bitcode file does not contain any modules",
420                                    inconvertibleErrorCode());
421 
422   if (!DisableBitcodeVersionUpgrade) {
423     if (BFC.StrtabForSymtab.empty() ||
424         BFC.Symtab.size() < sizeof(storage::Header))
425       return upgrade(BFC.Mods);
426 
427     // We cannot use the regular reader to read the version and producer,
428     // because it will expect the header to be in the current format. The only
429     // thing we can rely on is that the version and producer will be present as
430     // the first struct elements.
431     auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
432     unsigned Version = Hdr->Version;
433     StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
434     if (Version != storage::Header::kCurrentVersion ||
435         Producer != kExpectedProducerName)
436       return upgrade(BFC.Mods);
437   }
438 
439   FileContents FC;
440   FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
441                   {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
442 
443   // Finally, make sure that the number of modules in the symbol table matches
444   // the number of modules in the bitcode file. If they differ, it may mean that
445   // the bitcode file was created by binary concatenation, so we need to create
446   // a new symbol table from scratch.
447   if (FC.TheReader.getNumModules() != BFC.Mods.size())
448     return upgrade(std::move(BFC.Mods));
449 
450   return std::move(FC);
451 }
452