xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELFObjectFile.cpp (revision 7affbeeab1c99685012df0d72df2d7a87e09e472)
1  //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Part of the ELFObjectFile class implementation.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/Object/ELFObjectFile.h"
14  #include "llvm/BinaryFormat/ELF.h"
15  #include "llvm/MC/MCInstrAnalysis.h"
16  #include "llvm/MC/TargetRegistry.h"
17  #include "llvm/Object/ELF.h"
18  #include "llvm/Object/ELFTypes.h"
19  #include "llvm/Object/Error.h"
20  #include "llvm/Support/ARMAttributeParser.h"
21  #include "llvm/Support/ARMBuildAttributes.h"
22  #include "llvm/Support/ErrorHandling.h"
23  #include "llvm/Support/MathExtras.h"
24  #include "llvm/Support/RISCVAttributeParser.h"
25  #include "llvm/Support/RISCVAttributes.h"
26  #include "llvm/Support/RISCVISAInfo.h"
27  #include "llvm/TargetParser/SubtargetFeature.h"
28  #include "llvm/TargetParser/Triple.h"
29  #include <algorithm>
30  #include <cstddef>
31  #include <cstdint>
32  #include <memory>
33  #include <optional>
34  #include <string>
35  #include <utility>
36  
37  using namespace llvm;
38  using namespace object;
39  
40  const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
41      {"None", "NOTYPE", ELF::STT_NOTYPE},
42      {"Object", "OBJECT", ELF::STT_OBJECT},
43      {"Function", "FUNC", ELF::STT_FUNC},
44      {"Section", "SECTION", ELF::STT_SECTION},
45      {"File", "FILE", ELF::STT_FILE},
46      {"Common", "COMMON", ELF::STT_COMMON},
47      {"TLS", "TLS", ELF::STT_TLS},
48      {"Unknown", "<unknown>: 7", 7},
49      {"Unknown", "<unknown>: 8", 8},
50      {"Unknown", "<unknown>: 9", 9},
51      {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
52      {"OS Specific", "<OS specific>: 11", 11},
53      {"OS Specific", "<OS specific>: 12", 12},
54      {"Proc Specific", "<processor specific>: 13", 13},
55      {"Proc Specific", "<processor specific>: 14", 14},
56      {"Proc Specific", "<processor specific>: 15", 15}
57  };
58  
59  ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
60      : ObjectFile(Type, Source) {}
61  
62  template <class ELFT>
63  static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
64  createPtr(MemoryBufferRef Object, bool InitContent) {
65    auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
66    if (Error E = Ret.takeError())
67      return std::move(E);
68    return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
69  }
70  
71  Expected<std::unique_ptr<ObjectFile>>
72  ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
73    std::pair<unsigned char, unsigned char> Ident =
74        getElfArchType(Obj.getBuffer());
75    std::size_t MaxAlignment =
76        1ULL << llvm::countr_zero(
77            reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
78  
79    if (MaxAlignment < 2)
80      return createError("Insufficient alignment");
81  
82    if (Ident.first == ELF::ELFCLASS32) {
83      if (Ident.second == ELF::ELFDATA2LSB)
84        return createPtr<ELF32LE>(Obj, InitContent);
85      else if (Ident.second == ELF::ELFDATA2MSB)
86        return createPtr<ELF32BE>(Obj, InitContent);
87      else
88        return createError("Invalid ELF data");
89    } else if (Ident.first == ELF::ELFCLASS64) {
90      if (Ident.second == ELF::ELFDATA2LSB)
91        return createPtr<ELF64LE>(Obj, InitContent);
92      else if (Ident.second == ELF::ELFDATA2MSB)
93        return createPtr<ELF64BE>(Obj, InitContent);
94      else
95        return createError("Invalid ELF data");
96    }
97    return createError("Invalid ELF class");
98  }
99  
100  SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
101    SubtargetFeatures Features;
102    unsigned PlatformFlags = getPlatformFlags();
103  
104    switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
105    case ELF::EF_MIPS_ARCH_1:
106      break;
107    case ELF::EF_MIPS_ARCH_2:
108      Features.AddFeature("mips2");
109      break;
110    case ELF::EF_MIPS_ARCH_3:
111      Features.AddFeature("mips3");
112      break;
113    case ELF::EF_MIPS_ARCH_4:
114      Features.AddFeature("mips4");
115      break;
116    case ELF::EF_MIPS_ARCH_5:
117      Features.AddFeature("mips5");
118      break;
119    case ELF::EF_MIPS_ARCH_32:
120      Features.AddFeature("mips32");
121      break;
122    case ELF::EF_MIPS_ARCH_64:
123      Features.AddFeature("mips64");
124      break;
125    case ELF::EF_MIPS_ARCH_32R2:
126      Features.AddFeature("mips32r2");
127      break;
128    case ELF::EF_MIPS_ARCH_64R2:
129      Features.AddFeature("mips64r2");
130      break;
131    case ELF::EF_MIPS_ARCH_32R6:
132      Features.AddFeature("mips32r6");
133      break;
134    case ELF::EF_MIPS_ARCH_64R6:
135      Features.AddFeature("mips64r6");
136      break;
137    default:
138      llvm_unreachable("Unknown EF_MIPS_ARCH value");
139    }
140  
141    switch (PlatformFlags & ELF::EF_MIPS_MACH) {
142    case ELF::EF_MIPS_MACH_NONE:
143      // No feature associated with this value.
144      break;
145    case ELF::EF_MIPS_MACH_OCTEON:
146      Features.AddFeature("cnmips");
147      break;
148    default:
149      llvm_unreachable("Unknown EF_MIPS_ARCH value");
150    }
151  
152    if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
153      Features.AddFeature("mips16");
154    if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
155      Features.AddFeature("micromips");
156  
157    return Features;
158  }
159  
160  SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
161    SubtargetFeatures Features;
162    ARMAttributeParser Attributes;
163    if (Error E = getBuildAttributes(Attributes)) {
164      consumeError(std::move(E));
165      return SubtargetFeatures();
166    }
167  
168    // both ARMv7-M and R have to support thumb hardware div
169    bool isV7 = false;
170    std::optional<unsigned> Attr =
171        Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
172    if (Attr)
173      isV7 = *Attr == ARMBuildAttrs::v7;
174  
175    Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
176    if (Attr) {
177      switch (*Attr) {
178      case ARMBuildAttrs::ApplicationProfile:
179        Features.AddFeature("aclass");
180        break;
181      case ARMBuildAttrs::RealTimeProfile:
182        Features.AddFeature("rclass");
183        if (isV7)
184          Features.AddFeature("hwdiv");
185        break;
186      case ARMBuildAttrs::MicroControllerProfile:
187        Features.AddFeature("mclass");
188        if (isV7)
189          Features.AddFeature("hwdiv");
190        break;
191      }
192    }
193  
194    Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
195    if (Attr) {
196      switch (*Attr) {
197      default:
198        break;
199      case ARMBuildAttrs::Not_Allowed:
200        Features.AddFeature("thumb", false);
201        Features.AddFeature("thumb2", false);
202        break;
203      case ARMBuildAttrs::AllowThumb32:
204        Features.AddFeature("thumb2");
205        break;
206      }
207    }
208  
209    Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
210    if (Attr) {
211      switch (*Attr) {
212      default:
213        break;
214      case ARMBuildAttrs::Not_Allowed:
215        Features.AddFeature("vfp2sp", false);
216        Features.AddFeature("vfp3d16sp", false);
217        Features.AddFeature("vfp4d16sp", false);
218        break;
219      case ARMBuildAttrs::AllowFPv2:
220        Features.AddFeature("vfp2");
221        break;
222      case ARMBuildAttrs::AllowFPv3A:
223      case ARMBuildAttrs::AllowFPv3B:
224        Features.AddFeature("vfp3");
225        break;
226      case ARMBuildAttrs::AllowFPv4A:
227      case ARMBuildAttrs::AllowFPv4B:
228        Features.AddFeature("vfp4");
229        break;
230      }
231    }
232  
233    Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
234    if (Attr) {
235      switch (*Attr) {
236      default:
237        break;
238      case ARMBuildAttrs::Not_Allowed:
239        Features.AddFeature("neon", false);
240        Features.AddFeature("fp16", false);
241        break;
242      case ARMBuildAttrs::AllowNeon:
243        Features.AddFeature("neon");
244        break;
245      case ARMBuildAttrs::AllowNeon2:
246        Features.AddFeature("neon");
247        Features.AddFeature("fp16");
248        break;
249      }
250    }
251  
252    Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
253    if (Attr) {
254      switch (*Attr) {
255      default:
256        break;
257      case ARMBuildAttrs::Not_Allowed:
258        Features.AddFeature("mve", false);
259        Features.AddFeature("mve.fp", false);
260        break;
261      case ARMBuildAttrs::AllowMVEInteger:
262        Features.AddFeature("mve.fp", false);
263        Features.AddFeature("mve");
264        break;
265      case ARMBuildAttrs::AllowMVEIntegerAndFloat:
266        Features.AddFeature("mve.fp");
267        break;
268      }
269    }
270  
271    Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
272    if (Attr) {
273      switch (*Attr) {
274      default:
275        break;
276      case ARMBuildAttrs::DisallowDIV:
277        Features.AddFeature("hwdiv", false);
278        Features.AddFeature("hwdiv-arm", false);
279        break;
280      case ARMBuildAttrs::AllowDIVExt:
281        Features.AddFeature("hwdiv");
282        Features.AddFeature("hwdiv-arm");
283        break;
284      }
285    }
286  
287    return Features;
288  }
289  
290  Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
291    SubtargetFeatures Features;
292    unsigned PlatformFlags = getPlatformFlags();
293  
294    if (PlatformFlags & ELF::EF_RISCV_RVC) {
295      Features.AddFeature("c");
296    }
297  
298    RISCVAttributeParser Attributes;
299    if (Error E = getBuildAttributes(Attributes)) {
300      return std::move(E);
301    }
302  
303    std::optional<StringRef> Attr =
304        Attributes.getAttributeString(RISCVAttrs::ARCH);
305    if (Attr) {
306      auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
307      if (!ParseResult)
308        return ParseResult.takeError();
309      auto &ISAInfo = *ParseResult;
310  
311      if (ISAInfo->getXLen() == 32)
312        Features.AddFeature("64bit", false);
313      else if (ISAInfo->getXLen() == 64)
314        Features.AddFeature("64bit");
315      else
316        llvm_unreachable("XLEN should be 32 or 64.");
317  
318      Features.addFeaturesVector(ISAInfo->toFeatures());
319    }
320  
321    return Features;
322  }
323  
324  SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
325    SubtargetFeatures Features;
326  
327    switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
328    case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
329      break;
330    case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
331      Features.AddFeature("d");
332      // D implies F according to LoongArch ISA spec.
333      [[fallthrough]];
334    case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
335      Features.AddFeature("f");
336      break;
337    }
338  
339    return Features;
340  }
341  
342  Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
343    switch (getEMachine()) {
344    case ELF::EM_MIPS:
345      return getMIPSFeatures();
346    case ELF::EM_ARM:
347      return getARMFeatures();
348    case ELF::EM_RISCV:
349      return getRISCVFeatures();
350    case ELF::EM_LOONGARCH:
351      return getLoongArchFeatures();
352    default:
353      return SubtargetFeatures();
354    }
355  }
356  
357  std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
358    switch (getEMachine()) {
359    case ELF::EM_AMDGPU:
360      return getAMDGPUCPUName();
361    case ELF::EM_CUDA:
362      return getNVPTXCPUName();
363    case ELF::EM_PPC:
364    case ELF::EM_PPC64:
365      return StringRef("future");
366    default:
367      return std::nullopt;
368    }
369  }
370  
371  StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
372    assert(getEMachine() == ELF::EM_AMDGPU);
373    unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
374  
375    switch (CPU) {
376    // Radeon HD 2000/3000 Series (R600).
377    case ELF::EF_AMDGPU_MACH_R600_R600:
378      return "r600";
379    case ELF::EF_AMDGPU_MACH_R600_R630:
380      return "r630";
381    case ELF::EF_AMDGPU_MACH_R600_RS880:
382      return "rs880";
383    case ELF::EF_AMDGPU_MACH_R600_RV670:
384      return "rv670";
385  
386    // Radeon HD 4000 Series (R700).
387    case ELF::EF_AMDGPU_MACH_R600_RV710:
388      return "rv710";
389    case ELF::EF_AMDGPU_MACH_R600_RV730:
390      return "rv730";
391    case ELF::EF_AMDGPU_MACH_R600_RV770:
392      return "rv770";
393  
394    // Radeon HD 5000 Series (Evergreen).
395    case ELF::EF_AMDGPU_MACH_R600_CEDAR:
396      return "cedar";
397    case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
398      return "cypress";
399    case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
400      return "juniper";
401    case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
402      return "redwood";
403    case ELF::EF_AMDGPU_MACH_R600_SUMO:
404      return "sumo";
405  
406    // Radeon HD 6000 Series (Northern Islands).
407    case ELF::EF_AMDGPU_MACH_R600_BARTS:
408      return "barts";
409    case ELF::EF_AMDGPU_MACH_R600_CAICOS:
410      return "caicos";
411    case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
412      return "cayman";
413    case ELF::EF_AMDGPU_MACH_R600_TURKS:
414      return "turks";
415  
416    // AMDGCN GFX6.
417    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
418      return "gfx600";
419    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
420      return "gfx601";
421    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
422      return "gfx602";
423  
424    // AMDGCN GFX7.
425    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
426      return "gfx700";
427    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
428      return "gfx701";
429    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
430      return "gfx702";
431    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
432      return "gfx703";
433    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
434      return "gfx704";
435    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
436      return "gfx705";
437  
438    // AMDGCN GFX8.
439    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
440      return "gfx801";
441    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
442      return "gfx802";
443    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
444      return "gfx803";
445    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
446      return "gfx805";
447    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
448      return "gfx810";
449  
450    // AMDGCN GFX9.
451    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
452      return "gfx900";
453    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
454      return "gfx902";
455    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
456      return "gfx904";
457    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
458      return "gfx906";
459    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
460      return "gfx908";
461    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
462      return "gfx909";
463    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
464      return "gfx90a";
465    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
466      return "gfx90c";
467    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
468      return "gfx940";
469    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
470      return "gfx941";
471    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
472      return "gfx942";
473  
474    // AMDGCN GFX10.
475    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
476      return "gfx1010";
477    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
478      return "gfx1011";
479    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
480      return "gfx1012";
481    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
482      return "gfx1013";
483    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
484      return "gfx1030";
485    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
486      return "gfx1031";
487    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
488      return "gfx1032";
489    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
490      return "gfx1033";
491    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
492      return "gfx1034";
493    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
494      return "gfx1035";
495    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
496      return "gfx1036";
497  
498    // AMDGCN GFX11.
499    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
500      return "gfx1100";
501    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
502      return "gfx1101";
503    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
504      return "gfx1102";
505    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
506      return "gfx1103";
507    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
508      return "gfx1150";
509    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
510      return "gfx1151";
511  
512    // AMDGCN GFX12.
513    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
514      return "gfx1200";
515    case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
516      return "gfx1201";
517    default:
518      llvm_unreachable("Unknown EF_AMDGPU_MACH value");
519    }
520  }
521  
522  StringRef ELFObjectFileBase::getNVPTXCPUName() const {
523    assert(getEMachine() == ELF::EM_CUDA);
524    unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
525  
526    switch (SM) {
527    // Fermi architecture.
528    case ELF::EF_CUDA_SM20:
529      return "sm_20";
530    case ELF::EF_CUDA_SM21:
531      return "sm_21";
532  
533    // Kepler architecture.
534    case ELF::EF_CUDA_SM30:
535      return "sm_30";
536    case ELF::EF_CUDA_SM32:
537      return "sm_32";
538    case ELF::EF_CUDA_SM35:
539      return "sm_35";
540    case ELF::EF_CUDA_SM37:
541      return "sm_37";
542  
543    // Maxwell architecture.
544    case ELF::EF_CUDA_SM50:
545      return "sm_50";
546    case ELF::EF_CUDA_SM52:
547      return "sm_52";
548    case ELF::EF_CUDA_SM53:
549      return "sm_53";
550  
551    // Pascal architecture.
552    case ELF::EF_CUDA_SM60:
553      return "sm_60";
554    case ELF::EF_CUDA_SM61:
555      return "sm_61";
556    case ELF::EF_CUDA_SM62:
557      return "sm_62";
558  
559    // Volta architecture.
560    case ELF::EF_CUDA_SM70:
561      return "sm_70";
562    case ELF::EF_CUDA_SM72:
563      return "sm_72";
564  
565    // Turing architecture.
566    case ELF::EF_CUDA_SM75:
567      return "sm_75";
568  
569    // Ampere architecture.
570    case ELF::EF_CUDA_SM80:
571      return "sm_80";
572    case ELF::EF_CUDA_SM86:
573      return "sm_86";
574    case ELF::EF_CUDA_SM87:
575      return "sm_87";
576  
577    // Ada architecture.
578    case ELF::EF_CUDA_SM89:
579      return "sm_89";
580  
581    // Hopper architecture.
582    case ELF::EF_CUDA_SM90:
583      return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
584    default:
585      llvm_unreachable("Unknown EF_CUDA_SM value");
586    }
587  }
588  
589  // FIXME Encode from a tablegen description or target parser.
590  void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
591    if (TheTriple.getSubArch() != Triple::NoSubArch)
592      return;
593  
594    ARMAttributeParser Attributes;
595    if (Error E = getBuildAttributes(Attributes)) {
596      // TODO Propagate Error.
597      consumeError(std::move(E));
598      return;
599    }
600  
601    std::string Triple;
602    // Default to ARM, but use the triple if it's been set.
603    if (TheTriple.isThumb())
604      Triple = "thumb";
605    else
606      Triple = "arm";
607  
608    std::optional<unsigned> Attr =
609        Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
610    if (Attr) {
611      switch (*Attr) {
612      case ARMBuildAttrs::v4:
613        Triple += "v4";
614        break;
615      case ARMBuildAttrs::v4T:
616        Triple += "v4t";
617        break;
618      case ARMBuildAttrs::v5T:
619        Triple += "v5t";
620        break;
621      case ARMBuildAttrs::v5TE:
622        Triple += "v5te";
623        break;
624      case ARMBuildAttrs::v5TEJ:
625        Triple += "v5tej";
626        break;
627      case ARMBuildAttrs::v6:
628        Triple += "v6";
629        break;
630      case ARMBuildAttrs::v6KZ:
631        Triple += "v6kz";
632        break;
633      case ARMBuildAttrs::v6T2:
634        Triple += "v6t2";
635        break;
636      case ARMBuildAttrs::v6K:
637        Triple += "v6k";
638        break;
639      case ARMBuildAttrs::v7: {
640        std::optional<unsigned> ArchProfileAttr =
641            Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
642        if (ArchProfileAttr &&
643            *ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
644          Triple += "v7m";
645        else
646          Triple += "v7";
647        break;
648      }
649      case ARMBuildAttrs::v6_M:
650        Triple += "v6m";
651        break;
652      case ARMBuildAttrs::v6S_M:
653        Triple += "v6sm";
654        break;
655      case ARMBuildAttrs::v7E_M:
656        Triple += "v7em";
657        break;
658      case ARMBuildAttrs::v8_A:
659        Triple += "v8a";
660        break;
661      case ARMBuildAttrs::v8_R:
662        Triple += "v8r";
663        break;
664      case ARMBuildAttrs::v8_M_Base:
665        Triple += "v8m.base";
666        break;
667      case ARMBuildAttrs::v8_M_Main:
668        Triple += "v8m.main";
669        break;
670      case ARMBuildAttrs::v8_1_M_Main:
671        Triple += "v8.1m.main";
672        break;
673      case ARMBuildAttrs::v9_A:
674        Triple += "v9a";
675        break;
676      }
677    }
678    if (!isLittleEndian())
679      Triple += "eb";
680  
681    TheTriple.setArchName(Triple);
682  }
683  
684  std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
685    std::string Err;
686    const auto Triple = makeTriple();
687    const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
688    if (!T)
689      return {};
690    uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
691    switch (Triple.getArch()) {
692      case Triple::x86:
693        JumpSlotReloc = ELF::R_386_JUMP_SLOT;
694        GlobDatReloc = ELF::R_386_GLOB_DAT;
695        break;
696      case Triple::x86_64:
697        JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
698        GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
699        break;
700      case Triple::aarch64:
701      case Triple::aarch64_be:
702        JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
703        break;
704      default:
705        return {};
706    }
707    std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
708    std::unique_ptr<const MCInstrAnalysis> MIA(
709        T->createMCInstrAnalysis(MII.get()));
710    if (!MIA)
711      return {};
712    std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
713    std::optional<SectionRef> RelaPlt, RelaDyn;
714    uint64_t GotBaseVA = 0;
715    for (const SectionRef &Section : sections()) {
716      Expected<StringRef> NameOrErr = Section.getName();
717      if (!NameOrErr) {
718        consumeError(NameOrErr.takeError());
719        continue;
720      }
721      StringRef Name = *NameOrErr;
722  
723      if (Name == ".rela.plt" || Name == ".rel.plt") {
724        RelaPlt = Section;
725      } else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
726        RelaDyn = Section;
727      } else if (Name == ".got.plt") {
728        GotBaseVA = Section.getAddress();
729      } else if (Name == ".plt" || Name == ".plt.got") {
730        Expected<StringRef> PltContents = Section.getContents();
731        if (!PltContents) {
732          consumeError(PltContents.takeError());
733          return {};
734        }
735        llvm::append_range(
736            PltEntries,
737            MIA->findPltEntries(Section.getAddress(),
738                                arrayRefFromStringRef(*PltContents), Triple));
739      }
740    }
741  
742    // Build a map from GOT entry virtual address to PLT entry virtual address.
743    DenseMap<uint64_t, uint64_t> GotToPlt;
744    for (auto [Plt, GotPlt] : PltEntries) {
745      uint64_t GotPltEntry = GotPlt;
746      // An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
747      // _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
748      // See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
749      if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
750        GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
751      GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
752    }
753  
754    // Find the relocations in the dynamic relocation table that point to
755    // locations in the GOT for which we know the corresponding PLT entry.
756    std::vector<ELFPltEntry> Result;
757    auto handleRels = [&](iterator_range<relocation_iterator> Rels,
758                          uint32_t RelType, StringRef PltSec) {
759      for (const auto &R : Rels) {
760        if (R.getType() != RelType)
761          continue;
762        auto PltEntryIter = GotToPlt.find(R.getOffset());
763        if (PltEntryIter != GotToPlt.end()) {
764          symbol_iterator Sym = R.getSymbol();
765          if (Sym == symbol_end())
766            Result.push_back(
767                ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
768          else
769            Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
770                                         PltEntryIter->second});
771        }
772      }
773    };
774  
775    if (RelaPlt)
776      handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
777  
778    // If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
779    // x86 port places the PLT entry in the .plt.got section.
780    if (RelaDyn)
781      handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
782  
783    return Result;
784  }
785  
786  template <class ELFT>
787  Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
788      const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
789      std::vector<PGOAnalysisMap> *PGOAnalyses) {
790    using Elf_Shdr = typename ELFT::Shdr;
791    bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
792    std::vector<BBAddrMap> BBAddrMaps;
793    if (PGOAnalyses)
794      PGOAnalyses->clear();
795  
796    const auto &Sections = cantFail(EF.sections());
797    auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
798      if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
799          Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
800        return false;
801      if (!TextSectionIndex)
802        return true;
803      Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
804      if (!TextSecOrErr)
805        return createError("unable to get the linked-to section for " +
806                           describe(EF, Sec) + ": " +
807                           toString(TextSecOrErr.takeError()));
808      if (*TextSectionIndex != std::distance(Sections.begin(), *TextSecOrErr))
809        return false;
810      return true;
811    };
812  
813    Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
814        EF.getSectionAndRelocations(IsMatch);
815    if (!SectionRelocMapOrErr)
816      return SectionRelocMapOrErr.takeError();
817  
818    for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
819      if (IsRelocatable && !RelocSec)
820        return createError("unable to get relocation section for " +
821                           describe(EF, *Sec));
822      Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
823          EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
824      if (!BBAddrMapOrErr) {
825        if (PGOAnalyses)
826          PGOAnalyses->clear();
827        return createError("unable to read " + describe(EF, *Sec) + ": " +
828                           toString(BBAddrMapOrErr.takeError()));
829      }
830      std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
831                std::back_inserter(BBAddrMaps));
832    }
833    if (PGOAnalyses)
834      assert(PGOAnalyses->size() == BBAddrMaps.size() &&
835             "The same number of BBAddrMaps and PGOAnalysisMaps should be "
836             "returned when PGO information is requested");
837    return BBAddrMaps;
838  }
839  
840  template <class ELFT>
841  static Expected<std::vector<VersionEntry>>
842  readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
843                         ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
844    using Elf_Shdr = typename ELFT::Shdr;
845    const Elf_Shdr *VerSec = nullptr;
846    const Elf_Shdr *VerNeedSec = nullptr;
847    const Elf_Shdr *VerDefSec = nullptr;
848    // The user should ensure sections() can't fail here.
849    for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
850      if (Sec.sh_type == ELF::SHT_GNU_versym)
851        VerSec = &Sec;
852      else if (Sec.sh_type == ELF::SHT_GNU_verdef)
853        VerDefSec = &Sec;
854      else if (Sec.sh_type == ELF::SHT_GNU_verneed)
855        VerNeedSec = &Sec;
856    }
857    if (!VerSec)
858      return std::vector<VersionEntry>();
859  
860    Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
861        EF.loadVersionMap(VerNeedSec, VerDefSec);
862    if (!MapOrErr)
863      return MapOrErr.takeError();
864  
865    std::vector<VersionEntry> Ret;
866    size_t I = 0;
867    for (const ELFSymbolRef &Sym : Symbols) {
868      ++I;
869      Expected<const typename ELFT::Versym *> VerEntryOrErr =
870          EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
871      if (!VerEntryOrErr)
872        return createError("unable to read an entry with index " + Twine(I) +
873                           " from " + describe(EF, *VerSec) + ": " +
874                           toString(VerEntryOrErr.takeError()));
875  
876      Expected<uint32_t> FlagsOrErr = Sym.getFlags();
877      if (!FlagsOrErr)
878        return createError("unable to read flags for symbol with index " +
879                           Twine(I) + ": " + toString(FlagsOrErr.takeError()));
880  
881      bool IsDefault;
882      Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
883          (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
884          (*FlagsOrErr) & SymbolRef::SF_Undefined);
885      if (!VerOrErr)
886        return createError("unable to get a version for entry " + Twine(I) +
887                           " of " + describe(EF, *VerSec) + ": " +
888                           toString(VerOrErr.takeError()));
889  
890      Ret.push_back({(*VerOrErr).str(), IsDefault});
891    }
892  
893    return Ret;
894  }
895  
896  Expected<std::vector<VersionEntry>>
897  ELFObjectFileBase::readDynsymVersions() const {
898    elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
899    if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
900      return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
901    if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
902      return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
903    if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
904      return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
905    return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
906                                  Symbols);
907  }
908  
909  Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
910      std::optional<unsigned> TextSectionIndex,
911      std::vector<PGOAnalysisMap> *PGOAnalyses) const {
912    if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
913      return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
914    if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
915      return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
916    if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
917      return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
918    return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
919                             TextSectionIndex, PGOAnalyses);
920  }
921