xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELFObjectFile.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the ELFObjectFile class implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/MC/MCInstrAnalysis.h"
16 #include "llvm/MC/TargetRegistry.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFTypes.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Support/ARMAttributeParser.h"
21 #include "llvm/Support/ARMBuildAttributes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/HexagonAttributeParser.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/RISCVAttributeParser.h"
26 #include "llvm/Support/RISCVAttributes.h"
27 #include "llvm/TargetParser/RISCVISAInfo.h"
28 #include "llvm/TargetParser/SubtargetFeature.h"
29 #include "llvm/TargetParser/Triple.h"
30 #include <algorithm>
31 #include <cstddef>
32 #include <cstdint>
33 #include <memory>
34 #include <optional>
35 #include <string>
36 #include <utility>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
42     {"None", "NOTYPE", ELF::STT_NOTYPE},
43     {"Object", "OBJECT", ELF::STT_OBJECT},
44     {"Function", "FUNC", ELF::STT_FUNC},
45     {"Section", "SECTION", ELF::STT_SECTION},
46     {"File", "FILE", ELF::STT_FILE},
47     {"Common", "COMMON", ELF::STT_COMMON},
48     {"TLS", "TLS", ELF::STT_TLS},
49     {"Unknown", "<unknown>: 7", 7},
50     {"Unknown", "<unknown>: 8", 8},
51     {"Unknown", "<unknown>: 9", 9},
52     {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
53     {"OS Specific", "<OS specific>: 11", 11},
54     {"OS Specific", "<OS specific>: 12", 12},
55     {"Proc Specific", "<processor specific>: 13", 13},
56     {"Proc Specific", "<processor specific>: 14", 14},
57     {"Proc Specific", "<processor specific>: 15", 15}
58 };
59 
60 ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
61     : ObjectFile(Type, Source) {}
62 
63 template <class ELFT>
64 static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
65 createPtr(MemoryBufferRef Object, bool InitContent) {
66   auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
67   if (Error E = Ret.takeError())
68     return std::move(E);
69   return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
70 }
71 
72 Expected<std::unique_ptr<ObjectFile>>
73 ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
74   std::pair<unsigned char, unsigned char> Ident =
75       getElfArchType(Obj.getBuffer());
76   std::size_t MaxAlignment =
77       1ULL << llvm::countr_zero(
78           reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
79 
80   if (MaxAlignment < 2)
81     return createError("Insufficient alignment");
82 
83   if (Ident.first == ELF::ELFCLASS32) {
84     if (Ident.second == ELF::ELFDATA2LSB)
85       return createPtr<ELF32LE>(Obj, InitContent);
86     else if (Ident.second == ELF::ELFDATA2MSB)
87       return createPtr<ELF32BE>(Obj, InitContent);
88     else
89       return createError("Invalid ELF data");
90   } else if (Ident.first == ELF::ELFCLASS64) {
91     if (Ident.second == ELF::ELFDATA2LSB)
92       return createPtr<ELF64LE>(Obj, InitContent);
93     else if (Ident.second == ELF::ELFDATA2MSB)
94       return createPtr<ELF64BE>(Obj, InitContent);
95     else
96       return createError("Invalid ELF data");
97   }
98   return createError("Invalid ELF class");
99 }
100 
101 SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
102   SubtargetFeatures Features;
103   unsigned PlatformFlags = getPlatformFlags();
104 
105   switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
106   case ELF::EF_MIPS_ARCH_1:
107     break;
108   case ELF::EF_MIPS_ARCH_2:
109     Features.AddFeature("mips2");
110     break;
111   case ELF::EF_MIPS_ARCH_3:
112     Features.AddFeature("mips3");
113     break;
114   case ELF::EF_MIPS_ARCH_4:
115     Features.AddFeature("mips4");
116     break;
117   case ELF::EF_MIPS_ARCH_5:
118     Features.AddFeature("mips5");
119     break;
120   case ELF::EF_MIPS_ARCH_32:
121     Features.AddFeature("mips32");
122     break;
123   case ELF::EF_MIPS_ARCH_64:
124     Features.AddFeature("mips64");
125     break;
126   case ELF::EF_MIPS_ARCH_32R2:
127     Features.AddFeature("mips32r2");
128     break;
129   case ELF::EF_MIPS_ARCH_64R2:
130     Features.AddFeature("mips64r2");
131     break;
132   case ELF::EF_MIPS_ARCH_32R6:
133     Features.AddFeature("mips32r6");
134     break;
135   case ELF::EF_MIPS_ARCH_64R6:
136     Features.AddFeature("mips64r6");
137     break;
138   default:
139     llvm_unreachable("Unknown EF_MIPS_ARCH value");
140   }
141 
142   switch (PlatformFlags & ELF::EF_MIPS_MACH) {
143   case ELF::EF_MIPS_MACH_NONE:
144     // No feature associated with this value.
145     break;
146   case ELF::EF_MIPS_MACH_OCTEON:
147     Features.AddFeature("cnmips");
148     break;
149   default:
150     llvm_unreachable("Unknown EF_MIPS_ARCH value");
151   }
152 
153   if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
154     Features.AddFeature("mips16");
155   if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
156     Features.AddFeature("micromips");
157 
158   return Features;
159 }
160 
161 SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
162   SubtargetFeatures Features;
163   ARMAttributeParser Attributes;
164   if (Error E = getBuildAttributes(Attributes)) {
165     consumeError(std::move(E));
166     return SubtargetFeatures();
167   }
168 
169   // both ARMv7-M and R have to support thumb hardware div
170   bool isV7 = false;
171   std::optional<unsigned> Attr =
172       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
173   if (Attr)
174     isV7 = *Attr == ARMBuildAttrs::v7;
175 
176   Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
177   if (Attr) {
178     switch (*Attr) {
179     case ARMBuildAttrs::ApplicationProfile:
180       Features.AddFeature("aclass");
181       break;
182     case ARMBuildAttrs::RealTimeProfile:
183       Features.AddFeature("rclass");
184       if (isV7)
185         Features.AddFeature("hwdiv");
186       break;
187     case ARMBuildAttrs::MicroControllerProfile:
188       Features.AddFeature("mclass");
189       if (isV7)
190         Features.AddFeature("hwdiv");
191       break;
192     }
193   }
194 
195   Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
196   if (Attr) {
197     switch (*Attr) {
198     default:
199       break;
200     case ARMBuildAttrs::Not_Allowed:
201       Features.AddFeature("thumb", false);
202       Features.AddFeature("thumb2", false);
203       break;
204     case ARMBuildAttrs::AllowThumb32:
205       Features.AddFeature("thumb2");
206       break;
207     }
208   }
209 
210   Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
211   if (Attr) {
212     switch (*Attr) {
213     default:
214       break;
215     case ARMBuildAttrs::Not_Allowed:
216       Features.AddFeature("vfp2sp", false);
217       Features.AddFeature("vfp3d16sp", false);
218       Features.AddFeature("vfp4d16sp", false);
219       break;
220     case ARMBuildAttrs::AllowFPv2:
221       Features.AddFeature("vfp2");
222       break;
223     case ARMBuildAttrs::AllowFPv3A:
224     case ARMBuildAttrs::AllowFPv3B:
225       Features.AddFeature("vfp3");
226       break;
227     case ARMBuildAttrs::AllowFPv4A:
228     case ARMBuildAttrs::AllowFPv4B:
229       Features.AddFeature("vfp4");
230       break;
231     }
232   }
233 
234   Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
235   if (Attr) {
236     switch (*Attr) {
237     default:
238       break;
239     case ARMBuildAttrs::Not_Allowed:
240       Features.AddFeature("neon", false);
241       Features.AddFeature("fp16", false);
242       break;
243     case ARMBuildAttrs::AllowNeon:
244       Features.AddFeature("neon");
245       break;
246     case ARMBuildAttrs::AllowNeon2:
247       Features.AddFeature("neon");
248       Features.AddFeature("fp16");
249       break;
250     }
251   }
252 
253   Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
254   if (Attr) {
255     switch (*Attr) {
256     default:
257       break;
258     case ARMBuildAttrs::Not_Allowed:
259       Features.AddFeature("mve", false);
260       Features.AddFeature("mve.fp", false);
261       break;
262     case ARMBuildAttrs::AllowMVEInteger:
263       Features.AddFeature("mve.fp", false);
264       Features.AddFeature("mve");
265       break;
266     case ARMBuildAttrs::AllowMVEIntegerAndFloat:
267       Features.AddFeature("mve.fp");
268       break;
269     }
270   }
271 
272   Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
273   if (Attr) {
274     switch (*Attr) {
275     default:
276       break;
277     case ARMBuildAttrs::DisallowDIV:
278       Features.AddFeature("hwdiv", false);
279       Features.AddFeature("hwdiv-arm", false);
280       break;
281     case ARMBuildAttrs::AllowDIVExt:
282       Features.AddFeature("hwdiv");
283       Features.AddFeature("hwdiv-arm");
284       break;
285     }
286   }
287 
288   return Features;
289 }
290 
291 static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
292   switch (Attr) {
293   case 5:
294     return "v5";
295   case 55:
296     return "v55";
297   case 60:
298     return "v60";
299   case 62:
300     return "v62";
301   case 65:
302     return "v65";
303   case 67:
304     return "v67";
305   case 68:
306     return "v68";
307   case 69:
308     return "v69";
309   case 71:
310     return "v71";
311   case 73:
312     return "v73";
313   default:
314     return {};
315   }
316 }
317 
318 SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
319   SubtargetFeatures Features;
320   HexagonAttributeParser Parser;
321   if (Error E = getBuildAttributes(Parser)) {
322     // Return no attributes if none can be read.
323     // This behavior is important for backwards compatibility.
324     consumeError(std::move(E));
325     return Features;
326   }
327   std::optional<unsigned> Attr;
328 
329   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
330     if (std::optional<std::string> FeatureString =
331             hexagonAttrToFeatureString(*Attr))
332       Features.AddFeature(*FeatureString);
333   }
334 
335   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
336     std::optional<std::string> FeatureString =
337         hexagonAttrToFeatureString(*Attr);
338     // There is no corresponding hvx arch for v5 and v55.
339     if (FeatureString && *Attr >= 60)
340       Features.AddFeature("hvx" + *FeatureString);
341   }
342 
343   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
344     if (*Attr)
345       Features.AddFeature("hvx-ieee-fp");
346 
347   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
348     if (*Attr)
349       Features.AddFeature("hvx-qfloat");
350 
351   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
352     if (*Attr)
353       Features.AddFeature("zreg");
354 
355   if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
356     if (*Attr)
357       Features.AddFeature("audio");
358 
359   if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
360     if (*Attr)
361       Features.AddFeature("cabac");
362 
363   return Features;
364 }
365 
366 Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
367   SubtargetFeatures Features;
368   unsigned PlatformFlags = getPlatformFlags();
369 
370   if (PlatformFlags & ELF::EF_RISCV_RVC) {
371     Features.AddFeature("zca");
372   }
373 
374   RISCVAttributeParser Attributes;
375   if (Error E = getBuildAttributes(Attributes)) {
376     return std::move(E);
377   }
378 
379   std::optional<StringRef> Attr =
380       Attributes.getAttributeString(RISCVAttrs::ARCH);
381   if (Attr) {
382     auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
383     if (!ParseResult)
384       return ParseResult.takeError();
385     auto &ISAInfo = *ParseResult;
386 
387     if (ISAInfo->getXLen() == 32)
388       Features.AddFeature("64bit", false);
389     else if (ISAInfo->getXLen() == 64)
390       Features.AddFeature("64bit");
391     else
392       llvm_unreachable("XLEN should be 32 or 64.");
393 
394     Features.addFeaturesVector(ISAInfo->toFeatures());
395   }
396 
397   return Features;
398 }
399 
400 SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
401   SubtargetFeatures Features;
402 
403   switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
404   case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
405     break;
406   case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
407     Features.AddFeature("d");
408     // D implies F according to LoongArch ISA spec.
409     [[fallthrough]];
410   case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
411     Features.AddFeature("f");
412     break;
413   }
414 
415   return Features;
416 }
417 
418 Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
419   switch (getEMachine()) {
420   case ELF::EM_MIPS:
421     return getMIPSFeatures();
422   case ELF::EM_ARM:
423     return getARMFeatures();
424   case ELF::EM_RISCV:
425     return getRISCVFeatures();
426   case ELF::EM_LOONGARCH:
427     return getLoongArchFeatures();
428   case ELF::EM_HEXAGON:
429     return getHexagonFeatures();
430   default:
431     return SubtargetFeatures();
432   }
433 }
434 
435 std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
436   switch (getEMachine()) {
437   case ELF::EM_AMDGPU:
438     return getAMDGPUCPUName();
439   case ELF::EM_CUDA:
440     return getNVPTXCPUName();
441   case ELF::EM_PPC:
442   case ELF::EM_PPC64:
443     return StringRef("future");
444   default:
445     return std::nullopt;
446   }
447 }
448 
449 StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
450   assert(getEMachine() == ELF::EM_AMDGPU);
451   unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
452 
453   switch (CPU) {
454   // Radeon HD 2000/3000 Series (R600).
455   case ELF::EF_AMDGPU_MACH_R600_R600:
456     return "r600";
457   case ELF::EF_AMDGPU_MACH_R600_R630:
458     return "r630";
459   case ELF::EF_AMDGPU_MACH_R600_RS880:
460     return "rs880";
461   case ELF::EF_AMDGPU_MACH_R600_RV670:
462     return "rv670";
463 
464   // Radeon HD 4000 Series (R700).
465   case ELF::EF_AMDGPU_MACH_R600_RV710:
466     return "rv710";
467   case ELF::EF_AMDGPU_MACH_R600_RV730:
468     return "rv730";
469   case ELF::EF_AMDGPU_MACH_R600_RV770:
470     return "rv770";
471 
472   // Radeon HD 5000 Series (Evergreen).
473   case ELF::EF_AMDGPU_MACH_R600_CEDAR:
474     return "cedar";
475   case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
476     return "cypress";
477   case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
478     return "juniper";
479   case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
480     return "redwood";
481   case ELF::EF_AMDGPU_MACH_R600_SUMO:
482     return "sumo";
483 
484   // Radeon HD 6000 Series (Northern Islands).
485   case ELF::EF_AMDGPU_MACH_R600_BARTS:
486     return "barts";
487   case ELF::EF_AMDGPU_MACH_R600_CAICOS:
488     return "caicos";
489   case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
490     return "cayman";
491   case ELF::EF_AMDGPU_MACH_R600_TURKS:
492     return "turks";
493 
494   // AMDGCN GFX6.
495   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
496     return "gfx600";
497   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
498     return "gfx601";
499   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
500     return "gfx602";
501 
502   // AMDGCN GFX7.
503   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
504     return "gfx700";
505   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
506     return "gfx701";
507   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
508     return "gfx702";
509   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
510     return "gfx703";
511   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
512     return "gfx704";
513   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
514     return "gfx705";
515 
516   // AMDGCN GFX8.
517   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
518     return "gfx801";
519   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
520     return "gfx802";
521   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
522     return "gfx803";
523   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
524     return "gfx805";
525   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
526     return "gfx810";
527 
528   // AMDGCN GFX9.
529   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
530     return "gfx900";
531   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
532     return "gfx902";
533   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
534     return "gfx904";
535   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
536     return "gfx906";
537   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
538     return "gfx908";
539   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
540     return "gfx909";
541   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
542     return "gfx90a";
543   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
544     return "gfx90c";
545   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
546     return "gfx940";
547   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
548     return "gfx941";
549   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
550     return "gfx942";
551 
552   // AMDGCN GFX10.
553   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
554     return "gfx1010";
555   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
556     return "gfx1011";
557   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
558     return "gfx1012";
559   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
560     return "gfx1013";
561   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
562     return "gfx1030";
563   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
564     return "gfx1031";
565   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
566     return "gfx1032";
567   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
568     return "gfx1033";
569   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
570     return "gfx1034";
571   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
572     return "gfx1035";
573   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
574     return "gfx1036";
575 
576   // AMDGCN GFX11.
577   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
578     return "gfx1100";
579   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
580     return "gfx1101";
581   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
582     return "gfx1102";
583   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
584     return "gfx1103";
585   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
586     return "gfx1150";
587   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
588     return "gfx1151";
589   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1152:
590     return "gfx1152";
591 
592   // AMDGCN GFX12.
593   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
594     return "gfx1200";
595   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
596     return "gfx1201";
597 
598   // Generic AMDGCN targets
599   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC:
600     return "gfx9-generic";
601   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC:
602     return "gfx10-1-generic";
603   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC:
604     return "gfx10-3-generic";
605   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC:
606     return "gfx11-generic";
607   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC:
608     return "gfx12-generic";
609   default:
610     llvm_unreachable("Unknown EF_AMDGPU_MACH value");
611   }
612 }
613 
614 StringRef ELFObjectFileBase::getNVPTXCPUName() const {
615   assert(getEMachine() == ELF::EM_CUDA);
616   unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
617 
618   switch (SM) {
619   // Fermi architecture.
620   case ELF::EF_CUDA_SM20:
621     return "sm_20";
622   case ELF::EF_CUDA_SM21:
623     return "sm_21";
624 
625   // Kepler architecture.
626   case ELF::EF_CUDA_SM30:
627     return "sm_30";
628   case ELF::EF_CUDA_SM32:
629     return "sm_32";
630   case ELF::EF_CUDA_SM35:
631     return "sm_35";
632   case ELF::EF_CUDA_SM37:
633     return "sm_37";
634 
635   // Maxwell architecture.
636   case ELF::EF_CUDA_SM50:
637     return "sm_50";
638   case ELF::EF_CUDA_SM52:
639     return "sm_52";
640   case ELF::EF_CUDA_SM53:
641     return "sm_53";
642 
643   // Pascal architecture.
644   case ELF::EF_CUDA_SM60:
645     return "sm_60";
646   case ELF::EF_CUDA_SM61:
647     return "sm_61";
648   case ELF::EF_CUDA_SM62:
649     return "sm_62";
650 
651   // Volta architecture.
652   case ELF::EF_CUDA_SM70:
653     return "sm_70";
654   case ELF::EF_CUDA_SM72:
655     return "sm_72";
656 
657   // Turing architecture.
658   case ELF::EF_CUDA_SM75:
659     return "sm_75";
660 
661   // Ampere architecture.
662   case ELF::EF_CUDA_SM80:
663     return "sm_80";
664   case ELF::EF_CUDA_SM86:
665     return "sm_86";
666   case ELF::EF_CUDA_SM87:
667     return "sm_87";
668 
669   // Ada architecture.
670   case ELF::EF_CUDA_SM89:
671     return "sm_89";
672 
673   // Hopper architecture.
674   case ELF::EF_CUDA_SM90:
675     return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
676   default:
677     llvm_unreachable("Unknown EF_CUDA_SM value");
678   }
679 }
680 
681 // FIXME Encode from a tablegen description or target parser.
682 void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
683   if (TheTriple.getSubArch() != Triple::NoSubArch)
684     return;
685 
686   ARMAttributeParser Attributes;
687   if (Error E = getBuildAttributes(Attributes)) {
688     // TODO Propagate Error.
689     consumeError(std::move(E));
690     return;
691   }
692 
693   std::string Triple;
694   // Default to ARM, but use the triple if it's been set.
695   if (TheTriple.isThumb())
696     Triple = "thumb";
697   else
698     Triple = "arm";
699 
700   std::optional<unsigned> Attr =
701       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
702   if (Attr) {
703     switch (*Attr) {
704     case ARMBuildAttrs::v4:
705       Triple += "v4";
706       break;
707     case ARMBuildAttrs::v4T:
708       Triple += "v4t";
709       break;
710     case ARMBuildAttrs::v5T:
711       Triple += "v5t";
712       break;
713     case ARMBuildAttrs::v5TE:
714       Triple += "v5te";
715       break;
716     case ARMBuildAttrs::v5TEJ:
717       Triple += "v5tej";
718       break;
719     case ARMBuildAttrs::v6:
720       Triple += "v6";
721       break;
722     case ARMBuildAttrs::v6KZ:
723       Triple += "v6kz";
724       break;
725     case ARMBuildAttrs::v6T2:
726       Triple += "v6t2";
727       break;
728     case ARMBuildAttrs::v6K:
729       Triple += "v6k";
730       break;
731     case ARMBuildAttrs::v7: {
732       std::optional<unsigned> ArchProfileAttr =
733           Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
734       if (ArchProfileAttr &&
735           *ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
736         Triple += "v7m";
737       else
738         Triple += "v7";
739       break;
740     }
741     case ARMBuildAttrs::v6_M:
742       Triple += "v6m";
743       break;
744     case ARMBuildAttrs::v6S_M:
745       Triple += "v6sm";
746       break;
747     case ARMBuildAttrs::v7E_M:
748       Triple += "v7em";
749       break;
750     case ARMBuildAttrs::v8_A:
751       Triple += "v8a";
752       break;
753     case ARMBuildAttrs::v8_R:
754       Triple += "v8r";
755       break;
756     case ARMBuildAttrs::v8_M_Base:
757       Triple += "v8m.base";
758       break;
759     case ARMBuildAttrs::v8_M_Main:
760       Triple += "v8m.main";
761       break;
762     case ARMBuildAttrs::v8_1_M_Main:
763       Triple += "v8.1m.main";
764       break;
765     case ARMBuildAttrs::v9_A:
766       Triple += "v9a";
767       break;
768     }
769   }
770   if (!isLittleEndian())
771     Triple += "eb";
772 
773   TheTriple.setArchName(Triple);
774 }
775 
776 std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
777   std::string Err;
778   const auto Triple = makeTriple();
779   const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
780   if (!T)
781     return {};
782   uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
783   switch (Triple.getArch()) {
784     case Triple::x86:
785       JumpSlotReloc = ELF::R_386_JUMP_SLOT;
786       GlobDatReloc = ELF::R_386_GLOB_DAT;
787       break;
788     case Triple::x86_64:
789       JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
790       GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
791       break;
792     case Triple::aarch64:
793     case Triple::aarch64_be:
794       JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
795       break;
796     default:
797       return {};
798   }
799   std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
800   std::unique_ptr<const MCInstrAnalysis> MIA(
801       T->createMCInstrAnalysis(MII.get()));
802   if (!MIA)
803     return {};
804   std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
805   std::optional<SectionRef> RelaPlt, RelaDyn;
806   uint64_t GotBaseVA = 0;
807   for (const SectionRef &Section : sections()) {
808     Expected<StringRef> NameOrErr = Section.getName();
809     if (!NameOrErr) {
810       consumeError(NameOrErr.takeError());
811       continue;
812     }
813     StringRef Name = *NameOrErr;
814 
815     if (Name == ".rela.plt" || Name == ".rel.plt") {
816       RelaPlt = Section;
817     } else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
818       RelaDyn = Section;
819     } else if (Name == ".got.plt") {
820       GotBaseVA = Section.getAddress();
821     } else if (Name == ".plt" || Name == ".plt.got") {
822       Expected<StringRef> PltContents = Section.getContents();
823       if (!PltContents) {
824         consumeError(PltContents.takeError());
825         return {};
826       }
827       llvm::append_range(
828           PltEntries,
829           MIA->findPltEntries(Section.getAddress(),
830                               arrayRefFromStringRef(*PltContents), Triple));
831     }
832   }
833 
834   // Build a map from GOT entry virtual address to PLT entry virtual address.
835   DenseMap<uint64_t, uint64_t> GotToPlt;
836   for (auto [Plt, GotPlt] : PltEntries) {
837     uint64_t GotPltEntry = GotPlt;
838     // An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
839     // _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
840     // See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
841     if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
842       GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
843     GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
844   }
845 
846   // Find the relocations in the dynamic relocation table that point to
847   // locations in the GOT for which we know the corresponding PLT entry.
848   std::vector<ELFPltEntry> Result;
849   auto handleRels = [&](iterator_range<relocation_iterator> Rels,
850                         uint32_t RelType, StringRef PltSec) {
851     for (const auto &R : Rels) {
852       if (R.getType() != RelType)
853         continue;
854       auto PltEntryIter = GotToPlt.find(R.getOffset());
855       if (PltEntryIter != GotToPlt.end()) {
856         symbol_iterator Sym = R.getSymbol();
857         if (Sym == symbol_end())
858           Result.push_back(
859               ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
860         else
861           Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
862                                        PltEntryIter->second});
863       }
864     }
865   };
866 
867   if (RelaPlt)
868     handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
869 
870   // If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
871   // x86 port places the PLT entry in the .plt.got section.
872   if (RelaDyn)
873     handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
874 
875   return Result;
876 }
877 
878 template <class ELFT>
879 Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
880     const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
881     std::vector<PGOAnalysisMap> *PGOAnalyses) {
882   using Elf_Shdr = typename ELFT::Shdr;
883   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
884   std::vector<BBAddrMap> BBAddrMaps;
885   if (PGOAnalyses)
886     PGOAnalyses->clear();
887 
888   const auto &Sections = cantFail(EF.sections());
889   auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
890     if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
891         Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
892       return false;
893     if (!TextSectionIndex)
894       return true;
895     Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
896     if (!TextSecOrErr)
897       return createError("unable to get the linked-to section for " +
898                          describe(EF, Sec) + ": " +
899                          toString(TextSecOrErr.takeError()));
900     assert(*TextSecOrErr >= Sections.begin() &&
901            "Text section pointer outside of bounds");
902     if (*TextSectionIndex !=
903         (unsigned)std::distance(Sections.begin(), *TextSecOrErr))
904       return false;
905     return true;
906   };
907 
908   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
909       EF.getSectionAndRelocations(IsMatch);
910   if (!SectionRelocMapOrErr)
911     return SectionRelocMapOrErr.takeError();
912 
913   for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
914     if (IsRelocatable && !RelocSec)
915       return createError("unable to get relocation section for " +
916                          describe(EF, *Sec));
917     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
918         EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
919     if (!BBAddrMapOrErr) {
920       if (PGOAnalyses)
921         PGOAnalyses->clear();
922       return createError("unable to read " + describe(EF, *Sec) + ": " +
923                          toString(BBAddrMapOrErr.takeError()));
924     }
925     std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
926               std::back_inserter(BBAddrMaps));
927   }
928   if (PGOAnalyses)
929     assert(PGOAnalyses->size() == BBAddrMaps.size() &&
930            "The same number of BBAddrMaps and PGOAnalysisMaps should be "
931            "returned when PGO information is requested");
932   return BBAddrMaps;
933 }
934 
935 template <class ELFT>
936 static Expected<std::vector<VersionEntry>>
937 readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
938                        ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
939   using Elf_Shdr = typename ELFT::Shdr;
940   const Elf_Shdr *VerSec = nullptr;
941   const Elf_Shdr *VerNeedSec = nullptr;
942   const Elf_Shdr *VerDefSec = nullptr;
943   // The user should ensure sections() can't fail here.
944   for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
945     if (Sec.sh_type == ELF::SHT_GNU_versym)
946       VerSec = &Sec;
947     else if (Sec.sh_type == ELF::SHT_GNU_verdef)
948       VerDefSec = &Sec;
949     else if (Sec.sh_type == ELF::SHT_GNU_verneed)
950       VerNeedSec = &Sec;
951   }
952   if (!VerSec)
953     return std::vector<VersionEntry>();
954 
955   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
956       EF.loadVersionMap(VerNeedSec, VerDefSec);
957   if (!MapOrErr)
958     return MapOrErr.takeError();
959 
960   std::vector<VersionEntry> Ret;
961   size_t I = 0;
962   for (const ELFSymbolRef &Sym : Symbols) {
963     ++I;
964     Expected<const typename ELFT::Versym *> VerEntryOrErr =
965         EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
966     if (!VerEntryOrErr)
967       return createError("unable to read an entry with index " + Twine(I) +
968                          " from " + describe(EF, *VerSec) + ": " +
969                          toString(VerEntryOrErr.takeError()));
970 
971     Expected<uint32_t> FlagsOrErr = Sym.getFlags();
972     if (!FlagsOrErr)
973       return createError("unable to read flags for symbol with index " +
974                          Twine(I) + ": " + toString(FlagsOrErr.takeError()));
975 
976     bool IsDefault;
977     Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
978         (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
979         (*FlagsOrErr) & SymbolRef::SF_Undefined);
980     if (!VerOrErr)
981       return createError("unable to get a version for entry " + Twine(I) +
982                          " of " + describe(EF, *VerSec) + ": " +
983                          toString(VerOrErr.takeError()));
984 
985     Ret.push_back({(*VerOrErr).str(), IsDefault});
986   }
987 
988   return Ret;
989 }
990 
991 Expected<std::vector<VersionEntry>>
992 ELFObjectFileBase::readDynsymVersions() const {
993   elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
994   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
995     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
996   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
997     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
998   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
999     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1000   return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1001                                 Symbols);
1002 }
1003 
1004 Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
1005     std::optional<unsigned> TextSectionIndex,
1006     std::vector<PGOAnalysisMap> *PGOAnalyses) const {
1007   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1008     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1009   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1010     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1011   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1012     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1013   return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1014                            TextSectionIndex, PGOAnalyses);
1015 }
1016 
1017 StringRef ELFObjectFileBase::getCrelDecodeProblem(SectionRef Sec) const {
1018   auto Data = Sec.getRawDataRefImpl();
1019   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1020     return Obj->getCrelDecodeProblem(Data);
1021   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1022     return Obj->getCrelDecodeProblem(Data);
1023   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1024     return Obj->getCrelDecodeProblem(Data);
1025   return cast<ELF64BEObjectFile>(this)->getCrelDecodeProblem(Data);
1026 }
1027