xref: /freebsd/contrib/llvm-project/llvm/lib/Object/ELF.cpp (revision ca457394fccfc7d712cd9cc6a66e574767a0a32b)
1  //===- ELF.cpp - ELF object file implementation ---------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  
9  #include "llvm/Object/ELF.h"
10  #include "llvm/BinaryFormat/ELF.h"
11  #include "llvm/Support/DataExtractor.h"
12  
13  using namespace llvm;
14  using namespace object;
15  
16  #define STRINGIFY_ENUM_CASE(ns, name)                                          \
17    case ns::name:                                                               \
18      return #name;
19  
20  #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
21  
22  StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
23                                                   uint32_t Type) {
24    switch (Machine) {
25    case ELF::EM_68K:
26      switch (Type) {
27  #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
28      default:
29        break;
30      }
31      break;
32    case ELF::EM_X86_64:
33      switch (Type) {
34  #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
35      default:
36        break;
37      }
38      break;
39    case ELF::EM_386:
40    case ELF::EM_IAMCU:
41      switch (Type) {
42  #include "llvm/BinaryFormat/ELFRelocs/i386.def"
43      default:
44        break;
45      }
46      break;
47    case ELF::EM_MIPS:
48      switch (Type) {
49  #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
50      default:
51        break;
52      }
53      break;
54    case ELF::EM_AARCH64:
55      switch (Type) {
56  #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
57      default:
58        break;
59      }
60      break;
61    case ELF::EM_ARM:
62      switch (Type) {
63  #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
64      default:
65        break;
66      }
67      break;
68    case ELF::EM_ARC_COMPACT:
69    case ELF::EM_ARC_COMPACT2:
70      switch (Type) {
71  #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
72      default:
73        break;
74      }
75      break;
76    case ELF::EM_AVR:
77      switch (Type) {
78  #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
79      default:
80        break;
81      }
82      break;
83    case ELF::EM_HEXAGON:
84      switch (Type) {
85  #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
86      default:
87        break;
88      }
89      break;
90    case ELF::EM_LANAI:
91      switch (Type) {
92  #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
93      default:
94        break;
95      }
96      break;
97    case ELF::EM_PPC:
98      switch (Type) {
99  #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
100      default:
101        break;
102      }
103      break;
104    case ELF::EM_PPC64:
105      switch (Type) {
106  #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
107      default:
108        break;
109      }
110      break;
111    case ELF::EM_RISCV:
112      switch (Type) {
113  #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
114      default:
115        break;
116      }
117      break;
118    case ELF::EM_S390:
119      switch (Type) {
120  #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
121      default:
122        break;
123      }
124      break;
125    case ELF::EM_SPARC:
126    case ELF::EM_SPARC32PLUS:
127    case ELF::EM_SPARCV9:
128      switch (Type) {
129  #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
130      default:
131        break;
132      }
133      break;
134    case ELF::EM_AMDGPU:
135      switch (Type) {
136  #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
137      default:
138        break;
139      }
140      break;
141    case ELF::EM_BPF:
142      switch (Type) {
143  #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
144      default:
145        break;
146      }
147      break;
148    case ELF::EM_MSP430:
149      switch (Type) {
150  #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
151      default:
152        break;
153      }
154      break;
155    case ELF::EM_VE:
156      switch (Type) {
157  #include "llvm/BinaryFormat/ELFRelocs/VE.def"
158      default:
159        break;
160      }
161      break;
162    case ELF::EM_CSKY:
163      switch (Type) {
164  #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
165      default:
166        break;
167      }
168      break;
169    default:
170      break;
171    }
172    return "Unknown";
173  }
174  
175  #undef ELF_RELOC
176  
177  uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
178    switch (Machine) {
179    case ELF::EM_X86_64:
180      return ELF::R_X86_64_RELATIVE;
181    case ELF::EM_386:
182    case ELF::EM_IAMCU:
183      return ELF::R_386_RELATIVE;
184    case ELF::EM_MIPS:
185      break;
186    case ELF::EM_AARCH64:
187      return ELF::R_AARCH64_RELATIVE;
188    case ELF::EM_ARM:
189      return ELF::R_ARM_RELATIVE;
190    case ELF::EM_ARC_COMPACT:
191    case ELF::EM_ARC_COMPACT2:
192      return ELF::R_ARC_RELATIVE;
193    case ELF::EM_AVR:
194      break;
195    case ELF::EM_HEXAGON:
196      return ELF::R_HEX_RELATIVE;
197    case ELF::EM_LANAI:
198      break;
199    case ELF::EM_PPC:
200      break;
201    case ELF::EM_PPC64:
202      return ELF::R_PPC64_RELATIVE;
203    case ELF::EM_RISCV:
204      return ELF::R_RISCV_RELATIVE;
205    case ELF::EM_S390:
206      return ELF::R_390_RELATIVE;
207    case ELF::EM_SPARC:
208    case ELF::EM_SPARC32PLUS:
209    case ELF::EM_SPARCV9:
210      return ELF::R_SPARC_RELATIVE;
211    case ELF::EM_CSKY:
212      return ELF::R_CKCORE_RELATIVE;
213    case ELF::EM_AMDGPU:
214      break;
215    case ELF::EM_BPF:
216      break;
217    default:
218      break;
219    }
220    return 0;
221  }
222  
223  StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
224    switch (Machine) {
225    case ELF::EM_ARM:
226      switch (Type) {
227        STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
228        STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
229        STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
230        STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
231        STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
232      }
233      break;
234    case ELF::EM_HEXAGON:
235      switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
236      break;
237    case ELF::EM_X86_64:
238      switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
239      break;
240    case ELF::EM_MIPS:
241    case ELF::EM_MIPS_RS3_LE:
242      switch (Type) {
243        STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
244        STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
245        STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
246        STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
247      }
248      break;
249    case ELF::EM_RISCV:
250      switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
251      break;
252    default:
253      break;
254    }
255  
256    switch (Type) {
257      STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
258      STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
259      STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
260      STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
261      STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
262      STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
263      STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
264      STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
265      STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
266      STRINGIFY_ENUM_CASE(ELF, SHT_REL);
267      STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
268      STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
269      STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
270      STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
271      STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
272      STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
273      STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
274      STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
275      STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
276      STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
277      STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
278      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
279      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
280      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
281      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
282      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
283      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
284      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
285      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
286      STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
287      STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
288      STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
289      STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
290      STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
291      STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
292    default:
293      return "Unknown";
294    }
295  }
296  
297  template <class ELFT>
298  std::vector<typename ELFT::Rel>
299  ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
300    // This function decodes the contents of an SHT_RELR packed relocation
301    // section.
302    //
303    // Proposal for adding SHT_RELR sections to generic-abi is here:
304    //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
305    //
306    // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
307    // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
308    //
309    // i.e. start with an address, followed by any number of bitmaps. The address
310    // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
311    // relocations each, at subsequent offsets following the last address entry.
312    //
313    // The bitmap entries must have 1 in the least significant bit. The assumption
314    // here is that an address cannot have 1 in lsb. Odd addresses are not
315    // supported.
316    //
317    // Excluding the least significant bit in the bitmap, each non-zero bit in
318    // the bitmap represents a relocation to be applied to a corresponding machine
319    // word that follows the base address word. The second least significant bit
320    // represents the machine word immediately following the initial address, and
321    // each bit that follows represents the next word, in linear order. As such,
322    // a single bitmap can encode up to 31 relocations in a 32-bit object, and
323    // 63 relocations in a 64-bit object.
324    //
325    // This encoding has a couple of interesting properties:
326    // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
327    //    even means address, odd means bitmap.
328    // 2. Just a simple list of addresses is a valid encoding.
329  
330    Elf_Rel Rel;
331    Rel.r_info = 0;
332    Rel.setType(getRelativeRelocationType(), false);
333    std::vector<Elf_Rel> Relocs;
334  
335    // Word type: uint32_t for Elf32, and uint64_t for Elf64.
336    typedef typename ELFT::uint Word;
337  
338    // Word size in number of bytes.
339    const size_t WordSize = sizeof(Word);
340  
341    // Number of bits used for the relocation offsets bitmap.
342    // These many relative relocations can be encoded in a single entry.
343    const size_t NBits = 8*WordSize - 1;
344  
345    Word Base = 0;
346    for (const Elf_Relr &R : relrs) {
347      Word Entry = R;
348      if ((Entry&1) == 0) {
349        // Even entry: encodes the offset for next relocation.
350        Rel.r_offset = Entry;
351        Relocs.push_back(Rel);
352        // Set base offset for subsequent bitmap entries.
353        Base = Entry + WordSize;
354        continue;
355      }
356  
357      // Odd entry: encodes bitmap for relocations starting at base.
358      Word Offset = Base;
359      while (Entry != 0) {
360        Entry >>= 1;
361        if ((Entry&1) != 0) {
362          Rel.r_offset = Offset;
363          Relocs.push_back(Rel);
364        }
365        Offset += WordSize;
366      }
367  
368      // Advance base offset by NBits words.
369      Base += NBits * WordSize;
370    }
371  
372    return Relocs;
373  }
374  
375  template <class ELFT>
376  Expected<std::vector<typename ELFT::Rela>>
377  ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
378    // This function reads relocations in Android's packed relocation format,
379    // which is based on SLEB128 and delta encoding.
380    Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
381    if (!ContentsOrErr)
382      return ContentsOrErr.takeError();
383    ArrayRef<uint8_t> Content = *ContentsOrErr;
384    if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
385        Content[2] != 'S' || Content[3] != '2')
386      return createError("invalid packed relocation header");
387    DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
388    DataExtractor::Cursor Cur(/*Offset=*/4);
389  
390    uint64_t NumRelocs = Data.getSLEB128(Cur);
391    uint64_t Offset = Data.getSLEB128(Cur);
392    uint64_t Addend = 0;
393  
394    if (!Cur)
395      return std::move(Cur.takeError());
396  
397    std::vector<Elf_Rela> Relocs;
398    Relocs.reserve(NumRelocs);
399    while (NumRelocs) {
400      uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
401      if (!Cur)
402        return std::move(Cur.takeError());
403      if (NumRelocsInGroup > NumRelocs)
404        return createError("relocation group unexpectedly large");
405      NumRelocs -= NumRelocsInGroup;
406  
407      uint64_t GroupFlags = Data.getSLEB128(Cur);
408      bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
409      bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
410      bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
411      bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
412  
413      uint64_t GroupOffsetDelta;
414      if (GroupedByOffsetDelta)
415        GroupOffsetDelta = Data.getSLEB128(Cur);
416  
417      uint64_t GroupRInfo;
418      if (GroupedByInfo)
419        GroupRInfo = Data.getSLEB128(Cur);
420  
421      if (GroupedByAddend && GroupHasAddend)
422        Addend += Data.getSLEB128(Cur);
423  
424      if (!GroupHasAddend)
425        Addend = 0;
426  
427      for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
428        Elf_Rela R;
429        Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
430        R.r_offset = Offset;
431        R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
432        if (GroupHasAddend && !GroupedByAddend)
433          Addend += Data.getSLEB128(Cur);
434        R.r_addend = Addend;
435        Relocs.push_back(R);
436      }
437      if (!Cur)
438        return std::move(Cur.takeError());
439    }
440  
441    return Relocs;
442  }
443  
444  template <class ELFT>
445  std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
446                                                   uint64_t Type) const {
447  #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
448    case value:                                                                  \
449      return #tag;
450  
451  #define DYNAMIC_TAG(n, v)
452    switch (Arch) {
453    case ELF::EM_AARCH64:
454      switch (Type) {
455  #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
456  #include "llvm/BinaryFormat/DynamicTags.def"
457  #undef AARCH64_DYNAMIC_TAG
458      }
459      break;
460  
461    case ELF::EM_HEXAGON:
462      switch (Type) {
463  #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
464  #include "llvm/BinaryFormat/DynamicTags.def"
465  #undef HEXAGON_DYNAMIC_TAG
466      }
467      break;
468  
469    case ELF::EM_MIPS:
470      switch (Type) {
471  #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
472  #include "llvm/BinaryFormat/DynamicTags.def"
473  #undef MIPS_DYNAMIC_TAG
474      }
475      break;
476  
477    case ELF::EM_PPC64:
478      switch (Type) {
479  #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
480  #include "llvm/BinaryFormat/DynamicTags.def"
481  #undef PPC64_DYNAMIC_TAG
482      }
483      break;
484    }
485  #undef DYNAMIC_TAG
486    switch (Type) {
487  // Now handle all dynamic tags except the architecture specific ones
488  #define AARCH64_DYNAMIC_TAG(name, value)
489  #define MIPS_DYNAMIC_TAG(name, value)
490  #define HEXAGON_DYNAMIC_TAG(name, value)
491  #define PPC64_DYNAMIC_TAG(name, value)
492  // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
493  #define DYNAMIC_TAG_MARKER(name, value)
494  #define DYNAMIC_TAG(name, value) case value: return #name;
495  #include "llvm/BinaryFormat/DynamicTags.def"
496  #undef DYNAMIC_TAG
497  #undef AARCH64_DYNAMIC_TAG
498  #undef MIPS_DYNAMIC_TAG
499  #undef HEXAGON_DYNAMIC_TAG
500  #undef PPC64_DYNAMIC_TAG
501  #undef DYNAMIC_TAG_MARKER
502  #undef DYNAMIC_STRINGIFY_ENUM
503    default:
504      return "<unknown:>0x" + utohexstr(Type, true);
505    }
506  }
507  
508  template <class ELFT>
509  std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
510    return getDynamicTagAsString(getHeader().e_machine, Type);
511  }
512  
513  template <class ELFT>
514  Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
515    ArrayRef<Elf_Dyn> Dyn;
516  
517    auto ProgramHeadersOrError = program_headers();
518    if (!ProgramHeadersOrError)
519      return ProgramHeadersOrError.takeError();
520  
521    for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
522      if (Phdr.p_type == ELF::PT_DYNAMIC) {
523        Dyn = makeArrayRef(
524            reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
525            Phdr.p_filesz / sizeof(Elf_Dyn));
526        break;
527      }
528    }
529  
530    // If we can't find the dynamic section in the program headers, we just fall
531    // back on the sections.
532    if (Dyn.empty()) {
533      auto SectionsOrError = sections();
534      if (!SectionsOrError)
535        return SectionsOrError.takeError();
536  
537      for (const Elf_Shdr &Sec : *SectionsOrError) {
538        if (Sec.sh_type == ELF::SHT_DYNAMIC) {
539          Expected<ArrayRef<Elf_Dyn>> DynOrError =
540              getSectionContentsAsArray<Elf_Dyn>(Sec);
541          if (!DynOrError)
542            return DynOrError.takeError();
543          Dyn = *DynOrError;
544          break;
545        }
546      }
547  
548      if (!Dyn.data())
549        return ArrayRef<Elf_Dyn>();
550    }
551  
552    if (Dyn.empty())
553      // TODO: this error is untested.
554      return createError("invalid empty dynamic section");
555  
556    if (Dyn.back().d_tag != ELF::DT_NULL)
557      // TODO: this error is untested.
558      return createError("dynamic sections must be DT_NULL terminated");
559  
560    return Dyn;
561  }
562  
563  template <class ELFT>
564  Expected<const uint8_t *>
565  ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
566    auto ProgramHeadersOrError = program_headers();
567    if (!ProgramHeadersOrError)
568      return ProgramHeadersOrError.takeError();
569  
570    llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
571  
572    for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
573      if (Phdr.p_type == ELF::PT_LOAD)
574        LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
575  
576    auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
577                       const Elf_Phdr_Impl<ELFT> *B) {
578      return A->p_vaddr < B->p_vaddr;
579    };
580    if (!llvm::is_sorted(LoadSegments, SortPred)) {
581      if (Error E =
582              WarnHandler("loadable segments are unsorted by virtual address"))
583        return std::move(E);
584      llvm::stable_sort(LoadSegments, SortPred);
585    }
586  
587    const Elf_Phdr *const *I = llvm::upper_bound(
588        LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
589          return VAddr < Phdr->p_vaddr;
590        });
591  
592    if (I == LoadSegments.begin())
593      return createError("virtual address is not in any segment: 0x" +
594                         Twine::utohexstr(VAddr));
595    --I;
596    const Elf_Phdr &Phdr = **I;
597    uint64_t Delta = VAddr - Phdr.p_vaddr;
598    if (Delta >= Phdr.p_filesz)
599      return createError("virtual address is not in any segment: 0x" +
600                         Twine::utohexstr(VAddr));
601  
602    uint64_t Offset = Phdr.p_offset + Delta;
603    if (Offset >= getBufSize())
604      return createError("can't map virtual address 0x" +
605                         Twine::utohexstr(VAddr) + " to the segment with index " +
606                         Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
607                         ": the segment ends at 0x" +
608                         Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
609                         ", which is greater than the file size (0x" +
610                         Twine::utohexstr(getBufSize()) + ")");
611  
612    return base() + Offset;
613  }
614  
615  template <class ELFT>
616  Expected<std::vector<typename ELFT::BBAddrMap>>
617  ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec) const {
618    Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
619    if (!ContentsOrErr)
620      return ContentsOrErr.takeError();
621    ArrayRef<uint8_t> Content = *ContentsOrErr;
622    DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
623    std::vector<Elf_BBAddrMap> FunctionEntries;
624  
625    DataExtractor::Cursor Cur(0);
626    Error ULEBSizeErr = Error::success();
627  
628    // Helper to extract and decode the next ULEB128 value as uint32_t.
629    // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t
630    // limit.
631    // Also returns zero if ULEBSizeErr is already in an error state.
632    auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t {
633      // Bail out and do not extract data if ULEBSizeErr is already set.
634      if (ULEBSizeErr)
635        return 0;
636      uint64_t Offset = Cur.tell();
637      uint64_t Value = Data.getULEB128(Cur);
638      if (Value > UINT32_MAX) {
639        ULEBSizeErr = createError(
640            "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) +
641            " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")");
642        return 0;
643      }
644      return static_cast<uint32_t>(Value);
645    };
646  
647    while (!ULEBSizeErr && Cur && Cur.tell() < Content.size()) {
648      uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur));
649      uint32_t NumBlocks = ReadULEB128AsUInt32();
650      std::vector<typename Elf_BBAddrMap::BBEntry> BBEntries;
651      for (uint32_t BlockID = 0; !ULEBSizeErr && Cur && (BlockID < NumBlocks);
652           ++BlockID) {
653        uint32_t Offset = ReadULEB128AsUInt32();
654        uint32_t Size = ReadULEB128AsUInt32();
655        uint32_t Metadata = ReadULEB128AsUInt32();
656        BBEntries.push_back({Offset, Size, Metadata});
657      }
658      FunctionEntries.push_back({Address, BBEntries});
659    }
660    // Either Cur is in the error state, or ULEBSizeError is set (not both), but
661    // we join the two errors here to be safe.
662    if (!Cur || ULEBSizeErr)
663      return joinErrors(Cur.takeError(), std::move(ULEBSizeErr));
664    return FunctionEntries;
665  }
666  
667  template class llvm::object::ELFFile<ELF32LE>;
668  template class llvm::object::ELFFile<ELF32BE>;
669  template class llvm::object::ELFFile<ELF64LE>;
670  template class llvm::object::ELFFile<ELF64BE>;
671